FAIR DIVISION WITH SINGLE-PLATEAUED PREFERENCES

Hans Peters^{*1}, Souvik Roy^{†2}, and Soumyarup Sadhukhan ^{‡2}

¹Department of Quantitative Economics, School of Business and Economics,

Maastricht University

²Economic Research Unit, Indian Statistical Institute, Kolkata

September, 2018

Abstract

We consider fair division problem where each agent has a single-plateaued preference over the interval [0, 1]. Sprumont (1991) shows that every strategy-proof, efficient, and anony-mous division rule is the uniform rule. We show that if agents are allowed to have single-plateaued preferences, then every strategy-proof and efficient division rule satisfying equal treatment of equals and non-bossyness becomes a generalized uniform rule. A generalized uniform rule behaves like the uniform rule when there is an excess demand or supply. However, in all other cases, such a rule picks a selection from the plateaus of the agents.

JEL Classification: D71

Keywords: Single-plateaued preferences, fair division problem, generalized uniform rule

^{*}Contact: h.peters@maastrichtuniversity.nl

[†]Corresponding Author: souvik.2004@gmail.com

[‡]Contact: soumyarup.sadhukhan@gmail.com

1. INTRODUCTION

We consider the problem of allotting one unit of a perfectly divisible good among a set of agents. We assume that the agents have continuous and "single-plateaued" preferences. Preferences are single-plateaued if at the top there is an indifference class and outside of the indifference class preferences strictly decrease. Single-plateaued preferences are generalization of single-peaked preferences which imply up to a certain point more is preferred to less and beyond that point vice-versa. This problem with single-peaked preferences has been studied extensively in the literature. Sprumont (1991) characterizes the uniform rule as the only rule satisfying three basic axioms such as strategy-proofness, efficiency, and anonymity. Ching (1994) shows that anonymity can be replaced by equal treatment of equals to characterize the same.¹ Other axiomatic characterization of uniform rule are given in Thomson (1994).²

In this paper, we consider situations where agents can have indifferences in their preferences. Most commons example of such domains are single-plateaued domains. In such domains, indifferences can occur only at the top. Such domains are well-known in social choice theory. The main objective of this paper is to characterize equal treatment of equals, non-bossy, efficient and strategy-proof division rules in this setting.

we generalize the uniform rule and define a new class of rules, called generalized uniform rules. A generalized uniform rule behaves like the uniform rule when there is an excess demand or supply. However, in all other cases, such a rule picks a selection from the plateaus of the agents.

We show that when agents have single-plateaued preferences, then a division rule satisfies strategy-proofness, efficiency, equal treatment of equals, and non-bossyness if and only if it is a generalized uniform rule. Our proof technique is independent of Sprumont's.

2. Model

Let $N = \{1, ..., n\}$ be the set of agents who must share one unit of some perfectly divisible good. Each agent $i \in N$ has a preference R_i which is a complete and transitive binary relation on [0, 1]. For all $x, y \in [0, 1]$, xR_iy means consuming a quantity x of the good is, from i's viewpoint, at

¹See also Ching (1992).

²See also Thomson (1983),Thomson (1994),Thomson (1995),Thomson (1997).

least as good as consuming a quantity y. Strict preference of R_i is denoted by P_i , indifference by I_i . We assume that R_i s are continuous, i.e., for each $x \in [0,1]$, $\{y \in [0,1] \mid yR_ix\}$ and $\{y \in [0,1] \mid xR_iy\}$ are closed sets. We further assume preferences are single-plateaued and strictly decreasing around their plateaus, i.e., for each $i \in N$, R_i satisfies the following condition: there exists $\tau(R_i) = [l(R_i), r(R_i)]$, where $0 \le l(R_i) \le r(R_i) \le 1$, such that for all $x, y \in [0, 1]$

$$x, y \in \tau(R_i) \implies xI_i y$$
, and
 $y < x \le l(R_i) \text{ or } r(R_i) \le x < y \implies xP_i y.$ (1)

We denote by S the set of all continuous preferences satisfying (1). We let $R_N = (R_i)_{i \in N}$ denote the announced preferences of all agents and R_{-i} denote $(R_i)_{i \in N \setminus i}$ for $i \in N$. For a profile R_N , we define $\tau(R_N) = (\tau(R_1), \dots, \tau(R_n))$.

