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Abstract

A buyer wants to purchase multiple contiguous items from sellers holding an

item each. We refer to such situations as assembly problems. We model contiguity

of items through graphs where each node represents an item and an edge between

two nodes denotes physical adjacency. The buyer wants to purchase a path of a

desired length, called a feasible path. A seller is critical if he lies on every feasible

path. We investigate subgame perfect equilibria of an infinite horizon alternate-offer

bargaining game between the buyer and the sellers. We show that the buyer can

extract full surplus within two periods if the valuations of the sellers are symmetric

and there are no critical sellers. Further, we show that if the valuations of the

sellers are asymmetric, there does not exist any equilibria where the buyer extracts

full surplus. Our paper thus brings out the role of complementarity in location and

competition in valuation in assembly problems.
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1 Introduction

A buyer wants to purchase multiple contiguous items from sellers owning an item each.

We refer to such situations as assembly problems. Strategic delays or holdouts, as they

are commonly known, are typical of such problems. By using such delays as threats,

sellers can extract surplus from the buyer. We model contiguity of items through graphs

where each node represents an item and an edge between two nodes denotes physical

adjacency. The buyer wants to purchase a path of a desired length, called a feasible

path. A seller is critical if he lies on every feasible path. Applied bargaining literature

has studied holdout under certain bargaining protocols when the number of sellers is the

same as the number of items required, i.e., when all sellers are critical in our sense. We

investigate subgame perfect Nash equilibria (SPNE) of an infinite horizon alternate-offer

bargaining game between the buyer and the sellers. We show that the buyer can extract

full surplus within two periods if the valuations of the sellers are symmetric and there are

no critical sellers. Further, we show that if the valuations of the sellers are asymmetric,

there does not exist any equilibria where the buyer extracts full surplus. Our paper

thus brings out the role of complementarity in location and competition in valuation in

assembly problems.

Heller (2008) presents a lively account of how too much private ownership prevents as-

sembly by creating a “gridlock”. He has cited a number of examples including assembling

individual patents for manufacturing a drug, assembling airwaves to establish a telecom-

munication network, mashup and remixing in the music industry and land acquisition for

projects like airports, wind farms and large scale agriculture. In all these cases, owner-

ship of a resource is fragmented. An individual owner, therefore, can potentially prevent

assembly, which results in suboptimal use of the resource — a problem that Heller refers

to as the “tragedy of the anticommons”. This term is in sharp contrast to the well-known

“tragedy of the commons” (Hardin, 1968) where absence of ownership results in overuse

and eventual depletion of a resource.

The usual remedy for both the commons and the anticommons problems is to limit
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rights of use or rights of exclusion through social, legal or economic sanctions. Such

sanctions, wherever applied, are strongly resisted on the grounds of violation of property

rights. Coase (1960) conjectured that if property rights are well-defined and tradeable,

competitive bargaining for such rights would lead to efficient outcomes in the absence

of transaction costs. In the anticommons problem, complementarity of demand allows

individual sellers to exert monopoly power to the extent that the buyer is not left with

much incentive to implement her project. By allowing for different degrees of comple-

mentarity, we are able to show that when seller valuations are symmetric, the buyer is

able to extract full surplus unless there is a critical seller. In this case, criticality is the

only form of complementarity that can prevent the buyer from extracting full surplus. In

contrast, when sellers have asymmetric valuations, efficient sellers are endowed with more

bargaining power and the buyer is never able to extract full surplus. Thus, we are able

to identify two sources of inefficiency in the assembly problem, viz., presence of critical

sellers and asymmetry of valuations.

The bilateral trade model represents the most elementary form of a market for an

indivisible item involving one buyer and one seller. Consider a simple model where a buyer

and a seller bargain for the ownership of an indivisible item with complete information

of valuations for the object for one period: the buyer makes the first offer which the

seller may accept or reject. If we postulate that the seller decides to accept any offer that

does not make him strictly worse-off, then this game has a unique subgame perfect Nash

equilibrium outcome: the buyer offers the seller his exact valuation, the seller accepts,

and thus the buyer extracts full surplus. Contrast this equilibrium outcome to that of

the infinite horizon alternate offer bargaining model due to Rubinstein (1982): the buyer

has to offer a strictly positive share of the surplus to the seller to avoid strategic delay or

as a cost of holdout.

Roy Chowdhury and Sengupta (2012) have studied the problem of one buyer bargain-

ing with multiple sellers holding an item each, where all items are complementary. In their

model, the buyer begins bargaining by making simultaneous offers to all active sellers. A

seller can accept or reject the offer she receives. On acceptance, the seller surrenders his
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plot in lieu of the cash offer and leaves the market. Sellers rejecting buyer’s offer make

counteroffers in the next period that the buyer can accept or reject. Bargaining continues

till there is a consensus on trade. Roy Chowdhury and Sengupta (2012) show that with

transparent protocols , buyer can extract higher surplus if he has an outside option. With

less transparent protocols, however, holdout may be unavoidable even if the buyer has an

outside option.

We model the case where there are possibly more sellers than the number of items

required. In our model, sellers are located on nodes of a graph. Nodes are connected by

an edge if the corresponding items are physically adjacent or complementary. A sequence

of connected nodes is called a path. A path the same size as the number of items required

is called a feasible path. Complementary nodes lie on the same path, but two disjoint

paths are substitutable. A cycle is a sequence of connected nodes where the beginning and

the terminal nodes are the same. Note that in this model, two paths are not completely

substitutable if they share some nodes. A seller is critical if he lies in the intersection of all

feasible paths. Sarkar (2017) has studied a similar problem with incomplete information.

We find it a natural way to model different degrees of complementarity.

Using the same bargaining protocol as Roy Chowdhury and Sengupta (2012), we show

the existence of subgame perfect Nash equilibria where the buyer can extract full surplus

when there is no critical seller. Our results generalize the results by Roy Chowdhury and

Sengupta (2012) by allowing for complementarity within feasible paths and substitutabil-

ity among multiple paths. Further, while Roy Chowdhury and Sengupta (2012) require

outside options to prevent holdout, we are able to avoid holdout by utilizing the compe-

tition between items that are substitutable. Such competition has the familiar flavour of

Bertrand games well covered in the applied game theoretic literature.

The equilibria we characterize have the following features:

• If the underlying graph has a critical seller, the buyer can never extract full surplus.

This covers the case studied by Roy Chowdhury and Sengupta (2012) with only one

feasible path on which all sellers are critical.
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• If the underlying graph contains a cycle of a minimal length, the buyer can extract

full surplus in the first period itself regardless of whether she is making the first

offer.

• In all other cases, the buyer can extract full surplus in the second period if she

is making the first offer. She extracts full surplus in the first period if sellers are

making the first offer.

In a much older paper, Asami (1985) modelled a land market with multiple buyers and

multiple sellers as a cooperative game. In his model, each buyer is interested in buying

k plots and each seller owns a plot located on a line. He finds that in a core allocation,

competition forces agents to receive no surplus, while some agents, e.g. a critical seller

or a lonely buyer are able to extract positive surplus. In contrast, our approach is non-

cooperative and allows for general contiguity structures and valuations. However, it

retains all the features of Asami (1985) pertaining to the single buyer problem.

We discuss the relevant literature in the next section. Subsequently, we lay down the

preliminary structure of our model and present two important results from the literature.

Then we present our main results for different cases of our model. All proofs are presented

in the Appendix. The following section offers detailed discussion of the main results. The

final section offers some concluding remarks.

2 Literature

The problem of holdout derives its significance from the fact that production may re-

quire several inputs that are complements owned by different agents. Each input owner

has some bargaining power, which may lead to delay in negotiations and in some cases

bargaining breakdowns.This problem has been studied in the land assembly context

(Asami, 1985; O’Flaherty, 1994; Cai, 2000, 2003; Menezes and Pitchford, 2004; Miceli

and Segerson, 2012; Roy Chowdhury and Sengupta, 2012; Göller and Hewer, 2015). Some

other themes that have been studied in this context are secret offers (Noe and Wang, 2004;

Krasteva and Yildirim, 2012a) and the choice of bargaining order over sellers (Krasteva
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and Yildirim, 2012b; Xiao, 2018).

Strategic exchange is usually modelled in economics using bargaining games, where

agents on one side of the market propose prices (or, equivalently, shares of the surplus),

and those on the other side accept or reject. The legitimate range of price offers, the

sequencing of the prices offered and the possible length of the negotiation process are given

by the bargaining protocol which is common knowledge (see Osborne and Rubinstein

(1990) for a survey). For our exposition we follow the strategic bargaining literature in

economics. The negotiation process we follow is a natural extension of Rubinstein (1982).

