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Abstract

We deal with the equivalence of local sd strategy-proofness and (global) sd strategy-proofness
for random rules on domains that satisfy some block structure with respect to the alternatives.
Given a partition of the set of alternatives, a preference satisfies block structure if all the alter-
natives in an element of the said partition always appear together. Two preferences are called
local if there is a collection of pairs of adjacent blocks that flip from one preference to the
other. In this setting, we provide a sufficient condition for the equivalence of local strategy-
proofness and strategy-proofness for random rules. As applications of our result, we obtain
that local strategy-proofness and strategy-proofness are equivalent for random rules on lexi-
cographic multi-dimensional domains when there is exactly one component ordering and the
marginal domains are unrestricted or single-peaked or single-crossing, domain for committee
formation, sequentially dichotomous domains, etc.
KEYWORDS: Local sd strategy-proofness, (global) sd strategy-proofness, block connectedness,
one dimensional domains, multi-dimensional lexicographic domains
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1. INTRODUCTION

1.1 BACKGROUND OF THE PROBLEM

We consider the situation where a designer has to choose a lottery over the alternatives from a

feasible set of lotteries over set of alternatives based on the preferences of a group of individuals

in a society. Such a procedure is called a random social choice function. A well-known desirable
∗
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property of such functions is sd strategy-proofness. To compare lotteries, we use the stochastic

dominance extension. This property ensures that the dishonest individuals in the society cannot

be better off by strategically misreporting their preferences.

In the seminal papers of Gibbard (1973)-Satterthwaite (1975), it is shown that if there are

at least three social outcomes and the preferences of the individuals are unrestricted, then ev-

ery strategy-proof and unanimous social choice function will be dictatorial. A dictatorial social

choice function is one that selects the most preferred alternative of one particular individual at

every collection of reported preferences.

Domain restrictions turn out to be the most practical way to evade Gibbard-Satterthwaite

(Gibbard (1973), Satterthwaite (1975)) impossibility result. Well-known domain restrictions that

are studied in literature are single-peaked, single-dipped, single-crossing etc. Moulin (1980) char-

acterize the strategy-proof and unanimous rule on single-peaked domains, Peremans and Stor-

cken (1999) characterize those on single-dipped domains, and Saporiti (2014) on single-crossing

domains.

1.2 OUR MOTIVATION

Although the sd strategy-proof rules are characterized on several well-known domains, a gen-

eral characterization of those on arbitrary domains is assumed to be a hard problem. In view of

this, researchers started looking at simpler (easy to check) versions of sd strategy-proofness. One

such version is local sd strategy-proofness. Local sd strategy-proofness requires that an individ-

ual cannot manipulate by a ‘slight’ misreport of his preferences. More formally, it ensures that

an individual cannot manipulate by swapping two consecutive alternatives in his preference.

This raises an interesting question as to when, that is under what condition on a domain, such a

simple version of sd strategy-proofness becomes equivalent to sd strategy-proofness. This is the

main question we deal with in this paper.

In Sato (2013), it is shown that if a domain satisfies ‘no restoration’ property, then every de-

terministic locally strategy-proof rule is strategy-proof. In many practical scenarios, a decision

maker has to take decision on multiple issues simultaneously. Examples of such situations in-

clude deciding the optimum level of budget allocations over different sectors such as health,

education, defense etc. Such situations are modeled as multi-dimensional decision problem and

the usefulness of such models is well-established in literature.
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It is shown in Breton and Sen (1999) that if a multi-dimensional separable domain satisfies

richness property, then every strategy-proof rule on it is decomposable. However, the structure

of such rules on arbitrary multi-dimensional domains is still open. This motivates us to establish

the equivalence of local and global sd strategy-proofness on such domains.

1.3 OUR CONTRIBUTION

First, we define a class of local notion. Then, we consider the equivalence of local sd strategy-

proofness and (global) sd strategy-proofness for that class. We provide a sufficient condition for

the said equivalence for domains whose graph falls in that class of local notion.

As an application, first we consider one dimensional domains. Cho(2016) shows that the

complete domain (DC), the domain of single peaked preferences, the single-crossing domain

and the single-dipped domain all are RLGE domains w.r.t the adjacency graph. We obtain this

as a corollary of our main Theorem 3.1.