By Δ_n we denote the *n*-dimensional simplex, i.e., $\Delta_n = \{\mathbf{x} = (x_1, \dots, x_n) \mid x_i \ge 0 \text{ for all } i \in N \text{ and } \sum_{i=1}^n x_i = 1\}$. A division rule *f* is a function $f : S^n \to \Delta_n$. Below we mention some desirable properties of a division function.

Definition 2.1. (Efficiency) For all $R_N \in S^n$ and all $\mathbf{x}, \mathbf{y} \in \Delta_n$, $\mathbf{x}_i R_i \mathbf{y}_i$ for all $i \in N$ and $\mathbf{x}_j P_j \mathbf{y}_j$ for some $j \in N$ imply $f(R_N) \neq \mathbf{y}$.

REMARK 2.1. Note that efficiency implies the following: for all $R_N \in S^n$,

$$\sum_{i=1}^{n} r(R_i) \leq 1 \implies f_i(R_N) \geq r(R_i) \text{ for all } i \in N,$$

$$\sum_{i=1}^{n} l(R_i) \geq 1 \implies f_i(R_N) \leq l(R_i) \text{ for all } i \in N, \text{ and}$$

$$\sum_{i=1}^{n} l(R_i) \leq 1 \leq \sum_{i=1}^{n} r(R_i) \implies f_i(R_N) = c_i \text{ such that } c_i \in [l(R_i), r(R_i)] \text{ for all } i \in N \text{ and } \sum_{i=1}^{n} c_i = 1.$$

Definition 2.2. (Strategy-proofness) For all $i \in N$, all $R_N \in S^n$, and all $R'_i \in S$, we have

$$f_i(R_N)R_if_i(R'_i,R_{-i}).$$

Definition 2.3. (Equal treatment of equals) For all $i, j \in N$, all $R_N \in S^n$ with $R_i = R_j$, we have

$$f_i(R_N) = f_j(R_N)$$

Definition 2.4. (Non-bossyness) For all $i \in N$, all $R_N \in S^n$, and all $R'_i \in S$, $f_i(R_N) = f_i(R'_i, R_{-i})$ implies $f(R_N) = f(R'_i, R_{-i})$.

Let $U = \{\tilde{R}_N \in S^n \mid \sum_{i=1}^n l(\tilde{R}_i) \le 1 \le \sum_{i=1}^n r(\tilde{R}_i)\}$. A function $g : U \to \Delta_n$ is called a * function if

(i)
$$g_i(R_N) \in [l(R_i), r(R_i)]$$
 for all $i \in N$,

(ii) $g_i(\tilde{R}_N) = g_j(\tilde{R}_N)$ whenever $\tau(\tilde{R}_i) = \tau(\tilde{R}_j)$, and

(iii) for $(\tilde{R}'_i, \tilde{R}_{-i}) \in U, g_i(\tilde{R}_N) = g_i(\tilde{R}'_i, \tilde{R}_{-i})$ implies $g(\tilde{R}_N) = g(\tilde{R}'_i, \tilde{R}_{-i})$

Definition 2.5. (Generalized Uniform Rule) An allocation rule is called generalized uniform rule if for all $i \in N$,

$$f_i(R_N) = \begin{cases} \min\{l(R_i), \lambda(R_N)\} \text{ if } \sum_{i=1}^n l(R_i) > 1, \\ \max\{r(R_i), \mu(R_N)\} \text{ if } \sum_{i=1}^n r(R_i) < 1, \text{ and} \\ g_i(R_N) \text{ if } \sum_{i=1}^n l(R_i) \le 1 \le \sum_{i=1}^n r(R_i). \end{cases}$$

where

(iii) g is a * function.

