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Abstract

We consider a model of stochastic evolution under the probit choice rule. In the
small noise double limit, where first the noise level in agents’ decisions is taken to zero,
and then the population size to infinity, escape from and transitions between equilibria
can be described in terms of solutions to continuous optimal control problems. We
use results from optimal control theory to solve the exit cost problem which is used to
assess the expected time until the evolutionary process leaves the basin of attraction
of a stable equilibrium in a class of three-strategy coordination games.

1. Introduction

Evolutionary game theory studies the behavior of strategically interacting agents
whose decisions are based on simple myopic rules. Together, a game, a decision rule,
and a population size define a stochastic aggregate behavior process on the set of pop-
ulation states. In general, agents play strategies which are best responses to the current
population state. However sometimes they end up choosing strategies that are subop-
timal due to noise in the underlying model. Over short to moderate time spans, the
process typically settles near a Nash equilibrium of the game. But over longer time spans,
breakdown of and transitions between equilibria are inevitable, with some occurring more
readily than others. Most work in stochastic stability analysis follow the seminal papers
of Kandori et al. (1993) and Young (1993). They model the noise using best response with
mutations (BRM) in which the probability of a suboptimal choice is independent of its
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payoff consequences. This model eases the analysis, as the difficulty of transiting from one
equilibrium to another can be determined by counting the number of mutations needed
for the transition to occur.

In most applications however, it is more realistic to assume that costly mistakes are less
likely to happen, i.e., it is more reasonable to assume that the errors in agents choices are
payoff dependent as in the logit model of Blume (1993, 2003) and the probit model of Myatt
and Wallace (2003) and Dokumacı and Sandholm (2011). When mistake probabilities are
payoff-dependent, the probability of a transition between equilibria becomes more difficult
to assess, depending not only on the number of suboptimal choices required, but also on
the unlikelihood of each such choice. As a consequence, general results on transitions
between equilibria and stochastic stability are only available for two-strategy games using
birth-death chain methods.

In this paper, we use dynamic programming methods to characterize equilibrium
breakdown in a class of three strategy coordination games under the probit choice rule.
The importance of these questions has been recognized in macroeconomics, see Williams
(2001), Cho et al. (2002). We consider the exit problem, which is used to assess the expected
time until the evolutionary process leaves the basin of attraction of a stable equilibrium,
and determine the likely exit path. Here, the cost of a path is the sum of unlikelihoods
associated with the changes in strategy along the path where the unlikelihood of a strategy
is the exponential rate of decay of the probability of choosing it as the noise approaches
zero. In the class of games we study here, Sandholm and Staudigl (2016) (henceforth
SS16) solved the exit problem when agents follow the logit choice rule. They show that
the likely exit path proceeds along the boundary of the simplex, escaping the basin of
attraction through a boundary mixed equilibrium (see Figure 2). The logit choice rule has
a very simple piecewise linear form for the unlikelihood function (see (2.3)), which makes
the computation of path costs relatively straightforward. However, the unlikelihood
functions are more complicated under the probit choice. Depending on the population
state, the unlikelihood function will take different forms (see Lemma 2.3). Therefore,
finding the optimal exit paths is more involved under the probit choice framework.

We solve the exit problem when agents follow the probit choice rule. We show that
the solution is qualitatively similar to the logit choice in some cases, with the optimal
exit path dividing the initial basin of attraction of the equilibrium into two regions (see
Figure 2). We call this the standard case. We also find that in certain cases the optimal exit
paths divides the initial basin of attraction of the equilibrium into three regions as shown
in Figures 3 and 4. We find that in these cases there is a region where the optimal exit
path heads back in the direction of the initial equilibrium. We call this the retreating case.
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The retreating case can be further divided into two subcases: one where the optimal exit
path has non-binding state constraints as shown in Figure 3, another where the optimal
exit path has binding state constraints as shown in Figure 4.

The paper proceeds as follows: Section 2 introduces our class of stochastic evolutionary
processes. We formally define the unlikelihood function and describe it under the two
common noisy best response protocols, logit choice and probit choice. In Section 3, we set up
the exit cost problem in the small noise double limit. Section 4.1 provides definitions and
introduces notation which will be used in our main analysis for working with symmetric
normal form games. Section 4.2 provides outline of analysis and gives an overview of
the main results. In Section 5.1, we provide the statement of verification theorem which
provides a sufficient condition for a value function to be a solution in a certain class of
optimal control problems which includes the exit cost problem. In Section 5.2, we compute
the costs of certain direct paths which will later be used to guess the form of the optimal
value function in Section 5.3. In Section 6, we verify the optimal value function for the
different cases using the verification theorem. Section 7 concludes.

2. Model

2.1 Population Games

We consider games in which agents from a population of size N choose strategies from
the common finite strategy set S = {1, 2, · · · ,n}. The population’s aggregate behavior is
described by a population state x, an element of the simplex X = {x ∈ Rn

+ :
∑n

i=1 xi = 1} (Our
main analysis later will focus on cases with three strategies i.e., n = 3). The standard basis
vector ei ∈ X ⊂ Rn represents the pure population state at which all agents play strategy i.At
population state x = (x1, x2, · · · , xn)′, xi represents the fraction of agents playing strategy i.
We suppose that agents are randomly matched to play the symmetric normal form game
A ∈ Rn×n. The (i, j)th entry Ai j is the payoff a player obtains when he chooses strategy i and
his opponent chooses strategy j. The expected payoff to strategy i at population state x is
described by Fi(x) =

∑n
j=1 Ai jx j. In matrix notation, we have F(x) = Ax.1

We suppose that the symmetric normal form game A is a coordination game: Aii > A ji

for all i, j ∈ S, i , j. This implies that if one’s match partner plays i, one is best off playing
i oneself. We also suppose that A has marginal bandwagon property of Kandori and Rob
(1998): Aii − Aik > A ji − A jk for all i, j, k ∈ S with i < { j, k}. In words, the above condition
requires that when some agent switches to strategy i from any other strategy k, current

1We will interchangeably use π(x) to denote the payoff vector i.e., π(x) = F(x).
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strategy i players benefit most. Following SS16, we call three strategy coordination games
that satisfy marginal bandwagon property and that admit an interior equilibrium, simple
three-strategy coordination games. These classes of games are large enough to allow some
variety in analysis, but small enough that the analysis remains manageable as pointed in
SS16.

2.2 Noisy best response protocols and unlikelihood function

In our model of stochastic evolution, agents occasionally receive opportunities to
switch strategies. Upon receiving a revision opportunity, an agent selects a strategy by
employing a noisy best response protocol ση : Rn

→ int(X) with noise level η > 0, a function
that maps vectors of payoffs to vectors of probabilities of choosing each strategy.

For a noisy best response protocol ση, the unlikelihood function Υ j represents the ex-
ponential rate of decay of the probability that strategy j is chosen as η approaches zero
i.e.,

(2.1) Υ j(π) = − lim
η→0

η log σηj (π)

Example 2.1. Logit choice. The logit choice protocol with noise level η, introduced to evolu-
tionary game theory by Blume (1993), is defined by

(2.2) σηj (π) =
exp(η−1π j)∑

k∈S exp(η−1πk)
.

It is easy to verify that this protocol has piecewise linear unlikelihood function given by

(2.3) Υ j(π) = max
k∈S

πk − π j

_

Example 2.2. Probit choice. The probit choice protocol is an additive random utility model
in which the payoff vector π is perturbed by adding the sample average εm of an i.i.d.
sequence {εl

}
m
l=1 of independent standard normal random variables. Writing η for 1

m , we
obtain the protocol

(2.4) σηj (π) = P

(
j ∈ argmax

k∈S
(πk + εm

k )
)

Using theory of large deviations, Dokumacı and Sandholm (2011) derive the unlikelihood
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function when agents follow probit choice. Stating their result needs some notation which
we provide in Appendix A. Using their result, we can express the unlikelihood of a state
in the best response region of strategy i in a three strategy game A, as follows:

Lemma 2.3. Let π be a payoff vector with πi ≥ max{π j, πk}. Then the unlikelihood function Υ

under the probit choice rule is given by Υi(π) = 0

Υ j(π) =


(πi−π j)2

4 if πk ≤
πi+π j

2
(πi−π j)2+(πk−π j)2+(πi−πk)2

6 if πk ≥
πi+π j

2

Υk(π) =


(πi−πk)2

4 if π j ≤
πi+πk

2
(πi−π j)2+(πk−π j)2+(πi−πk)2

6 if π j ≥
πi+πk

2

Proof. See Appendix A. �

For a base payoff vector π = [πi π j πk] in the best response response of strategy i, we
have πi ≥ max{π j, πk}. The shock vector ε = [εi ε j εk] which makes strategy j better than
strategies i and k should satisfy the equations π j + ε j ≥ πi + εi and π j + ε j ≥ πk + εk i.e.,

(2.5) ε j − εi ≥ πi − π j and ε j − εk ≥ πk − π j

If either π j ≥ πk or (πk ≥ π j and πk ≤
πi+π j

2 ) then large deviation analysis shows that the
least unlikely way to satisfy (2.5) is to have a zero shock to action k and the shocks to
actions i and j “share the burden equally” i.e., εk = 0, ε j = π{i, j} − π j and εi = π{i, j} − πi,

where π{i, j} =
πi+π j

2 .

If πk ≥
πi+π j

2 then large deviation analysis shows that the least unlikely way to satisfy
(2.5) is to have the shocks to all actions “share the burden equally” i.e., εl = π − πl, where
l = {i, j, k} and π =

πi+π j+πk

3 . _

3. The Small Noise Double Limit

3.1 Induced Markov Chain

A population game F, a noisy best response protocolση and a population size N generate
a Markov chain XN,η on the set of population states X. For coordination games, over short to
medium time scales, XN,η typically converges to an equilibrium of the underlying game F.
Over longer periods, runs of suboptimal choices occasionally occur, leading to transitions
between the equilibria. In the small noise double limit (first η → 0, then N → ∞), SS16
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characterize these transitions as solutions to control problems whose running costs are
obtained by composing the unlikelihood function with the payoff function, as we describe
next.

3.2 Costs of continuous paths

Let 〈., .〉 denote the standard inner product on Rn. Let φ : [0,T] → X be absolutely
continuous and non-pausing, meaning that |φ̇t| , 0 for almost all t ∈ [0,T]. In the small
noise double limit, the cost of the continuous path φt in the small noise double limit
derived in SS16 is given by

(3.1) c(φ) =

∫ T

0
〈Υ(F(φt)), [φ̇t]+〉dt.

The intuition for (3.1) is as follows: The cost of a discrete path is given by the sum of
the costs of its steps. The cost of each step is given by the unlikelihood of the current state
in the direction of motion of the current step. As the number of steps increases, in the
limit we have a continuous path whose cost will be given by an integral as in (3.1).

3.3 Exit cost problem in coordination games

For K,L ⊂ X,we denote the set of all absolutely continuous paths of arbitrary duration
through X from K to L by Φ(K,L). In the small noise double limit, the expected time until
the process XN,η exits from equilibrium ei to another equilibrium is captured by the cost of
exit given by

(3.2) C({ei},∪ j,i{e j}) = min{c(φ) : φ ∈ Φ({ei},∪ j,i{e j})}

SS16 show that when N is sufficiently large, the exponential growth rate of the expected
waiting time to leave the initial basin of attraction Bi as η vanishes is approximately
NC({ei},∪ j,i{e j}).
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4. Preliminary Analysis

4.1 Definitions

4.1.1 Payoffs

We follow the notation introduced by SS16 for working with symmetric normal form
games A ∈ Rn×n. We use superscripts to refer to rows of A and subscripts to refer to
columns. Thus Ai is the ith row of A, A j is the jth column of A, and Ai

j is the (i, j)th entry.
These objects can be obtained by pre- and post-multiplying A by standard basis vectors:

Ai = e′iA, A j = Ae j, Ai
j = e′iAe j.

In a similar fashion, we use super- and subscripts of the form i − j to denote certain
differences obtained from A.

Ai− j = Ai
− A j = (ei − e j)′A, Ai− j

k−l = Ai
k − Ai

l − A j
k + A j

l = (ei − e j)′A(ek − el).

A2 j−i−k
i−k = A j−k

i−k − Ai− j
i−k, A2 j−i−kx = A j−kx − Ai− jx

A2k−i− j
i− j = Ak− j

i− j − Ai−k
i− j , A2k−i− jx = Ak− jx − Ai−kx

In this notation, the best response region for strategy i is described by

(4.1) B
i = {x ∈ X : Ai−lx ≥ 0 for all l ∈ S}.

The set Bi j = Bi
∩ B

j is the boundary between the best response regions for strategies i
and j.

In the present notation, A is a coordination game (CG) if

(4.2) Ai
i > A j

i for all i, j ∈ S with j , i,

so that each pure state is a Nash equilibrium of F. This implies that

(4.3) Ai− j
i− j > 0 for all i, j ∈ S.

We call Ai− j
i− j the (i, j)th alignment of A. This quantity, which corresponds to the denomi-

nator of the mixed equilibrium weights in the binary-choice game with strategies i and
j, represents the strength of incentives to coordinate (or, if negative, to miscoordinate) in
the restricted game with strategy set {i, j}.
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Likewise, game A has the marginal bandwagon property (MBP) if

(4.4) Ai− j
i−k > 0 for all i, j, k ∈ S with i < { j, k}.

