
Simple vs Optimal Auctions:

An Experimental Investigation

Shraman Banerjee� Swagata Bhattacharjeeyz

September 15, 2018

Abstract

In single object auctions when bidders are asymmetric, the Myersonian optimal auction is di¢ cult

to implement because of its complexity and possible discouragement e¤ect on the bidders. In these

cases, Hartline and Roughgarden (2009) proposes a �simple�auction that revenue approximates the

optimal auction. This paper experimentally studies the performance of the simple auction vis-a-vis

the optimal auction in terms of revenue generation.
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1 Introduction

An ongoing research agenda in the mechanism design literature, mostly for the economic theorists

and the algorithmic game theory community, is the design of �simple�auctions, where �simplicity�

of the auction format is taken as a design objective for its own sake. There might be several reasons

for searching for simpler auction formats where complexity can thwart practical implementability.

The objective of our study is to examine how close some �simple�auctions can approximate revenue-

optimal auctions, i.e. how much revenue we can trade-o¤ for choosing a �simple�auction instead of

an optimal one.

In the single-object environment with bidders having independent valuations, Myerson (1981)
provides the revenue-maximizing optimal auction format1 . When bidder�s valuations are drawn

independently from identical distributions, the implementation of the optimal auction is surprisingly

simple: running a Vickery auction with a monopoly reserve price, which is the most common auction

format used by popular platforms like eBay.

However, if the bidders�valuations are drawn from asymmetric distributions, the optimal auc-

tion becomes computationally complex and very di¢ cult to implement in reality. This involves

calculations of �virtual valuations�in the allocation rule as well as calculating a complex price for-

mula. These can have serious considerations in the bidders�behaviors, and thus the seller�s revenue

in the following ways:

(a) Complexity : The allocation rule and the price formula are too complex for the bidders to

comprehend and may require a considerable degree of cognitive ability. This can potentially a¤ect

their bidding behaviors.

(b) Virtual Valuation: The optimal auction rule prescribes that the object will be given to

the bidder with the highest virtual valuation. For a given range of parameters of the valuation

distributions, the highest virtual valuation bidder may not be the highest valuation bidder, and

knowing this a-priori might change the bidding behavior: it may lead to more aggressive bidding

or lead to a discouragement e¤ect among the bidders, which might dampen the bidding incentive.

Thus in reality it is di¢ cult to implement a Myerson auction if the auctioneer anticipates the

bidders to be ex-ante heterogeneous. Rather a much simpler auction (Hartline and Roughgarden

(2009), Hartline (2012)) format is more frequently used in this scenario by di¤erent auction plat-

forms. Auctioneers prefer to use the same Vickery auction, but now with di¤erent bidder-speci�c

reserve prices. Hartline and Roughgarden (2009) theoretically shows that this �simple auction�

guarantees at least 50% of the expected revenue compared to the optimal auction�s expected rev-

enue. However, since the theoretical calculations ignore the above-mentioned behavioral issues

which may a¤ect the bidding strategies, in reality a Myerson auction actually might not perform

as well as the theory predicts. Thus due to these behavioral issues, the simple auction might even

better approximate an optimal auction than what the theory predicts.

1Similar question is discussed in Riley and Samuelson, Maskin and Riley (2000). A detailed treatment of the
theory of auction design can be found in Krishna (2009), Klemperer (1999), and Klemperer (2018).
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To this end, we propose to conduct laboratory experiments to compare the performances of

these two auction formats in terms of revenue generation. In particular, we seek to address the

following issues:

� Is the actual revenue from Myersonian optimal auction (RO) signi�cantly di¤erent on average
than the theoretical prediction (ERO)? If so, can this di¤erence be explained by the e¤ect of

complexity and discouragement?

� Is the actual revenue generated from conducting the �simple auction�(RS) di¤erent on average
than the theoretical simple auction (ERS)?

� Is the di¤erence between the average revenues from conducting an optimal auction vis-a-vis

a simple auction signi�cantly di¤erent than the theoretically predicted di¤erence? Formally,

is the following di¤erence

jjERO � ERS j � jRO �RS jj

statistically signi�cant ? If so, can it be explained by the e¤ect of complexity and discourage-

ment?

� How does the result change with the degree of asymmetry?

� We also seek to estimate the experimental bidding functions under both the auctions.

