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Abstract

We consider a model in which productive bilateral links are formed between het-

erogeneous agents who differ in their innate productivity. Local information is com-

plete but an outside planner can observe only network properties. We ask if consistent

credit rating – where agents’ ratings are increasing in their productivity – is possi-

ble using network characteristics alone. The key to our results is that the network

structure is endogenous since the use of agents’ network neighborhood properties in

generating ratings also impacts their incentives for link formation. Network struc-

ture and credit scores are therefore determined jointly in equilibrium. We show that if

the cost of link formation is not too low, there is a pairwise stable equilibrium under

credit rating where the network structure is a connected nested split graph (CNSG)

with neighborhood size increasing in type. This is also the unique equilibrium if we

consider a class of “truthtelling” equilibria (that is, equilibria in which the network

structure separates types, enabling consistent credit rating). Further, among networks

that separate types, this specific CNSG constitutes precisely the optimal structure.
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1 Introduction

Lack of access to credit is a crucial aspect of the problem of financial exclusion faced
by a significant proportion of the world’s population. According to the World Bank’s
Findex database over 1.7 billion adults worldwide do not have access to a basic bank
account. Even those with a basic bank account often do not have access to services such
as credit or insurance. A critical factor impeding extension of credit is the absence of
suitable rating systems to assess the creditworthiness of individuals. Traditional credit
rating systems rely on credit histories, but these are typically non-existent for financially
excluded individuals.

In recent years, a host of startup lenders such as Lenddo and InVenture have looked to fill
this gap by using data gleaned from social networks to construct credit scores for individ-
uals without a traditional credit rating. Lenddo bases part of its rating on the ratings of
“friends” in a social network, while InVenture considers frequency and duration of mo-
bile phone usage data to judge the number and strength of relationships (a proxy measure
of network position). The International Committee on Credit Reporting has drawn atten-
tion to the use of information contained in social networks.1 The challenge in creating
any such system is to gather and process credit-relevant information, especially when
that information is not directly observable by the credit rating body.

This paper explores theoretically the possibility of credit rating based on observed net-
work connections. We consider a population of heterogeneous agents who differ in their
innate productivity. We refer to the innate productivity of an agent as the “type” of that
agent. Local information is assumed to be complete - each agent is able to observe the
types of all other agents. A network link captures a productive partnership between two
agents: the joint output of any bilateral link – shared equally between the two agents –
displays complementarity in that it is increasing in the types of the linked agents. An
additional link is worth forming if and only if the marginal utility from the additional
output exceeds the cost of forming that link, for both agents.

A planner observes the network that forms from these mutually-beneficial links but lacks
direct information on individual productivity. Since local information drives the forma-
tion of the network, it is indeed seeded with information relevant to credit rating. The

1In the 2018 report on the ‘Use of Alternative Data to Enhance Credit Reporting to Enable Access to
Digital Financial Services by Individuals.’
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natural question, then, is whether it is possible for the planner to exploit the local in-
formation embedded in the network, to rank individuals according to their productivity
purely through its observation of network characteristics. We say that a credit rating is
consistent if more productive individuals are rated higher. The outcome is complicated
by the fact that the assigned credit ratings provide benefits to individuals, which affects
the incentives to form network connections. Here the network structure and ratings are
jointly determined: the mapping from network characteristics to credit rating affects in-
centives for link formation, which in turn affects ratings. So the questions are, given any
network-based rating scheme, what equilibrium network-architecture emerges, whether
consistent network-based rating is possible, and what the efficiency properties of such
networks are. We take a first step towards answering such questions.

We begin by showing through an example that, in general, observing the network that
emerges from forming mutually beneficial links does not allow consistent inference about
the innate productivity of agents. This is due to the fact that for many parametric settings
agents with distinct productivity may find it beneficial to connect to the same subset of
agents. In these cases, we say that the equilibrium network does not separate types.

We then explore how the introduction of network-based credit ratings can alter the out-
come. Since credit ratings provide benefits to individuals, their assignment changes the
incentives to form links. We present our analysis in two steps. In the first step we regard
the benefits provided by credit ratings as pure non-negative transfers based on infer-
ence of agent types from the network. We devise a type assignment procedure that the
designer follows to assign types to agents based on their network characteristics. The
assignment of types is then used to determine transfer values for agents. We solve back-
wards: knowing the type assignment procedure and the transfer scheme, agents form
links. Based on the links formed, the actual assignment and transfers are determined.

We then ask what pattern of transfers can sustain an equilibrium network structure that
enables inference about types. Our notion of equilibrium requires pairwise stability of
links. We find that as long as the cost of link formation is not too low, transfers can
implement a particular network architecture – a connected nested split graph (CNSG)
– in which the degree of the agents is strictly increasing in their types. We show that
any optimal separating network is a CNSG in which the neighborhoods are nested and
higher types have larger neighborhoods. We design a set of transfers under which there
is an equilibrium network structure that coincides with the optimal separating network.
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The intuition for our central result – that the most productive agents will end up with
largest neighborhoods – is as follows. Suppose there are five types, ranging from the
highest θ1 to the lowest θ5. In a connected nested-split graph we want the highest type
θ1 to connect to all other types, while θ2 connects to only other agents of types θ1 to θ4

and so on. This structure separates types. But why might this be incentive compatible? If
identifying as type θ1 confers the greatest benefit through transfers, why doesn’t type θ2

make additional connections to imitate the higher type? Here the condition on the cost of
link formation is crucial. When this cost is not too low, the marginal link for θ1, namely
the link between θ1 and the neighbor of the lowest type, θ5, generates a loss for the linked
agents. By design, the transfer scheme compensates the agents precisely for this loss.
But forming a link with θ5 generates an even greater loss for the less-productive type θ2,
and by forming such links purely to identify as type θ1, they would receive inadequate
compensation for the loss incurred by connecting to θ5. This prevents lower types from
imitating higher types. But if marginal links are unprofitable then why do higher types do
not imitate lower types? Again, the design of our transfers prevents this from happening.
Transfers are recursive, so that an agent of type θ1 receives an amount weakly greater
than an agent of type θ2 and so on. We show that this implies that imitating a lower type
is never strictly beneficial.