4.1.2 Payoff Ranking Regions

Based on the form of the unlikelihood function for probit choice (see Lemma 2.3), we
divide the best response region of strategy i, Bi as follows:

B
i
jk = {x ∈ Bi : A j−kx ≥ 0}

B
i
k j = {x ∈ Bi : A j−kx ≤ 0}

B
i
jk =

{
x ∈ Bi

jk : A2 j−i−kx ≥ 0
}

B
i
jk =

{
x ∈ Bi

jk : A2 j−i−kx ≤ 0
}

(4.5)

B
i
k j =

{
x ∈ Bi

k j : A2k−i− jx ≥ 0
}

B
i
k j =

{
x ∈ Bi

k j : A2k−i− jx ≤ 0
}

In words,Bi
jk is the region in the best response of strategy i, where strategy j earns a payoff

atleast as much as strategy k. In B
i
jk, strategy j also earns a payoff atleast as much as the

average payoff of strategies i and k. Intuitively, in the interior of B
i
jk, strategy k earns a

much lower payoff compared to strategies i and j. In Bi
jk, strategy j earns a payoff lower

than the average payoff of strategies i and k.We can similarly interpret Bi
k j, B

i
k j and Bi

k j by
interchanging the roles of indices j and k.

We denote the lines as follows:

li j = {sei + (1 − s)e j : s ∈ R}(4.6)

lik = {sei + (1 − s)ek : s ∈ R}(4.7)

Let x̃i j = x∗ + x∗j (ei − e j) and x̃ik = x∗ + x∗k (ei − ek).Here x∗ = (x∗i , x
∗
j , x
∗
k ) ∈ int(X) is the unique

completely mixed equilibrium.
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4.1.3 Costs of direct paths

For x ∈ Bi with xk ≤ x∗k ,
2 we denote W j(x) to be the cost of a path from state x that

moves throughBi in direction e j− ei until reaching boundaryBi j. Similarly, for x ∈ Bi with
x j ≤ x∗j , we denote Wk(x) to be the cost of a path from state x that moves through Bi in
direction ek − ei until reaching boundary Bik. For l = j, k :

(4.8)
Wl(x) = {c(φ) | φ : [0, 1]→ Bi such that φ(t) = x + t(y − x), φ(0) = x,

φ(1) = y ∈ Bil and y − x = d(el − ei) for some d > 0}

We will compute these costs explicitly in Section 5. The solution to the exit problem will be
expressed in terms of W j(x) and Wk(x).

We summarize the definitions of important states on the affine hull of the state space
aff(X) in Table 1 (also see Figure 1) which will be used extensively later in the main analysis
in Section 6.

ei

ej ek

xik

lik

~xik
~xij

xij

lij

xijk
xikj

–x
ij

–xij

–xik

Bij Bik
–x

ik

_Bi
jk _Bi

kj

_
Bi

jk

_
Bi

kj

x*

Aj-kx = 0

A2j-i-kx = 0

A2k-i-jx = 0

Figure 1: Division of best response region of strategy i

2The restriction xk ≤ x∗k is necessary for W j(x) to be defined. This is because, for x ∈ Bi with xk > x∗k , the
path from x moving in e j − ei will hit Bik before reaching Bi j (see Figure 1). Similarly, the restriction x j ≤ x∗j
is necessary for Wk(x) to be defined.
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Table 1: Description of Important States

Point Description
x∗ unique interior mixed equlibrium of simple three strategy coordination game A
xi j unique mixed equilibrium of A with support {i, j}
xik unique mixed equilibrium of A with support {i, k}
xi jk unique state on li j (see (4.6)) where payoffs to strategies j and k are equal
xik j unique state on lik (see (4.7)) where payoffs to strategies j and k are equal
xi j unique state on li j where the average payoff of strategies i and k is equal to the payoff of j
xi j unique state on li j where the average payoff of strategies i and j is equal to the payoff of k
xik unique state on lik where the average payoff of strategies i and j is equal to the payoff of k
xik unique state on lik where the average payoff of strategies i and k is equal to the payoff of j

4.2 Outline of analysis and main results

The exit problem (3.2), has nonsmooth running cost, and is multidimensional in games
with more than two strategies. Nevertheless, this problem can be solved explicitly by
using verification theorem from optimal control theory. This involves first guessing a
continuous, piecewise cubic value function and then checking a Hamilton Jacobi Bellman
(HJB) equation (5.2) in certain basic directions of motion. In our case, we have six possible
basic directions of motion of the form eb − ea, where a, b ∈ {1, 2, 3} and b , a.

In Section 5.1, we provide the statement of the verification theorem which gives a
sufficient condition for a function to be a value function for a specific class of optimization
problems which includes the exit problem. We then solve the exit problem in the following
sequence of steps. Using the unlikelihood function for the probit choice, we compute the
costs of certain direct paths using (3.1) in Section 5.2. These costs will be used to compute
W j(x) and Wk(x) (see (4.8) for definitions). In Section 5.3, we show that for states x in
the interior of Bi

jk, the value function generated by moving in the direction e j − ei until
reaching Bi j satisfies the HJB equation (see Lemma 5.5). We then analyze the behavior
of the function Wk(x) − W j(x) on the lines li j and lik. Using a homogeneity argument
we show that there exists a unique state x̂i

∈ B
i
∩ bd(X) such that Wk(x̂i) = W j(x̂i) (see

Proposition 5.8). We conclude Section 5 by showing that x̂i is in one of the regions (4.5)
of Bi depending on the entries of the matrix A as summarized in Table 2. In Section 6,
we show that the optimal solution to the exit problem can be broadly divided into the
following cases:

–10–



Table 2: Description of Different Cases

Case Condition on the entries of A

x̂i
∈ B

i
jk ∪ B

i
k j Ai−k

i−k ≤ 8Ai− j
i− j and Ai− j

i− j ≤ 8Ai−k
i−k

x̂i
∈ (B

i
jk)◦ Ai−k

i−k > 8Ai− j
i− j

x̂i
∈ (B

i
k j)◦ Ai− j

i− j > 8Ai−k
i−k

4.2.1 Standard case

When (i) Ai−k
i−k ≤ 8Ai− j

i− j and Ai− j
i− j ≤ 8Ai−k

i−k or (ii) Ai−k
i−k > 8Ai− j

i− j and DWk(x̂i)(ei − e j) ≥ 0 or (iii)

Ai− j
i− j > 8Ai−k

i−k and DW j(x̂i)(ei − ek) ≥ 0, we show that the optimal exit paths divide the best
response region Bi into two regions; in one the optimal control is e j − ei, and the exit path
leads to Bi j; in the other the optimal control is ek − ei, and the exit path leads to Bik (see
Figure 2). The solution in this case is qualitatively similar to the case where agents follow
the logit choice (see Proposition 12 of SS16). We call this the standard case.

ei

ej ek

xij xik

xjk

~xik
~xij

x̂i

x*Bj Bk

Figure 2: Optimal exit paths in standard cases from Bi when x̂i is on the face eie j.

4.2.2 Retreating case

When Ai−k
i−k > 8Ai− j

i− j and DWk(x̂i)(ei − e j) < 0, the optimal exit paths divide the best
response region Bi into three regions; in one the optimal control is e j − ei, and exit path
leads to Bi j; in one the optimal control is ek − ei, and exit path leads to Bik and between
these two regions there is a third region in which the optimal control is ei − e j. Similarly,
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ei

ej ek

xij xik

xjk

~xik
~xij

x*Bj Bk

–xi

–x
i
x̂i

Figure 3: Optimal exit paths in retreating cases with non-binding state constraints from Bi when x̂i is in B
i
jk

and on the face eie j.

when Ai− j
i− j > 8Ai−k

i−k and DW j(x̂i)(ei − ek) < 0, the optimal exit paths divide the best response
region Bi into three regions; in one the optimal control is e j − ei, and exit path leads to
B

i j; in one the optimal control is ek − ei, and exit path leads to Bik and between these two
regions there is a third region in which the optimal control is ei− ek.We call these retreating
cases as there is a region in which the optimal exit path heads back in the direction of the
initial equilibrium ei. Our main analysis focuses only on the cases with Ai−k

i−k > 8Ai− j
i− j and

DWk(x̂i)(ei − e j) < 0. This is without loss of generality because interchanging the roles of
indices j and k covers the cases with Ai− j

i− j > 8Ai−k
i−k and DW j(x̂i)(ei − ek) < 0.

The retreating case can be further divided into two subcases: optimal exit paths with
non-binding state constraints as shown in Figure 3 (see Theorem 6.7), optimal exit paths
with binding state constraints as shown in Figure 4 (see Theorem 6.8).

5. Main Analysis

5.1 Verification Theorem

Let TX denote the set of tangent vectors from states in the relative interior X◦ of X.
Let the set Ω ⊂ X be closed relative to X and have piecewise smooth boundary. Let the
function L : X × TX→ R+ be a semi-linear Lipschitz continuous andZ ⊂ TX be compact
and convex. The control problem and its value function V∗ : X → R+ are defined as
follows:
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ei

ej ek

xij xik

xjk

~xik
~xij

x̂i

x*Bj Bk

–zi

–z
i

–y
i

(i) Optimal exit paths in retreating cases from Bi

when x̂i is in B
i
jk and on the face eie j

ei

ej ek

xij xik

xjk

~xik
~xij

x̂i

Bj Bk

–zi

x*

–z
i

(ii) Optimal exit paths in retreating cases from

B
i when x̂i is in B

i
jk and on the face eiek

Figure 4: Binding state constraints

(5.1) V∗(x) = min
∫ T

0
L(φt, νt)dt

over T ∈ [0,∞), ν : [0,T]→Zmeasurable
subject to φ : [0,T]→ X absolutely continuous, φ0 = x, φT ∈ Ω, φ̇t = νt for almost every t ∈
[0,T].

The results proved in Sandholm et al. (2018) provide a sufficient condition for a function
V : X → R+ to be the value function of the above problem. The key requirement is that
the Hamilton-Jacobi-Bellman(HJB) equation

(5.2) min
u∈Z

(L(x,u) + DV(x)u) = 0

hold at almost every x ∈ X◦. Adapting Theorems 3.3 and 3.4 from Sandholm et al. (2018)
to our specific problem gives the following verification theorem.

Theorem 5.1. (Verification theorem (Sandholm et al. (2018))). Let V : X → R+ be a
continuous function that is continuously differentiable a.e. on X◦. Suppose that

(i) For every x ∈ X, there is a time T ∈ [0,∞) and a measurable function ν : [0,T] → TX
such that the corresponding controlled trajectory φ : [0,T]→ X with φ0 = x satisfies φT ∈ Ω and∫ T

0
L(φt, νt)dt = V(x);
(ii) The HJB equation (5.2) holds a.e. on X◦.
(iii) The boundary condition V(x) = 0 holds at all x ∈ Ω.
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Then V = V∗.

We will use the above theorem in Section 6 to verify the solution to the exit problem.

5.2 Costs of direct paths

Let γ(x, y) denote the cost of the direct path from x to y :

(5.3) γ(x, y) = c(φ), where φ : [0, 1]→ X is defined by φt = (1 − t)x + ty.

Lemma 5.2. Let x ∈ Bi
jk and suppose that

(5.4) y = x + d(e j − ei) ∈ Bi j for some d > 0

and that Ai− j
i− j , 0. Then γ(x, y) = 1

12
(Ai− jx)3

Ai− j
i− j

Proof. Since y ∈ Bi j, we have Ai− jy = 0 and therefore d = Ai− jx
Ai− j

i− j

from (5.4). Let π = F(φt) =

Aφt, where φt = x + t(y − x). For l = i, j and k we have

Fl(φt) = Al(x + t(y − x)) = (1 − t)Alx + tAly

Clearly, φ̇t = y − x = d(e j − ei) and therefore [φ̇t]′+ = de′j. x, y ∈ Bi
jk implies that φt ∈ B

i
jk.

Therefore, from Lemma 2.3, we have

e′jΥ(F(φt)) =
1
4

(Fi(φt) − F j(φt))2

We now compute as follows:

γ(x, y) =

∫ 1

0
[φ̇t]′+Υ(F(φt))dt

=

∫ 1

0
de′jΥ(F(φt))dt

=
d
4

∫ 1

0
(Fi(φt) − F j(φt))2dt

=
d
4

∫ 1

0
((1 − t)Ai− jx + tAi− jy)2dt

=
d
4

∫ 1

0
(1 − t)2(Ai− jx)2dt (since Ai− jy = 0)

=
d
4
×

1
3

(Ai− jx)2
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=
d

12
(Ai− jx)2

=
1

12
(Ai− jx)3

Ai− j
i− j

since d =
Ai− jx

Ai− j
i− j


�

Lemma 5.3. Let x ∈ Bi
jk with x j < x∗j and suppose that

(5.5) y = x + d(ek − ei) ∈ Bik for some d > 0

and that Ai−k
i−k , 0.

(i) If x ∈ Bi
jk, then γ(x, y) = 1

12
(Ai−kx)3

Ai−k
i−k
.

(ii) If x ∈ B
i
jk, then A2 j−i−k

i−k > 0 and γ(x, y) = 1
12

(Ai−kx)3

Ai−k
i−k

+ 1
36

(A2 j−i−kx)3

A2 j−i−k
i−k

Proof. Since y ∈ Bik,we have Ai−ky = 0 and d = Ai−kx
Ai−k

i−k
. Following similar steps as in the proof

of Lemma 5.2, we let π = F(φt) = Aφt,where φt = x + t(y−x). Clearly, φ̇t = y−x = d(ek− ei)
and therefore [φ̇t]′+ = de′k.

For x ∈ Bi
jk, since y ∈ Bik, we have φt < B

i
jk (see Figure 1) for any t ∈ [0, 1]. There-

fore from (4.5) and Lemma 2.3, we have e′kΥ(F(φt)) = 1
4 (Fi(φt) − Fk(φt))2. Following the

computations as in Lemma 5.2 by replacing the index j with k, we get γ(x, y) = 1
12

(Ai−kx)3

Ai−k
i−k
.