1.1 Related Literature

This paper adds to the growing literature of simple auction. Especially to the practitioners of

computer science and algorithmic game theory, implementability. of auction rules is a concern,

hence there is a strand of literature that looks at di¤erent simpler auction formats and examines

how well these auctions approximate the revenue maximizing auctions. Along these lines, di¤erent

papers, for example, Hartline (2012), Alaei et. al. (2018), Hartline et. al. (2014), Fu et. al.

(2013), Bhattacharya et. al. (2013), Hartline and Roughgarden (2009) consider di¤erent types of

computationally less challenging �simple�auctions. They explore the revenue loss associated with

the use of these simple auctions. In multi-unit auctioning environment Hart and Nisan (2017),

Vetsikas et. al. (2012) also examine the performance of similar simpler auction rules. While

these studies theoretically �nd the maximum revenue loss from conducting simple auctions, our

study is the �rst one to experimentally test the properties of such a simple auction. We use the

simple auction format as de�ned in Hartline and Roughgarden (2009) and Hartline (2012) and

using a controlled laboratory experiment we want to explore if simple auctions can approximate

the revenue generated by optimal auctions to a higher degree than what the theory predicts, owing

to its simpler rules. This study thus complements the theoretical �ndings in this literature.

This study also adds to the literature that examines asymmetric auctions in controlled laboratory

experiments. Asymmetric auctions have been studied extensively in the experimental literature.
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Güth et. al. (2005) compare �rst price and second price auctions if bidders are asymmetric, Güth

and Ivanova-Stenzel (2003) examines the case without assuming common belief, Pezanis-Christou,

and Sadrieh (2003) examine the bidding function in asymmetric auctions, Georganas and Kagel

(2011) study asymmetric auctions with resale possibility2 . There are experiments studying the

properties of the auction format followed by eBay, with anonymous reserve prices (Bajari and

Hortacsu (2003), Garratt et. al. (2012)). However, to the best of our knowledge, we are the �rst

to test the predictions from Myerson optimal auction and compare its performance to the simple

auction in these environment.

2 Theoretical Model

2.1 Optimal Auction

We will restrict our attention to the single object auction with independent and private valuations.

Formally, there are n bidders bidding for an object. The seller does not value the object. The

private valuation for the object for a bidder i is given by vi: Assume that vi is drawn from a

distribution Fi. The associated density function fi has support contained in �i � [0; vmax]. Fis are
independent, but not necessarily identical. Without loss of generality, let us assume that bidders

are ordered such that Fi �rst order stochastically dominates Fj 8i > j; i; j = 1; ::n3 : Assume that

the distributions are �regular�.

De�nition 1 (Regular Distribution) A distribution F is called regular if the �virtual valuation�

'(v) = v � 1� F (v)
f(v)

(1)

is a monotone strictly increasing function of v: That is,

'(v) > '(v0) whenever vmax � v0 > v � 0:

We maintain the assumption that the auctioneer knows these distributions a-priori, but not the

realizations of v1; v2; :::; vn: The realizations are privately observed by the bidders.

We are focusing on sealed bid auctions, where the bidders submit bids: bi : �1��2� ::::��n !
Rn. An auction in this environment is a collection of an allocation rule x(b) : Rn ! Rn; and a
payment rule t(b) : Rn ! Rn:
For a given auction format (x(b); t(b)), for a bid pro�le b;bidder i has utility4

ui(b) = vi[xi(b)� ti(b)]
2For a complete review of the literature, refer to Kagel (2000)
3That is, Fi � Fj 8i > j; i; j = 1::n: In the symmetric case, Fi = Fj8i 6= j:
4We use the standard quasilinear utility function.
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Seller�s ex-ante expected revenue in this case:

ER(x(b); t(b)) = Eb

"
nX
i=1

ti(b)

#

We will restrict our attention to Dominant Strategy Incentive Compatible (henceforth DSIC)

auctions.

De�nition 2 (DSIC) An auction (x(b); t(b)) is Dominant Strategy Incentive Compatible if each
bidder has a dominant strategy to bid truthfully, i.e., the optimal bidding function is bi = vi for

every b�i:

Hence, the expected revenue can be rewritten as:

ER(x(v); t(v)) = Ev

"
nX
i=1

ti(v)

#

Myerson (1981) �nds the optimal, i.e., revenue-maximizing DSIC auction rule in this environment.