Further, restricting attention to a class we call “truthful equilibria” - essentially equilib-
ria that allow for type separation by observing network connections (similar in spirit to
truthtelling equilibria when agents report types directly) - we show that the optimal sep-
arating network is also the unique equilibrium network.

We then show how the required pattern of transfers can arise as benefits associated with
a credit rating system. Higher credit rating lead to improved access to formal finance by,
for instance, allowing agents to borrow more and/or on better terms. For any type, the
benefits of improved access can be regarded as a transfer, with some natural constraints:
notably that benefits cannot be negative (anyone can withdraw from the rating system, so
those facing a negative transfer can choose to be unrated) and must be strictly increasing
(a higher rating must confer greater benefits). We show that the benefits from a credit
rating system can mimic the transfers (in a sense we make precise), implying that a credit
rating scheme can implement an optimal separating network. Thus a credit rating scheme
based purely on network characteristics can indeed harness local information in a way
that allows for consistency in ratings and at the same time improves the network structure
so that it attains constrained efficiency.
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To the best of our knowledge, this is the first paper proposing an indirect mechanism
to elicit types based on individual choices to form links. While others have analyzed
mechanisms which make use of social network structure, in these works the network is
generally assumed to be exogenously fixed. In contrast, we highlight possible challenges
arising when credit ratings based on network alter incentives to rewire connections. In
such cases, rating and network structures are jointly determined. We propose a mech-
anism which induces a truthful equilibrium where individuals reveal their productivity
through their link-choices and where the equilibrium network generates the highest total
output.

2 The model

2.1 Types and rating system

There are n > 2 agents. We denote the set of agents by N. Agents draw types according to
some distribution from Θ ≡ (θ1, . . . , θm) where θ1 > . . . > θm > 0. For any k ∈ {1, . . . , m},
let Θk denote the subset of agents with type θk and nk = |Θk| its cardinality. Clearly,

∑m
k=1 nk = n. Finally, let θi

k denote agent i of type θk.

Agents can observe each others’ types and form connections using this information. The
connection forming process and the network payoffs obtained are described in the next
section. A planner can observe the network formed by agents but does not know the type
of any agent. Based on information inferred from observing the network, the planner
must assign a credit rating to each agent.

A credit rating is a real number belonging to a finite interval [rmin, rmax] where rmax >

rmin > 0, with higher numbers conveying greater creditworthiness.

In a standard direct mechanism, agents submit reports of types and a planner’s allocation
decision depends on the vector of reports. Here, choice of network position is a “report”
and based on observed network characteristics (which we make precise later), the planner
assigns a rating to each individual. Of course, such a rating system is useful only if ratings
reflect underlying productivity. With this in mind, define a credit rating to be consistent
if for any pair of agents i, j ∈ N where i has type θk and j has type θq, ratings follow the
same ranking as productivity: ri T rj as θk T θq. Note that the consistency requirement is

4



similar to truthtelling in a direct mechanism.

Finally, consider payoffs from credit rating. Receiving a rating rq ∈ [rmin, rmax] confers a
benefit to an agent. For instance, those with high ratings may have better access to formal
sector credit, allowing them access to capital for profitable investment. And, of course,
these benefits might also vary directly with an agent’s type.2 Let B(rq, θk) denote the
benefit received by an agent of type θk who receives a rating rq ∈ [rmin, rmax]. We assume
B(·, ·), positive, strictly increasing in both arguments, and bounded.

We now set out the notation to analyze network formation.

2.2 Network notation

A network G(N, L) is composed of a set N of nodes and a set L of links. We deal with
undirected networks, for which ij ∈ L if and only if ji ∈ L for any pair i, j ∈ N. We call
Ni = {j ∈ N : ij ∈ L}, the subset of agents connected to i ∈ N, as i’s neighborhood. For
any node i, the degree refers to the cardinality of its neighborhood: di ≡ |Ni|.

A path between two nodes i and j is a sequence of nodes i1, i2, ..., ik such that i1 = i and
ik = j, and ii2, i2i3, ..., ik−1 j ∈ L. Two nodes are connected if there exists a path between
them. A network is connected if there exists a path between every pair of nodes. A clique
is a fully connected subset of three or more nodes, or each pair of nodes in this subset is
connected.3 A network is complete if ij ∈ L for any pair i, j ∈ N.

A nested split graph, or NSG, is a network where if ij ∈ L and dk ≥ dj, then ik ∈ L. In other
words, the neighborhoods of a NSG are nested. NSG architectures are such that agents
with degree d are connected to every agent with degree d′ > d. A connected nested split
graph, or CNSG, is a NSG that is also connected.

Figure 1 presents and example of a CNSG with ten agents. Two agents (labelled (a)) are
connected to all others (each has degree nine). Four agents labelled (b) are connected
to all but those labelled (d), so each (b) agent has degree seven. Note that each agent

2For example, suppose higher credit rating gives an agent access to a formal sector loan of higher size
(loan size L(rk) increasing in rk), and the success of the project in which the loan is invested depends on
the agent’s type, so that the net return per unit of investment is ρ(θ) where ρ′ > 0. This implies a benefit
ρ(θ)L(rk) which is clearly increasing in both rating score and agent’s own type.