The computations for x ∈ B
i
jk are in Appendix B. �

For x ∈ B
i
jk, the corresponding payoff vector π = Ax is such that the payoff to strategy

j is greater than the average payoff of strategies i and k. Since, we are in the best response

region of strategy i, the above statement means that for states in B
i
jk, strategy k does

badly compared to strategies i and j. This makes the movement along the direction ek − ei

unattractive and hence the additional term 1
36

(A2 j−i−kx)3

A2 j−i−k
i−k

in the cost function for states x ∈ B
i
jk.

Remark 5.4. When the line πk+πi
2 = π j is below the line joining the states x∗ and x̃ik then

there does not exist any x ∈ B
i
jk with x j < x∗j . Lemma 5.3(ii) does not apply in such cases. It

holds only when there exists some x ∈ B
i
jk with x ∈ Bi and x j < x∗j , in which case, we have

A2 j−i−k
i−k > 0. Similarly, for x ∈ Bi with xk < x∗k , if there exists some x ∈ B

i
k j then A2k−i− j

i− j > 0.

For x ∈ Bi with x j < x∗j , from Lemmas 5.2 and 5.3, we have
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(5.6) Wk(x) =


1

12
(Ai−kx)3

Ai−k
i−k

if x < B
i
jk

1
12

(Ai−kx)3

Ai−k
i−k

+ 1
36

(A2 j−i−kx)3

A2 j−i−k
i−k

if x ∈ B
i
jk

By interchanging indices j and k, for x ∈ Bi with xk < x∗k , we have

(5.7) W j(x) =


1

12
(Ai− jx)3

Ai− j
i− j

if x < B
i
k j

1
12

(Ai− jx)3

Ai− j
i− j

+ 1
36

(A2k−i− jx)3

A2k−i− j
i− j

if x ∈ B
i
k j

5.3 The Value function for the exit cost problem

To solve the exit problem via dynamic programming, we first determine the form of
the value function at states near the target set. We therefore consider the cost of reaching
the set B j from nearby states in Bi. It is natural to guess that there is a region Ri j

⊆ B
i

whose boundary contains Bi j in which motion in direction e j − ei leads to Bi j , and in fact
defines the optimal feedback control. By Lemma 5.2, this choice of control generates the
candidate value function

(5.8) V(x) =
1

12
(Ai− jx)3

Ai− j
i− j

in region Ri j.

Lemma 5.5. Suppose that the function V is defined by equation (5.8) on Ri j
⊆ B

i as specified
above. Then the HJB equation (5.2) for V is satisfied for all x ∈ (Bi

jk)
◦.

Proof. For x ∈ B
i
jk, the running cost function L(x,u) = (Υ(F(x)))′[u]+ for the probit choice

rule is given by

(5.9) L(x,u) =
[
0

1
4

(Ai− jx)2 1
6

(
(Ai− jx)2 + (A j−kx)2 + (Ai−kx)2

)]
[u]+

Similarly, for x ∈ Bi
jk, the running cost function is given by

(5.10) L(x,u) =
[
0

1
4

(Ai− jx)2 1
4

(Ai−kx)2
]

[u]+

Differentiating (5.8), we get DV(x) = 1
4

(Ai− jx)2

Ai− j
i− j

Ai− j. Let H(x,u) = L(x,u) + DV(x)u. In order

to verify the (HJB) equation (5.2), it is sufficient to show that the function H(x,u) attains a
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value of 0 when u = e j − ei and for the remaining five basic directions ei − e j, e j − ek, ek − e j,

ei − ek and ek − ei, H(x,u) ≥ 0.We verify this for states x ∈ (B
i
jk)◦ and x ∈ (Bi

jk)
◦ in Appendix

C. �

Lemma 5.6. For a simple three-strategy coordination game A, the line π j = πk is between the
lines x∗x̃ik and x∗x̃i j.

Proof. We first show that the line π j = πk is above the line x∗x̃ik. It suffices to show that
A jx̃ik > Akx̃ik. We compute as follows

A j−kx̃ik = A j−k(x∗ + x∗k (ei − ek)

= A j−kx∗ + x∗k A j−k(ei − ek)

= x∗k A j−k
i−k

= 0 (by MBP (4.4))

Similarly, we can show that the line πk = π j is above the line x∗x̃i j (see Figure 1). �

Using Lemmas 5.5 and 5.6, we will show in Section 6 that the optimal exit path for a
state x ∈ Bi with x j ≥ x∗j is moving in direction e j − ei until reaching Bi j.

Theorem 5.7. There is a unique state zi j
∈ li j with zi j

i > x̃ik
i such that Wk(zi j) = W j(zi j) and a

unique state zik
∈ lik with zik

i > x̃i j
i such that Wk(zik) = W j(zik).

Proof. See Appendix D. �

Proposition 5.8. There is a unique state x̂i
∈ B

i
∩ bd(X) such that x̂i

j < x∗j , x̂i
k < x∗k and

Wk(x̂i) = W j(x̂i).

Proof. From Theorem 5.7, we have a unique state zi j
∈ li j with zi j

i > x̃ik
i i.e., zi j

j = 1 − zi j
i <

1− x̃ik
i = x∗j , such that Wk(zi j) = W j(zi j). Similarly, there is a unique state zik

∈ lik with zik
k < x∗k

such that Wk(zik) = W j(zik). To complete the proof we establish homogeneity of degree 3 of

Wk(x) and W j(x) in the displacement vector z = x− x∗ of x from x∗. For t ∈ R+, x∗ + z ∈ B
i
jk,

we have x∗ + tz ∈ B
i
jk. For x∗ + tz ∈ B

i
jk, from Lemma 5.3, we have

Wk(x∗ + tz) =
1

12
(Ai−k(x∗ + tz))3

Ai−k
i−k

+
1

36
(A2 j−i−k(x∗ + tz))3

A2 j−i−k
i−k

=
1

12
(Ai−k(tz))3

Ai−k
i−k

+
1

36
(A2 j−i−k(tz))3

A2 j−i−k
i−k
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=
t3

12
(Ai−kz)3

Ai−k
i−k

+
t3

36
(A2 j−i−kz)3

A2 j−i−k
i−k

=
t3

12
(Ai−k(x∗ + z))3

Ai−k
i−k

+
t3

36
(A2 j−i−k(x∗ + z))3

A2 j−i−k
i−k

= t3Wk(x∗ + z)(5.11)

Following similar computations as above, we can show that for x∗ + tz ∈ Bi rB
i
jk,Wk(x∗ +

tz) = t3Wk(x∗ + z) for all t ∈ R+. It follows that Wk(x∗ + tz) = t3Wk(x∗ + z) for x∗ + z ∈ Bi, for
all t ∈ R+. Similarly, W j(x∗ + tz) = t3W j(x∗ + z) for x∗ + z ∈ Bi, for all t ∈ R+. We therefore
have,

Wk(x∗ + tz) −W j(x∗ + tz) = t3(Wk(x∗ + z) −W j(x∗ + z))

for x∗ + z ∈ Bi, for all t ∈ R+.

Thus if Wk(x∗ + z) = W j(x∗ + z), then Wk(x∗ + tz) = W j(x∗ + tz) for all t ∈ R+. It therefore
follows that zi j, zik and x∗ are collinear. If zi j and zik are both ei,we set x̂i = ei. If not, exactly
one of zi j and zik is in X, and that is our x̂i. �

Lemma 5.9. x̂i lies in (B
i
jk)◦ iff Ai−k

i−k ≥ 8Ai− j
i− j.

Proof. For x̂i to lie in B
i
jk, the unique root s0 > x̃ik

i which solves the equation g(s) = 0 (see
equation (D.1)) is such that s0 < xi j

i . Since g(x̃ik) > 0 (this follows from (D.9)), this implies
that we should have g(xi j

i ) < 0.

g(xi j
i ) =

(Ai−kxi j)3

Ai−k
i−k

−
(Ai− jxi j)3

Ai− j
i− j

=
(2Ai− jxi j)3

Ai−k
i−k

−
(Ai− jxi j)3

Ai− j
i− j

(since, by definition A j−kxi j = Ai− jxi j)

= (Ai− jxi j)3

 8
Ai−k

i−k

−
1

Ai− j
i− j


From the above set of equations, it follows that g(xi j

i ) < 0 implies Ai−k
i−k > 8Ai− j

i− j. �

Interchanging the roles of indices j and k in Lemma 5.9, we have the following:

Corollary 5.10. x̂i lies in (B
i
k j)◦ iff Ai− j

i− j > 8Ai−k
i−k.

From Lemma 5.9 and Corollary 5.10, we have the following:
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Corollary 5.11. x̂i lies in Bi
jk ∪ B

i
k j iff Ai−k

i−k ≤ 8Ai− j
i− j and Ai− j

i− j ≤ 8Ai−k
i−k.

We are now ready to state and prove the solution to the exit problem under probit
choice in the next section. Under logit choice for a simple three strategy coordination
game, the optimal exit path divides the initial basin of attraction into two regions as
shown in Figure 2. However under probit choice the solution to the exit problem has
many possible forms, depending on the relative magnitudes of coordination incentives
between i and j (as measured by Ai− j

i− j) and between i and k (as measured by Ai−k
i−k). We

consider this in detail in Section 6.

6. Main Results

As pointed in Section 5, the key requirement for a function V to be a value function is
that the HJB equation (5.2) holds at almost every x ∈ X◦. Verifying this at almost every x
in the interior of X can be quite cumbersome. By extending the state space X to the affine
hull aff(X) = {x ∈ Rn :

∑
i xi = 1},3 we can restrict the number of states at which we verify

the HJB equation (5.2) significantly as we show next. Let

(6.1) H(x,u) = L(x,u) + DV(x)u

In (5.11), we established that Wk(x∗ + tz) is homogeneous of degree 3 in t for t ≥ 0. This
implies that its derivative DWk(x∗+ tz) is homogeneous of degree 2 in t for t ≥ 0. Similarly,
DW j(x∗ + tz) is homogeneous of degree 2 in t for t ≥ 0. The value function V for the exit
problem which we verify will either be Wk(x) or W j(x) depending on x and so it follows
that DV(x∗ + tz) is homogeneous of degree 2 in t for t ≥ 0. It is straightforward to verify
from (5.9) and (5.10) that the running cost L(x,u) satisfies L(x∗ + tz,u) = t2L(x∗ + z,u) for
z = x − x∗ and for all t ∈ R+. Since H(x∗ + tz,u) = L(x∗ + tz,u) + DV(x∗ + tz,u), it follows
that

(6.2) H(x∗ + tz,u) = t2H(x∗ + z,u)

For z = x− x∗ with x on li j it is clear from (6.2) that H(x∗+ z,u) ≥ 0 implies H(x∗+ tz,u) ≥ 0.
Therefore it is sufficient to verify the HJB equation (5.2) on the line li j.

3In the extended state space, Bi = {x ∈ aff(X) : Ai−lx ≥ 0 for all l ∈ S} and the payoff ranking regions in
Section 4.1.2 will be defined with respect to this.
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6.1 Standard Case

Theorem 6.1. Let A be a simple three-strategy coordination game. Suppose x̂i is in Bi
jk ∪ B

i
k j

i.e., Ai− j
i− j ≤ 8Ai−k

i−k and Ai−k
i−k ≤ 8Ai− j

i− j. Let vi = x∗ × (x̂i
− x∗). In this case, the value function

W∗ : Bi
→ R+ for the exit cost problem with target setB j

∪B
k is given by the continuous function

(6.3) W∗(x) =

Wk(x) if (vi)′(x) ≤ 0,

W j(x) if (vi)′(x) > 0.

The optimal feedback controls in this case are (see Figure 5)

(6.4) ν∗(x) =


= ek − ei if (vi)′(x) < 0

∈ {ek − ei, e j − ei} if (vi)′(x) = 0,

= e j − ei if (vi)′(x) > 0.

Wk(x) = Wj(x)

ei

~xij

zik

zij

~xik

lik lij

x̂i

x*

vi

=

Figure 5: Standard case

Proof. We prove the theorem by assuming that x̂i is in Bi
jk. The proof when x̂i is in Bi

k j is
identical. First suppose that x̂i is on li j

∩X.We established in Lemma 5.5 that for x ∈ (Bi
jk)
◦,

moving in the direction e j − ei until reaching Bi j is consistent with the HJB equation.
Relabeling j and k in Lemma 5.5 we have for x ∈ (Bi

k j)
◦,moving in the direction ek− ei until
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reachingBik is consistent with the HJB equation. It remains to be shown that for x ∈ (Bi
jk)
◦

with Wk(x) < W j(x) moving in the direction ek − ei until reaching Bik is consistent with the
HJB equation (5.2). Homogeneity argument (6.2) implies that it is sufficient to verify this
at the states x on li j with x̂i

i < xi < xi jk
i . We prove this in Appendix E.

Next suppose that x̂i is on lik
∩ X. Following the previous arguments, it remains to be

shown that for states x on lik with xik j
i < xi < x̂i

i moving in the direction ek− ei until reaching
B

ik is consistent with the HJB equation. Another application of homogeneity argument
(6.2) shows that this is equivalent to proving that for states x on li j with zi j

i < xi < xi jk
i

moving in the direction ek − ei until reaching Bik is consistent with the HJB equation (5.2).
This follows from computations in Appendix E by replacing x̂i with zi j.