Optimal DSIC Auction (Myerson, 1981) The optimal DSIC auction is given by the payment
rule:

ti(v) =

�
zi(v�i) if xi(v) = 1
0 otherwise

where

zi(v�i) = inffsij'i(si) � 0; and 'i(si) � 'j(vj)8j 6= ig

i.e., zi(v�i) is the lowest winning bid for i against all v�i;

and the allocation rule:

xi(v�i; si) =

�
1 if si > zi(v�i)

0 otherwise

In other words, the optimal auction assigns the good to the bidder with the highest virtual

valuation, if that virtual valuation clears the reserve price '�1i (0): The bidder pays the reserve

price or the second highest bid, whichever is the higher. Only the winning bidder pays any positive

amount. Call the maximum expected revenue from running an optimal auction: ERO:

In the symmetric case when Fi = Fj8i 6= j; since 'i(v) = 'j(v)8i 6= j; the optimal auction

simply takes the form of a Vickrey auction with the monopoly reserve price '�1(0): Thus, under

symmetry, the optimal auction is easily implementable.

However, if the bidders are ex-ante asymmetric, that is, the distributions are not identical, the

optimal auction does not have an easily implementable form. It involves assigning the object to

the individual with the highest virtual valuation and using bidder speci�c reserve prices. Also, in
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that case, the highest valuation bidder might not win the object. For example, if the valuation of

bidder i is drawn from the uniform distribution U [�i; �i]; then

fi(vi) =
1

�i � �i
;

'i(vi) = vi �
1� Fi(vi)
fi(vi)

= 2vi � �i

and if �i < �j it is possible that 2vi � �i > 2vj � �j even if vi < vj ; so the highest valuation

bidder may not always win. This auction discriminates against the bidders for whom the upper

bounds on the value estimates are higher.

From the bidders�point of view, this allocation rule can be too complex to understand, and also

may result in ex-ante discouragement if the distributions are such that the highest valuation bidder

may not have the highest virtual valuation, hence may not win the auction.

2.2 Simple Auction

The optimal single-item DSIC auction with asymmetric bidders takes a complex form: someone

other than the highest bidder might win, and the payment rule involves virtual bid, which can be

complex for a bidder with no technical expertise. Fittingly, this optimal auction format generally

does not resemble any auctions used in practice.

Instead of using the optimal auction, we can use simpler formats called "Simple Auctions"

(Hartline and Roughgarden, 2009 Hartline and Roughgarden (2009)) in order to approximate the

maximum revenue. They demonstrate how the revenue of a simple auction can approximate that

of the optimal auction when we relax the assumption that the value distributions of the bidders

are identical. Consider the same environment as detailed in the last section, with Fis �rst order

stochastically ordered.

Let us consider the following Simple Auction:
i) Set the reserve price for bidder i; ri =  �1i (0):

ii) Allocate the good to the highest bidder for whom  i(bi) � ri; if any. If there is a tie, it is

broken randomly.

iii) The winning bidder pays the maximum of his reserve price and the second highest bid that

meets the reserve price of the second highest bidder.

We have the following Proposition:

Proposition 1 (Hartline and Roughgarden, 2009) Let the expected revenue of the optimal
auction be ERO and the expected revenue of the simple auction be ERS : Suppose the valuations

of the bidders are drawn independently from distributions that satisfy the Monotone Hazard Rate

condition. Then,

ERS �
1

2
ERO:
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Thus the simple auction is to run the Vickery auction, but with bidder-speci�c reserve prices.

This simple auction guarantees at least half the revenue of the optimal auction. The simple auction

also avoids complexity in the sense that under the simple auction it is the highest valuation bidder,

not the highest virtual valuation bidder, who always wins the auction. The virtual values are only

used by the auctioneer to set the bidder-speci�c reserve prices.

Call the maximum revenue possible under simple auction:ERS :

The central question of this paper is to examine how well in reality this simple auction approxi-

mates the optimal auction. The theoretical upper bound does not consider the behavioral concerns

that might exist, as we have explained. Hence, our hypothesis is that the revenue generated from

a simple auction can approximate the revenue from an optimal auction signi�cantly better than

what theory predicts.