3Although it is common to refer to a pair of connected nodes as a clique of size 2, here we refer to cliques
only if composed by three or more nodes.
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labelled (a) or (b) are linked to all other agents of those two labels. Agents labelled (a)
and (b) therefore form a clique. Next, agents labelled (c) are connected to only (a) and (b)
agents (degree six), and those labelled (d) are connected only to agents (a) (degree two).
Agents labelled (c) and (d) are only connected to those in the clique, and therefore form
an independent set.

(a) (b)

Figure 1: Two alternative representations of the same CNSG structure. In (a), nodes are labeled by

degree classes and lines denote links between nodes. The circles enclose nodes that form a clique

and an independent set of nodes that are connected only to some nodes in the clique. Panel (b)

offers a schematic representation of the same structure. Each circle indicates a subset of nodes

belonging to the same degree class. If a subset of types forms a clique (fully connected subset), the

two nodes inside the circle are connected by a link. A link between two circles indicates that the

two subsets of nodes are connected to each other.

2.3 Neighborhoods, payoffs, and network equilibrium

As noted previously, agents can form connections with other agents at cost c > 0 per
link. A connection between an agent i of type θi

k and an agent j of type θ
j
q creates output

g(θi
k, θ

j
q) for each agent involved, thus the net benefit of a link ij is g(θi

k, θ
j
q)− c for each
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agent.4 The output generated is positive and increases in the productivity of either agent,
i.e. g(·, ·) is strictly positive and strictly increasing and symmetric in both arguments.

Suppose an agent of type θk connects to η1 agents of type θ1, . . ., ηm agents of type θm. We
write the neighborhood of the agent of type θk as a vector Nk, which is given by

Nk =
{

η1, . . . , ηm
}

The vector of neighborhoods (N1, . . . ,Nm) defines an (undirected) network G.

The total payoff to an agent i of type θi
k of being connected to Ni agents is given by

v(θi
k,Ni) = ∑

j∈Ni

g(θi
k, θ

j
q)− cd(Ni) + B(rs, θi

k) (2.1)

where the first two elements define the network payoff, or the net benefit from being
connected to Ni excluding possible returns from a credit rating, while the third element
is the benefit from rating rs assigned by the designer to agent i. We normalize the payoff
for an isolated agent to zero, i.e. v(θi

k,∅) = 0 for any θi
k. As we discuss in the next section,

the links may also create a positive social externality.

To assess which links are formed, we adopt a modified version of the pairwise stability
(Jackson and Wolinsky, 1996) as the notion of network equilibrium.

Definition 1. A network G(N, L) is pairwise stable (PWS) if

(i) for all ij ∈ L, v(θi
k,Ni) > v(θi

k,Ni \ {j}) and v(θ j
q,Nj) > v(θ j

q,Nj \ {i}), and

(ii) for all ij /∈ L, if v(θi
k,Ni ∪ {j}) > v(θi

k,Ni), then v(θ j
q,Nj ∪ {i}) < v(θ j

q,Nj)

The first condition requires that no agent strictly benefits from cutting an existing link;
the second condition says that any link that weakly benefits one agent without making
the other agent strictly worse off must be active – i.e. no pair of agents can both benefit
(weakly or strictly) from activating an additional link between them.

Note that this assumes links between two agents are formed even if both are merely in-
different to their formation. The reason for this modeling choice is as follows. Later in the
paper we design transfers that induce agents to form particular links. For some links, the

4For expositional simplicity, we assume that c is uniform across all agents and links.
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transfer value is just enough to make the agent indifferent between forming and not form-
ing a link, in which case our equilibrium definition breaks indifference towards forming
the link. We could, of course, break indifference the other way, in which case the transfers
would have to add a small sum to make agents strictly prefer the connection. This would
only complicate the algebra without altering our results.

2.4 Social benefit from links

We allow the possibility that a link between two nodes, apart from creating value for
the participants, also generates a positive externality. In practical settings, these wider
spillover benefits may be manifested in various forms: the provision of employment ben-
efits for other (unmodelled) economic actors from bilateral projects, or by adding to social
learning to improve future production processes.

Define the total output produced in a network G, ignoring the cost of link formation, as

TG ≡ ∑
i∈G

∑
j∈Ni

g(θi
k, θ

j
q)

Let function e : R+ → R+ measure the positive externality created by the total output
generated by the nodes in G. This function maps a positive real number from a given
output level. We assume e(·) strictly increasing with respect to its argument. The social
benefit generated by a network G is then computed as

V(G) = ∑
i∈N

v(θi
k,Ni) + e(TG) (2.2)

Let Eiq be the marginal externality created by the link iq. This is given by

Eiq ≡ e (TG)− e(TG\{iq}) (2.3)

We make the following assumption on the cost per link c.

Assumption 1. The cost per link c is such that c ≤ g(θi
k, θ

j
q) +

Eij

2
for all i, j ∈ N.

Recall that a link ij generates benefit g(θi
k, θ

j
q) for each agent involved and a marginal

externality Eij. If so, the shadow value of the per capita benefit of link ij is g(., .) + Eij/2.
When Assumption 1 holds, each possible link between two agents in N generates shadow
benefits greater than its costs.5

5This simplifies the exposition that follows. Without introducing externalities and making assumption 1,
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3 The separating benchmark

Our interest lies in ranking unobservable types by observing their network connections.
This is possible only if there is some dissimilarity in the neighborhood structure across
agents of different types. We define a separating network as follows.

Let Θi denote the set of types agent i connects to. Further, let “type class” denote any set
of agents of the same type.