We now apply the Verification Theorem 5.1. The value function W∗ in (6.3) is con-
structed from feedback controls (6.4) that generate feasible solutions to the exit problem
as required by condition (i) of Theorem 5.1. The continuity of W∗ follows from Proposi-
tion 5.8. W∗ is clearly C1 off the set {x ∈ X : (vi)′x = 0}, and the arguments above imply
that the HJB equation holds a.e. away from this set. Thus condition (ii) of Theorem 5.1 is
satisfied and the proof is complete. The optimal solution to the exit problem in this case
divides the state space into two regions as shown in Figure 2. �

Theorem 6.2. Let A be a simple three-strategy coordination game. Suppose x̂i
∈ (B

i
jk)◦ i.e.,

Ai−k
i−k > 8Ai− j

i− j. If DWk(x̂i)(ei − e j) ≥ 0, the value function W∗ : Bi
→ R+ for the exit cost problem

with target set B j
∪ B

k is given by (6.3) and the optimal feedback controls by (6.4).

Proof. First suppose that x̂i is on li j
∩ X. Following the same arguments as in the proof of

Theorem 6.1, we need to show that for x on li j with x̂i
i ≤ xi < xi jk

i moving in the direction
ek − ei until reaching Bik is consistent with the HJB equation. Consider the states x on
li j with xi j

i < xi < xi jk
i . By definition, for such states x ∈ Bi

jk. From Lemma 5.3, we have

Wk(x) = 1
12

(Ai−kx)3

Ai−k
i−k
. Following the computations in Appendix E, it follows that the HJB

equation is satisfied for such x.
We now consider the states x on li j with x̃ik

i < x̂i
i ≤ xi < xi j

i . By definition, for such states,

we have x ∈ B
i
jk. From Lemma 5.3,

Wk(x) =
1

12
(Ai−kx)3

Ai−k
i−k

+
1
36

(A2 j−i−kx)3

A2 j−i−k
i−k

We compute (5.2) for such states x and show that H(x, ek − ei) = 0, H(x, ei − ek) ≥ 0,
H(x, e j− ek) ≥ 0,H(x, e j− ei) ≥ 0 and H(x, ek− e j) = H(x, ei− e j) = DWk(x)(ei− e j) in Appendix
F. For states x with x̂i

i ≤ xi < xi j
i , the function DWk(x)(ei − e j) attains its minimum at x = x̂i.

To prove this, define a function c(s) as follows
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(6.5) c(s) = DWk(x(s))(ei − e j) for x(s) = sei + (1 − s)e j, x̃ik
i ≤ s < xi j

i

Note that

DWk(x) =
1
4

(Ai−kx)2

Ai−k
i−k

Ai−k +
1

12
(A2 j−i−kx)2

A2 j−i−k
i−k

A2 j−i−k

Differentiating c(s) using the above equation, we get

c′(s) =
1
2

Ai−kx
Ai−k

i−k

(Ai−k
i− j)

2 +
1
6

A2 j−i−kx

A2 j−i−k
i−k

(A2 j−i−k
i− j )2

x ∈ (B
i
jk)◦ implies A2 j−i−kx > 0 and from Lemma 5.3, we have A2 j−i−k

i−k > 0. Since Ai−k
i−k > 0

from CG (4.3), we conclude that

(6.6) c′(s) > 0 for x̃ik
i < s < xi j

i

Since x̃ik
i < x̂i

i ≤ xi j
i , from (6.5) and (6.6) we conclude that the function DWk(x)(ei − e j)

evaluated at the states x with x̂i
i ≤ x < xi j

i attains its minimum at x = x̂i. Therefore, if
DWk(x̂i)(ei − e j) ≥ 0, the HJB equation is satisfied by the function W∗ for x with x̂i

i ≤ x < xi j
i .

Next suppose that x̂i is on lik
∩ X. Following the previous arguments, it remains to be

shown that for states x on lik with xik j
i < xi ≤ x̂i

i moving in the direction ek− ei until reaching
B

ik is consistent with the HJB equation. An application of homogeneity argument (6.2)
shows that this is equivalent to showing that for states x on li j with zi j

i ≤ xi < xi jk
i moving

in the direction ek − ei until reaching Bik is consistent with the HJB equation. This follows
from the preceding arguments by replacing x̂i with zi j.

We now apply the verification theorem. The value function W∗ in (6.3) is constructed
from feedback controls (6.4) that generate feasible solutions to the exit problem, as required
by condition (i) of Theorem 5.1. The continuity of W∗ follows from Proposition 5.8. W∗ is
clearly C1 off the set {x ∈ aff(X) : (vi)′x = 0}, and the arguments above imply that the HJB
equation holds away a.e. from this set. Thus condition (ii) of Theorem 5.1 is satisfied and
the proof is complete. The optimal solution to the exit problem in this case divides the
state space into two regions as shown in Figure 2. �

We next provide a sufficient condition in terms of the entries of A for the standard case

to occur when x̂i
∈ (B

i
jk)◦.

Lemma 6.3. Let A be a simple three-strategy coordination game. Suppose x̂i
∈ (B

i
jk)◦ i.e.,

Ai−k
i−k > 8Ai− j

i− j. A sufficient condition for the standard case i.e., for DWk(x̂i)(ei − e j) ≥ 0 to hold is
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(6.7) 3Ai−k
i− jA

i−k
i−k ≥ Ai+k−2 j

i− j A2 j−i−k
i−k

Proof. From (6.5), we have

c(x̃ik
i ) = DWk(x̃ik

i )(ei − e j)

=
1
4

(Ai−kx̃ik)2

Ai−k
i−k

Ai−k
i− j +

1
12

(A2 j−i−kx̃ik)2

A2 j−i−k
i−k

A2 j−i−k
i− j

=
1
4

Ai−k
i− j

Ai−k
i−k

(Ai−kx̃ik)2
−

1
12

Ai+k−2 j
i− j

A2 j−i−k
i−k

(A j−kx̃ik
− Ai− jx̃ik)2

=
1
4

Ai−k
i− j

Ai−k
i−k

(x∗k Ai−k
i−k)

2
−

1
12

Ai+k−2 j
i− j

A2 j−i−k
i−k

(x∗k A j−k
i−k − x∗k Ai− j

i−k)
2 (since x̃ik = x∗ + x∗k (ei − ek))

=
(x∗k )2

12

3
Ai−k

i− j

Ai−k
i−k

(Ai−k
i−k)

2
−

Ai+k−2 j
i− j

A2 j−i−k
i−k

(A j−k
i−k − Ai− j

i−k)
2


=

(x∗k )2

12

(
3Ai−k

i− jA
i−k
i−k − Ai+k−2 j

i− j A2 j−i−k
i−k

)
(6.8)

In Theorem 6.2, we have shown that the function c(s) = DWk(x(s))(ei − e j) for x(s) =

sei + (1 − s)e j, x̃ik
i ≤ s ≤ xi j

i is non-decreasing in s. Since x̂i
i > x̃ik

i , a sufficient condition
for DWk(x̂i)(ei − e j) ≥ 0 i.e., c(x̂i

i) ≥ 0 to hold is c(x̃ik
i ) ≥ 0 and therefore (6.7) follows from

(6.8). �

6.2 Retreating Case

In what follows, we consider simple three strategy coordination games with zi j
∈ (B

i
jk)◦

and DWk(zi j)(ei − e j) < 0. We firstly note from Lemma 6.3, that a necessary condition for
the retreating case is given by the following:

Corollary 6.4. Let A be a simple three-strategy coordination game. Suppose x̂i is in (B
i
jk)◦ i.e.,

Ai−k
i−k ≥ 8Ai− j

i− j. A necessary condition for the retreating case i.e., for DWk(x̂i)(ei − e j) < 0 to hold is

(6.9) 3Ai−k
i− jA

i−k
i−k < Ai+k−2 j

i− j A2 j−i−k
i−k

In the retreating case, we show that there exists a unique state xi on li j
∩B

i
jk with xi

i > zi j
i

such that DWk(xi)(ei − e j) = 0. We also show that there exists a unique state xi on li j
∩ B

i
jk

with xi
i < zi j

i such that W j(xi) = Wk(xi). We prove the existence and uniqueness of these
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states in Lemma 6.5. These two states play an important role in the retreating case in
describing the optimal solution. In Theorem 6.7, we show that when xi

i ≤ 1, the optimal
exit path will not have binding state constraints. In Theorem 6.8, we show that when
xi

i > 1, the optimal exit path has binding state constraints.

Lemma 6.5. If zi j
∈ B

i
jk and DWk(zi j)(ei − e j) < 0, then there is a unique state xi on li j

∩B
i
jk with

zi j
i < xi

i ≤ xi j
i such that DWk(xi)(ei − e j) = 0 and a unique state xi on li j with x̃ik

i < xi
i < zi j

i such
that W j(xi) = Wk(xi).

Proof. See Appendix G. �

We need some notation before stating our main results for the retreating case. Let

wi
1 = x∗ × (xi

− x∗)

wi
2 = x∗ × (xi

− x∗)

Under the assumptions in Lemma 6.5, a homogeneity argument leads to the following:

Corollary 6.6. For any state x ∈ Bi with (wi
1)′x < 0 and (wi

2)′x > 0, there exists a unique state x

in B
i
jk with xi > xi such that the line joining x and x is parallel to ei − e j and DWk(x)(ei − e j) = 0.

There exists a unique state x in B
i
jk with xi < xi such that the line joining x and x is parallel to

ei − e j and W j(x) = Wk(x).

Table 3: Important States in Retreating Case

Point Description

xi unique state on li j
∩ B

i
jk such that DWk(xi)(ei − e j) = 0

xi unique state on li j
∩ B

i
jk such that W j(xi) = Wk(xi)

6.2.1 Retreating without binding state constraints

Theorem 6.7. Let A be a simple three-strategy coordination game such that x̂i
∈ (B

i
jk)◦ i.e.,

Ai−k
i−k > 8Ai− j

i− j. Suppose that DWk(x̂i)(ei − e j) < 0. Further suppose that xi
i ≤ 1. In this case, the

value function W∗ : Bi
→ R+ for the exit cost problem with target set B j

∪ B
k is given by the

continuous function
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(6.10) W∗(x) =


= Wk(x) if (wi

2)′x ≤ 0

= Wk(x) if (wi
1)′x < 0 and (wi

2)′x > 0,

= W j(x) if (wi
1)′x ≥ 0.

The optimal feedback controls in this case are (see Figure 6)

(6.11) ν∗(x) =



= ek − ei if (wi
2)′x ≤ 0

= ei − e j if (wi
1)′x < 0 and (wi

2)′x > 0,

∈ {ei − e j, e j − ei} if (wi
1)′x = 0,

= e j − ei if (wi
1)′x > 0.

Wk(x) = Wj(x)

ei

~xij

~xik

lik lij

–x
i
x̂i

–xi

x*

w1
i

w2
i

Figure 6: Retreating with non-binding state constraints

Proof. From Lemma 6.5, zi j
i < xi

i. Since xi
i ≤ 1 by assumption, we have zi j

i < 1. This implies
that x̂i is on the line li j. Following the arguments in the proofs of Theorems 6.1 and 6.2, it
is sufficient to show that

(a) For x on li j with xi
i < xi < xi

i moving in the direction ei − e j until reaching xi and then
moving in the direction ek − ei until reaching Bik satisfies the HJB equation.

(b) For x on li j with xi
i < xi < xi jk

i moving in the direction ek−ei until reachingBik satisfies
the HJB equation.
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Consider the states x in (b) with xi
i < xi ≤ xi j

i .We have shown in the proof of Theorem 6.2
that DWk(x)(ei−e j) is non-decreasing in xi for states x with x̃ik

i ≤ xi ≤ xi j
i . For the states under

consideration, the function DWk(x)(ei−e j) therefore attains its minimum at xi.By definition,
we have DWk(xi)(ei − e j) = 0. This implies that DWk(x)(ei − e j) ≥ 0 for xi

i ≤ xi ≤ xi j
i . From

the arguments in the proof of Theorem 6.2, it follows that the HJB equation is satisfied for
such states. Now consider the states x in (b) with xi j

i ≤ xi < xi jk
i . For such x, by definition,

we have x ∈ Bi
jk. From computations in Appendix E, it follows that the HJB equation is

satisfied for such states. Therefore, the HJB equation is satisfied for states x in (b). We
verify (a) in Appendix H.

We now apply the verification theorem. The value function W∗ in (6.10) is constructed
from feedback controls (6.11) that generate feasible solutions to the exit problem, as
required by condition (i) of Theorem 5.1. The continuity of W∗ follows from the con-
struction of the points xi and xi. W∗ is clearly C1 off the sets {x ∈ aff(X) : (wi

1)′x = 0} and
{x ∈ aff(X) : (wi

2)′x = 0}. The arguments above imply that the HJB equation holds a.e.
away from these sets. Thus condition (ii) of Theorem 5.1 is satisfied and the proof for the
retreating case without binding state constraints is complete. The optimal solution to the
exit problem in this case divides the state space into three regions as shown in Figure 3. �

Theorem 6.7 says that in the retreating case, a sufficient condition for the optimal exit
path to have non-binding state constraints is xi

i ≤ 1. In Section 6.2.2, we show that xi
i ≤ 1

is also a necessary condition to have non-binding state constraints i.e., when xi
i > 1, the

optimal exit path will have binding state constraints.