3 Experimental Design

To examine how well simple auction performs vis-a-vis the optimal auction, and if the behavioral

hypotheses hold, we will use a series of laboratory experiments. In every auction there is a �ctitous

commodities for sale, the bidders observe the private monetary value5 for this object before they

bid. The valuation distributions are parameterized. We use three di¤erent sets of parameters in

order to explore the bidding behavior of the subjects: in the benchmark case (Parameter set 1) the

asymmetry does not have a bite; Parameter set 2 has a lower degree of asymmetry than Parameter

set 3. For each set of parameters, we run the optimal and simple auctions as separate treatments.

The treatments are described below:

Treatment 1: Parameter set 1 (Benchmark Case):

n = 2 (Parameter set 1)

v1 � U [150; 200]

v2 � U [100; 200]

Hence:

f1(v) =
1

50
; f2(v) =

1

100

F1(v) =
v � 150
50

;F2(v) =
v � 100
100

For any bid pro�le (b1; b2); the virtual bid functions are:

'1(b) = 2b� 200 = '2(b)

5This can be thought of as the private reselling value of the object. Full instructions are included later.
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So, even though Fis are asymmetric, the virtual valuations are symmetric functions6 .

Here, the optimal auction prescribes:

x1(b) = 1; x2(b) = 0 if b1 � b2

t1(b) = b2; t2(b) = 0

and similarly for the case when b2 > b1; i.e., v2 > v1:

In this environment, there is no possible discouragement e¤ect, so in e¤ect the simple and

optimal auction both take the exact same form. We award the highest bidder the object, and he

pays the second highest bid if it clears the reserve price.

ERo = ERS = 175

Treatment 2: Optimal Auction for Parameter set 2:

n = 2 (Parameter set 2)

v1 � U [100; 200]

v2 � U [100; 150]

So,

f1(v) =
1

100;
f2(v) =

1

50

F1(v) =
v � 100
100

;F2(v) =
v � 100
50

Clearly, F1 FOSDs F2:

The virtual bids are:

'1(b) = 2b� 200;
'2(b) = 2b� 150

The optimal auction prescribes

x1(b) = 1; x2(b) = 0 if '1(b1) � '2(b2)

t1(b) = b2; t1(b) = 0

and

x2(b) = 1; x1(b) = 0 if '2(b2) � '1(b1)

t2(b) = b1; t1(b) = 0

6Notice that to simplify the auction rules even further, we have chosen the distributions so that the reserve price
is never binding.
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Figure 1: Discouragement Region for Parameter Set 2

So, for the range

b2 + 25 > b1 > b2

bidder 1 has the highest bid (and highest valuation), but still does not win. This region is

depicted in �gure 1 and has an area of 62:5. Here,

ERo = 129:16

We will run two subtreatments for the optimal auction using this set of parameters in order to

see how strong the discouragement e¤ect is.

Treatment 2A: In the �rst treatment, after the instructions and demonstrations, we do not

explicitly point it out to the bidders that there is a possibility that the highest bidder may not be

the highest virtual bidder, and hence may not win. It is possible that some of the subjects will not

notice that feature during the demo, hence the discouragement e¤ect may be weak.

Treatment 2B: In this subtreatment, which we can term as an �information treatment,� from

the examples that we will use as demo, we clearly illustrate how the highest bidder may not win.

We anticipate that this awareness might evoke a strong discouragement e¤ect.

Treatment 3: Simple auction for Parameter set 2

For the same set of parameters , in this treatment we run a simple auction. The simple auction

in this environment prescribes

x1(b) = 1; x2(b) = 0 if b1 � max b2
t1(b) = b2; t2(b) = 0
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and

x1(b) = 0; x2(b) = 1 if b2 � b1

t2(b) = b1; t1(b) = 0

ERS = 120:83

We observe that the theoretical di¤erence between the expected revenues in Treatment 2 and 3

is:

ERO � ERS = 129:16� 120:83 = 8:33

Treatment 4:Optimal Auction for Parameter set 3:

n = 2 (Parameter set 3)

v1 � U [100; 200]

v2 � U [100; 120]

So,

f1(v) =
1

100
; f2(v) =

1

20

F1(v) =
v � 100
100

;F2(v) =
v � 100
20

The virtual bids are:

'1(b) = 2b� 200;
'2(b) = 2b� 120

Here, we have a strictly higher degree of asymmetry. The data from this treatment and the next

one can be used to see if the performance of simple auction vis-a-vis complex auction signi�cantly

responds to the level of asymmetry.