Next, we consider multi-dimensional lexicographic domain and explore the equivalence of

local and global sd strategy-proofness on such domains. We show that if there is exactly one ad-

missible preference over components, then local and global sd strategy-proofness are equivalent

for the multidimensional domain if the marginal domains are unrestricted or single-peaked or

single-crossing. We further show that if the cardinality of marginal domains is either 1 or 2, then

local and global sd strategy-proofness are equivalent on the multi-dimensional lexicographic do-

mains that are obtained by these collection of marginal domains and any collection of component

orderings.

2. MODEL

Let X = {a, b, . . . } be a finite set of alternatives with |X| ≥ 2, and I = {1, . . . , N} be a finite set

of voters with |I| = N ≥ 1.1 A preference P is an antisymmetric, complete and transitive binary

relation over X, i.e., a linear order. Given a, b ∈ X, aPb is interpreted as “a is strictly preferred

to b” according to P, and in particular, aP!b denotes that aPb and there exists no c ∈ X such

that aPc and cPb. Let rk(P), k = 1, . . . , m, denote the kth ranked alternative in preference P. Let

L(a, P) = {x ∈ X|aPx} denote the low contour set of a at P. Given two distinct preferences P

and P′, let P △ P′ = {(a, b) ∈ X2|aPb and bP′a} be the set containing each pair of alternatives

1We include the case of a singleton voter just for the convenience of simplicity.
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whose relative rankings are disagreed by P and P′.2 Correspondingly,
∣∣P △ P′∣∣ denotes the

Kemeny distance between P and P′ , and we say that alternative a overtakes b from P to P′ if

(a, b) ∈ P △ P′. Also for any two preferences P and P′ and B ⊆ X, by P |B= P′ |B, we mean

xPy if and only if xP′y for all x, y ∈ B. Let D be the set of admissible preferences, referred to as

a preference domain.3 In particular, if the domain contains all linear orders, it is referred to as

the complete domain, denoted DC, and otherwise, it is a restricted domain. A preference profile

is a N-tuple of N voter’s preferences, denoted (Pi, P−i) ≡ (PÎ , P− Î) ∈ DN, where i ∈ I and

Î ⊊ I is nonempty.4 Let ∆(X) denote the lottery space over X. An element ε ∈ ∆(X) is a lottery

or probability distribution over X. Let εa denote the probability of a in the lottery ε. A Random

Social Choice Function (or RSCF) is a map φ : DN → ∆(X) associating each preference profile

to a social lottery. For instance, let φa(P) denote the probability of a in the social lottery φ(P).

We adopt the (first-order) stochastic dominance introduced by Gibbard to establish the axioms of

local strategy-proofness (w.r.t. a graph) and strategy-proofness.

2.1 LOCAL STRATEGY-PROOFNESS AND STRATEGY-PROOFNESS

We locate all preferences of a domain on an exogenous graph. Accordingly, let G = ⟨D, E⟩

denote a (undirected) graph where the vertex set is D, and a pair of distinct preferences P, P′ ∈ D

forms an edge if (P, P′) ∈ E . When (P, P′) ∈ E , we say that P and P′ are neighbors. A path

π ≡ (P1, . . . , Pt), t ≥ 2, in G(D) is a sequence of consecutively neighbored preferences, i.e.,

(Pk, Pk+1) ∈ E , k = 1, . . . , t − 1. Let Π(P, P′) denote the set of all paths from P to P′ in G.5 Given

a path π = (P1, . . . , Pl), we denote π|[Ps,Pt] = (Ps, Ps+1, . . . , Pt) the subpath of π from Ps to Pt

where 1 ≤ s < t ≤ l.

Once the graph is fixed, we identify the neighbors of each preference, and then systematically

weaken the requirement of strategy-proofness: Each voter cannot strictly benefit from misrep-

resenting preferences neighbor to her sincere one, and we ignore possible manipulations via

preferences beyond the neighborhood.