Definition 2. (Separating network) A network G is said to separate types if any two agents
of different types are connected to different numbers of type classes. Consider any two agents of
different types: i of type θk and j of type θq. A network G separates types if the following holds:

θk 6= θq ⇐⇒ |Θi| 6= |Θj|

Note that this definition allows the possibility that two agents considered similar (i.e.
two agents connected to the same number of type classes) may have different degrees,
because agents could be connected to some but not all agents belonging to the same type
class (see Figure 2a for an example). When the network structure is separating and each
agent i is connected to all agents with types in the set Θi, we say that the network is
separating-dense.6

Definition 3. (Separating-dense network) A network is separating-dense if it separates types,
and if agent i is connected to agent j with type θk, then i is also connected to any other agent z 6= j
with type θk, if any.

we would have to decide whether socially suboptimal links (where cost exceeds output) that help to sepa-
rate agents (crucial for consistent rating) were worthwhile - in other words, we would have to put weights
on the value of ranking and the social loss from links with lower types and decide whether to sacrifice rat-
ing or social value. Depending on the weight on rating and social value, we could obtain coarser rankings
where types close to each other would not be ranked. This would complicate the analysis without making
any qualitative change to the nature of network outcome for the agents actually ranked, so we make the
simplifying assumption.

6The term “density” has multiple definitions in graph theory. Here, we use this term to highlight sepa-
rating structures where, whenever an agent is connected to some agents in a specific type class, he must be
connected to all agents in that class.
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(a) (b)

Figure 2: Both structures are separating since pairs of distinct types are connected to different

number of type-classes: each type θa is connected to agents with types {θa, θb, θc}, each type θb to

types {θa, θb}, and each type θc to types {θa}. In panel (b), two extra links connecting a type θa to

types θc and θb make the network separating-dense.

A separating-dense structure is therefore a network where any non-active link, if acti-
vated, would compromise separation. Clearly, if a network is separating-dense, two
agents have the same degree if and only if they are not separated in the network (see
Figure 2b). In the following Lemma we characterize the architecture of a connected
separating-dense network.7

Lemma 1. A network is connected and separating-dense only if it is a CNSG.

Let Gm
n be the set of all separating-dense networks of n nodes and m types. We say that a

link ij is more efficient than zt if it has greater shadow value in the sense that g(θi
k, θ

j
q) +

Eij/2 > g(θz
x, θt

y) + Ezt/2. Within the class of networks Gm
n , we define the structures that

involve the most efficient links.

Definition 4. (Optimal separating network) A network G is an optimal separating struc-
ture if it is separating-dense and g(θi

k, θ
j
q) + Eij/2 > g(θz

x, θt
y) + Ezt/2 for all ij ∈ L and zt /∈ L.

In other words, a network is optimal separating if by replacing any existing link the total
output decreases and by activating a new link we would compromise the separation of
types.

7When not in the main body of the paper, proofs are in the Appendix.
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It is intuitive to see that an optimal separating network would have more links for higher
types. Moreover, a link with a higher type is always more profitable than a link with a
lower type. This implies that an optimal network must be a NSG. Proposition 1 formalizes
this intuition.

Proposition 1. The optimal separating network is a CNSG where Θj ⊂ Θi for all i and j such
that θi

k > θ
j
q.

Note that with m types, and without connections to own type-class (e.g. if own type-class
had only 1 member), there can be at most m− 1 values of |Θi|, implying that at most m− 1
agents can be separated. With connections to own class also available, there are m values
of |Θi|, so all types can be separated. For example, with m = 5, and with connections
to own class available, there are 5 possible type classes with cardinalities 5, 4, . . . , 1. The
latter case makes the analysis clearer (as we do not have to keep track of which types are
not separated). To ensure this is always true, we assume that there are at least 2 agents of
any type:

Assumption 2. For any k, nk > 2.

Figure 3 presents examples of separating and non-separating networks assuming two
agents of each type.

Finally, our main results concern an optimal separating network, let us describe here the
neighborhood structure in this network. Let ` = bm/2c, which is the smallest integer
greater than or equal to m/2. By being a CNSG, a separating network involves a clique
of the top ` types, {θ1, θ2, . . . , θl} and the rest form an independent set. Members of the
clique are connected to each other, so, for the types in the clique, the neighborhood struc-
ture is as follows

N ∗1 = {n1 − 1, n2, . . . , nm}, . . . ,N ∗` = {n1, . . . , n` − 1, 0, . . . , 0}

Next, the neighborhoods for types below θ` are already implied by the above. These types
form an independent set with each type connected only to a subset of types in the clique.

N ∗`+1 = {n1, . . . , n(`−1), 0, . . . , 0}, . . . ,N ∗m = {n1, 0, . . . , 0}
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(a) Optimal separating network. No

links can be added without violating

separation. No links can be replaced by

one that generates a higher value.

(c) A network that fails to separate all

types. The extra (dashed) links prevent

separation of types θ2 and θ1.

Figure 3

4 General design of incentives

Our objective is to design a credit rating system that relies on observed network informa-
tion, and to analyze the equilibrium network structure that emerges under the rating sys-
tem. To approach the problem, we split the analysis in two parts. First, we simply design
a system of non-negative transfers based on network characteristics to achieve separation
in the equilibrium network - i.e. an equilibrium network where different types have dif-
ferent neighborhoods. Next, we show how benefits arising from a credit rating system
can serve the same role as transfers.

Before we analyze the design of incentives, it is instructive to note that equilibrium net-
works that arise in the absence of any such interventions (or, if agents were unaware that
their network connections matter for rating) do not generally allow for consistent infer-
ence about agent types. Figure 4 illustrates the problem.

We now turn to the design of incentives. The analysis proceeds as follows. In this section,
we present the design of transfers. Section 5 then defines our equilibrium concept and
derives some of its properties. Section 6 then derives the equilibrium and characterizes
the equilibrium network that obtains under the transfers described in this section. Finally,
section 7 shows how to translate the transfers as benefits from having a credit rating.