We also assume complete information i.e. all relevant information pertaining to the game

is common knowledge among players. So our model belongs to the class of models of

strategic bargaining with complete information (e.g., Fernandez and Glazer (1991))

Closer to our setting, Menezes and Pitchford (2004) study a non-cooperative game of

entry into an efficient bargaining process. They show that there is inefficient entry and

relate it to the degree of complementarity in production. Cai (2000, 2003), shows how

inefficiencies due to hold-out may arise by using a circular bargaining protocol, where the

buyer follows a fixed order of bargaining with sellers and sellers he cannot agree with are

pushed to the end of the queue. We do not study entry and we assume a simultaneous

offers game. In this we are closest to Roy Chowdhury and Sengupta (2012). Also like

most of the above papers (except Cai (2003)), we analyze the Cash Offers model, where

payment is made immediately on agreement.

Roy Chowdhury and Sengupta (2012) study the same negotiation process as us, but

they focus on the role of outside options of buyers and protocol trasperancy in creating

or mitigating inefficiencies under very strict assumptions on complementarity. In our

paper, the bargaining protocol is assumed to be transparent throughout and the buyer

has no outside option. We introduce competition among sellers into the model and focus

on its effect on holdout. With perfect seller competition, holdout should disappear. In

our model, however, any particular seller may not be substitutable by any other. Buyer

wants a cluster of inputs. One particular cluster of inputs may be substituted by another

but any individual input within a particular cluster may not always be replaceable by a
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particular input in another cluster.

Sarkar (2017) obtained results in an incomplete information framework that are closely

related to the ones presented here. He investigated the existence of direct mechanisms

that are “successful” in the sense of Myerson and Satterthwaite (1983)1 when agents have

private and independent valuations and seller valuations are drawn from the same prior.

He showed that:

• There does not exist a successful mechanism if the number of sellers is exactly equal

to the number of items required, i.e., all sellers are critical.

• If there are multiple feasible paths, there are priors for which a successful mechanism

exists.

• The set of priors for which a successful mechanism exists shrink with the number

of critical sellers in the underlying graph.

Unfortunately, although a successful direct mechanism may exist for certain priors,

it is not easy to interpret the form of such a mechanism2. Bargaining can be viewed as

an indirect mechanism with a natural interpretation. Our paper suggests that bargain-

ing with a generalized Rubinstein protocol may be used to implement efficiency under

incomplete information.

We adopt the contiguity requirement on inputs following Sarkar (2017, 2018) and

study the effect of competition on holdout using the bargaining protocol analyzed by

Roy Chowdhury and Sengupta (2012).

There is a literature in contract theory in the broad lines of our contribution. Segal

(1999) analyzes the problem of contracting with externalities. With public commitment,

inefficiency arises because of externalities in agents’ reservation utilities. Genicot and Ray

(2006) analyse a game where a principal offers contracts to a set of agents whose outside

1A mechanism is“successful” in this sense if it is ex-post efficient, interim incentive compatible, interim

individually rational and ex post budget balanced.
2See Krishna and Perry (2000) for the construction of a successful mechanism.
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option depends on the number of agents not contracted. In this game, competition among

agents is exploited to force agents to inferior contractual terms.

A natural follow-up of our exercise is to investigate the impact of formation of seller

coalitions on equilibrium payoffs (see Ray (2007) for a survey of coalition formation). A

complete analysis of this question is beyond the scope of this paper. In our concluding

remarks, we provide an example to show that if the sellers are allowed to form coali-

tions, the buyer may not be able to extract full surplus even when sellers have identical

valuations.

As a methodological note, notice that in the case where seller valuations are not equal,

we have used a mixed strategy equilibrium proposed by Blume (2003). Kartik (2011) has

shown that under mild assumptions, these equilibria are the only ones using undominated

strategies.

3 Preliminaries

Sellers of items are located on nodes of a graph. Two adjacent sellers are connected by an

edge. In an application like land acquisition, adjacency can be interpreted in the usual

physical sense. In general, adjacency between a pair of nodes simply means that the

corresponding items are complementary inputs in the production process the buyer uses.

A path is a sequence of connected nodes. The buyer wants to purchase a path of desired

length3, say k. This implies that the buyer can combine any k mutually complementary

items to produce output. We will denote a path by P and the corresponding sum of seller

valuations by S. An assembly problem with complete information is a tuple: 〈Γ, k, v, δ〉.

Here Γ is a graph of order n; positive integer k is the desired minimum length of the

path buyer is interested in purchasing; the first component of v ≡ (v0, v1, . . . , vn) denotes

the valuation of the buyer for a path of length k or more, and other components denote

the valuation of the sellers for their respective items; the real number δ ∈ [0, 1] denotes

the common rate at which the n+ 1 agents discount future payoffs. Note that efficiency

3This can be relaxed to include any special graph of a fixed size. Rights of passage directly motivates

the desire to purchase a path in our case.

8



would require the buyer to purchase only paths of length k, unless some of the sellers

have zero valuation. We assume that there exists a path P ∈ Γ, such that it results in a

positive surplus: v0−
∑

i∈P vi > 0. When Γ is a complete graph of order n, we will denote

an assembly problem by 〈n, k, v, δ〉. Note that in any complete graph of order n > k, any

set of k nodes constitutes a feasible path.

A seller is critical if he lies on every feasible path. This implies that the corresponding

item is complementary with respect to every feasible production plan. If there is only one

feasible path in Γ, all sellers in that path are critical. But if there are multiple feasible

paths, a seller must lie in their intersection in order to qualify as critical. If there are

multiple feasible paths, the number of critical sellers cannot exceed k − 1: not all sellers

on a single path can be critical. Paths that are of length less than k and do not have a

intersection with any feasible path can be excluded from the analysis, because the buyer’s

valuation over such paths is zero.

1

23

4 5

Figure 1: A feasible path in the star graph when k = 3; seller 1 is critical.

A graph with n nodes can have upto
(
n
2

)
edges. Thus, the variety of possible graph

structures can be large. We consider four major varieties among graphs with at least

two feasible paths: (a) cycles of order k + 1, referred to as Γ4 (see Figure 2); (b) graphs

with two disjoint paths, referred to as ΓD (see Figure 3); (c) graphs with critical sellers,

referred to as Γ∗ (see Figure 4); (d) graphs where (i) there is no cycle of length k+ 1, (ii)

no two paths are disjoint and (iii) the intersection of all feasible paths is empty, referred to

as ΓO (see Figure 8). For convenience, we will refer variety (d) as oddball. Note that these

varieties are mutually exclusive and any other graph in the class considered must have one

or more of these graphs as subgraphs. Further, given our earlier interpretation of nodes

and edges, these four varieties of graphs are naturally interpreted as follows. Suppose
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valuations of items are identical. In variety (a), every item on a feasible path can be

completely substituted by another item on the graph. In variety (b), no individual item

is completely substitutable, but a feasible path can be substituted completely by another

feasible path. In variety (c), items belonging to critical sellers are not substitutable but

those belonging to non-critical sellers are substitutable in a limited sense. In variety (d),

items in the intersection of two or more feasible paths cannot be substituted with respect

to these feasible paths, but they are substitutable with respect to other feasible paths.

When seller valuations are not identical, substitution may be costly in economic terms

over and above technological feasibility of substitution implied by the edges in the graph.

We apply a variant of the Rubinstein bargaining protocol due to Roy Chowdhury and

Sengupta (2012). In each period, either the sellers propose individual offers of surplus

shares to the buyer or the buyer proposes a vector of offers of surplus shares to n sellers.

The sellers can individually accept or reject buyer’s proposals. If a seller accepts buyer’s

proposal, the buyer immediately purchases his plot and the seller leaves the market. The

sellers who have rejected buyer’s offer propose individual shares to the buyer that the

buyer may accept or reject. If the buyer accepts any of the seller offers, she immediately

purchases his plot and the seller leaves the market. The buyer then resumes bargaining

with rest of the active sellers. The game continues till the buyer is able to purchase k

plots on a path.

Note that there can be offers of negative shares of surplus that force the agent to

whom the offer is made to reject the offer in that period. Bilateral bargaining models,

like that by Rubinstein (1982) do not include this feature: only non-negative offers are

allowed in such bargaining games. Negative offers can be utilized by the agents, say, the

buyer, to exclude other agents, say a particular seller, from the bargaining process at any

particular stage and exploit more bargaining power in future.

Consider the two-person alternating offer bargaining game studied by Rubinstein

(1982). Let players 0 and 1 be the buyer and seller of a plot with values v0 and v1

respectively. Player 0 moves first and proposes a sharing scheme for the surplus v0 − v1.

Player 1 can either accept or reject the proposed share, say x. If he accepts, the game

10



ends with both players sharing the surplus according to the scheme proposed by 0. The

buyer has to pay the seller v1 + x(v0− v1) in exchange of the plot. Consequently, the net

payoff of the buyer and the seller are (1 − x)(v0 − v1) and x(v0 − v1). If he rejects then

in the next stage 1 makes an proposal which 0 can accept or reject. Bargaining can go

on infinitely till one of the two players accept the offer made by the other. The SPNE of

this game, which is now a standard result, is presented below without a proof.