2Henceforth, in order to avoid confusion, whenever we write (a, b) ∈ P △ P′, it denotes aPb and bP′a.
3For simplicity, we assume that the preference domain is identical for all voters.
4Throughout this paper, we only attach subscripts i, j, h, Î (respectively, −i,−j,−h,− Î) to preferences to empha-

size that they are possessed by these voters (respectively, complementary voters). In this paper, since many addi-
tional subscripts and superscripts will be added to preferences and profiles, for notational simplicity, we sometimes
write a profile (P, P−i) without the subscript “i”.

5We allow that a preference appears multiple times in a path. For simplicity, we call (P) a singleton path and let
Π(P, P) = {(P)} be a set containing a singleton path. To avoid confusion, whenever we write Π(P, P′), we assume
that each path of Π(P, P′) starts from P and ends at P′.
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Definition 2.1. Fix a graph G = ⟨D, E⟩. Formally, an RSCF ϕ : DN → X is locally sd-strategy-

proof if for all i ∈ I, P, P′ ∈ D with (P, P′) ∈ E and P−i ∈ DN−1, ϕ(P, P−i) stochastically

dominates ϕ(P′, P−i) according to P, i.e.,
t

∑
k=1

ϕrk(P)(P, P−i) ≥
t

∑
k=1

ϕrk(P)(P′, P−i), t = 1, . . . , |X|.

Moreover, an RSCF φ : DN → X is sd-strategy-proof if for all i ∈ I, P, P′ ∈ D and P−i ∈ DN−1,

φ(P, P−i) stochastically dominates φ(P′, P−i) according to P.

We study strategy-proof SCFs which says that regardless of others’ reporting of preferences,

a voter cannot strictly benefit by misrepresenting her true preference.

Definition 2.2. Fix a graph G = ⟨D, E⟩. Domain D is a random-local-global-equivalence (or

RLGE) domain if every locally sd-strategy-proof RSCF is sd-strategy-proof.

For a given domain D, we define the following class of graphs :

Definition 2.3. A block B ⊆ X in a preference P is defined as a set of contiguous alternatives i.e.

B is a block in P if there does not exist x ∈ X \ B and y, z ∈ B such that yPxPz.

Definition 2.4. A pair of disjoint blocks (A, B) is called adjacent in a preference P if for all x ∈

A, y ∈ B, z ∈ X \ (A ∪ B) we have either zPxPy or xPyPz.

For any preference P and P′ in D, (P, P′) ∈ E implies there are disjoint pairs of adjacent blocks

(A1, B1), . . . , (Ak, Bk) in P such that (B1, A1), . . . , (Bk, Ak) are adjacent in P′ and for all x ∈ X and

all y ∈ ∪i(Ai ∪ Bi), xPy if and only if xP′y. In such situations, we say P′ is (A1, B1), . . . , (Ak, Bk)

flip of P and we write P′ = P[(A1, B1), . . . , (Ak, Bk)].

3. THE THEOREM

For the class of graphs defined above the following theorem holds.

Theorem 3.1. A domain D is an RLGE domain if for all P, P′ ∈ D, there exist a path π = (P1, . . . , Pl)

such that for all 1 ≤ k ≤ l − 1 and for all 1 ≤ j ≤ mk, Pk |Ak
j ∪Bk

j
= P1 |Ak

j ∪Bk
j

where Pk+1 =

Pk[(Ak
1, Bk

1), . . . , (Ak
mk

, Bk
mk
)].

The proof of this theorem is relegated to Appendix A
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4. APPLICATIONS

4.1 DOMAINS IN THE ONE-DIMENSIONAL VOTING MODEL

We define the graph in the following manner and call it adjacency graph.

Definition 4.1. P, P′ ∈ E if there exists a single pair of adjacent alternatives x, y which are

switched between the preferences: xPy and yP′x.

By P ∼ P′ we mean P and P′ are local preferences.

Lemma 4.1. The complete domain (DC), the domain of single peaked preferences, the single-crossing

domain and the single-dipped domain all are RLGE domains w.r.t the adjacency graph.

The proof of this lemma is relegated to Appendix B

Some of these results are shown by Carroll (2012) and Cho (2016).