12



(a) (b)

Figure 4: Pairwise stable networks arising without designer intervention. Consider the type set

Θ = {θ1 = 10, ..., θ5 = 6} with one agent of each type. Let g(θi
k, θ

j
q) =

(θi
kθ

j
q)

1−γ

1−γ with γ 6= 1. For

figure (a), c = 49 and γ = 0. Note that the pairs {θ1, θ2} and {θ3, θ4} cannot be separated. For

figure (b), c = 12 and γ = 0.7. Note that in this case we cannot separate the top three types in the

clique and the bottom two isolated types.

4.1 The structure of moves

Consider the interaction between agents and a mechanism designer. The sequence of
moves is as follows.

1. The mechanism designer announces a system of transfers as a function of observ-
able network characteristics.

2. Knowing this system of transfers, agents then choose their connections.

We consider the resulting pairwise-stable network and analyze its properties in terms
of separation and efficiency. It is worth noting that inference based on network charac-
teristics is complicated because when an agent deviates and connects like another type,
the entire network structure changes, potentially changing the designer’s network-based
inference about all types. Identifying an equilibrium then requires ruling out the prof-
itability of such network effects of any deviation.

13



4.2 The transfer function

We now specify a function that the mechanism designer uses to assign non-negative trans-
fers to agents in any observed network. First, define a marginal type for any type θk.

Definition 5. (Marginal type) For any k ∈ {1, . . . , m}, letM(θi
k) be the lowest type among

the agents connected to agent i of type θk. The type M(θi
k) is then called the marginal type for

agent i. IfM(θi
k) is the same across all agents of type θk, we denote it asM(θk).

In the optimal separating network described in the section above, the lowest type that θ1

connects to is θm, soM(θ1) = θm. Further,M(θ2) is the type θm−1 and so on.

To aid exposition, we introduce a slight abuse of notation. LetM(k) denote the index for
the marginal type of θk. In other words,

θM(k) ≡M(θk)

Wherever possible, we denote the marginal type of θk by M(θk), but the θM(k) form is
useful when adding over indices. For any agent, we refer to a link with a marginal type
as a “marginal link”.

Next, define an infra-marginal type as follows.

Definition 6. (Infra-marginal type) For any k ∈ {1, . . . , m}, letM(θi
k) be the marginal type

of agent i. Any type θq >M(θi
k) such that θq ∈ Θi is called infra-marginal type for i.

Put simply, an infra-marginal type for agent i is any type connected to i which is not a
marginal type. Clearly, any such type must be a higher type compared to the marginal
type. We refer to a link with an infra-marginal type as an “infra-marginal link”.

We now proceed to construct transfers. The value of transfers depends on the types as-
signed, which are determined by the observed degree classes. We begin by describing the
process of assignment of types.
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4.2.1 Type assignment

We now describe the procedure for type assignment and illustrate with examples.

Step 1

Let d1 be the highest degree observed in the network, a value that may be achieved by
multiple agents. Assign type θ1 to all such agents. Now consider the set of agents who are
connected only to types assigned θ1. If this set is non-empty (we describe the procedure
in the other case in step 2 below), assign all such agents the typeM(θ1). Recall that these
agents represent marginal connections for those assigned type θ1. Further, if the network
has any single-agent degree-classes with degree lower than d1 with their singleton mem-
ber connected to any of agents assigned type M(θ1), assign type θ1 to that member as
well. Formally,M(M(θ1)) = θ1.

Next, consider the remaining degree classes (i.e. the degree classes not already assigned
type θ1). Let d2 denote the highest degree observed among these. Assign type θ2 to all
such agents. Now consider the set of agents who are connected only to types assigned θ1

and θ2. Suppose this set is non-empty. Assign all such agents typeM(θ2). Further, if the
network has any single-agent degree-classes lower than d1 with their singleton member
connected to any agents assigned typeM(θ2), assign type θ2 to that member as well.8

In this way assign types until either degree classes are exhausted or the number of types
available (m) is exhausted.

Step 2

Next, suppose agents of degree class dk are assigned type θk, but there are no agents that
are uniquely connected to agents assigned θk and any higher types. Then assign type θk

to agents of degree dk as well as to agents with the next highest degree, dk+1. Now repeat
the above procedure. If still no marginal connections can be found, assign type θk to all
agents of degree dk to dk+2 and continue. This process stops when we do find marginal
connections or degree classes are exhausted. In the latter case, assignM(θk) = θk.

Step 3

There is now a list of S assigned type classes: S1 types θ1, . . . , θS1 (where S1 6 m - if S1

reached m the process would stop there) and S2 marginal types, where S1 + S2 = S. S

8Note that any such agent would not also be connected to any agent assigned typeM(θ1). Otherwise
they would already be assigned type θ1 and not be considered in this step.
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might be lower than, equal to, or greater than m. Assign types θ1 to θm to the m top classes
if S > m. If S > m, exclude from the mechanism any agents of the bottom S−m classes.
If S < m, simply assign types θ1 to θS.

Let nk denote the number of agents assigned type θk, where k ∈ {1, . . . , m}.

4.2.2 Two examples illustrating type assignment

Example 1 The following example illustrates how the type allocation process works. In
this first example, we start with an optimal separating network with five types and assign
types.

Figure 5

Suppose there are five types in the population, θ1 to θ5, with two agents of each type.9

Figure 5 shows schematically the optimal separating network in this case. The marginal
type for θ1 is θ5, for θ2 is θ4 and for θ3 is θ3 itself. Here θ3 is the lowest type in the clique.
Type θ4 is only connected to types θ1 and θ2, and type θ5 only to type θ1.

An agent of type θ1 is then connected to all other agents, with degree 9. This is the highest
degree class, so type θ1 would indeed be assigned the correct type. At the same time, type
θ5 would be assignedM(θ1).