Theorem 1 (Rubinstein (1982)) Consider the model where the buyer bargains with

one seller for one plot: 〈n = 1, k = 1, v0 > v1, δ〉. There is a unique SPNE of the model

described as follows:

Agent i proposes a share δ
1+δ

of the surplus to j whenever she has to propose,

and accept any share at least equal to δ
1+δ

whenever j has to propose.

The game ends in the first period itself, with buyer proposing δ
1+δ

to the seller and the

seller accepting it.

Roy Chowdhury and Sengupta (2012) study the pure strategy SPNE under Rubinstein

bargaining protocol in a model where a buyer wants all plots held by n sellers. While they

prove their result for the case when sellers’ valuations are identical, their claim applies

even when sellers valuations are not identical.

Theorem 2 (Roy Chowdhury and Sengupta (2012)) Consider the model 〈n ≥ 2, k =

n, v1 ≤ · · · ≤ vn, v0 >
∑n

i=1 vi, δ〉. The buyer’s equilibrium payoff cannot be more than

1−δ
1+δ

(v0 −
∑n

i=1 vi) for any δ > 0.

Note that all sellers are critical here. In terms of our model this situation pertains

to the case with only one feasible path in a graph. Two types of equilibrium outcomes

are identified: if 1 > nδ
1+δ

, the buyer offers δ
1+δ

to every seller in the first period and all

of them accept. Otherwise, the buyer would offer zero in the first period, all but r ≥ 2

sellers would accept, and in the second period these r sellers would demand P such that

1− rP = δ
(
1− rδ

1+δ

)
. Here, r is the highest positive integer such that 1 > rδ

1+δ
.

Two simple examples below illustrate the essential arguments of this paper.
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Example 1 Consider the model 〈n = 2, k = 1, v0 > v1 = v2, δ〉. Suppose the buyer

makes offers of zero surplus to seller 1 and negative surplus to seller 2. If seller 1 rejects

the buyer’s offer, he would compete with seller 2 in the next period and offer the entire

surplus to the buyer. If sellers 1 and 2 are making offers in the first period, they cannot

make equal positive claims: one of the sellers have the incentive to reduce her claim and

increase payoff. On the other hand, if their claims are unequal, the seller with the lowest

claim has the incentive to increase her claim slightly and increase his payoff. Consequently,

none of the sellers 1 and 2 can extract any surplus. The game ends immediately with the

buyer extracting full surplus. The equilibrium outcome is identical even when the sellers

are proposing first.

The situation described in Example 1 is identical to the well-known Bertrand model

of price competition between firms producing the same product at identical marginal

costs. In this model, competition between the sellers drives prices down to the marginal

cost. The buyer is able to extract full surplus. Note that in our model the competition is

among feasible paths. Consequently, the richness of the underlying graph structure allows

for results that are richer than simple Bertrand competition. However, the spirit of the

argument applied for richer graph structures is in the nature of Bertrand competition.

The simple example below illustrates that the buyer may not be able to extract efficient

surplus when seller valuations are not identical. This example is in the lines of Blume

(2003) who characterizes a class of equilibria in the Bertrand model of price competition

when firms have asymmetric marginal costs.

Example 2 Consider the land acquisition problem 〈n, k, v, δ〉 such that n = 2; k =

1, v1 < v2 < v0. We claim that the buyer cannot extract the efficient surplus in equilib-

rium. Consider the following strategies of the sellers: in any continuation game where

the two sellers are making offers, seller 1 offers to sell at a price of v2 and seller 2 mixes

prices in (v2, v2 + γ), γ > 0, with uniform probability constitutes an equilibrium. In any

continuation game where the buyer is making an offer, seller 1 accepts a surplus of at

least δ(v2−v1) and seller 2 accepts any positive surplus. Given these strategies, following
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is a best response for the buyer: in any continuation game where the buyer is making

an offer, she offers a surplus of δ(v2 − v1) to seller 1 and a negative surplus to seller 2.

In any continuation game where the sellers are making an offer, she accepts any surplus

offer that is less than or equal to v2 − v1. If the buyer proposes first, trade takes place

in the first period itself with seller 1; seller 1 is able to extract a surplus of δ(v2 − v1).

If the sellers propose first, trade takes place in the first period, where seller 1 is able to

extract a surplus of (v2−v1). To check that this is an equilibrium, note that when making

an offer, buyer cannot offer any higher surplus to seller 1 as it would be accepted. The

buyer cannot offer positive surplus to seller 2, since he would accept it. Any lower surplus

offer would be rejected by seller 1. The buyer cannot reject the offer of seller 1 either

because that would reduce his share of surplus. Seller 1 cannot reduce his offer because

it would be accepted. Any higher offer by seller 1 would be rejected, thus leading to a

lower surplus for him. If v1 < v0 < v2, only the trade with seller 1 is feasible. In this

circumstance, we are back to the equilibrium outcome of the familiar bilateral bargaining

model by Rubinstein (1982): in any continuation game where the buyer is making an

offer, the buyer proposes a surplus of δ
1+δ

(v0 − v1) to seller 1 and a negative surplus to

seller 2; seller 1 accepts any surplus at least equal to δ
1+δ

(v0 − v1). In any continuation

game where the sellers are making an offer, seller 1 proposes a surplus of δ
1+δ

(v0 − v1) to

and seller 2 proposes v0− v2; the buyer accepts any surplus at least equal to δ
1+δ

(v0− v1).

Trade takes in the first period itself with seller 1.

4 Results

Here we consider assembly problems where the underlying graph has at least two different

feasible paths. We distinguish between two cases: one, in which the seller valuations are

equal, and two, where the seller valuations are unequal. To facilitate exposition, we

present a set of examples after each result to illustrate the essential argument. Detailed

proofs are presented in the appendix.
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4.1 Equal seller valuations

In this subsection, we consider the case where all seller valuations are equal. The main

result of this subsection is given below.

Theorem 3 Consider an assembly problem 〈Γ, k, v, δ〉 such that v1 = · · · = vn, v0 > kv1.

There exists a δ for which the buyer extracting full surplus in at most two periods is an

equilibrium outcome if and only if Γ does not contain a critical seller.

The formal proof of this result is given in Appendix A. Here we present four examples

pertaining to the varieties of graph structures discussed in Section 3. In these examples,

k = 3.

Example 3 (A 4-cycle) Consider a cycle of length 4. Note that there are 4 feasible

paths of length 3. Every pair of feasible paths has a non-empty intersection. But the

intersection of all 4 feasible paths is empty. We argue that there exists an equilibrium

where the buyer extracts full surplus.

1 4

2 3

Figure 2: A cycle of length 4.

First note that bargaining continues if and only if there are at least two active sellers.

Consider the following strategy of the buyer: She picks a feasible path. Whenever she

is proposing, she offers sellers from the picked path their valuations (equivalently, zero

surplus), and the remaining seller strictly less than his valuation (equivalently, negative

surplus). Whenever the sellers are proposing, she accepts the required number of offers

from the lowest seller claims, provided she can afford. Consequently, all active sellers

claiming zero surplus whenever they are required to make an offer is a best response. To

check this, note that no active seller can gain by deviating for one stage when all of them
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claim zero surplus. If active sellers make identical positive surplus claims, one of them

can reduce his claim by a small amount and make a gain. If active sellers make unequal

claims then a seller with lower claim can increase his claim by a small amount and make

a gain. Now consider a stage where the buyer is making an offer. Active sellers who are

made zero surplus offers would immediately accept: if any such seller rejects, he reaches a

continuation game where the maximum he can gain is zero. Hence this is an equilibrium.

Trade takes place in the first period itself with 3 sellers who are made zero surplus offers.

Note that the equilibrium outcome does not change whether the buyer moves first, or the

sellers.

Example 4 (Two disjoint feasible paths) Consider a graph with two disjoint paths

of length 3 (see Figure 3 below). We will show that if the sellers move first, the buyer

achieves full surplus in the first period itself. Consequently, if the buyer moves first and

δ is large, there is an equilibrium where buyer extracts full surplus in the second period.

1

2

3

4

5

6

Figure 3: Graph with disjoint feasible paths

Consider the following strategy of the buyer: whenever the buyer is proposing, she

makes negative offers to all sellers. Whenever the sellers are proposing, the buyer accepts

the claims of sellers on a path with the lowest sum of claims provided her share of surplus

is non-negative, and reject all other claims. In case the sum of claims on two feasible

paths are same, she accepts claims from one of the paths chosen with equal probability.