2.1 Results

Theorem 2.1. A strategy-proof and efficient division rule *f* satisfies equal treatment of equals and nonbossyness if and only if *f* is a generalized uniform rule.

Proof. (If part) It is easy to verify that every generalized uniform rule satisfies efficiency, equal treatment of equals and non-bossyness. We show that every generalized uniform rule is also strategy-proof. Consider $R_N \in S^n$. Note that if $\sum_{i=1}^n l(R_i) \le 1 \le \sum_{i=1}^n r(R_i)$ then by definition

 $f_i(R_N) \in [l(R_i), r(R_i)]$ for all $i \in N$. This means no agent will manipulate at R_N . So without loss of generality we assume that $\sum_{i=1}^n l(R_i) > 1$. It follows from Sprumont (1991) that no agent $i \in N$ can not manipulate at R_N via R'_i where $\sum_{j \neq i} l(R_j) + l(R'_i) > 1$ or $\sum_{j \neq i} r(R_j) + r(R'_i) < 1$. So consider $R'_i \in S$ such that $\sum_{j \neq i} l(R_j) + l(R'_i) \leq 1 \leq \sum_{j \neq i} r(R_j) + r(R'_i)$. Since $\sum_{j \neq i} l(R_j) + l(R'_i) \leq 1 < \sum_{j=1}^n l(R_j)$, there must exits $c \in [l(R'_i), l(R_i)]$ such that $\sum_{j \neq i} l(R_j) + c = 1$. By the definition of generalized uniform rule $l(R_i) \geq f_i(R_N) \geq c$. To show that f is not manipulable at R_N via R'_i , it is enough to show $c \geq f_i(R'_i, R_{-i})$. Take R''_i such that $\tau(R''_i) = c$. By the definition of generalized uniform rule $f_i(R''_i, R_{-i}) = c$ and $f_j(R''_i, R_{-i}) = l(R_j)$ as $\sum_{j \neq i} l(R_j) + l(R''_j) = 1$. This means if $f_i(R'_i, R_{-i}) > c$ then there exists $j \neq i$ such that $f_j(R'_i, R_{-i}) < l(R_j)$. However, this is a contradiction to the definition of f since $\sum_{j \neq i} l(R_j) + l(R'_i) \leq 1 \leq \sum_{j \neq i} r(R_j) + r(R'_i)$. This completes the proof of the If part.

(Only-if part) Suppose f satisfies strategy-proofness, efficiency, equal treatment of equals and non-bossyness. We show f is a generalized uniform rule. Let $R_N \in S^n$ such that $\sum_{i=1}^n l(R_i) > 1$. Consider $\hat{R}_N \in \hat{S}^n$ such that $\tau(\hat{R}_i) = l(R_i)$ for all $i \in N$. This means $\sum_{i=1}^n \tau(\hat{R}_i) > 1$. We first derive $f(\hat{R}_N)$ and then show $f(\hat{R}_N) = f(R_N)$. We first prove a lemma.

Lemma 2.1. For all $R_N \in \hat{S}^n$, all $i \in N$, and all $R'_i \in \hat{S}$,

(*i*) if
$$\tau(R_i) < f_i(R_N)$$
 and $\tau(R'_i) \le f_i(R_N)$, then $f_i(R_N) = f_i(R'_i, R_{-i})$;

(*ii*) *if*
$$\tau(R_i) > f_i(R_N)$$
 and $\tau(R'_i) \ge f_i(R_N)$, then $f_i(R_N) = f_i(R'_i, R_{-i})$.