6.2.2 Retreating with binding state constraints

We need some more notation before presenting the main result for the retreating case
with binding state constraints. Suppose xi

i > 1. Let the line joining x∗ and xi intersect lik

at the point zi (see Figure 7). From Lemma 6.5 and a homogeneity argument it follows
that there is a unique state zi on the line parallel to e j − ei through zi such that zi

i < zi
i and

W j(zi) = Wk(zi).
If zi j

i ≤ 1 i.e., x̂i
∈ li j
∩X, then there exists a unique state yi on the line li j with x̃ik

i < yi
i
< x̂i

i

such that W j(yi) = Wk(ei). Existence and uniqueness of yi follows from Lemma 6.5.4 Let z

be any state on lik between the states ei and zi i.e., zi
i ≤ zi ≤ ei.Lemma 6.5 and a homogeneity

argument implies that there exists a unique state y ∈ B
i
jk on the line parallel to e j−ei passing

4A slight modification is needed in defining the function h in the proof of Lemma 6.5. Defining the
function as h(s) = W j(x(s)) −Wk(ei) and then following the same steps as in the proof of Lemma 6.5, proves
the existence of yi.
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through z with yi < zi such that W j(y) = Wk(z). The collection of these points y define a
continuous curve (denote this by γ1) inBi as the functions W j(x) and Wk(x) are continuous.
By construction this continuous curve has yi and zi as the endpoints. Let R1 be the region
enclosed by the lines yixi j, xi jx∗, x∗zi and the continuous curve γ1. Let R2 denote the region

enclosed by the continuous curve γ1 and the lines zix∗, x∗zi, ziei, eiyi.We further subdivide
R2 into R1

2 and R2
2 as follows : R1

2 is the region enclosed by the continuous curve γ1 and the
lines zizi, ziei, eiy

i
. R2

2 is the convex hull of the states zi, x∗ and zi. Let R3 be the convex hull

of the points zi, x∗ and xik (see Figure 7(i)).
If zi j

i > 1, i.e., x̂i
∈ lik
∩ X, then Lemma 6.5 and a homogeneity argument again imply

that there exists a continuous curve (denote this by γ2) joining zi and x̂i
i such that for any

point y on this curve, we have W j(y) = Wk(z) where z is on lik with zi
i ≤ zi ≤ x̂i

i and yz is
parallel to eie j. Let R1 be the region enclosed by the lines eixi j, xi jx∗, x∗zi and the continuous
curve γ2. Let R2 denote the region enclosed by the continuous curve γ2 and the lines zix∗,
x∗zi, zix̂i. We further subdivide R2 into R1

2 and R2
2 as follows : R1

2 is the region enclosed by
the continuous curve γ2 and the lines zizi, zix̂i. R2

2 is the convex hull of the states zi, x∗ and
zi. Let R3 be the convex hull of the states zi, x∗ and xik (see Figure 7(ii)).

For x ∈ R1
2, we denote by z(x) the unique state on lik such that the line joining z(x) and

x is parallel to ei − e j. For x ∈ R2
2, we denote by z(x) the unique state on the line x∗zi such

that the line joining z(x) and x is parallel to ei − e j.

Theorem 6.8. Let A be a simple three-strategy coordination game such that x̂i
∈ (B

i
jk)◦ i.e.,

Ai−k
i−k > 8Ai− j

i− j. Suppose that DWk(x̂i)(ei − e j) < 0. Further suppose that xi
i > 1. In this case, the

value function W∗ : Bi
→ R+ for the exit cost problem with target set B j

∪ B
k is given by the

continuous function

(6.12) W∗(x) =


= Wk(x) if x ∈ R3

= Wk(z(x)) if x ∈ R2,

= W j(x) if x ∈ R1.

The optimal feedback controls in this case are (see Figure 7)

(6.13) ν∗(x) =



= ek − ei if x ∈ R3

= ei − e j if x ∈ R◦2,

∈ {ei − e j, e j − ei} if x ∈ bd(R1 ∩ R2),

= e j − ei if x ∈ R1.
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ei

xij xik

x̂i

x*

–zi

–z
i

–y
i

–x
i

R1

R2

R3

lik lij

–xi

(i) x̂i is in B
i
jk and on the face eie j

ei

xik
xij

x̂i

–zi

–xi

x*

lik lij

–x
i

–z
i

R2

R1

R3

(ii) x̂i is in B
i
jk and on the face eiek

Figure 7: Retreating with binding state constraints

Proof. We need to show that
(a) For states x in (R1

2)◦ moving in the direction ei − e j until reaching the boundary of
the simplex lik and then moving along the boundary in the direction ek − ei until reaching
B

ik satisfies the HJB equation.
(b) For states x in (R2

2)◦ moving in the direction ei − e j until reaching the line joining the
points zi and x∗ and then moving in the direction ek − ei until reachingBik satisfies the HJB
equation.

(c) For states x on the line lik with xik j
i < xi < zi

i moving in the direction ek − ei until
reaching Bik satisfies the HJB equation.

Homogeneity argument (6.2) implies (c) is equivalent to proving that for the states
x on the line li j with xi

i < xi < xi jk
i moving in the direction ek − ei is consistent with the

HJB equation. But this follows directly from (b) in the proof of Theorem 6.7. Another
application of homogeneity argument (6.2) shows that (b) is equivalent to proving that
the HJB equation is satisfied for states x on li j with xi

i < xi < xi
i. But this follows directly

from (a) in the proof of Theorem 6.7. We prove (a) in Appendix I.
We now apply the verification theorem. The value function W∗ in (6.12) is constructed

from feedback controls (6.13) that generate feasible solutions to the exit problem, as
required by condition (i) of Theorem 5.1. The continuity of W∗ follows from construction.
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The arguments above imply that the HJB equation holds a.e. in the interior of X. Thus
condition (ii) of Theorem 5.1 is satisfied and the proof is complete. The optimal solution
to the exit problem in this case divides the state space into three regions as shown in
Figure 4. �

7. Conclusion

In this paper we considered the exit problem, a control problem associated with large
deviations properties, which is used to assess the expected time until the evolutionary
process leaves the basin of attraction of a stable equilibrium and to determine the likely
exit path. Solving this problem for simple three strategy coordination games under probit
choice rule, we show that the likely exit path can be as shown in Figures 2 to 4 depending
on the strength of the coordination incentives between the equilibrium strategy and the
alternative strategies.

In order to evaluate stationary distribution asymptotics and stochastic stability, one
must consider the transition problem, a control problem associated with large deviations
properties, which is used to assess the probable time until a transition between a given pair
of stable equilibria and to determine the most likely path that this transition will follow.
The exit problem involves finding the least cost paths from the initial basin of attraction
to all the states in the state space, whereas the transition problem involves finding the
least cost paths from all the states in the state space to the initial basin of attraction. Since
the form of the unlikelihood function changes as we traverse the state space, computing
all the feasible path costs and then finding the optimal path in the transition problem is
more involved than finding the optimal path in the exit problem. However, our analysis
to solve the exit problem provides a good starting point to split the transition problem
into several cases based on the strength of coordination incentives and then solve each of
this case separately. We leave this for future research.

Appendix

A. Unlikelihood function for three-strategy probit choice model
in the best response region of strategy i

For any set K ⊆ S of cardinality nK, let
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πK
=

1
nK

∑
k∈K

πk

denote the average payoff of the actions in K. For l ∈ {1, 2, · · · ,n},Dokumacı and Sandholm
(2011) show that the unlikelihood function Υ is given by

Υl(π) =

n∑
a=1

(z∗a )2

2
, where

z∗b =

πJ∪{l}
− πb i f b ∈ J ∪ {l}

0 otherwise,

with the set J ⊂ S − {l} being uniquely determined by the requirement that

j ∈ J i f and only i f π j > π
J∪{l}

Consider a strategy set S = {i, j, k}. We use the above result to derive the unlikelihood
function Υ in the best response region of strategy i. Let π = (πi, π j, πk). We first compute
Υi. Since πi ≥ max{π j, πk}, we have J = ∅. Therefore, we have z∗l = 0 for l = 1, 2, 3. Hence,
Υi(π) = 0.

Next, we compute Υ j. We consider the following exhaustive cases:
Case 1: πk ≤

πi+π j

2
In this case J = {i}. Therefore, we have z∗i = 1

2 (π j−πi), z∗j = 1
2 (πi−π j) and z∗k = 0.Hence,

Υ j(π) =
1
4

(πi − π j)2

Case 2: πk ≥
πi+π j

2
In this case J = {i, k}. Therefore, we have z∗i = 1

3 (πk +π j − 2πi), z∗j = 1
3 (πi +πk − 2π j) and

z∗k = 1
3 (πi + π j − 2πk). A simple computation gives us

Υ j(π) =
1
6

(
(π j − πi)2 + (πk − π j)2 + (πi − πk)2

)
By interchanging j and k in the above computations we get Υk(π).

B. Proof of Lemma 5.3

We first show that A2 j−i−k
i−k > 0. Let x ∈ B

i
jk, with x j < x∗j . We can assume without loss of

generality that this point x is on the line li j i.e., x(s) = sei + (1 − s)e j for some s ∈ R. Define
a function z(s) as follows

z(s) = A j−kx(s) − Ai− jx(s)
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A simple computation gives us

z′(s) = A j−k
i− j − Ai− j

i− j

= −(Ak− j
i− j + Ai− j

i− j)

< 0 (by CG (4.3) and MBP (4.4))

Since x̃ik = x∗ + x∗k (ei − ek), we have x̃ik
i = x∗i + x∗k and x̃ik

j = x∗j .

z(x̃ik
i ) = A j−kx̃ik

− Ai− jx̃ik

= x∗k (A j−k
i−k − Ai− j

i−k)

z(xi) = A j−kx(s) − Ai− jx(s)

≥ 0 (since x(s) ∈ B
i
jk)

Under our hypothesis x j < x∗j i.e., 1 − x j > 1 − x∗j . This implies that xi > x̃ik
i . As z′(s) < 0,

we have z(x̃ik
i ) > z(xi). From the above expressions, we therefore have A j−k

i−k − Ai− j
i−k > 0 i.e.,

A2 j−i−k
i−k > 0.

We now compute the path costs. For x ∈ B
i
jk, there is a t0 ∈ (0, 1) such that the

path φt enters the region Bi
jk for the first time (see Figure 8) i.e., φt ∈ B

i
jk for t < t0,

φt ∈ B
i
jk for t > t0 and at t = t0 it is on the boundary of B

i
jk and Bi

jk. From Lemma

2.3, we have e′kΥ(F(φt)) = 1
6

[
(Fi(φt) − F j(φt))2 + (F j(φt) − Fk(φt))2 + (Fi(φt) − Fk(φt))2

]
, when

φt ∈ B
i
jk. For φt ∈ B

i
jk, e′kΥ(F(φt)) = 1

4 (Fi(φt) − Fk(φt))2.

We now compute as follows 5

γ(x, y) =

∫ 1

0
[φ̇t]′+Υ(F(φt))dt

=

∫ 1

0
de′kΥ(F(φt))dt

=

∫ t0

0
de′kΥ(F(φt))dt +

∫ 1

t0

de′kΥ(F(φt))dt

=

∫ t0

0

d
6

[
(πi − π j)2 + (π j − πk)2 + (πi − πk)2

]
dt +

∫ 1

t0

d
4

(πi − πk)2dt

=

∫ t0

0

d
6

[
(πi − π j)2 + (π j − πk)2 + (πi − πk)2

]
dt −

∫ t0

0

d
4

(πi − πk)2dt

5Recall πl = Fl(φt), for l = {i, j, k}
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+

∫ t0

0

d
4

(πi − πk)2dt +

∫ 1

t0

d
4

(πi − πk)2dt

=

∫ t0

0

d
6

[
(πi − π j)2 + (π j − πk)2

−
1
2

(πi − πk)2
]

dt +

∫ 1

0

d
4

(πi − πk)2dt

= c(x) +
1

12
(Ai−kx)3

Ai−k
i−k

(B.1)

where c(x) =
∫ t0

0
d
6

[
(πi − π j)2 + (π j − πk)2

−
1
2 (πi − πk)2

]
dt.∫ 1

0
d
4 (πi − πk)2dt = 1

12
(Ai−kx)3

Ai−k
i−k

follows from computations in Lemma 5.2 by replacing the
index j with k.

ei

ej ek

x*
y

x + t0(y - x)

x

~xik
~xij–x

ij

–xik_
Bi

jk

_Bi
jk

Bij
Bik

Aj-kx = 0A2j-i-kx = 0

Figure 8: Correction Factor

We next compute the value of t0. By definition, φ(t0) is on the line πk + πi = 2π j i.e.,
(1−t0)x+t0y is on the lineπi−π j = π j−πk.Thus t0 solves the equation (1−t0)Ai− jx+t0Ai− jy =
(1−t0)A j−kx+t0A j−ky.Using the fact that y = x+d(ek−ei), and simplifying the above equation,
we get

(B.2) t0 =
A j−kx − Ai− jx

d(A j−k
i−k − Ai− j

i−k)
=

A2 j−i−kx

dA2 j−i−k
i−k

By definition, we have

(π j − πk) − (πi − π j) = (1 − t)A j−kx + tA j−ky − (1 − t)Ai− jx − tAi− jy
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= (A j−kx − Ai− jx) + t(A j−ky − A j−kx) − t(Ai− jy − Ai− jx)

= (A j−kx − Ai− jx) − tdA j−k
i−k + tdAi− j

i−k

= d(A j−k
i−k − Ai− j

i−k)

 (A j−kx − Ai− jx)

d(A j−k
i−k − Ai− j

i−k)
− t

(B.3)

= dA2 j−i−k
i−k (t0 − t) (from (B.2))

We know for any a, b, c ∈ R,

(B.4) (a − b)2 + (b − c)2
−

1
2

(c − a)2 =
1
2

((b − c) − (a − b))2

We now compute the correction term c(x) from (B.1) as follows

c(x) =

∫ t0

0

d
6

[
(πi − π j)2 + (π j − πk)2

−
1
2

(πi − πk)2
]

dt

=
d

12

∫ t0

0
((π j − πk) − (πi − π j))2dt (from (B.4))

=
d

12

∫ t0

0
(dA2 j−i−k

i−k (t0 − t))2dt (from (B.3))

=
d3(A2 j−i−k

i−k )2

12

∫ t0

0
(t0 − t)2dt

=
d3(A2 j−i−k

i−k )2

12
t3
0

3

=
(A2 j−i−k

i−k )2

36
(t0d)3

=
(A2 j−i−k

i−k )2

36

A2 j−i−kx

A2 j−i−k
i−k


3

(from (B.2))

=
1

36
(A2 j−i−kx)3

A2 j−i−k
i−k

C. Proof of Lemma 5.5

We first verify the HJB equation (5.2) for x ∈ (B
i
jk)◦.