We claim that, given the above strategy, sellers in the two disjoint feasible paths claiming

zero surplus whenever they are required to make an offer is a best response. No seller can
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gain by deviating for one stage when the sum of surplus claims on either path is zero. If

the sum of surplus claims on both paths are equal and positive, a seller on either path

can reduce his claim by a small amount and make a gain. If the sum of surplus claims on

two paths are unequal, then any seller on on the path corresponding to the lower sum can

increase his claim by a small amount and make a gain. Hence these are not equilibrium

claims. To rule out other possible deviations, note that buyer can make zero surplus offers

to sellers on both paths, and negative surplus offers to all other sellers; sellers on both

paths would accept these offers. To ensure that this deviation in the first stage is not

profitable for the buyer, we require δ > v0−6v
v0−3v . The buyer can also make acceptable offers

of surplus shares, 2δv, to each seller on one path and negative offers to all other sellers,

provided v0−3v−6δv > 0. This is because, by rejecting a first period offer from the buyer,

a seller on the chosen path competes with sellers on the other path; the highest surplus

he can claim in a continuation game where he and the other sellers are making offers is

3v− v = 2v.To ensure that this deviation in the first stage is not profitable for the buyer,

we require δ > v0−3v−6δv
v0−3v . Thus, provided δ > max{v0−6v

v0−3v ,
v0−3v−6δv
v0−3v }. Consequently,

the buyer extracting full surplus in the second period is an equilibrium outcome in the

strategies described above for large δ.

Example 5 (Graph with critical sellers) Consider the following line graph where

there are two critical sellers. We argue that the buyer cannot claim full surplus in an

equilibrium.

1 2 3 4

Figure 4: A line graph with two critical sellers marked red

Suppose the buyer makes offers first. Note that there is only one non-critical seller in

both feasible paths. If she makes acceptable offers to both critical sellers in the first

period itself, then she can pick a non-critical seller on any feasible path, offer him zero

share of the surplus and make negative offers to all other sellers. If this non-critical

seller rejects the zero offer, the most that he can claim in the next period is again zero,
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since there is at least one more competing non-critical seller on some other feasible path.

Hence this seller must accept the offer in the first period. Thus the share of surplus the

buyer can extract in this problem is at most the surplus she can extract in the problem

〈n = k = 2, v, δ〉. By Theorems 1 and 2, we find that the buyer claims at most 1−δ
1+δ

of

full surplus in an equilibrium. Suppose sellers make the first offer. Note that by rejecting

all seller offers, the buyer is able to induce a game where she makes the first offer. So

either the sellers on a feasible path make offers that make the buyer indifferent between

accepting and rejecting such offers, or they make offers that the buyer rejects in the first

period. In either case, the buyer’s equilibrium share of surplus cannot exceed δ times her

equilibrium share of surplus in a continuation game where she has the first move.

Example 6 (An oddball graph) Consider the graph in Figure 8 below with k = 3.

We will show that if the sellers move first, the buyer achieves full surplus in the first

period itself. Consequently, if the buyer moves first and δ is large, there is an equilibrium

where buyer extracts full surplus in the second period.

1

2 3 4

5 6

Figure 5: An oddball graph

Note that the graph has a subgraph, marked in blue, such that it contains a feasible path,

and for each node x on this feasible path there exists another node outside this subgraph

and a corresponding edge such that exclusion of x from the graph leaves a feasible path

of length k. For instance, exclusion of node 2, would leave the graph with feasible paths

{134} and {136}. Further, for each node x on a feasible path, let s(x) be the order of

the smallest subgraph such that the union of this subgraph and the graph excluding x

contains a feasible path. For example, in Figure 8, s(1) = s(5) = 1 and s(2) = 2.
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Consider the following strategy of the buyer: In any continuation game where the buyer

has the first move , the buyer makes negative offers to all sellers. In any continuation

game where sellers have the first move, the buyer accepts the claims of sellers on a path

with the lowest sum of claims provided her share of surplus is non-negative, and reject all

other claims. In case the sum of claims on the two feasible paths are same, she accepts

claims from one of the paths chosen with equal probability. We claim that given the

above strategy, sellers claiming zero surplus at any subgame they are required to make

an offer is a best response. To check this, note that no seller can gain by deviating for

one stage when the sum of seller claims across paths is zero. This is because, for each

node, there is always a feasible path in the graph that excludes it. If sums across feasible

paths are positive, a seller on one of the paths can reduce his claim by a small amount

and make a gain. If sums across paths are unequal, then a seller on a path with lower

sum of claims can increase his claim by a small amount and make a gain. Hence these

are not best responses.

To disallow possible deviations, note that buyer can make zero surplus offers to all sellers

on the blue subgraph, and negative surplus offers to all other sellers; sellers on blue

subgraph would accept these offers. To ensure that this deviation in the first stage is

not profitable for the buyer, we require δ > v0−4v
v0−3v . The buyer can also make acceptable

offers of surplus shares to sellers on a path and negative offers to all other sellers. Seller

corresponding to node xi on the path picked accepts any surplus share at least equal to

δ(s(xi)− 1)v. This is because, by rejecting a first period offer from the buyer, a seller on

the chosen path competes with sellers on the other path; the highest surplus he can claim

in a continuation game where he and the other sellers are making offers is (s(xi)− 1)v.To

ensure that this deviation in the first stage is not profitable for the buyer, we require

δ >
∑

i∈P (s(xi)−1)v
v0−3v . Thus, provided δ > max

{
v0−4v
v0−3v ,

∑
i∈P (s(xi)−1)v
v0−3v

}
, the buyer extracting

full surplus in the second period is an equilibrium outcome in the strategies described

above.
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4.2 Unequal seller valuations

In this subsection, we consider the case where seller valuations are not equal. In this case,

the sum of seller valuations may differ over paths. The path corresponding to the least

sum of seller valuations is efficient in the sense that it corresponds to highest potential

surplus. It follows that if possible, the buyer would prefer to purchase the efficient path.

Let Pi denote the path corresponding to the i-th smallest sum of valuations on a

path in Γ. We will refer to a set of assembly problems as rich if there does not exist

two disjoint paths P1 and P2 such that S1 = S2. Suppose the richness condition is not

satisfied. The buyer, if offering first, can offer negative surplus shares to all sellers who

reject such offers. In the next period, sellers on P1 and P2 cannot claim any surplus:

the buyer extracts full surplus in the second period. If the sellers are making offers first,

sellers on these two paths cannot claim any surplus share.

Theorem 4 Consider the rich class of assembly problems 〈Γ, k, v, δ〉 such that v1 ≤ · · · ≤

vn with at least one strict inequality. There does not exist any equilibrium where the buyer

extracts full surplus.

We note that extracting full surplus implies trade taking place with only the k sellers

on P1. There may exist equilibria where the buyer offers zero surplus to more than k

sellers who accept. But this reduces the buyer’s surplus strictly below v0 − S1.

Also note that if the buyer extracts full surplus in an equilibrium, it cannot be that

sellers accept over two different periods. Suppose the buyer makes zero offers to say k−m

sellers who accept in the first period, and the remaining m sellers make zero surplus claims

in the next period. Then the buyer receives δ times the full surplus in period two. Since

these m remaining sellers can earn at most zero in the second period, the buyer can offer

them a small positive surplus in the first period itself and get more than δ times the full

surplus. Similarly, suppose the sellers are proposing first, the buyer accepts m zero offers

in the first period and makes zero offers to remaining k−m sellers in the next period. At

least one of these k−m sellers can revise his first period downwards to receive a positive

payoff in the first period itself. This observation leads to the following facts: (a) if the
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buyer extracts full surplus, all sellers realize zero surplus share in the same period; (b)

we need to prove the claim of this theorem for the first two periods only.

For the formal proof of Theorem 4, see Appendix B. Here we present four examples

pertaining to the varieties of graph structures discussed in Section 3. In all these examples,

we have k = 3.

Example 7 (A 4-cycle) Consider the cycle in Figure 2 where the numbers marking

the nodes represent valuations. Suppose the buyer makes zero surplus offers to sellers on

the efficient path {123} in the first period and negative surplus offers to seller 4. At least

one seller, say, seller 1, would reject this offer and claim a price of 4, the valuation of the

seller outside this path, in the next period. The buyer must accept, provided the surplus

on the path excluding seller 1, v0−7 > 0. If this inequality does not hold, the buyer must

offer δ
1+δ

times the efficient surplus, i.e., v0 − 6 to this seller. So, suppose buyer makes

negative offers to all sellers in the first period. Note that the sum of valuations on the four

paths {123}, {234}, {341} and {412} are 6, 9, 8 and 7 respectively. Seller 1, being in the

intersection of {123} and {412} can raise his price claim to 2: thus the sum of claims over

the four paths become 7, 9, 9 and 8. Either the buyer accepts this claim, or she rejects

and offers δ
1+δ

times the efficient surplus to this seller. Not all sellers would claim zero

surplus when proposing first: for example, seller 1 can claim a price of 4, or if v0− 7 < 0,

she can claim 1
1+δ

times the efficient surplus. If the buyer rejects all seller offers in the

first period, then she is on a continuation game where she is proposing to all sellers. We

have already argued that she cannot extract full surplus in such a continuation game.