The optimal auction in this environment prescribes

x1(b) = 1; x2(b) = 0 if b1 � b2 + 40

t1(b) = b2; t1(b) = 0

and

x2(b) = 1; x1(b) = 0 if b2 � b1 � 40
t2(b) = b1; t1(b) = 0
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So, for the range

b2 + 40 > b1 > b2

bidder 1 has the highest bid (and highest valuation), but still does not win. We can calculate

the expected revenue:

ERo = 146:66

Treatment 5: Simple Auction for Parameter set 3:

For the same set of parameters, we run simple auction in this treatment.

The simple auction in this environment prescribes

x1(b) = 1; x2(b) = 0 if b1 � b2

t1(b) = b2; t1(b) = 0

and

x2(b) = 1; x1(b) = 0 if b2 � b1

t2(b) = b1; t1(b) = 0

Expected revenue:

ERS = 109:33

We can see that the theoretical expected revenues di¤er more in case of higher degree of asym-

metry:

ERO � ERS = 146:66� 109:33 = 37:33

We will implement these treatments using the Between Subjects Design. We intend to test the

following set of hypotheses.

3.1 Hypotheses

1. Revenue Comparisons: Theory vs Experiment:

(a) Optimal Auction: The average revenue earned from running optimal auction (RO) in

Treatment 2 and 4 are signi�cantly di¤erent than the theoretically predicted ERo in

these two treatments. In particular, the di¤erence jERO�ROj is signi�cantly greater in
T2;and T4 compared to T1; the benchmark case.

(b) Simple Auction: The average revenue from running simple auction RS in T3; T5 are

signi�cantly di¤erent than the theoretically predicted ERS in these two treatments.
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2. Revenue Comparison Between Optimal and Simple Auctions: The di¤erence between pre-

dicted expected revenue from Optimal and Simple auctions is signi�cantly di¤erent than the

observed di¤erence between average revenues, i.e. jjERO �ERS j � jRO �RS jj is signi�cant.
We will compare the revenue for each of the parameter sets Parameter set 2 and Parameter

set 3. This is the central hypothesis that we aim to test.

3. E¤ect of Discouragement: There is signi�cant di¤erence in bidding behavior and expected

revenue when the subjects are aware of the fact that highest bidder may not win in optimal

auction. Comparing T2 and T2A we can test this hypothesis.

4. Bidding Function under Optimal Auction: Under optimal auction, truthful bidding is ob-

served.

5. Bidding Function under Simple Auction: Under simple auction, truthful bidding is observed.

6. E¤ect of Degree of Asymmetry: The di¤erences jERO�ROj; jERS�RS j; and jjERO�ERS j�
jRO �RS jj is signi�cantly di¤erent under parameter set Parameter set 3 than parameter set
Parameter set 2:

7. E¤ect of Risk Aversion under Optimal and Simple Auction: There is no signi�cant e¤ect of

subject�s risk attitude on the bidding behavior.

3.2 Design of the Study

To test these hypotheses, we will use the Between Subjects design, where in each experimental

session the subjects will face only one treatment. The experiments will be conducted in Ashoka

Experimental Laboratory. The computer interface will be designed by zTree. After several pilot

sessions, here will be 4 full sessions, each with 24 bidders.

In each session, after the subjects are seated, the instructions will be read out (also handed out

in printed version). After that, to gain a better understanding, the subjects will face two on-screen

examples, each with a pair of valuations for the subject and his/her opponent. Using the on-screen

calculator, the subject can try di¤erent bidding strategies and understand the problem better. In

one of the examples, the valuation pair is chosen such that the highest valuation bidder is not

the highest virtual valuation bidder. In the Information treatment T2B; after the subjects have

worked with these examples, we explain them, pointing out that in one of the examples, there is

a possibility that the highest bidder might not win the auction. In other treatments, we do not

explicitly inform the subjects about this, instead the subjects go straight to the auction rounds.