4.2 LEXICOGRAPHICALLY SEPARABLE DOMAINS

We next turn to preference domains studied in the multidimensional voting models. First, we

assume that the alternative set can be decomposed as a Cartesian product, i.e., A = ×s∈M As

where M = {1, 2, . . . , m} is a finite set of components with m ≥ 2, and for each component

s ∈ M, the component set As contains finitely many elements and |As| ≥ 2. Thus, an alternative

is a assembling of m elements from all component sets, and we hence write a ≡ (a1, . . . , am) ≡

(aS, a−S) ∈ ×s∈M As where S ⊊ M is not empty.

We start the investigation from lexicographically separable preferences. First, a lexicographic or-

der, i.e., a linear order over M, is fixed to characterize an agent’s attitude towards all components.

Second, on each component set, a linear order is independently specified, which is referred to as

a marginal preference. Last, a lexicographically separable preference over A is established such

that given two distinct alternatives, according to the most important disagreed component, the

alternative owning a better element is always preferred.

Definition 4.2. A preference P is lexicographically separable if there exists a (unique) lexico-

graphic order P|0 and a (unique) marginal preference P|s for each s ∈ M such that for all a, b ∈ A,

we have
[
asP|sbs and aτ = bτ for all τP|0s

]
⇒ [aPb].
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Evidently, a lexicographically separable preference P can be uniquely represented by an m+ 1-

tuple of the lexicographic order P|0 and marginal preferences P|1, . . . , P|m, i.e., P = (P|0; P|1, . . . , P|m).

Then, one would observe that a pair of two distinct lexicographically separable preferences has

the minimum Kemeny distance if and only if they disagree exactly on either the lexicographic

orders or one component’s marginal preferences, and moreover, the disagreement presents in

the form of adjacency. Formally, we say that a pair of lexicographically separable preferences

P = (P|0; P|1, . . . , P|m) and P′ = (P′
|0; P′

|1, . . . , P′
|m) is lexicographically adjacent, denoted P ≃

P′, if there exists a unique s ∈ {0, 1, . . . , m} such that P|s ∼ P′
|s and P|τ = P′

|τ for all τ ∈

{0, 1, . . . , m}\{s}.

Let DLS denote the lexicographically separable domain containing all lexicographically sep-

arable preferences with exactly one lexicographic order say(P|0) and marginals Ds, s ∈ M. Ac-

cordingly, we construct the lexicographic adjacency graph (or LA-graph) ⟨DLS, E≃⟩ such that

(P, P′) ∈ E≃ if and only if P ≃ P′.

Theorem 4.1. If the marginals, Ds is either unrestricted(complete) or single peaked or dipped or single

crossing, for all s ∈ M. Then the domain DLS is an RLGE domain.

The proof of this theorem is relegated to Appendix C

Let the domain for committee formation DCF denote the lexicographically separable domain

containing all lexicographically separable preferences with all possible lexicographic order and

|As| ≤ 2, for all s ∈ M.

Accordingly, we construct the lexicographic adjacency graph (or LA-graph) ⟨DCF, E≃⟩ such

that (P, P′) ∈ E≃ if and only if P ≃ P′.

Theorem 4.2. The committee formation domain DCF is an RLGE domain.

The proof of this theorem is relegated to Appendix D

A. PROOF OF THEOREM 3.1

Proof. Let φ be a locally strategy-proof RSCF on D. We show that φ is strategy-proof.

Consider P, P′ ∈ D. We show

φU(x,P)(P) ≥ φU(x,P)(P′)for allx ∈ X. (1)
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Let π = (P1, . . . , Pl) be a path in G(D) such that for all 1 ≤ k ≤ l − 1 and for all 1 ≤ j ≤ mk,

Pk |Akj
∪Bkj

= P1 |Akj
∪Bkj

. Fix x ∈ X. In order to show (1), it is enough to show that φU(x,P)(Pk) ≥

φU(x,P)(Pk+1) for all k ∈ {1, . . . , l − 1}.