Example 8 (Two disjoint feasible paths) Consider Figure 3 where the numbers mark-

ing the nodes represent valuations. Suppose the buyer makes zero surplus offers to all

sellers on {123} in the first period and negative surplus offers to the remaining sellers.

Seller 1 can reject this offer and claim a price equivalent to the sum of valuations on

{456}, i.e., 15 in the next period which buyer must accept, provided the corresponding

surplus is positive, i.e., v0− 20 > 0. If this inequality does not hold, the buyer must offer

δ
1+δ

times the efficient surplus to this seller. So, suppose buyer makes negative offers to
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all sellers in the first period. If v0 > 15, sellers on {123} can make claims summing up

to 15 in the second period. Either the buyer accepts this claim, or she rejects and offers

δ
1+δ

times the efficient surplus, v0− 6 to sellers on {123}. Not all sellers would claim zero

surplus when proposing first: as argued before, at least one seller can claim a price of

15, or, if v0 − 20 < 0, she can claim 1
1+δ

times the efficient surplus v0 − 6. If the buyer

rejects all seller offers in the first period, then she is on a continuation game where she is

proposing to all sellers. We have already argued that she cannot extract full surplus in

such a continuation game.

Example 9 (Graph with critical sellers) Consider the situation in Figure 8 where

the numbers marking the nodes represent valuations. Suppose the buyer makes zero

surplus offers in the first period. By Theorems 1 and 2, at least one critical seller , say,

seller 2, rejects this offer and claims 1
1+δ

of the efficient surplus v0 − 6 in the next period

which buyer must accept. Consequently, the buyer cannot extract full surplus within

the first two periods in an equilibrium. Suppose sellers make the first offers. As argued,

critical seller 2 can claim strictly positive surplus. So full surplus extraction cannot take

place in the first period. But if the buyer rejects all seller offers in the first period, then

she is on a continuation game where she is proposing to all sellers. We have already

argued that she cannot extract full surplus in such a continuation game.

Example 10 (An oddball graph) Consider the assembly problem in Figure 8 where

the numbers marking the nodes represent valuations. Suppose the buyer makes zero

surplus offers to sellers on the efficient path {123} in the first period. Seller 1 would

reject this offer and claim a price of 4 in the next period which buyer must accept,

provided v0 − 9 > 0. If this inequality does not hold, the buyer must offer δ
1+δ

times

the efficient surplus v0 − 6 to this seller. So, suppose buyer makes negative offers to all

sellers in the first period. Note that seller 1 lies in the intersection of multiple paths. He

can raise his claim by at least 1. Either the buyer accepts this claim, or she rejects and

offers δ
1+δ

times the efficient surplus v0− 6. Not all sellers would claim zero surplus when

proposing first: as argued before, seller 1 can claim a price of 4, or if v0 − 9 < 0, she can
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claim 1
1+δ

times the efficient surplus v0− 6. If the buyer rejects all seller offers in the first

period, then she is on a continuation game where she is proposing to all sellers. We have

already argued that she cannot extract full surplus in such a continuation game.

5 Discussion

Our first result claimed that if valuations of the sellers are identical and the underlying

graph structure does not have a critical seller, there exist equilibria where the buyer

extracts full surplus within two periods. Here we considered the simple advantages of

position that certain sellers exact in a graph, and abstracted from advantages due to cost

efficiency.

We considered four mutually exclusive and exhaustive categories of graphs, viz., (a)

graphs containing cycles of order k + 1, (b) graphs with two disjoint paths, (c) graphs

with critical sellers, and (d) oddball graphs where (i) there is no cycle of length k+ 1, (ii)

no two paths are disjoint and (iii) the intersection of all feasible paths is empty. These

categories can be easily interpreted in terms of complementarity and substitutability as

we have done in Section 3. Of particular interest is the k + 1 cycle, where every item on

a feasible path can be completely substituted by another item on the graph: only in this

case, the buyer is able to extract full surplus in the first period, regardless of whether the

buyer makes the first offer or the sellers. In other words, in this case, no seller has any

positional advantage. Thus, it is comparable to the pure Bertrand competition visible in

Example 1. At the other extreme is the graph with critical sellers: such critical sellers

exhibit full positional advantage and prevent the buyer from extracting surplus beyond a

point, regardless of whoever makes the first offer. Such sellers show full complementarity

in an economic sense with respect to any feasible path on the graph.

The cases of graphs with disjoint feasible paths and oddball graphs lie between these

two extremes. If the buyer picks a feasible path on any of these graphs, its nodes have

limited substitutability. Note that our bargaining protocol only permits cash offers with

full commitment. Consequently, once the buyer commits to a seller on a feasible path,
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she commits to all sellers in the feasible path. Thus the buyer has to cough up positive

shares of the surplus if she is making the first offer. However, the buyer can avoid this

commitment problem by making negative offers to all sellers and to push the outcome

towards Bertrand competition in the second period. For a patient buyer, the loss of

surplus by shifting the onus of bargaining to the sellers is not very significant.

The interpretation of these graphs in the context of anticommons applications like

land acquisition is immediate. The notions of complements and substitutes also arise

naturally in contexts like acquiring patent rights for drug manufacturing or obtaining

rights for musical scores for a documentary.

Theorem 4 shows that full surplus extraction is not robust with respect to changes

in the valuation structure. In fact, the buyer cannot extract full surplus whenever the

valuation profile of the sellers shows a fairly general degree of asymmetry. The positional

advantages that certain sellers hold become more pronounced when their valuations are

asymmetric. In this sense, asymmetric valuations enable sellers in the efficient feasible

path exercise monopoly power of a nature we had seen in Example 2. For the sake of

completeness, we have characterized a set of equilibria for the variety of graphs studied

here in Appendix B. However, there are multiple equilibria in such problems and at this

stage we are unable to provide exact bounds on the surplus share the buyer can extract

in various graph structures.

It may be noted that earlier inefficiency results in the literature, like Theorem 2,

focussed on the extreme case where all sellers are critical and valuations are symmetric.

Our generalized model, in contrast, shows that the inefficiency result pertains to the

rather extreme case of graphs with critical sellers when valuations are symmetric. In our

model, inefficiency is more pervasive when seller valuations are asymmetric.

An obvious extension of this exercise is to investigate the impact of coalition formation

among sellers on the surplus shares. For instance, in a 3-cycle where 2 items are required

and valuations are symmetric, any two sellers can form a coalition. Each member of the

coalition would claim 1
1+δ

of the full surplus. Any seller whose claim is fulfilled, can offer

to compensate the other. In this circumstance, at least one of the sellers gets positive
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surplus share, whereas the buyer loses some surplus share. A complete investigation of

this question is, however, beyond the scope of current paper.

6 Concluding Remarks

In this paper, we modelled the assembly problem as a bargaining game between one

buyer and multiple sellers located on the nodes of a graph. In our simple bargaining

problem without transactions cost, the buyer, using competition between sellers, is able to

implement an efficient project without significant delay when valuations are symmetric.

Positional advantages, or equivalently complementarities, can be exercised only under

extreme cases, when sellers are critical. The second result states that asymmetric seller

valuations is a stronger force than complementarity: such asymmetry provides additional

monopoly power to efficient sellers and prevent the buyer from efficient assembly. Thus,

our results provide support to the Coase conjecture when sellers are not “monopolistic”

in terms of positional or cost advantage.
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A Proof of Theorem 3

Consider a cycle of length k + 1, say, C(k + 1). Note that there are k + 1 feasible paths.

Every pair of feasible paths has a non-empty intersection. But the intersection of all
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k + 1 feasible paths is empty. We characterize an equilibrium where the buyer extracts

full surplus.

Proposition 1 Consider a assembly problem 〈Γ4, k, v, δ〉 such that v1 = · · · = vn, v0 >

kv1. The buyer extracting full surplus is an equilibrium outcome.

Proof : We will first prove the case of a graph which is a cycle of length k + 1.

Lemma 1 Consider a assembly problem 〈C(k+1), k, v, δ〉 such that v1 = · · · = vk+1, v0 >

kv1. The buyer extracting full surplus is an equilibrium outcome.

Proof : Consider the following strategy of the buyer: She picks a feasible path. In any

continuation game where m < k plots have already been acquired and the buyer has the

first move , the buyer offers k − m sellers zero surplus and make negative offers to the

remaining seller. In any continuation game where m < k plots have already been acquired

and sellers have the first move, the buyer accepts the lowest k −m claims provided her

share of the surplus is non-negative, and reject all other claims. In case more than k−m

sellers are making identical lowest offers, she accepts k−m offers with equal probability.