In each session, after 3 practice rounds, there will be 25 rounds of auction with the parametric

environment associated with the speci�c treatment. Bidders are randomly assigned as weak or

strong bidder at the beginning, and this type stays the same throughout. In each round, bidders

are randomly and anonymously matched to form a pair with one strong and one weak bidder. Each

session the winning bidder gets his/ her payo¤ in Experimental Currency Units (ECU).

12



After the auction rounds, we will run a cognitive ability test containing two di¤erent modules,

one taken from Wechsler Adult Intelligence Scale (WAIS), and another basic quantitative literacy

test, in order to check if the complexity of optimal auction matters.

The �rst module, taken from the 11 modules of WAIS test, is aimed at measuring the speed and

processing time of an individual7 . This is a symbol-digit correspondence test, similar to a submodule

in the nonverbal section of the WAIS, where the subjects are asked to match as many numbers and

symbols as possible in a given time according to a given correspondence. In particular, the subjects

are presented with a screen that has 9 unfamiliar symbols, each paired with one of the digits 1� 9.
On that screen, a symbol out of these 9 symbols appears, and the subject has to type the correct

corresponding number into the box. Once a number is entered, a new screen with another symbol

appears. Subjects have 90 seconds to �nd as many correspondences between symbols and numbers

as they can, using the correct number for each symbol. Thus, speed and accuracy in applying the

given correspondence under time pressure determine how well an individual does on the test.

The second module is a quantitative literacy or numerical test that is designed in order to

gauge how comfortable the subject is with arithmetic calculations (similar to the intelligence test in

Weschler (2008)). Here, there will be 4 simple problems involving the basic operations of arithmetic,

viz. addition, subtraction, multiplication, and division. Each subject will have 180 seconds to solve

as many problems as they can. The speed and accuracy in solving these problems will indicate how

quickly the subject can grasp the idea of virtual bid.

At the end there will be a standard BDM (Becker-DeGroot-Marschak) mechanism8 in order to

elicit risk preference so that we can control for that. Here, the subject will be given 10 choices,

each between a given lottery that pays 100 with probability 1=2 and 0 otherwise, and a certain

monetary payo¤, starting at 0 up to 100 with an increment of 10: The amount where the subject

switches from a certain payo¤ to the lottery will give us his/her certainty equivalent. At the end

of the BDM mechanism, one of the choices is picked randomly and the subject is paid according to

that choice. To implement the lottery we will use a physical device (a six-sided dice).

Finally, subjects �ll out a questionnaire to give feedback.

For payment purposes, 5 rounds out of the 25 auction rounds are chosen randomly, apart from

the payment obtained from the BDM. The total ECUs earned in those 5 rounds will be converted

into cash payments by the ratio: 1 ECU= 1 INR. To cover for any potential loss, subjects will be

endowed with 300 INR at the beginning of the experiment.

The experimental sessions will be conducted by November, 2018:

7This module is same as the one used in Dohmen et. al. (2010).
8For details, refer to Kagel and Roth (1997).
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4 Discussion and Future Work

In a related series of experiments, we also seek to compare the revenue generated from optimal

auction with that generated from conducting an eBay-like auction with a single anonymous reserve

price even when the bidders are ex-ante asymmetric, and see how closely this auction format

approximates the optimal auction. This will give us an insight if we can even give away the bidder-

speci�c discriminatory reserve prices. This would also substantiate the fact that eBay sometimes

uses anonymous reserve price even under the scenario of asymmetric bidders. Another future line

of research will explore the properties of a simple auction in multi-unit environment.
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Instructions

Thank you for participating in this experiment on economic decision making. Please pay attention

to this instruction and also the accompanying slides. If you follow these instructions carefully and

make careful decisions you might earn a considerable amount of money which will be paid to you

in cash and in private at the end of the experiment.

The experiment will consist of two parts and last about one and a half hours. The amount

of money you make will depend on the decisions you and all other participants make during the

experiment.

Your computer will assign you an ID number, and at the end of the session you will be given an

envelope with that ID number on it containing your monetary earnings. The person handing you

your envelope will not know how much money is in the envelope. Thus, absolute anonymity and

privacy will be maintained.

Please remain silent during the experiment. If you have any questions, or need assistance of any

kind, raise your hand; one of the experiment administrators will come to you and you may whisper

your question to him. Please do not talk, laugh, or exclaim out loud. We expect and appreciate

your adherence to these rules.