H(x, e j − ei) =
1
4

(Ai− jx)2 +
1
4

(Ai− jx)2

Ai− j
i− j

Ai− j
j−i

= 0
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H(x, ei − e j) = 0 +
1
4

(Ai− jx)2

Ai− j
i− j

Ai− j
i− j

≥ 0

H(x, ei − ek) = 0 +
1
4

(Ai− jx)2

Ai− j
i− j

Ai− j
i−k

≥ 0 (by CG (4.3) and MBP (4.4))

H(x, ek − e j) =
1
6

(
(Ai− jx)2 + (A j−kx)2 + (Ak−ix)2

)
+

1
4

(Ai− jx)2

Ai− j
i− j

Ai− j
k− j

≥ 0 (by CG (4.3) and MBP (4.4))

H(x, e j − ek) =
1
4

(Ai− jx)2 +
1
4

(Ai− jx)2

Ai− j
i− j

Ai− j
j−k

=
1
4

(Ai− jx)2

Ai− j
i−k

Ai− j
i− j


≥ 0 (by CG (4.3) and MBP (4.4))

For x ∈ B
i
jk, by definition Akx + Aix ≤ 2A jx i.e., Ai− jx < A j−kx. We now compute as follows

H(x, ek − ei) =
1
6

(
(Ai− jx)2 + (A j−kx)2 + (Ai−kx)2

)
+

1
4

(Ai− jx)2

Ai− j
i− j

Ai− j
k−i

=
1
6

(
(A j−kx)2 + (Ai−kx)2

)
+

1
4

1 −
Ai− j

i−k

Ai− j
i− j

 (Ai− jx)2
−

1
12

(Ai− jx)2

=
1
6

(
(A j−kx)2 + (Ai−kx)2

)
+

1
4

Ai− j
k− j

Ai− j
i− j

 (Ai− jx)2
−

1
12

(Ai− jx)2

≥
1
6

(
(A j−kx)2 + (Ai−kx)2

)
−

1
12

(Ai− jx)2 (by CG (4.3) and MBP (4.4))

≥
1
12

(
(A j−kx)2

− (Ai− jx)2
)

+
1
6

(Ai−kx)2

≥ 0 (since A j−kx ≥ Ai− jx)

We next verify the HJB equation (5.2) for x ∈ (Bi
jk)
◦. It is easily verified that the computa-

tions in the directions of e j − ei, ei − e j, ei − ek and e j − ek are exactly the same as x ∈ (B
i
jk)◦.

For the remaining two directions ek − e j and ek − ei :

H(x, ek − e j) =
1
4

(Ai−kx)2 +
1
4

(Ai− jx)2

Ai− j
i− j

Ai− j
k− j
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≥ 0 (by CG (4.3) and MBP (4.4))

We have A jx ≥ Akx. This implies that Ai−kx ≥ Ai− jx and so we have,

H(x, ek − ei) =
1
4

(Ai−kx)2 +
1
4

(Ai− jx)2

Ai− j
i− j

Ai− j
k−i

≥
1
4

(Ai− jx)2 +
1
4

(Ai− jx)2

Ai− j
i− j

Ai− j
k−i

=
1
4

(Ai− jx)2

Ai− j
k− j

Ai− j
i− j


≥ 0 (by CG (4.3) and MBP (4.4))

D. Proof of Theorem 5.7

For x(s) = sei + (1 − s)e j, s ∈ R, let

(D.1) g(s) = Wk(x(s)) −W j(x(s)) for s ≥ x̃ik
i

It suffices to show that the equation g(s) = 0 has a unique real root for s > x̃ik
i . Let

(D.2) f (s) =
1

12

 (Ai−kx(s))3

Ai−k
i−k

−
(Ai− jx(s))3

Ai− j
i− j


a1(s) =


1
36

(A2 j−i−kx(s))3

A2 j−i−k
i−k

if x(s) ∈ B
i
jk and s ≥ x̃ik

i

0 otherwise

a2(s) =

−
1
36

(A2k−i− jx(s))3

A2k−i− j
i− j

if x(s) ∈ B
i
k j and s ≥ x̃ik

i

0 otherwise

From (5.6), (5.7), (D.1), (D.2) and the above set of equations, it follows that

(D.3) g(s) = f (s) + a1(s) + a2(s) for s ≥ x̃ik
i .

We prove the theorem by establishing three Lemmas. In Lemma D.1, we show that f (s)
is a cubic polynomial which has a unique real root for s > x̃ik

i . In Lemma D.3, we prove
that a1(s) is a non-increasing non-negative convex function for s ≥ x̃ik

i . In Lemma D.4, we
prove that a2(s) is a non-increasing non-positive concave function for s ≥ x̃ik

i .

Lemma D.1. There is a unique zero of the function f (s) for s > x̃ik
i .

Proof of Lemma D.1. We first show that f (x̃ik
i ) > 0. Note that
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Ai−kx̃ik = Ai−k(x∗ + x∗k (ei − ek))

= Ai−kx∗ + x∗k Ai−k(ei − ek)

= x∗k Ai−k
i−k (since Ai−kx∗ = 0 as x∗ is a mixed equilibrium)

Similarly, we have Ai− jx̃ik = x∗k Ai− j
i−k. From (D.2), we have

f (x̃ik
i ) =

1
12

 (Ai−kx̃ik)3

Ai−k
i−k

−
(Ai− jx̃ik)3

Ai− j
i− j


=

(x∗k )3

12

 (Ai−k
i−k)

3

Ai−k
i−k

−
(Ai− j

i−k)
3

Ai− j
i− j


=

(x∗k )3

12

 (Ai−k
i−k)

2Ai− j
i− j − (Ai− j

i−k)
3

Ai− j
i− j


> 0(D.4)

The last inequality holds as Ai−k
i−k > Ai− j

i−k and Ai− j
i− j > Ai− j

i−k follow from MBP (4.4).

Clearly from (D.2), f (s) is a cubic polynomial with leading coefficient 1
12

[
(Ai−k

i− j )
3

Ai−k
i−k
− (Ai− j

i− j)
2
]
.

Ai−k
i− j < Ai−k

i−k and Ai−k
i− j < Ai− j

i− j follow from MBP (4.4). From this it follows that the leading
coefficient of f (s) is negative.

Differentiating (D.2), gives us

(D.5) f ′(s) =
1
4

Ai−k
i− j(A

i−kx(s))2

Ai−k
i−k

− (Ai− jx(s))2


Differentiating (D.5), gives us

(D.6) f ′′(s) =
1
2

 (Ai−k
i− j)

2Ai−kx(s)

Ai−k
i−k

− Ai− j
i− jA

i− jx(s)


If Ai−k

i− j ≥ Ai− j
i−k, then from (D.5)

f ′(x̃ik
i ) =

1
4

Ai−k
i− j(A

i−kx̃ik)2

Ai−k
i−k

− (Ai− jx̃ik)2


=

x∗2k

4

(
Ai−k

i− jA
i−k
i−k − (Ai− j

i−k)
2
)

(since x̃ik = x∗ + x∗k (ei − ek))

≥
x∗2k

4

(
Ai− j

i−kA
i−k
i−k − (Ai− j

i−k)
2
)
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=
x∗2k

4
Ai− j

i−k

(
Ai−k

i−k − Ai− j
i−k

)
=

x∗2k

4
Ai− j

i−kA
j−k
i−k

> 0 (by MBP (4.4))(D.7)

Since f (s) is a cubic polynomial with negative leading coefficient, f (x̃ik
i ) > 0 and f ′(x̃ik

i ) > 0,
we can conclude that there is exactly one real root for s > x̃ik

i .

If Ai−k
i− j < Ai− j

i−k, then from (D.6)

f ′′(x̃ik
i ) =

x∗k
2

 (Ai−k
i− j)

2Ai−k
i−k

Ai−k
i−k

− Ai− j
i− jA

i− j
i−k


=

x∗k
2

(
(Ai−k

i− j)
2
− Ai− j

i− jA
i− j
i−k

)
<

x∗k
2

(
(Ai− j

i−k)
2
− Ai− j

i− jA
i− j
i−k

)
=

x∗k
2

Ai− j
i−k

(
Ai− j

i−k − Ai− j
i− j

)
=

x∗k
2

Ai− j
i−kA

i− j
j−k

< 0 (by MBP (4.4))(D.8)

Since f (s) is a cubic polynomial with negative leading coefficient, f (x̃ik
i ) > 0 and

f ′′(x̃ik
i ) < 0, we have f ′′(s) < 0 for s ≥ x̃ik

i . This implies that there is exactly one real root for
s > x̃ik

i . �

We have the following corollary from (D.7) and (D.8) which will be used later.

Corollary D.2. For a simple three-strategy coordination game A, either f ′(x̃ik
i ) > 0 or f ′′(x̃ik

i ) < 0.

Lemma D.3. a1(s) ≥ 0 for s ≥ x̃ik
i . a′1(s) ≤ 0 and a′′1 (s) ≥ 0 for s > x̃ik

i .

Proof of Lemma D.3. Recall

a1(s) =


1
36

(A2 j−i−kx(s))3

A2 j−i−k
i−k

if x(s) ∈ B
i
jk and s ≥ x̃ik

i

0 otherwise

where x(s) = sei + (1 − s)e j.

If xi j
i ≤ x̃ik

i , then by definition it follows that there does not exist any s > x̃ik
i with

x(s) ∈ B
i
jk. Therefore in this case we have a1(s) = 0 for s ≥ x̃ik

i and the statement holds
vacuously.
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Now suppose that x̃ik
i < xi j

i . For s such that x̃ik
i < s ≤ xi j

i ,we have x(s) ∈ B
i
jk. This implies

that A2 j−i−kx(s) ≥ 0. (x(s)) j < 1− x̃ik
i = x∗j and therefore from Lemma 5.3, we have A2 j−i−k

i−k > 0.

Differentiating a1(s) twice for x̃ik
i < s < xi j

i , we get

a′1(s) =

A2 j−i−k
i− j

12

 (A2 j−i−kx(s))2

A2 j−i−k
i−k

a′′1 (s) =
(A2 j−i−k

i− j )2

6
A2 j−i−kx(s)

A2 j−i−k
i−k

≥ 0

MBP (4.4) implies that A j−k
i− j < 0 < Ai− j

i− j. Since A2 j−i−k
i− j = A j−k

i− j − Ai− j
i− j, it follows that a′1(s) ≤ 0.

By definition, A2 j−i−kxi j = 0 and for s > xi j
i , x(s) < B

i
jk. Therefore a1(s) = 0 for s ≥ xi j

i and
from the above arguments it follows that the given statement holds. �

Lemma D.4. a2(s) ≤ 0 for s ≥ x̃ik
i . a′2(s) ≤ 0 and a′′2 (s) ≤ 0 for s > x̃ik

i

Proof of Lemma D.4. Recall

a2(s) =

−
1
36

(A2k−i− jx(s))3

A2k−i− j
i− j

if x(s) ∈ B
i
k j and s ≥ x̃ik

i

0 otherwise

where x(s) = sei + (1 − s)e j.

If xi j
i ≤ x̃ik

i , then by definition it follows that there does not exist any s > x̃ik
i with

x(s) ∈ B
i
k j. Therefore in this case we have a2(s) = 0 for s ≥ x̃ik

i and the statement holds
vacuously.

Now suppose that x̃ik
i < xi j

i . For x̃ik
i < s < xi j

i , x(s) < B
i
k j and therefore by definition

a2(s) = 0. For s ≥ xi j
i , x(s) ∈ B

i
k j. This implies that A2k−i− jx(s) ≥ 0 and from Lemma 5.3

(relabeling the indices j and k), we have A2k−i− j
i− j > 0. Differentiating a2(s) twice for s > xi j

i ,
we get

a′2(s) = −
(A2k−i− jx(s))2

12
≤ 0

a′′2 (s) = −

A2k−i− j
i− j

6

 A2k−i− jx(s) ≤ 0

By definition, A2k−i− jxi j
= 0 and from the above arguments it follows that the given

statement holds. �

Using Lemmas D.1, D.3 and D.4 we now prove that the function g(s) has a unique real
root for s > x̃ik

i .
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From Lemma D.3, we have a1(x̃ik
i ) ≥ 0. From Lemma 5.6, it follows that x̃ik < B

i
k j which

implies that a2(x̃ik
i ) = 0. Since f (x̃ik

i ) > 0 (from (D.4)), it follows that

(D.9) g(x̃ik
i ) = f (x̃ik

i ) + a1(x̃ik
i ) > 0.

Suppose f ′(x̃ik
i ) ≤ 0. From Corollary D.2, we conclude that f ′′(x̃ik

i ) < 0. f (s) is a cubic
polynomial with negative leading coefficient. This implies that f ′′(s) < 0 for s > x̃ik

i .
Therefore, for s > x̃ik

i , we have f ′(s) < f ′(x̃ik
i ) ≤ 0. g(s) = f (s) + a1(s) + a2(s), implies g′(s) < 0

for s > x̃ik
i (since a′1(s), a′2(s) ≤ 0). g′(s) < 0 for s > x̃ik

i and g(x̃ik
i ) > 0, implies that there is

exactly one real root of g(s) = 0 for s > x̃ik
i .