We claim that given the above strategy, all active sellers claiming zero surplus at any

subgame they are required to make an offer is a best response. Let xi be the surplus claim

of active seller i. No seller can gain by deviating for one stage when xi = xj = 0, i 6= j.

Hence it is an equilibrium. If xi = xj > 0, i 6= j, either seller i or j can reduce his claim

by a small amount and make a gain. If xi > xj ≥ 0, i 6= j, then seller j can increase his

claim by a small amount and make a gain. Hence these are not equilibrium claims.

At any subgame where the buyer is making an offer and m plots have already been

acquired, the active seller who is made a negative offer rejects it. Simultaneously, k −m

would immediately accept corresponding zero offers, since if any of these sellers reject

such offers, they reach a continuation game where the maximum he can gain by rejecting

buyer’s offers is zero. Hence this is an equilibrium. Trade takes place in the first period

itself when m = 0, with k sellers who are made zero surplus offers. �
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Note that by Lemma 1 equilibrium outcome does not change whether the buyer moves

first, or the sellers.

It follows immediately that such an equilibrium can be obtained for any graph con-

taining a cycle of length k + 1 as a subgraph. �

1 2

3 4

Figure 6: A complete graph of order 4; a cycle of order 4 is a subgraph.

Note that any complete graph of order n > k contains a cycle of length k + 1. This

results in the following Corollary.

Corollary 1 Consider a assembly problem 〈n, k, v, δ〉 such that v1 = · · · = vn, v0 > kv1.

The buyer extracting full surplus is an equilibrium outcome.

Remark 1 If k = 2, then the above result is also true for any graph containing a cycle

of length more than k + 1. But it is not true when k > 2. For instance, consider the

cycle of length 5 when k = 3 (see Figure 7). Suppose the buyer wants to make offers

that are acceptable to the sellers 1,2 and 3 in the first period itself. Sellers 1 and 2 will

accept a zero surplus offer since if they reject, they have to compete with sellers 5 or 4.

Seller 2, on the other hand, will not accept a surplus of less than δv, since if he rejects

an offer, he has to compete with sellers 4 and 5 together. Therefore, the buyer has two

ways to complete the transaction in the first period: either (i) she makes zero surplus

offers to 4 sellers on the graph and makes a negative offer to the remaining seller, or (ii)

she makes zero surplus offers to sellers 1 and 2, make a surplus offer of δv to seller 2, and

negative offers to the remaining sellers. In this particular case, she would prefer (ii) over

(i). Another alternative for the buyer is to make negative surplus offers to all sellers in
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the first period, thus letting sellers on two paths compete in the second period. This case

is covered in Proposition 2 below.

1

2

3 4

5

Figure 7: A cycle of length 5; ΓSO in blue

Consider a graph ΓD which contains two or more disjoint feasible paths. We will

show that if the sellers move first, the buyer achieves full surplus in the first period itself.

Consequently, if the buyer moves first and δ is large, there is an equilibrium where buyer

extracts full surplus in the second period.

Proposition 2 Consider a assembly problem 〈ΓD, k, v, δ〉 such that v1 = · · · = vn, v0 >

kv1. (a) If the sellers move first, the buyer achieves full surplus in the first period. (b)

If the buyer moves first, for δ large enough, there is an equilibrium where buyer extracts

full surplus in the second period.

Proof : Consider the following strategy of the buyer: In any continuation game where the

buyer has the first move , the buyer makes negative offers to all sellers. In any continuation

game where sellers have the first move, the buyer accepts the claims of sellers on a path

with the lowest sum of claims provided her share of surplus is non-negative, and reject all

other claims. In case the sum of claims on the two feasible paths are same, she accepts

claims from one of the paths chosen with equal probability.

We claim that, given the above strategy, sellers in the two disjoint feasible paths

claiming zero surplus at any subgame they are required to make an offer is a best response.

Let P1 and P2 be the two feasible paths in ΓD2. Let xi be the surplus claim of active

seller i. No seller can gain by deviating for one stage when
∑

i∈P1
xi =

∑
i∈P2

xi = 0.
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Hence it is an equilibrium. If
∑

i∈P1
xi =

∑
i∈P2

xi > 0, a seller on either path can reduce

his claim by a small amount and make a gain. If
∑

i∈P1
xi >

∑
i∈P2

xi, then any seller

on P2 can increase his claim by a small amount and make a gain. Hence these are not

equilibrium claims.

Part (a) of the claim follows immediately. For part (b), note that buyer can make

zero surplus offers to sellers on both paths, and negative surplus offers to all other sellers;

sellers on both paths would accept these offers. To ensure that this deviation in the first

stage is not profitable for the buyer, we require δ > v0−2kv
v0−kv . The buyer can also make

acceptable offers of surplus shares, δ(k − 1)v, to each seller on one path and negative

offers to all other sellers, provided v0− kv− δk(k− 1)v > 0. This is because, by rejecting

a first period offer from the buyer, a seller on the chosen path competes with sellers

on the other path; the highest surplus he can claim in a continuation game where he

and the other sellers are making offers is (k − 1)v.To ensure that this deviation in the

first stage is not profitable for the buyer, we require δ > v0−kv−δk(k−1)v
v0−kv . Thus, provided

δ > max{v0−2kv
v0−kv ,

v0−kv−δk(k−1)v
v0−kv }, the buyer extracting full surplus in the second period is

an equilibrium outcome in the strategies described above. �

Suppose there are critical sellers on a graph. There cannot be more than k−1 critical

sellers, otherwise there is only one feasible path and Theorem 2 applies. If there are c

critical sellers on any graph, any feasible path of length k would have k − c non-critical

sellers. Since there are at least two feasible paths in this case, the number of non-critical

sellers is at least 2(k− c). As the following result shows, critical sellers on the graph may

extract positive surplus share. Since purchasing plots from critical sellers is obligatory,

such sellers may support their claims by credible threats as observed in Theorems 1 and

2. At the same time, the buyer can exploit the competition among non-critical sellers

and not allow them to extract any share of the surplus.

Proposition 3 Consider the assembly problem 〈Γ∗, k, v, δ〉 such that Γ has c < k critical

sellers. If 1 ≥ cδ
1+δ

, the buyer cannot claim more than 1− cδ
1+δ

times the efficient surplus

in an equilibrium. Otherwise, there is an equilibrium where agreement takes place in the
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second period. In this equilibrium, buyer’s share of the efficient surplus is δ2
(
1− rδ

1+δ

)
,

where r is the highest positive integer such that 1 > rδ
1+δ

.

Proof : Let 1 ≥ cδ
1+δ

. Suppose the buyer makes offers first. Suppose there is only one

non-critical seller in every feasible path, i.e., k − c = 1. If she makes acceptable offers to

all c critical sellers in the first period itself, then she can pick a non-critical seller on any

feasible path, offer him zero share of the surplus and make negative offers to all other

sellers. If this non-critical seller rejects the zero offer, the most that he can claim in the

next period is again zero, since there is at least one more competing non-critical seller

on some other feasible path. Hence this seller must accept the offer in the first period.

Thus the share of surplus the buyer can extract in this problem is less than the surplus

she can extract in the problem 〈n ≥ c, k = n, v, δ〉. By Theorems 1 and 2, we find that

the buyer claims less than 1− cδ
1+δ

times the efficient surplus in an equilibrium.

Suppose there are more than one non-critical seller in every feasible path, i.e., k−c > 1.

Consider the graph Γ̄ derived from Γ∗ in the following way: (a) N(Γ̄) = N(Γ∗)− C, i.e.,

the set of nodes in Γ̄ is the set of nodes in Γ∗ without the critical sellers. (b) a pair of

nodes a and b are adjacent in Γ̄ if and only if they are adjacent in Γ∗, or there exists a

path of length c+ 2 in Γ∗ with a and b as the extreme nodes and c critical sellers in the

middle. By construction, Γ̄ does not have a critical seller when buyer wants to purchase

k − c contiguous items.

If she makes acceptable offers to all c critical sellers in the first period itself, then the

remaining problem is identical to the problem 〈Γ̄, k − c, v, δ〉. Consequently, the share of

surplus the buyer can extract in this problem in the second period is less than the surplus

she can extract in the problem 〈n ≥ c, k = n, v, δ〉. By Theorems 1 and 2, we find that

the buyer claims less than δ
(
1− cδ

1+δ

)
times the efficient surplus in an equilibrium.

Let 1 < cδ
1+δ

. Suppose r is the highest positive integer such that 1 > rδ
1+δ

.The buyer

would pick a feasible path and offer zero to all sellers in the first period, all but r ≥ 2

sellers would accept, and in the second period these r sellers would demand P share of

the efficient surplus such that 1− rP = δ
(
1− rδ

1+δ

)
.