An agent of type θ2 is connected to all other agents of types θ1 to θ4 (so the observed

9There would be no qualitative change if we had more agents in each type-class.
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degree is 7). Since this is the second-highest degree, the type assignment is correct again,
and type θ4 is assignedM(θ2).

Finally, an agent of type θ3 is connected to other agents of types θ1 to θ3, resulting in ob-
served degree 5, the third highest degree class, assigned type θ3 (and it is its own marginal
class).

The mechanism designer now has a list of types θ1, θ2, θ3,M(θ2),M(θ1). So the final
assignment is θ1 to θ5.

The following table shows the true type classes, assigned type classes and associated
degrees for the two agents of each type.

True type Observed degree Assigned types Final type
classes and marginals assignment

θ1 9,9 θ1 θ1

θ2 7,7 θ2 θ2

θ3 5,5 θ3 θ3

θ4 4,4 M(θ2) θ4

θ5 2,2 M(θ1) θ5
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Example 2 Now suppose one agent of type θ1 drops a single connection to its marginal
type θ5. Let us assign types in the resulting network.

True type Observed degree Assigned types Assigned types Final type
classes and marginals and marginals assignment

θ1 9 θ1 θ1

θ1 8 θ1 θ1

θ2 7,7 θ2 θ2

θ3 5,5 θ3 θ3

θ4 4,4 M(θ2) θ4

θ5 2 M(θ1) θ5

θ5 1 M(θ1) θ5

Initially, the agent with the highest degree (degree 9) would be assigned type θ1. Then
the agents with degrees 2 and 1 would be identified as being uniquely connected to the
agent with assigned type θ1. These agents would be assigned typeM(θ1). Next, we look
for any single-agent class also linked to those assigned M(θ1). This now includes the
deviating agent with degree 8. This agent would also then be assigned type θ1. Other
types are then assigned as before.

Thus given our procedure, the deviation does not change the final type assignment.

4.2.3 Constructing the transfer function

Next define functions to capture the gain for a type from forming a connection with the
type marginal to it, that is the gain to any type θq of connecting to typeM(θq). Let MGq

denote this marginal gain for type θq.

MGq = g(θq,M(θq))− c

Note that this is the marginal gain ignoring any transfers, so MGq could be positive or
negative.

Now construct the transfer functions for agent i of type θk as follows. For any agent i of
type θk, let ni

q(θk) denote the number of connections to agents assigned type θq.
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ti
k =

M(k)

∑
k=1

ni
q(θk)max

[
0,−MGq

]
(4.1)

To see how this is constructed, note that while connections to typeM(θk) are the marginal
connections for θk, connections to types θr >M(θk) are infra-marginal connections. For
each infra-marginal connection with type θr >M(θk), the transfer function compensates
agent i for the loss incurred by type θr in connecting to that type’s marginal type (i.e. loss
from a connection between θr and M(θr)). The loss could be zero or negative (a gain)
in which case the transfer received is zero. Otherwise the transfer is strictly positive.
Finally, for own marginal connection, θk is compensated for own loss from connecting to
the marginal type. Multiplying each loss by the relevant number of connections made by
θk and adding over the resulting expressions we get the total transfer to an agent i of type
θk.

We note that in an optimal separating structure, all marginal and infra-marginal links
are present. The first result below shows that in such cases, transfers can be written in a
simple recursive form. This is useful since later we identify an equilibrium with precisely
this property.

Lemma 2. If all marginal and infra-marginal links are formed, the transfer to any agent of type
θk can be written in the following recursive form.

tk = Ak + tk+1 (4.2)

where Ak > 0 and tm+1 = 0. Specifically, let 1k<` be an indicator function which is equal to 1 for
k < ` and 0 for k = `.

Ak =


(nM(k) − 1)max

[
0,−MGk

]
+ 1k<` max

[
0,−MGk+1

]
for k 6 `

nM(k) max

[
0,−MGk

]
for k > `

The intuition for the result above is as follows. Recall that the transfer function is con-
structed so that for each marginal connection, agent i of type θk is compensated for own
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loss from connecting to the marginal type. Further, for each infra-marginal connection
with type θr >M(θk), the transfer function compensates agent i for the loss incurred by
type θr in connecting to that type’s marginal type. In all cases, the transfer is zero if the
loss is negative.

Consider the transfer received by an agent i of type θm−1. This agent connects to all agents
that θm connects to, but also makes an additional nM(m−1) marginal connections. Hence

tm−1 exceeds tm by nM(m−1) max
[
0,−MGm−1

]
.

Next, consider the transfer received by an agent i of type θ1. Now, the agent of type θ1 re-
ceives the loss from marginal connections for nM(1) marginal connections. The agent also
receives the same loss for connections with n1 − 1 other agents of type θ1. But any agent
of type θ2 connects to all agents of type θ1 and receives the same loss for n1 connections
to type θ1. This explains the first term in the expression for A1. Next, the agent of type θ1

connects to n2 agents of type θ2, while each agent of type θ2 only connects to n2− 1 agents
of type θ2. This explains the second term in the expression for A1.

5 Truthful equilibrium

A truthful equilibrium is a pairwise-stable network where the neighborhood choice of
agents reveals the type of each agent truthfully. The specific definition is as follows.

Definition 7. (Truthful equilibrium) A network constitutes a truthful equilibrium if it is pairwise-
stable, connected (i.e. no isolated component) and separating (as defined in Definition 2).

The rest of this section derives two preliminary results that clarify the structure of equi-
libria and are useful in proving later results. The next section then presents our main
results, which together show that the optimal separating structure constitutes the unique
truthful equilibrium given the specified type assignment procedure and transfers, and
given a certain condition on the cost of link formation.
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The first preliminary result notes a property of marginal types in any truthful equilibrium.
Marginal types must be weakly decreasing in types.