Take k ∈ {1, . . . , l − 1} and suppose Pk+1 = Pk[(Ak
1, Bk

1), . . . , (Ak
mk

, Bk
mk
)]. We show that

φU(x,P)(Pk) ≥ φU(x,P)(Pk+1). Note that since Pk+1 = Pk[(Ak
1, Bk

1), . . . , (Ak
mk

, Bk
mk
)], we must have

φ(Ak
l ∪Bk

l )
(Pk) = φ(Ak

l ∪Bk
l )
(Pk+1) for all l ∈ {1, . . . , mk}. (2)

Let U1(x, P) ⊆ U(x, P) be such that for all y ∈ U1(x, P), yPkz for all z ∈ Ak
1. Also let

Umk+1(x, P) ⊆ U(x, P) be such that for all y ∈ Umk+1(x, P), zPky for all z ∈ Bk
mk

. Note that for

all y ∈ X with yPk Ak
1 or Bk

mk
Pky, U(y, Pk) = U(y, Pk+1). Therefore, by local strategy-proofness

between Pk and Pk+1,

φy(Pk) = φy(Pk+1)for all y with yPk Ak
1. (3)

This in particular means φU1(x,P)(Pk) = φU1(x,P)(Pk+1) and φUmk+1(x,P)(Pk) = φUmk+1(x,P)(Pk+1).

For l ∈ {2, . . . , mk}, let Ul(x, P) ⊆ U(x, P) be such that for all y ∈ Ul(x, P), wPkyPkz for all

z ∈ Ak
l and for all w ∈ Bk

l−1.

Claim A.1. φUl(x,P)(Pk) = φUl(x,P)(Pk+1) for all l ∈ {2, . . . , mk}.

Proof. We prove this by induction. First we show that φU2(x,P)(Pk) = φU2(x,P)(Pk+1). By equation

2, it must be that φ(Ak
1∪Bk

1)
(Pk) = φ(Ak

1∪Bk
1)
(Pk+1). Also note that for all y ∈ U2(x, P), U(y, Pk) =

U(y, Pk+1). This together with the fact that φ(Ak
1∪Bk

1)
(Pk) = φ(Ak

1∪Bk
1)
(Pk+1) and using local

strategy-proofnes from Pk to Pk+1 implies that φy(Pk) = φy(Pk+1) for all y ∈ U2(x, P), which in

particular means φU2(x,P)(Pk) = φU2(x,P)(Pk+1).

Now let φUl(x,P)(Pk) = φUl(x,P)(Pk+1) for all 2 ≤ l ≤ r. We prove φUr+1(x,P)(Pk) = φUr+1(x,P)(Pk+1)

which completes the proof of the claim by induction. Let b ∈ Bk
r such that zPkb for all z ∈ Bk

r \ {b}.

Then by 2 and the assumption of induction hypothesis that φUl(x,P)(Pk) = φUl(x,P)(Pk+1) for all

2 ≤ l ≤ r, we have

φU(b,Pk)(Pk) = φU(b,Pk)(Pk+1). (4)

Now note that for all y ∈ Ur+1(x, P), U(y, Pk) = U(y, Pk+1). This together with equation 4 and

local strategy-proofness from Pk to Pk+1, implies that φy(Pk) = φy(Pk+1) for all y ∈ Ur+1(x, P),

which in particular means φUr+1(x,P)(Pk) = φUr+1(x,P)(Pk+1). This completes the proof of the
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claim. ■

For l ∈ {1, . . . , mk}, let us define Ûl(x, P) ⊆ U(x, P) be such that Ûl(x, P) = U(x, P) ∩ (Ak
l ∪

Bk
l ).

Claim A.2. φÛl(x,P)(Pk) ≥ φÛl(x,P)(Pk+1) for all l ∈ {1, . . . , mk}.

Proof. Take any r ∈ {1, . . . , mk}. Since Pk |Ak
r∪Bk

r
= P1 |Ak

r∪Bk
r
, there must exist xr ∈ Ak

r ∪ Bk
r such

that Ûr(x, P) = U(xr, Pk)∩ (Ak
r ∪ Bk

r ). Because U(xr, Pk) = [U(xr, Pk)∩ (Ak
r ∪ Bk

r )] ∪ [U(xr, Pk) \

(Ak
r ∪ Bk

r )], by the previous claim and 2, we have φU(xr,Pk)\(Ak
r∪Bk

r )
(Pk) = φU(xr,Pk)\(Ak

r∪Bk
r )
(Pk+1).