Suppose sellers make the first offer. Note that by rejecting all seller offers, the buyer
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is able to induce a continuation game where she makes the first offer. So either the sellers

on a feasible path make offers that make the buyer indifferent between accepting and

rejecting such offers, or they make offers that the buyer rejects in the first period. In

either case, the buyer’s equilibrium share of surplus cannot exceed δ times her equilibrium

share of surplus in a continuation game where she has the first move. �

Consider a graph ΓO where (i) there is no cycle of length k + 1, (ii) no two paths are

disjoint and (iii) the intersection of all feasible paths is empty. This covers the case of

Figure 7 with k = 3 and the examples in Figure 8 below. We will show that if the sellers

move first, the buyer achieves full surplus in the first period itself. Consequently, if the

buyer moves first and δ is large, there is an equilibrium where buyer extracts full surplus

in the second period.

1

2 3 4

5 6

(a) k = 3

1

2 3 4 5

6 7

8 9

(b) k = 4

Figure 8: Two examples of ΓO; ΓSO in blue

We introduce some notation in the next two paragraphs that would be useful in

proving the next result.

We note that each graph ΓO has a subgraph ΓSO such that (i) it contains a feasible path

P , (ii) for each node x ∈ P there exists a node y ∈ ΓO−ΓSO and an edge e(y, z), z ∈ ΓSO

such that ΓSO − x+ z contains a feasible path of length k. For instance, in Figure 7, the

path {1234} qualifies as ΓSO. Figure 8 shows two more examples. Observe that the order

of any ΓSO would vary from k to n− 1. For any given ΓO, let ΓSO∗ be the smallest of all
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ΓSO ⊂ ΓO with order m∗.

Further, pick any feasible path P of length k on ΓO. For each x on P , let s(x) be

the order of the smallest subgraph ΓS of ΓO such that (P − x) ∪ ΓS is a feasible path of

length k. For example, in Figure 8 (a), s(1) = s(5) = 1 and s(2) = 2.

Proposition 4 Consider a assembly problem 〈ΓO, k, v, δ〉 such that v1 = · · · = vn, v0 >

kv1. (a) If the sellers move first, the buyer achieves full surplus in the first period. (b)

If the buyer moves first, for δ large enough, there is an equilibrium where buyer extracts

full surplus in the second period.

Proof : Consider the following strategy of the buyer: In any continuation game where the

buyer has the first move , the buyer makes negative offers to all sellers. In any continuation

game where sellers have the first move, the buyer accepts the claims of sellers on a path

with the lowest sum of claims provided her share of surplus is non-negative, and reject all

other claims. In case the sum of claims on the two feasible paths are same, she accepts

claims from one of the paths chosen with equal probability.

We claim that given the above strategy, sellers claiming zero surplus at any subgame

they are required to make an offer is a best response. Let P1, . . .Pm be the feasible paths

in ΓO. Let xi be the surplus claim of active seller i. No seller can gain by deviating for

one stage when
∑

i∈P1
xi = · · · =

∑
i∈Pm

xi = 0. This is because, for each xi, there is

always a feasible path in ΓO that does not contain xi. Hence it is an equilibrium. If∑
i∈P1

xi = · · · =
∑

i∈Pm
xi > 0, a seller on either path can reduce his claim by a small

amount and make a gain. If
∑

i∈P1
xi >

∑
i∈P2

xi, then any seller on P2 can increase his

claim by a small amount and make a gain. Hence these are not equilibrium claims.

Part (a) of the claim follows immediately. For part (b), note that buyer can make

zero surplus offers to all sellers on ΓSO∗, and negative surplus offers to all other sellers;

sellers on ΓSO∗ would accept these offers. To ensure that this deviation in the first stage is

not profitable for the buyer, we require δ > v0−m∗v
v0−kv . The buyer can also make acceptable

offers of surplus shares to sellers on a path and negative offers to all other sellers. If P is

the picked path and xi is the node corresponding to seller i, he accepts any surplus share
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at least equal to δ(s(xi) − 1)v. This is possible when v0 − kv − δ
∑

i∈P(s(xi) − 1)v > 0.

This is because, by rejecting a first period offer from the buyer, a seller on the chosen

path competes with sellers on the other path; the highest surplus he can claim in a

continuation game where he and the other sellers are making offers is (s(xi) − 1)v.To

ensure that this deviation in the first stage is not profitable for the buyer, we require δ >

v0−kv−δ
∑

i∈P (s(xi)−1)v
v0−kv . Thus, provided δ > max{v0−m∗v

v0−kv ,
v0−kv−δ

∑
i∈P (s(xi)−1)v

v0−kv }, the buyer

extracting full surplus in the second period is an equilibrium outcome in the strategies

described above. �

B Proof of Theorem 4

As noted in subsection 4.2, extracting full surplus implies trade taking place with only

the k sellers on P1. Further, we also observed that, (a) if the buyer extracts full surplus,

all sellers realize zero surplus share in the same period; (b) we need to prove the claim of

this theorem for the first two periods only.

We now consider the four varieties of graphs alternately.

Consider a k + 1 cycle 〈C(k + 1), k, v, δ〉 such that v1 ≤ · · · ≤ vk+1 with at least one

strict inequality. Suppose the buyer makes zero surplus offers in the first period. At least

one seller, say i would reject this offer and claim vk+1− vi in the next period which buyer

must accept, provided v0 − S1 − (vk+1 − vi) > 0. If this inequality does not hold, the

buyer must offer δ
1+δ

times the efficient surplus to this seller. So, suppose buyer makes

negative offers to all sellers in the first period. Note that in a k + 1- cycle, every pair of

paths have a non-empty intersection. A seller in the intersection of P1 and P2 can raise

his claim till the point the sum of claims on P2 and P3 are the same. Either the buyer

accepts this claim, or she rejects and offers δ
1+δ

times the efficient surplus to this seller.

Not all sellers would claim zero surplus when proposing first: as argued before, at least

one seller can claim vk+1− vi, or if v0−S1− (vk+1− vi) < 0, she can claim 1
1+δ

times the

efficient surplus. If the buyer rejects all seller offers in the first period, then she is on a

continuation game where she is proposing to all sellers. We have already argued that she
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cannot extract full surplus in such a continuation game.

Consider a assembly problem 〈ΓD, k, v, δ〉 such that v1 ≤ · · · ≤ vn with at least one

strict inequality. Suppose the buyer makes zero surplus offers in the first period. At least

one seller, say i would reject this offer and claim S2 − vi in the next period which buyer

must accept, provided v0−S2− (S1− vi) > 0. If this inequality does not hold, the buyer

must offer δ
1+δ

times the efficient surplus to this seller. So, suppose buyer makes negative

offers to all sellers in the first period. If v0 > S2, sellers on P1 can make claims summing

up to S2. Either the buyer accepts this claim, or she rejects and offers δ
1+δ

times the

efficient surplus to this seller. Not all sellers would claim zero surplus when proposing

first: as argued before, at least one seller can claim S2 − vi, or if v0 −S2 − (S1 − vi) < 0,

she can claim 1
1+δ

times the efficient surplus. If the buyer rejects all seller offers in the

first period, then she is on a continuation game where she is proposing to all sellers. We

have already argued that she cannot extract full surplus in such a continuation game.

Consider the 〈Γ∗, k, v, δ〉 such that v1 ≤ · · · ≤ vn with at least one strict inequality.

Suppose the buyer makes zero surplus offers in the first period. By Theorems 1 and

2, at least one critical seller rejects this offer and claims 1
1+δ

in the next period which

buyer must accept. Consequently, the buyer cannot extract full surplus within the first

two periods in an equilibrium. Suppose sellers make the first offers. Not all sellers claim

zero surplus, because a critical seller can claim strictly positive surplus. So full surplus

extraction cannot take place in the first period. But if the buyer rejects all seller offers in

the first period, then she is on a continuation game where she is proposing to all sellers.

We have already argued that she cannot extract full surplus in such a continuation game.

Consider the assembly problem 〈ΓO, k, v, δ〉 such that v1 ≤ · · · ≤ vn with at least one

strict inequality. For each node x on a feasible path, let σ(x) be the sum of valuations over

the smallest subgraph such that its union with ΓO\x contains a feasible path. Suppose

the buyer makes zero surplus offers in the first period. At least one seller, say i would

reject this offer and claim σ(i)− vi in the next period which buyer must accept, provided

v0−S1− (σ(i)− vi) > 0. If this inequality does not hold, the buyer must offer δ
1+δ

times

the efficient surplus to this seller. So, suppose buyer makes negative offers to all sellers
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in the first period. Note that in ΓO, every pair of paths have a non-empty intersection.