During the experiment you will take part in several auctions. In every auction a �ctitous

commodity is for sale, which you can resell to the experimenters. Your resale value for this good,

called your valuation, lies within a value range. You are one of the two bidders. There are two types

of bidders: Type 1, whose valuation lies in the range [100; 200]; and Type 2, whose valuation lies

in the range [100; 150]9 : In each auction there are two bidders, one of Type 1 and the other Type

2. At the beginning, you will be randomly assigned as Type 1 or Type 2 and you will be privately

noti�ed about your type. Each bidder keeps his own type throughout the session. If you are a Type

1 bidder, in each auction, your private valuation is independently drawn from the interval [100; 200],

with every integer number between 100 and 200 being equally likely. Similarly, if you are a Type

2 bidder, in each auction, your private valuation is independently drawn from the interval [10; 20],

with every integer number between 100 and 150 being equally likely. Notice that both bidders in

each auction knows the valuation range for his opponent for sure, but not the exact valuation. In

each auction, a Type 1 bidder is randomly and anonymously matched with a Type 2 bidder.

After being matched and observing own valuation which will be displayed on your computer

screen, you have to place an integer bid in the range of 100 to 200 :Using this bid, your virtual bid

will be calculated according to the formula:

virtual bid = 2(bid)� 200 (2)

For example, if you bid 180; your virtual bid will be 180 � 2� 200 = 160: Once both the bidders
submit their bids, the bidder with the highest virtual bid will win the good in that auction, and will

9This is the instruction for Treatment 2A, so we implement Parameter set 2.
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pay the bid placed by the other bidder. In that auction, the winner will earn a payo¤= valuation -

payment. The loser will earn a zero payo¤ from this auction. For example, if your valuation is 190,

you bid 180 and your opponent bids 160; then you will win this auction, pay 160 ; and will earn a

payo¤ of 190�160 = 30; your opponent will earn a payo¤ of 0: Similarly, if your valuation was 150;
you bid 180 and opponent bids 160; you will win and pay 160; earning a payo¤ of 150� 160 = �10:
These payo¤s are in experimental currency units ECU and will later be converted into INR using

the ratio: 1 ECU = 1 INR. Your payo¤s from each auction round will be stored by the computer.

You will be paying 25 auction rounds, each time being randomly and anonymously matched with

a bidder of the other type. Out of these 25 auction rounds, at the end, randomly 5 auction rounds

will be selected and your payo¤s from those auctions will be summed, converted into INR and paid

in cash to you.

Before we begin, please go through the two examples displayed on your screen.

We will now begin interaction with the computers. If you have any questions before we begin

the experiment, please RAISE YOUR HAND and a moderator will be with you shortly.

We will now begin the experiment. Please pay attention to your monitor and click the mouse

when prompted to do so. Please click on the Continue button on each screen after you have read

the information and/or made the choice.

(After examples, 3 practice rounds and then 25 rounds of auction.)

Now, on your computer screen 9 symbols will be displayed, each corresponding to a digit 1� 9:
Next, you have to match the correct digit with the symbol displayed to you. Please do as many as

possible within 90 seconds of time.

(WAIS module)

Now on your screen 4 simple math problems will appear, each involving basic arithmetic oper-

ations. Please solve as many as possible within 180 seconds.

(numerical test)

Next, you will be presented a table on screen. In that table, there are 10 rows, each asking you

to make a choice between a lottery that will pay you 100 INR or 0INR with equal probability, and

a sure amount. Please click on the button in each row to indicate your choice for that row. After

all of you have submitted their choices for all 10 rows, one row will be randomly picked. If your

choice in that row was the lottery, we will roll a dice in front of you. If the front face turns up

any number 1 � 3; you will get 100 INR, otherwise you will get nothing. If your choice for that
particular row was the sure amount (say x); then you will get x INR for sure. So, please turn to

your monitors now and make the choices carefully.

(later)

Please complete the questionnaire displayed on your screen. To preserve your privacy, type xxx

when asked for name in order to maintain privacy and anonymity; do not write your own name.

While you give us your valuable feedback, we will be putting your winning amounts in the respective

envelopes. Please �ll out the receipt with your winning amount as well. Thanks for participating
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in this experiment!
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