Henceforth, we assume that f ′(x̃ik
i ) > 0. Since f (s) is cubic in s, the leading coefficient of

s is negative and f ′(x̃ik
i ) > 0,we can conclude that there exits a unique real number sm > x̃ik

i ,
where f (s) attains local maximum. For s > sm,we have f ′(s) < 0. Let ŝ be the unique value
of s > x̃ik

i which solves f (s) = 0. Consider the following exhaustive cases:
Case 1: xi j

i ≤ ŝ ≤ xi j
i : By definition f (ŝ) = 0. In this case, we have a1(ŝ) = 0 and a2(ŝ) = 0.

From (D.3), we have g(ŝ) = 0. For x̃ik
i < s < ŝ we have, f (s) > 0, a1(s) ≥ 0 and a2(s) = 0 (since

for such s, x(s) < B
i
k j). This implies that g(s) > 0 for such values of s. For s > ŝ we have,

f (s) < 0, a1(s) = 0 (since for such s, x(s) < B
i
jk) and a2(s) ≤ 0. This implies that g(s) < 0 for

such values of s. It therefore follows that ŝ is the unique root of the function g(s) = 0 for
s > x̃ik

i .

Case 2: ŝ < xi j
i : For x̃ik

i < s ≤ ŝ, we have f (s) ≥ 0, a1(s) > 0 and a2(s) = 0 (since for such

s, x(s) < B
i
k j). This implies that g(s) > 0 for such values of s. Since f ′(s) < 0 for s ≥ ŝ and

a′1(s), a′2(s) ≤ 0, we have g′(s) < 0 for s ≥ ŝ. Therefore, there exits a unique real s∗ > ŝ > x̃ik
i

for which g(s∗) = 0.
Case 3: ŝ > xi j

i : This case has the following two subcases:
Case 3a: sm < xi j

i < ŝ: For x̃ik
i < s ≤ xi j

i , f (s) > 0, a1(s) ≥ 0 and a2(s) = 0 (since for such

s, x(s) < B
i
k j) which implies g(s) > 0 for such s. In particular g(xi j

i ) > 0. Since f (s) is cubic
with negative leading coefficient and attains a local minimum at sm, we have f ′(s) < 0
for s > sm. In this sub-case we have xi j

i > sm and so it follows that f ′(s) < 0 for s ≥ xi j
i .

g(s) = f (s) + a1(s) + a2(s), and a′1(s), a′2(s) ≤ 0 implies g′(s) < 0 for s ≥ xi j
i . Also g(ŝ) < 0, since

a1(ŝ) = 0 and a2(ŝ) < 0. So, there is a unique s∗ such that xi j
i < s∗ < ŝ which solves g(s) = 0.

Case 3b: sm ≥ xi j
i : For s ≥ xi j

i , g(s) = f (s) + a2(s) (since a1(s) = 0 for such s as x(s) < B
i
jk).

We now show that f ′′(xi j
i ) < 0. From (D.6), we have

f ′′(xi j
i ) =

1
2

 (Ai−k
i− j)

2

Ai−k
i−k

Ai−kxi j
− Ai− j

i− jA
i− jxi j


=

1
2

 (Ai−k
i− j)

2

Ai−k
i−k

Ai−kxi j
− Ai− j

i− j(2Ai−kxi j)

 (since Ai−kxi j
= Ak− jxi j)
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=
Ai−kxi j

2

 (Ai−k
i− j)

2

Ai−k
i−k

− 2Ai− j
i− j


=

Ai−kxi j

2

 (Ai−k
i− j)

2
− 2Ai− j

i− jA
i−k
i−k

Ai−k
i−k


< 0

The last inequality follows from the fact that Ai−k
i− j < Ai− j

i− j and Ai−k
i− j < Ai−k

i−k as A satisfies MBP
(4.4). Since f (s) is a cubic polynomial with negative leading coefficient, we have f ′′(s) < 0
for s ≥ xi j

i . a
′′

2 (s) ≤ 0, implies g′′(s) < 0 for s > xi j
i .We also know that g(xi j

i ) > 0, g(ŝ) < 0. This
implies that there is atleast one real root of g(s) = 0 for s > xi j

i . Since we also have g′′(s) < 0
for s > xi j

i ,we conclude that there is a unique s∗ such that xi j
i < s∗ < ŝ which solves g(s) = 0.

From this we can conclude that there is a unique real s > x̃ik
i which solves g(s) = 0.

Interchanging the roles of indices j and k, we can show that there is a unique state
zik
∈ lik with zik

i > x̃i j
i such that Wk(zik) = W j(zik).

E. Proof of Theorem 6.1

For x ∈ Bi
jk ∪ B

i
k j, we have

Wk(x) =
1

12
(Ai−kx)3

Ai−k
i−k

and W j(x) =
1

12
(Ai− jx)3

Ai− j
i− j

Suppose x̂i is in Bi
jk and on the line li j. In this case, for x on the line li j with xi ≥ x̂i we have

Wk(x) −W j(x) ≤ 0. Therefore, for such x we have (Ai−kx)3

Ai−k
i−k
≤

(Ai− jx)3

Ai− j
i− j

. Rewriting this equation,

we get

(E.1) Ai− jx ≥

Ai− j
i− j

Ai−k
i−k


1
3

Ai−kx

Recall H(x,u) = L(x,u) + DWk(x)u. For x ∈ Bi
jk, L(x,u) =

[
0 1

4 (Ai− jx)2 1
4 (Ai−kx)2

]
[u]+.

We need to show for the states x with x̂i
i < xi < xi jk

i , that H(x, ek − ei) = 0 and in the
remaining five basic directions that H(x,u) ≥ 0.

H(x, ek − ei) =
1
4

(Ai−kx)2 +
1
4

(Ai−kx)2

Ai−k
i−k

Ai−k
k−i

= 0
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H(x, ek − e j) =
1
4

(Ai−kx)2 +
1
4

(Ai−kx)2

Ai−k
i−k

Ai− j
k− j

=
1
4

(Ai−kx)2

Ai−k
i− j

Ai−k
i−k


≥ 0 (by CG (4.3) and MBP (4.4))

H(x, ei − e j) = 0 +
1
4

(Ai−kx)2

Ai−k
i−k

Ai−k
i− j

≥ 0 (by CG (4.3) and MBP (4.4))

H(x, ei − ek) = 0 +
1
4

(Ai−kx)2

Ai−k
i−k

Ai−k
i−k

≥ 0

H(x, e j − ek) =
1
4

(Ai− jx)2 +
1
4

(Ai−kx)2

Ai−k
i−k

Ai−k
j−k

≥ 0 (by CG (4.3) and MBP (4.4))

H(x, e j − ei) =
1
4

(Ai− jx)2 +
1
4

(Ai−kx)2

Ai−k
i−k

Ai−k
j−i

≥
1
4


Ai− j

i− j

Ai−k
i−k


1
3

(Ai−kx)


2

−
1
4

(Ai−kx)2

Ai−k
i−k

Ai−k
i− j (from (E.1))

=
1
4

(Ai−kx)2

 (Ai− j
i− j)

2
3 (Ai−k

i−k)
1
3 − Ai−k

i− j

Ai−k
i−k


≥ 0

The last inequality follows from the fact that Ai− j
i− j ≥ Ai−k

i− j and Ai−k
i−k ≥ Ai−k

i− j , as A satisfies the
MBP (4.4).

F. Proof of Theorem 6.2

We show that at the states x on li j with x̂i ≤ xi < xi j
i moving in the direction ek − ei

satisfies the HJB equation. We have for x on the line li j with xi ≥ x̂i, Wk(x) −W j(x) ≤ 0. For
x in the region of interest, we therefore have

1
12

(Ai−kx)3

Ai−k
i−k

+
1
36

(A2 j−i−kx)3

A2 j−i−k
i−k

≤
1
12

(Ai− jx)3

Ai− j
i− j
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From Lemma 5.3, we have A2 j−i−k
i−k ≥ 0. x ∈ B

i
jk implies A2 j−i−kx ≥ 0. Therefore, the second

term on the left hand side of the above equation is positive. It therefore follows that (E.1)
is satisfied in this case as well.

L(x,u) =
[
0

1
4

(Ai− jx)2 1
6

(
(Ai− jx)2 + (A j−kx)2 + (Ak−ix)2

)]
[u]+

(F.1) DWk(x) =
1
4

(Ai−kx)2

Ai−k
i−k

Ai−k +
1

12
(A2 j−i−kx)2

A2 j−i−k
i−k

A2 j−i−k

H(x, ek − ei) =
1
6

(
(Ai− jx)2 + (A j−kx)2 + (Ak−ix)2

)
+

1
4

(Ai−kx)2

Ai−k
i−k

Ai−k
k−i +

1
12

(A2 j−i−kx)2

A2 j−i−k
i−k

A2 j−i−k
k−i

=
1
6

(
(Ai− jx)2 + (A j−kx)2 + (Ak−ix)2

)
−

(Ai−kx)2

4
−

(A j−kx − Ai− jx)2

12

=
1
6

(
(Ai− jx)2 + (A j−kx)2

)
−

(A j−kx + Ai− jx)2

12
−

(A j−kx − Ai− jx)2

12

=
1
6

(
(Ai− jx)2 + (A j−kx)2

)
−

1
12

((A j−kx + Ai− jx)2 + (A j−kx − Ai− jx)2)

=
1
6

(
(Ai− jx)2 + (A j−kx)2

)
−

2
12

(
(Ai− jx)2 + (A j−kx)2

)
= 0

H(x, ei − ek) =
1
4

(Ai−kx)2

Ai−k
i−k

Ai−k
i−k +

1
12

(A2 j−i−kx)2

A2 j−i−k
i−k

A2 j−i−k
i−k

≥ 0

H(x, e j − ek) =
1
4

(Ai− jx)2 +
1
4

(Ai−kx)2

Ai−k
i−k

Ai−k
j−k +

1
12

(A2 j−i−kx)2

A2 j−i−k
i−k

A2 j−i−k
j−k

=
1
4

(Ai− jx)2 +
1
4

(Ai−kx)2

Ai−k
i−k

Ai−k
j−k +

1
12

(A2 j−i−kx)2

A2 j−i−k
i−k

(A j−k
j−k + A j−i

j−k)

≥ 0 (by CG (4.3) and MBP (4.4))

H(x, e j − ei) =
1
4

(Ai− jx)2 +
1
4

(Ai−kx)2

Ai−k
i−k

Ai−k
j−i +

1
12

(A2 j−i−kx)2

A2 j−i−k
i−k

A2 j−i−k
j−i

=
1
4

(Ai− jx)2 +
1
4

(Ai−kx)2

Ai−k
i−k

Ai−k
j−i +

1
12

(A2 j−i−kx)2

A2 j−i−k
i−k

(A j−k
j−i + A j−i

j−i)

≥
1
4

(Ai− jx)2
−

1
4

(Ai−kx)2

Ai−k
i−k

Ai−k
i− j (by CG (4.3) and MBP (4.4))
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≥
1
4


Ai− j

i− j

Ai−k
i−k


1
3

(Ai−kx)


2

−
1
4

(Ai−kx)2

Ai−k
i−k

Ai−k
i− j (from (E.1))

≥
1
4

(Ai−kx)2

 (Ai− j
i− j)

2
3 (Ai−k

i−k)
1
3 − Ai−k

i− j

Ai−k
i−k


≥ 0

H(x, ek − e j) =
1
6

(
(Ai− jx)2 + (A j−kx)2 + (Ai−kx)2

)
+

1
4

(Ai−kx)2

Ai−k
i−k

Ai−k
k− j +

1
12

(A2 j−i−kx)2

A2 j−i−k
i−k

A2 j−i−k
k− j

=
1
4

(Ai−kx)2 +
1
6

(
(Ai− jx)2 + (A j−kx)2

−
1
2

(Ai−kx)2
)

+
1
4

(Ai−kx)2

Ai−k
i−k

Ai−k
k− j

+
1

12
(A2 j−i−kx)2

A2 j−i−k
i−k

A2 j−i−k
k− j

=
1
4

(Ai−kx)2

1 +
Ai−k

k− j

Ai−k
i−k

 +
1
12

(A2 j−i−kx)2 +
1

12
(A2 j−i−kx)2

A2 j−i−k
i−k

A2 j−i−k
k− j

=
1
4

(Ai−kx)2
Ai−k

i− j

Ai−k
i−k

+
1

12
(A2 j−i−kx)2

A2 j−i−k
i−k

A2 j−i−k
i− j

= DWk(x)(ei − e j) (from (F.1))

Since L(x, ei − e j) = 0, we have H(x, ei − e j) = DWk(x)(ei − e j). It therefore follows that,
H(x, ek − e j) = H(x, ei − e j) = DWk(x, ei − e j) for x on li j with x̂i ≤ xi < xi j

i .