A seller in the intersection of P1 and P2 can raise his claim till the point the sum of

claims on P2 and P3 are the same. Either the buyer accepts this claim, or she rejects

and offers δ
1+δ

times the efficient surplus to this seller. Not all sellers would claim zero

surplus when proposing first: as argued before, at least one seller can claim σ(i)− vi, or

if v0 − S1 − (σ(i) − vi) < 0, she can claim 1
1+δ

times the efficient surplus. If the buyer

rejects all seller offers in the first period, then she is on a continuation game where she is

proposing to all sellers. We have already argued that she cannot extract full surplus in

such a continuation game.

C Equilibria with Unequal seller valuations

In this subsection, we characterize a selection of equilibria corresponding to the four types

of graphs identified above.

Proposition 5 Consider a assembly problem 〈Γ4, k, v, δ〉 such that v1 ≤ · · · ≤ vn with

at least one strict inequality. If v0 > kvk+1, there exists an equilibrium where if sellers

are proposing first, the buyer gets a surplus of v0 − kvk+1; if the buyer is proposing first,

she gets a surplus of v0 − (1− δ)
∑k

i=1 vi − δkvk+1.

Proof : We will prove the case of a graph which is a cycle of length k+ 1. For any other

graph containing a cycle, the buyer can implement the same surplus by giving negative

offers to sellers not on the cycle.

Let v0 > kvk+1. Consider the following strategies: sellers 1, . . . , k, if proposing first,

ask for vk+1−vi amount of surplus and the seller k+1 asks for a price between (vk+1, vk+1+

γ), γ > 0, with uniform probability. The sellers 1, . . . , k accept any surplus which is at

least δ(vk+1 − vi) when the buyer is making an offer. Seller k + 1 accepts any positive

surplus. If the sellers are proposing, the buyer accepts any price offer that is less than or

equal to vk+1. If the buyer is proposing, she offers each of the seller 1, . . . , k, δ(vk+1− vi)

surplus and any negative surplus to seller k + 1. Trade takes place in the first period
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itself. If the buyer is proposing first, she gets a surplus of v0 − (1− δ)
∑k

i=1 vi − δkvk+1,

otherwise she gets a surplus of v0 − kvk+1. �

Remark 2 If v0 ≤ kvk+1, many different equilibrium outcomes are possible. If v0 <

vk+1, then only the efficient path is feasible and we are back to the case studied by

Roy Chowdhury and Sengupta (2012). Let us therefore suppose that r < k is the highest

positive integer such that v0 − rvk+1 > 0. Then if the buyer is proposing, she offers

δ(vk+1 − vi) to sellers 1, . . . , r. She offers δ
1+δ

(v0 −
∑k

i=1 vi −
∑r

i=1(vk+1 − vi)) to sellers

r + 1, . . . , k if 1− (k−r)δ
1+δ

> 0. Otherwise, she offers zero to these k − r sellers in the first

period. If the sellers are proposing, the first 1, . . . , r sellers demand vk+1 − vi, while the

rest of the sellers make offers that make the buyer indifferent between accepting their

offers and making new offers in the next period. Note that in none of these equilibria,

the buyer is able to extract the full efficient surplus.

We now turn to the case where the graph contains only disjoint feasible paths, e.g.,

Figure 3.

Proposition 6 Consider a assembly problem 〈ΓD, k, v, δ〉 such that v1 ≤ · · · ≤ vn with at

least one strict inequality. Let P1 and P2 be the two paths corresponding to the minimum

and second smallest sum of valuations, S1 and S2. If v0 > S2 and δ is large, there exists

an equilibrium where sellers i = 1, . . . , k on P1 demand λi(v0 − S2),
∑k

i=1 λi = 1 in the

period they make offers. The buyer accepts these offers and gets a surplus of S2 − S1. If

the buyer is making offers, she proposes negative surplus shares to all sellers, and extracts

a surplus of S2 − S1 in the next period.

Proof : Suppose the buyer makes offers to all k sellers on P1 in the first period and all but

one seller accept. Such a seller can make at most v0−S2 in the next period. Consequently,

if the buyer wants to make all k sellers on P1 accept her offer in the first period, she has

to offer them at least δ(v0−S2). Such offers are feasible when v0−S1− kδ(v0−S2) > 0.

Suppose this inequality is not satisfied. Let r < k be the positive integer such that

v0 − S1 − rδ(v0 − S2) > 0 but v0 − S1 − (r + 1)δ(v0 − S2) ≤ 0. Then the buyer offers
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δ(v0 − S2 to sellers 1, . . . , r on P1. She offers δ
1+δ

(v0 − S1 − rδ(v0 − S2) to the rest k − r

if 1 − (k−r)δ
1+δ

> 0. If 1 − (k−r)δ
1+δ

< 0, she offers zero surplus to these k − r sellers. Some

of these sellers accept zero offers, while others reject and make fresh offers in the next

period to make the buyer indifferent between accepting their offers and making new offers

in the next period. In none of these cases, buyers surplus exceeds (v0−S1− rδ(v0−S2).

Similarly, the buyer can make acceptable offers to sellers on P2 instead, offering them at

least δ(V0−S1). Such offers are feasible when v0−S2− kδ(v0−S1) > 0. However, buyer

gets more surplus by proposing acceptable offers to sellers on P1. If 1−δ
(k−1)δ <

v0−S2
v0−S1 , then

the buyer prefers to make negative offers to all sellers in the first period than making

acceptable offers to sellers on P1. �

Remark 3 Note that there is another equilibrium similar to Roy Chowdhury and Sen-

gupta (2012) when S1 < v0 < S2.

We now consider the case of graphs with critical sellers, e.g., Figure 4.

Proposition 7 Consider the assembly problem 〈Γ∗, k, v, δ〉 such that v1 ≤ · · · ≤ vn with

at least one strict inequality. Suppose that Γ∗ has c < k critical sellers. If 1 ≥ cδ
1+δ

,

the buyer cannot claim more than
(
1− cδ

1+δ

)
times the efficient surplus in an equilibrium.

Otherwise, there is an equilibrium where agreement takes place in the second period. In

this equilibrium, buyer’s share of the efficient surplus is at most δ2
(
1− rδ

1+δ

)
, where r is

the highest positive integer such that 1 > rδ
1+δ

.

Proof : Let 1 ≥ cδ
1+δ

. Suppose the buyer makes offers first. If she makes acceptable offers

to all c critical sellers in the first period itself, then the remaining problem is identical

to the problem 〈Γ̄, k − c, v−C , δ〉 where c is the number of critical sellers and v−C is the

profile of valuations excluding those of the critical sellers in Γ∗. By Theorems 1, 2 and

B, buyer’s share of the efficient surplus cannot exceed 1− cδ
1+δ

.

Let 1 < cδ
1+δ

. Buyer cannot make acceptable offers to all critical sellers in the first

period. Suppose r is the highest positive integer such that 1 > rδ
1+δ

.The buyer would pick

a feasible path and offer zero to all critical sellers in the first period, all but r ≥ 2 sellers
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would accept, and in the second period these r sellers would demand P share of v0 − S2

such that 1− rP = δ
(
1− rδ

1+δ

)
.

Suppose sellers make the first offer. Note that by rejecting all seller offers, the buyer

is able to induce a continuation game where she makes the first offer. So either the sellers

on a feasible path make offers that make the buyer indifferent between accepting and

rejecting such offers, or they make offers that the buyer rejects in the first period. In

either case, the buyer’s equilibrium share of surplus cannot exceed δ times her equilibrium

share of surplus in a continuation game where she has the first move. �

We now consider the case of graphs without k + 1 cycles that do not have a critical

seller and no two feasible paths are disjoint, e.g., Figure 8.

Proposition 8 Consider the assembly problem 〈ΓO, k, v, δ〉 such that v1 ≤ · · · ≤ vn with

at least one strict inequality. There exists an equilibrium where the buyer does not achieve

full surplus.

Proof : For a seller corresponding to node x ∈ P1, let Γx be the smallest subgraph of ΓO

such that (P\x)∪Γx contains a feasible path. Let S(Γx) be the sum of valuations of sellers

on Γx. If S(Γx) ≥ v(x), where v(x) is the valuation of the seller corresponding to x, and∑
x∈P1

δ (S(Γx)− v(x)) ≤ v0−S1, then the buyer offers δ (S(Γx)− v(x)) to corresponding

sellers and they accept. If either of these conditions are violated for some x ∈ P1, but

satisfied for y ∈ P1 then the buyer offers δ
1+δ

(
v0 − S1 −

∑
y∈P1

δ (S(Γy)− v(y))
)

to each

x and δ (S(Γy)− v(y)) to each y. Note that P1 and P2 have at least one node in common.

Consequently, if the sellers are making offers, these sellers claim min{v0,S3}. The buyer

therefore, chooses to make negative offers to all sellers in the first period, if δ(v0 − S3)

is greater than the surplus she can obtain by making positive surplus offers to sellers on

P1. Also note that the buyer cannot make zero surplus offers to all sellers on a subgraph

containing more than k sellers: a seller common to two feasible paths contained in the

subgraph will reject such an offer. �
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