Proof. Fix $R_N \in \hat{S}^n$, $i \in N$, $R'_i \in \hat{S}$. Suppose, with out loss of generality, that $\tau(R_i) < f_i(R_N)$ and $\tau(R'_i) \leq f_i(R_N)$. The first inequality and efficiency imply for all $j \in N$, $\tau(R_j) \leq f_j(R_N)$. This means $\tau(R'_i) + \sum_{j \neq i} \tau(R_j) \leq \sum_{k=1}^n f_k(R_N) = 1$. By efficiency, for all $\tau(R'_i) \leq f_i(R'_i, R_{-i})$. Suppose by contradiction $f_i(R_N) \neq f_i(R'_i, R_{-i})$. Consider the following two cases. (i) If $f_i(R_N) < f_i(R'_i, R_{-i})$, then $\tau(R'_i) \leq f_i(R_N) < f_i(R'_i, R_{-i})$ which implies by single-peakedness $f_i(R_N)P'_if_i(R'_i, R_{-i})$. (ii) If $f_i(R'_i, R_{-i}) < f_i(R_N)$, let $R''_i \in \hat{S}$ such that $\tau(R_i) = \tau(R''_i)$ and $f_i(R'_i, R_{-i})P''_if_i(R_N)$. Since $\tau(R_i) = \tau(R''_i)$, by strategy-proofness and efficiency, $f_i(R''_i, R_{-i}) = f_i(R_N)$. This means $f_i(R'_i, R_{-i})$. In both case we have a contradiction on strategy-proofness. ■

We now prove a lemma which gives a structure of the outcome at the profile R_N .

Lemma 2.2. Suppose $\tau(\hat{R}_i) < \tau(\hat{R}_i)$ for some $i, j \in N$. Then one of the following must be true:

(i)
$$f_k(\hat{R}_N) = \tau(\hat{R}_k)$$
 for all $k \in \{i, j\}$.

(*ii*)
$$f_i(\hat{R}_n) = \tau(\hat{R}_i)$$
 and $\tau(\hat{R}_i) < f_j(\hat{R}_N) < \tau(\hat{R}_j)$.

(iii)
$$f_i(\hat{R}_N) = f_j(\hat{R}_N) < \tau(\hat{R}_i)$$

Proof. Suppose (i) does not hold, we show either (ii) or (iii) holds. Since (i) does not hold, there exists $k \in \{i, j\}$ such that $\tau(\hat{R}_k) \neq f_k(\hat{R}_N)$. We first show if k = i then we can also take k = j, i.e., $\tau(\hat{R}_j) \neq f_j(\hat{R}_N)$. Suppose not and $\tau(\hat{R}_j) = f_j(\hat{R}_N)$. Note that by efficiency $f_i(\hat{R}_N) < \tau(\hat{R}_i)$. This means by Lemma 2.1, $f_i(\hat{R}_j, \hat{R}_{-i}) = f_i(\hat{R}_N)$. Since f is non-bossy it must be that $f_j(\hat{R}_j, \hat{R}_{-i}) = f_j(\hat{R}_N)$, but this is a contradiction to the fact that f satisfies equal treatment of equals as by our assumption $f_i(\hat{R}_N) < f_j(\hat{R}_N)$. So, $f_j(\hat{R}_N) < \tau(\hat{R}_j)$. Now if $f_i(\hat{R}_N) = \tau(\hat{R}_i)$, then using a similar argument we can show that $\tau(\hat{R}_i) < f_j(\hat{R}_N) < \tau(\hat{R}_j)$, by efficiency $f_i(\hat{R}_N) < \tau(\hat{R}_i)$, then using a limit argument we can also that $\tau(\hat{R}_i) < f_j(\hat{R}_N) < \tau(\hat{R}_j)$, by efficiency $f_i(\hat{R}_N) < f_j(\hat{R}_N)$. Combining all these observations and applying Lemma 2.1, we get $f_i(\hat{R}_j, \hat{R}_{-i}) = f_i(\hat{R}_N)$. Since f is non-bossy it must be that $f_j(\hat{R}_j, \hat{R}_{-i}) = f_j(\hat{R}_N)$, but this is a contradiction to the fact that f satisfies equal treatment of equals as $f_i(\hat{R}_N) < f_j(\hat{R}_N)$. Since $\tau(\hat{R}_i) < \tau(\hat{R}_j)$, by efficiency $f_i(\hat{R}_N) < f_j(\hat{R}_N)$. Combining all these observations and applying Lemma 2.1, we get $f_i(\hat{R}_j, \hat{R}_{-i}) = f_i(\hat{R}_N)$. Since f is non-bossy it must be that $f_j(\hat{R}_j, \hat{R}_{-i}) = f_j(\hat{R}_N)$, but this is a contradiction to the fact that f satisfies equal treatment of equals as $f_i(\hat{R}_N) < f_j(\hat{R}_N)$. This proves $f_i(\hat{R}_N) < \tau(\hat{R}_i)$.