G. Proof of Lemma 6.5

From (6.5), we have

c(xi j
i ) =

1
4

(Ai−kxi j)2

Ai−k
i−k

Ai−k
i− j +

1
12

(A2 j−i−kxi j)2

A2 j−i−k
i−k

A2 j−i−k
i− j

The second term on the right hand side of the above equation is 0 as A2 j−i−kxi j = 0 by
definition and the first term is positive from CG (4.3) and MBP (4.4). It follows that
c(xi j

i ) > 0. Since c′(s) > 0 for zi j
i ≤ s ≤ xi j

i , (from (6.6)) c(zi j
i ) < 0 and c(xi j

i ) > 0, we
conclude that there is a unique state xi on li j with zi j

i < xi
i < xi j

i such that c(xi
i) = 0 i.e.,

DWk(xi)(ei − e j) = 0.
We now show that there is a unique state xi on li j with x̃ik

i < xi
i < zi j

i such that W j(xi) =

Wk(xi). To prove this, we define a function h(s) as follows
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h(s) = W j(x(s)) −Wk(xi) for x(s) = sei + (1 − s)e j, x̃ik
i ≤ s ≤ zi j

i

We have DW j(x) = 1
4

(Ai− jx)2

Ai− j
i− j

Ai− j.

Differentiating h(s) using the above fact, we have for x̃ik
i ≤ s ≤ zi j

i , h′(s) = 1
4 (Ai− jx)2 > 0.

h(zi j
i ) = W j(zi j) −Wk(xi)

> W j(zi j) −Wk(zi j) (DWk(x)(ei − e j) < 0 for zi j
i ≤ xi < xi

i implies Wk(zi j) > Wk(xi))
= 0

We next show that h(x̃ik
i ) < 0. In order to prove this we make use of the following fact

(G.1) Ai−kxi > Ai−kx̃ik

This follows from MBP (4.3). To see this, define a function p(s) = Ai−kx(s) where x(s) =

sei + (1 − s)e j for x̃ik
i ≤ s ≤ xi

i. A direct computation gives us p′(s) = Ai−k
i− j which is positive

from MBP (4.3). Since Ai−kxi
= p(xi

i), Ai−k(x̃ik) = p(x̃ik
i ), xi

i > x̃ik
i and p′(s) > 0, (G.1) follows.

h(x̃ik
i ) = W j(x̃ik) −Wk(xi)

= W j(x̃ik) −
1
12

(Ai−kxi)3

Ai−k
i−k

−
1

36
(A2 j−i−kxi)3

A2 j−i−k
i−k

≤W j(x̃ik) −
1
12

(Ai−kxi)3

Ai−k
i−k

(since A2 j−i−kxi
≥ 0 and A2 j−i−k

i−k > 0)

≤W j(x̃ik) −
1
12

(Ai−kx̃ik)3

Ai−k
i−k

(from (G.1))

=
1
12

(Ai− jx̃ik)3

Ai− j
i− j

−
1

12
(Ai−kx̃ik)3

Ai−k
i−k

< 0 (from (D.4))

Since h′(s) > 0 for x̃ik
i ≤ s ≤ zi j

i , h(x̃ik
i ) < 0 and h(zi j

i ) > 0, we conclude that there is a unique
state xi on li j such that W j(xi) = Wk(xi).

H. Proof of Theorem 6.7

The total cost of the path in (a) is V(x) = Wk(xi). We can find d(x) > 0 such that
xi

= x + d(x)(ei − e j). Therefore,

V(x) = Wk(xi) = Wk(x + (ei − e j)d(x))
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Since DWk(xi)(ei − e j) = 0 (by definition), we have6

DV(x) = DWk(xi)(I + (ei − e j)Dd(x))

= DWk(xi)I + DWk(xi)(ei − e j)Dd(x)

= DWk(xi)

Recall H(x,u) = L(x,u) + DV(x)u. For x in the region of interest

(H.1) L(x,u) =
[
0

1
4

(Ai− jx)2 1
6

((Ai− jx)2 + (A j−kx)2 + (Ai−kx)2)
]

[u]+

We need to show that H(x, ei − e j) = 0 and for the remaining five basic directions that
H(x,u) ≥ 0.

H(x, ei − e j) = 0 + DWk(xi)(ei − e j) = 0

H(x, e j − ei) =
1
4

(Ai− jx)2 + DWk(xi)(e j − ei)

=
1
4

(Ai− jx)2 + 0

≥ 0

DWk(x) =
1
4

(Ai−kx)2

Ai−k
i−k

Ai−k +
1

12
(A2 j−i−kx)2

A2 j−i−k
i−k

A2 j−i−k

H(x, ei − ek) = L(x, ei − ek) + DV(x)(ei − ek)

= 0 + DWk(xi)(ei − ek)

=
1
4

(Ai−kxi)2 +
1

12
(A2 j−i−kxi)2

≥ 0
H(x, e j − ek) = L(x, e j − ek) + DV(x)(e j − ek)

=
1
4

(A j−kx)2 +
1
4

(Ai−kxi)2

Ai−k
i−k

Ai−k
j−k +

1
12

(A2 j−i−kxi)2

A2 j−i−k
i−k

A2 j−i−k
j−k

≥ 0

A2 j−i−k
j−k = A j−i

j−k + A j−k
j−k and therefore the last inequality follows from CG (4.3) and MBP (4.4).

H(x, ek − e j) = L(x, ek − e j) + DV(x)(ek − e j)
= L(x, ek − e j) + DV(x)(ek − ei) + DV(x)(ei − e j)

6For Dd(x) to make sense, we need to define d(x) in a neighborhood of aff X. To avoid this technicality
we proceed as follows: We denote the line joining x∗ and xi by lx∗xi . Let x be any point in the affine hull of
xi, x∗ and xi. For such an x, there exists a unique d(x) ≥ 0 such that x + d(x)(ei − e j) ∈ lx∗xi .With this definition
of d(x) its derivative Dd(x) is defined in a neighborhood.
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= L(x, ek − e j) + DV(x)(ek − ei)
= L(x, ek − ei) + DV(x)(ek − ei)
= H(x, ek − ei)

The third equality follows from the fact that DV(x) = DWk(xi) and DWk(xi)(ei− e j) = 0. The
fourth equality follows from the definition of L(x,u) (see (H.1)).

H(x, ek − ei) =
1
6

((Ai− jx)2 + (A j−kx)2 + (Ai−kx)2) +
1
4

(Ai−kxi)2

Ai−k
i−k

Ai−k
k−i +

1
12

(A2 j−i−kxi)2

A2 j−i−k
i−k

A2 j−i−k
k−i

=
1
6

((Ai− jx)2 + (A j−kx)2 + (Ai−kx)2) −
1
4

(Ai−kxi)2
−

1
12

(A j−kxi
− Ai− jxi)2

=
1
6

(Ai− jx)2 + (A j−kx)2 + (Ai−kx)2
−

1
12

(3(Ai−kxi)2 + (A j−kxi
− Ai− jxi)2)

=
1
6

((Ai− jx)2 + (A j−kx)2 + (Ai−kx)2
− ((Ai− jxi)2 + (A j−kxi)2 + (Ai−kxi)2))

The last equality in the above set of equations follows from the following simple fact:
For a, b, c ∈ R, with a + b + c = 0, we have

(H.2) 3c2 + (b − a)2 = 2(a2 + b2 + c2)

The proof will be complete if we show that for x on li j with xi
i < xi < xi

i,H(x, ek − ei) ≥ 0 i.e.,

(H.3) (Ai− jx)2 + (A j−kx)2 + (Ai−kx)2
≥ (Ai− jxi)2 + (A j−kxi)2 + (Ai−kxi)2

We now prove that (H.3) is satisfied for x in the region of interest. We define a function
f1(s) as follows

(H.4) f1(s) = 3(Ai−kx(s))2 + (A j−kx(s) − Ai− jx(s))2

for x(s) = sei + (1 − s)e j where s ∈ R.
Using (H.2), it follows that f1(s) = 2((Ai− jx(s))2 + (A j−kx(s))2 + (Ai−kx(s))2). Clearly f1(s)

is a quadratic function in s with positive leading coefficient and hence strictly convex.
Therefore, to prove (H.3), it is sufficient to show that f ′1(xi

i) ≤ 0. In what follows, we will
prove this.

Differentiating (H.4), we get

f ′1(s) = 6Ai−k
i− jA

i−kx(s) + 2(A j−k
i− j − Ai− j

i− j)(A
j−kx(s) − Ai− jx(s))

= 6Ai−k
i− jA

i−kx(s) − 2Ai+k−2 j
i− j A2 j−i−kx(s)

Note that Ai+k−2 j
i− j = Ai− j

i− j + Ak− j
i− j which is positive from CG (4.3) and MBP (4.4).

By definition, DWk(xi)(ei − e j) = 0 i.e.,
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(H.5) 3
Ai−k

i− j

Ai−k
i−k

(Ai−kxi)2
−

Ai+k−2 j
i− j

A2 j−i−k
i−k

(A2 j−i−kxi)2 = 0

We now compute as follows

f ′1(xi
i) = 6Ai−k

i− jA
i−kxi
− 2Ai+k−2 j

i− j A2 j−i−kxi

= 6Ai−k
i− jA

i−kxi
− 2Ai+k−2 j

i− j

3Ai−k
i− jA

2 j−i−k
i−k

Ai−k
i−kA

i+k−2 j
i− j


1
2

Ai−kxi (from (H.5))

= 2(Ai−kxi)

3Ai−k
i− j −

3Ai−k
i− jA

2 j−i−k
i−k Ai+k−2 j

i− j

Ai−k
i−k


1
2


Since Ai−kxi > 0, the above expression is non-positive if and only if

3Ai−k
i− j ≤

3Ai−k
i− jA

2 j−i−k
i−k Ai+k−2 j

i− j

Ai−k
i−k


1
2

Squaring the above equation and rearranging the terms, we see that the above condition is
equivalent to 3Ai−k

i− jA
i−k
i−k ≤ Ai+k−2 j

i− j A2 j−i−k
i−k which follows directly from the necessary condition

(6.9) for the retreating case. This implies that f ′1(xi
i) ≤ 0 and so the proof is complete.

The argument above in fact proves a stronger statement than (H.3). We present it as a
corollary which will be used in the proof of Theorem 6.8.

Corollary H.1. In the retreating case (under the assumptions in Theorem 6.7) for any two states
x and z with xi

i < xi ≤ zi < xi
i in the region spanned by the points xi, x∗ and xi such that the line

joining x and z is parallel to ei − e j, we have

(Ai− jx)2 + (A j−kx)2 + (Ai−kx)2
≥ (Ai− jz)2 + (A j−kz)2 + (Ai−kz)2

Proof of Corollary H.1. If x and z are on li j then we are done from the above analysis.
Suppose that x and z are any two states satisfying the assumptions but not on li j. Extend
the line joining the states x∗ and x until it intersects the line li j (call this state x̌). Similarly,
extend the line joining the states x∗ and z until it intersects the line li j (call this state ž).
Clearly, we have x̌i ≤ ži. By construction and from our given assumptions we can find a
real number t with 0 < t < 1 such that

x = (1 − t)x̌ + tx∗

z = (1 − t)ž + tx∗

We now have
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(Ai− jx)2 + (A j−kx)2 + (Ai−kx)2 = (1 − t)2
[
(Ai− jx̌)2 + (A j−kx̌)2 + (Ai−kx̌)2

]
≥ (1 − t)2

[
(Ai− jž)2 + (A j−kž)2 + (Ai−kž)2

]
(since x̌, ž ∈ li j)

= (Ai− jz)2 + (A j−kz)2 + (Ai−kz)2

�

I. Proof of Theorem 6.8

Let x be any state in (R1
2)◦. We have V(x) = Wk(z(x)) where z(x) − x = (ei − e j)d(x) for

some d(x) > 0. Since z(x) is on the line lik, we have d(x) = x j = e′jx. A direct computation
gives us

DV(x) = DWk(z)D(x + (ei − e j)d(x))

= DWk(z)(I + (ei − e j)Dd(x))

= DWk(z)(I + (ei − e j)e′j) (since d(x) = e′jx)

From the above equation, it follows that

DV(x)(ei − e j) = 0

DV(x)(ei − ek) = DWk(z)(ei − ek)

DV(x)(e j − ek) = DWk(z)(ei − ek)

From the above two equations, we get H(x, ek − ei) = H(x, ek − e j). We now have

H(x, ei − e j) = L(x, ei − e j) + DV(x)(ei − e j)
= 0

H(x, e j − ei) = L(x, e j − ei) + DV(x)(e j − ei)

=
1
4

(Ai− jx)2 + 0

≥ 0
H(x, ei − ek) = L(x, ei − ek) + DV(x)(ei − ek)

= 0 + DWk(z)(ei − ek)

=
1
4

(Ai−kz)2 +
1
12

(A2 j−i−kz)2

≥ 0
H(x, e j − ek) = L(x, e j − ek) + DV(x)(e j − ek)

=
1
4

(A j−kx)2 +
1
4

(Ai−kz)2

Ai−k
i−k

Ai−k
j−k +

1
12

(A2 j−i−kz)2

A2 j−i−k
i−k

A2 j−i−k
j−k

≥ 0
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H(x, ek − ei) = L(x, ek − ei) + DV(x)(ek − ei)

=
1
6

((Ai− jx)2 + (A j−kx)2 + (Ai−kx)2) +
1
4

(Ai−kz)2

Ai−k
i−k

Ai−k
k−i +

1
12

(A2 j−i−kz)2

A2 j−i−k
i−k

A2 j−i−k
k−i

=
1
6

((Ai− jx)2 + (A j−kx)2 + (Ai−kx)2) −
1
4

(Ai−kz)2
−

1
12

(A j−kz − Ai− jz)2

=
1
6

(Ai− jx)2 + (A j−kx)2 + (Ai−kx)2
−

1
12

(3(Ai−kz)2 + (A j−kz − Ai− jz)2)

=
1
6

((Ai− jx)2 + (A j−kx)2 + (Ai−kx)2
− ((Ai− jz)2 + (A j−kz)2 + (Ai−kz)2))

≥ 0

The last inequality follows from Corollary H.1.
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