Lemma 3. In any truthful equilibrium, for any pair of types θk > θq , we must haveM(θk) 6

M(θq).

Proof: The proof is by contradiction. Suppose, to the contrary, there is a pairwise-stable
equilibrium for whichM(θk) >M(θq) for some pair of types θk > θq. Consider a devi-
ation in which type θk chooses to form additional links with typeM(θq). For each such
link, there is direct payoff g(θk,M(θq))− c and the deviating agent also receives a transfer
max[0,−MGq] where, recall that MGq ≡ g(θq,M(θq))− c. Note that as the return g(., .) is
increasing in each of its arguments, we have g(θk,M(θq))− c > g(θq,M(θq))− c = MGq

for θk > θq. We consider two cases. In cases where MGq ≥ 0, the transfer is zero, but the
additional link is profitable for type θk as g(θk,M(θq))− c > MGq. In cases where MGq <

0, the additional link leads to a positive transfer −MGq and g(θk,M(θq))− c−MGq > 0.
In either case a profitable deviation exists, so that the original configuration could not
have been pairwise stable.‖

The second preliminary result shows that agents form all infra-marginal links in any
truthful equilibrium.

Lemma 4. In any truthful equilibrium, each agent i of any type θk connects to all other agents of
any infra-marginal type θq >M(θk).

Proof: Consider a link between an agent of type θk and its infra-marginal type θq, i.e.
θq >M(θk). The total payoff, including the transfer that agent of type θk receives for this

link, is g(θk, θq)− c + max
[
0,−MGq

]
.

If g(θk, θq)− c > 0, the expression above is strictly positive, so forming that infra-marginal
link with θq is clearly advantageous.

Next, consider the case g(θk, θq)− c 6 0. From Lemma 3, we know that in any truthful
equilibrium, higher types must have weakly lower marginal types: therefore, for θq >

M(θk), we haveM(θq) 6M
(
M(θk)

)
= θk. SinceM(θq) 6 θk, and g(θk, θq)− c 6 0,

it follows that g(θq,M(θq))− c 6 0. Then the payoff including the transfer is g(θk, θq)−
g(θq,M(θq)) > 0.

It follows that for any agent of any type, the total payoff from an infra-marginal link is
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non-negative. Therefore, if we suppose that there is a truthful equilibrium in which some
infra-marginal links are missing, we would immediately reach a contradiction.‖

Together these results imply that higher types have (weakly) higher degree in any truthful
equilibrium. This follows from the fact that in equilibrium all infra-marginal links are
formed (Lemma 4) and higher types have lower marginal types (Lemma 3). As we show
in the next set of results below, in the unique truthful equilibrium degree is in fact strictly
increasing in type.

6 The main results

We now present the first of our main results. We suppose that assumptions 1 and 2 hold
throughout the analysis.

Proposition 2. There is c∗ > 0 such that for c > c∗, under the transfer function given by
equation (4.1), there is a truthful equilibrium in which the equilibrium network is the optimal
separating network.

We prove this in two steps. First, in section 6.1 we show that no agent can benefit by
cutting any links starting from the optimal structure. Second, in section 6.2 we clarify the
condition on the cost of link formation under which no agent has an incentive to add any
links. Section 6.3 presents a proof of Proposition 2. Finally, a further result in section 6.4
shows the uniqueness of the equilibrium featuring the optimal separating network.

6.1 The incentive to maintain links

In this section we show that starting from the optimal separating network, no agent can
benefit by dropping any link. From lemma 4 we know that all infra-marginal links are
formed. It remains to show that all agents make all marginal connections.

Before we prove that all marginal links as in the optimal separating network are formed
in equilibrium under the transfers specified, we go through an example to show this.
The example also serves to illustrate the type assignment mechanism and clarify the way
transfers sustain the desired equilibrium, by making unprofitable the deviations.
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6.1.1 An example

We now illustrate how the type allocation process and the associated transfers make de-
viations that drop links starting from the optimal separating network unprofitable.

Consider the same example as in Section 4.2.2. Example 1 considers type assignment in
an optimal separating network with five types, θ1 to θ5, with two agents of each type.
Section 4.2.2 shows the type assignment in this case.

We now explore agents’ incentives to deviate from the links in the optimal separating
network, and consider various cases.

Case1. Suppose one agent of type θ1 drops a single connection to its marginal type θ5.

This is exactly the case considered in Example 2 in Section 4.2.2. Recall that the deviation
does not change final type assignments.

Note (from the table in Example 2 in Section 4.2.2) that the deviating agent simply has
one fewer marginal connection, which makes the agent weakly worse off (if the connec-
tion produced a positive benefit, its loss makes the deviation unprofitable; and if the
connection produced a loss, the transfer would have compensated, so deviation makes
no difference). The same argument shows that for an agent of any type, deviating by
dropping a fraction of the marginal connections is unprofitable.

Case 2. Next, suppose an agent of type θ1 drops all marginal connections (those with
type θ5). This changes two things. First, the agent of type θ1 is now classified as θ2.
If θ1 obtained a benefit from connecting to θ5, that would be lost. If θ1 incurred a loss
from the connection, the transfer to θ1 would have compensated for that loss. In any
case, losing marginal connections cannot produce a strict benefit for type θ1. Second,
each type θ5 now receives a weakly lower transfer since each of them only have a single
marginal connection now (with the single agent classified as type θ1).10 Since agents with
types higher than θ5 also receive the transfer given to θ5 (Lemma 2 clarifies the recursive

10If θ5 has a strict benefit from connecting to θ1, the transfer to θ5 is zero in all cases. If, on the other hand,
θ5 has a loss from connecting to θ1, the transfer would be positive for each connection to an agent of type
θ1. In this latter case the transfer to type θ5 would strictly decrease after the deviation by the agent of type
θ1.
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structure of transfers under the optimal separating structure), the deviating agent of type
θ1 would receive a weakly lower transfer now.