Without loss of generality we assume that $\tau(R_1) \leq \cdots \leq \tau(R_n)$. If all $\tau(R_i)$ s are equal then by equal treatment of equals we get $f_i(\hat{R}_N) = \frac{1}{n}$. So, we assume there exists $i \in N$ such that $\tau(\hat{R}_i) < \tau(\hat{R}_{i+1})$. This means by Lemma 2.2 there exists $k \in \{0, 1, \dots, n-1\}$ such that $f_i(\hat{R}_N) = \tau(\hat{R}_i)$ for all $i \in \{1, \dots, k\}$ and $\tau(\hat{R}_k) < f_i(\hat{R}_N) < \tau(R_{k+1})$ for all $i \in \{k+1, \dots, n\}$. This in particular means $f_i(\hat{R}_N) = \min\{\tau(\hat{R}_i), \lambda(\hat{R}_N)\}$ where $\lambda(R_N)$ solves the equation $\sum_{i=1}^n \min\{\tau(\hat{R}_i), \lambda(\hat{R}_N)\} = 1$.

For the preference profile (R_i, \hat{R}_{-i}) , $\sum_{k \neq i} \tau(\hat{R}_i) + l(R_i) > 1$, by efficiency this implies $f_i(R_i, \hat{R}_{-i}) \leq l(R_i)$. As $\tau(\hat{R}_i) = l(R_i)$, by strategy-proofness $f_i(R_i, \hat{R}_{-i}) = f_i(\hat{R}_N)$. This together with non-bossyness imply $f_k(R_i, \hat{R}_{-i}) = f_k(\hat{R}_N)$ for all $k \in N$. Continuing in this way we can show that $f(R_N) = f(\hat{R}_N)$. This proves f is a generalized uniform rule for all $R_N \in S^n$ with $\sum_{i=1}^n l(R_i) > 1$. Similarly, we can show this for the profiles $R_N \in S^n \sum_{i=1}^n r(R_i) < 1$.

Now consider profiles $R_N \in S^n$ such that $\sum_{i=1}^n l(R_i) \le 1 \le \sum_{i=1}^n r(R_i)$. By efficiency, $f_i(R_N) \in [l(R_i), r(R_i)]$. Since f satisfies equal treatment of equals and non-bossyness it is easy to see that

we can get a * function such that $f(R_N) = g(R_N)$ for all R_N with $\sum_{i=1}^n l(R_i) \le 1 \le \sum_{i=1}^n r(R_i)$. This completes the proof of the only-if part.

REFERENCES

- Stephen Ching. A simple characterization of the uniform rule. *Economics letters*, 40(1):57–60, 1992.
- [2] Stephen Ching. An alternative characterization of the uniform rule. *Soc. Choice Welfare*, 11: 131–136, 1994.
- [3] Yves Sprumont. The division problem with single-peaked preferences: a characterization of the uniform allocation rule. *Econometrica*, 59:509–519, 1991.
- [4] William Thomson. Problems of fair division and the egalitarian solution. *Journal of Economic Theory*, 31(2):211–226, 1983.
- [5] William Thomson. Consistent solutions to the problem of fair division when preferences are single-peaked. *J. Econ. Theory*, 63:219–245, 1994.
- [6] William Thomson. Resource-monotonic solutions to the problem of fair division when preferences are single-peaked. *Social Choice and Welfare*, 11(3):205–223, 1994.
- [7] William Thomson. Population-monotonic solutions to the problem of fair division when preferences are single-peaked. *Economic Theory*, 5(2):229–246, 1995.
- [8] William Thomson. The replacement principle in economies with single-peaked preferences. *Journal of Economic Theory*, 76(1):145–168, 1997.