By local strategy-proofness from Pk to Pk+1, φU(xr,Pk)(Pk) ≥ φU(xr,Pk)(Pk+1). This together with

the fact that φU(xr,Pk)\(Ak
r∪Bk

r )
(Pk) = φU(xr,Pk)\(Ak

r∪Bk
r )
(Pk+1) implies φÛr(x,P)(Pk) ≥ φÛr(x,P)(Pk+1).

This completes the proof of the claim. ■

Since, U(x, P) = Umk+1(x, P) ∪ [∪mk
l=1(Ul(x, P) ∪ Ûl(x, P))], by A.1 and A.2 it follows that

φU(x,P)(Pk) ≥ φU(x,P)(Pk+1). This completes the proof of the theorem.

■

B. PROOF OF LEMMA 4.1

Proof. Let D be a domain that is either a complete domain (DC) or a domain of single peaked

preferences or a single-crossing domain or a single-dipped domain. Then for any two prefer-

ences P, P′ ∈ D, there exixts a path π = (P1, . . . , Pl) from P to P′ having no (a, b) restoration for

all a, b ∈ X. Take k ∈ {1, . . . , l − 1}. Let Pk+1 = Pk[(ak, bk)].

Claim B.1. Pk |{ak,bk}= P1 |{ak,bk}

Proof. Suppose not. Then it must be the case that akPkbk and bkP1ak. Since Pk+1 = Pk[(ak, bk)], it

must be that bkPk+1ak. This together with the facts that akPkbk and bkP1ak, it folows that π has

an (bk, ak) restoration which is a contradiction. Hence this completes the proof of the claim. ■

The claim implies that D satisfies the sufficiency condition stated in Theorem 3.1. This implies

D is RLGE which completes the proof of the lemma.

■
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C. PROOF OF THEOREM 4.1

Proof. Let P, P′ ∈ DLS. It is enough to show that there exists a path π that satisfies the sufficiency

condition in Theorem 3.1. Since P, P′ ∈ DLS, let P = (P|0 , P1, . . . , Pm) and P′ = (P|0 , P′
1, . . . , P′

m).

Given that marginals Ds is either unrestricted(complete) or single peaked or dipped or single

crossing, for all s ∈ M. So for all l ∈ M, there exists a path πl from Pl to P′
l in G(Dl) having no

(a, b) restoration for all a, b ∈ Al. Without loss of generality we can assume 1P|02P|0 . . . P|0m. De-

fine the path π = ((π1, P|0 , P2, . . . , Pm), (π2, P|0 , P′
1, P3, . . . , Pm), . . . , (πm, P|0 , P′

1, . . . , P′
m−1)). Since

πl is a path without restoration for all l ∈ M and there is exactly one component ordering, it

follows that the path π satisfies the sufficiency condition stated in Theorem 3.1. This completes

the proof of the Theorem. ■

D. PROOF OF THEOREM 4.2

Proof. Let P, P′ ∈ DCF. It is enough to show that there exists a path π that satisfies the sufficiency

condition in Theorem 3.1. Note that since 1 ≤ |As| ≤ 2 for all s ∈ M, it must be that 1 ≤ |Ds| ≤ 2

for all s ∈ M. Therefore, let Ds = {Ps, P′
s} for all s ∈ M. Since P, P′ ∈ DCF, let P = (P|0 , P1, . . . , Pm)

and P′ = (P′
|0 , P′

1, . . . , P′
m). Without loss of generality we can assume that 1P′

|02 . . . P′
|0m. De-

fine the path π = ((π1, P|0 , P2, . . . , Pm), (π0(1), P′
1, P2, . . . , Pm), . . . , (π0(m), P′

1, . . . , P′
m)). Since

1 ≤ |Ds| ≤ 2 for all s ∈ M and along the path π, first the component 1 overtakes other com-

ponents and come to the top and then the component 2 overtakes and comes to the second top

and so on, it follows that the path π satisfies the sufficiency condition stated in Theorem 3.1. This

completes the proof of the Theorem. ■
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