Once again, it cannot be profitable for an agent of type θ1 to drop all its connections to its
marginal types.

A similar argument shows that any agent of type θ2 cannot benefit from dropping marginal
connections.

True type Observed degree Assigned types Final type
classes and marginals assignment

θ1 9 θ1 θ1

θ1 7 θ2 θ2

θ2 7,7

θ3 5,5 θ3 θ3

θ4 4,4 M(θ2) θ4

θ5 1,1 M(θ1) θ5

Case 3. Finally, consider a deviation by the lowest type in the clique, type θ3. Since there
are only 2 agents of type θ3 and the type is its own marginal type, each agent of type θ3

has just one marginal connection. In this case, if one of these agents drop the marginal
connection, all agents of type θ3 would now have degree 4, thus a whole degree class is
eliminated. There are now 4 degree classes, and type θ3 is still identified as θ3, but so are
agents of type θ4. Type θ5 is now identified as θ4. The following table shows the type
assignment following the deviation.

True type Observed degree Assigned types Final type
classes and marginals assignment

θ1 9,9 θ1 θ1

θ2 7,7 θ2 θ2

θ3 4,4 M(θ2) θ3

θ4 4,4

θ5 2,2 M(θ1) θ4

To show that the deviation cannot be beneficial, consider first the connection between
θ3 and θ1. With or without the deviation, the payoff from each such link (g(θ3, θ1) − c)
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remains the same. However, without the deviation, the type marginal to θ1 is θ5. So θ5

and all higher types (including θ3) receive any loss incurred by θ5 in connecting to each
agent of θ1:

max

[
−
(

g(θ5, θ1)− c
)

, 0

]

But under the deviation, the marginal type of θ1 is the higher type θ4, so that type and all
higher types receive (for each connection between θ5 and θ1) the weakly lower transfer

max

[
−
(

g(θ4, θ1)− c
)

, 0

]

Thus θ3 is weakly worse off under the deviation in relation to connections with the infra-
marginal type θ1.

Next consider connections of type θ3 with type θ2 with payoff g(θ3, θ2) − c. If this is
positive, it is the same with or without deviation. Next, suppose g(θ3, θ2)− c < 0. With
the deviation, the loss is compensated so the payoff is 0. However, without the deviation,
θ3 receives the loss of type θ4 in connecting to θ2 which is higher than the loss c− g(θ3, θ2),
making the overall payoff in connecting to θ2 strictly positive. (This is simply a reflection
of the general principle that any type receives a strictly positive payoff overall from infra-
marginal connections). Therefore, again, θ3 is weakly worse off under the deviation in
relation to connections with type θ2.

Finally, without the deviation θ3 also receives max

[(
g(θ3, θ3)− c

)
, 0

]
, which is not re-

ceived under the deviation.

The arguments above show that the deviation cannot lead to a strict gain for type θ3.

6.1.2 Maintaining links: a formal result

The example above shows that starting from the optimal separating network, no agent
can benefit by dropping any links. The following result states the general result. The ar-
guments for the proof (which is in the appendix) are similar to those used in the example.
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Lemma 5. Under the specified transfers, starting from the optimal separating network, no agent
wants to cut any link(s).

6.2 The incentive not to form further links

Suppose type θ1 strictly prefers to connect to type θm. In this case MGM(1) > 0. Suppose
type θm would also strictly benefit from connecting to type θ2, and vice versa. In this case,
given our type assignment, types θ1 and θ2 can no longer be separated. So for the optimal
separating structure to be a PWS equilibrium, it must be that such strict benefits do not
arise.

We now derive a sufficient condition for full separation to be achieved through non-
negative transfers. Essentially, this requires that the initial network is relatively frag-
mented, which would be the case if the cost of connections is not too small. In this case
the initial network does not have some of the links which are active in the optimal separat-
ing structure, and credit-rating can implement those links. Note that these links generate
a negative payoff for the nodes involved (otherwise they would have formed the links in
the first place). Our result banks on these negative payoffs, as the links can then be made
incentive compatible through positive transfers.

Lemma 6. There exists c∗ > 0 such that, starting from the optimal separating network, no agent
wants to add any links if c > c∗.

Proof: Suppose all links in the optimal separating structure are formed. We need to rule
out the possibility that a type θq < θk does not make a strict loss by connecting to the
marginal type of θk. (Note that θk already makes all the connections that θq make so there
is no deviation to be considered in the other direction.)

From Lemma 2 we know that in this case, for any k 6 `

tk = tk+1 + (nM(k) − 1)max

[
0,−MGk

]
+ 1k<` max

[
0,−MGk+1

]

where 1k<` = 1 if k < ` and 0 if k = `.

Suppose MGk < 0. In this case, the transfer to type θk just compensates for the loss in
making marginal connections. Clearly, any lower type θq making the same connections
(and receiving the same transfer) will therefore make a strict loss since the compensation
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for each such link is c− g(θk,M(θk)) while the loss is c− g(θq,M(θk)), where the latter
is higher since g(θk,M(θk)) > g(θq,M(θk)) for θk > θq. This shows that no type in the
clique would want to add a connection.

The only remaining possibility is that two types in the independent set wants to add a
connection. Note that all types in the independent set are marginal types for some type
in the clique. Therefore if, for all types in the clique, each marginal connection generates
a loss, no type θq can benefit by connecting to the marginal type of a higher type θk.

Let
c∗ ≡ max

k6`
{g(θk,M(θk))} (6.1)

Clearly, c > c∗ is sufficient to guarantee MGk < 0 for types in the clique. This completes
the proof.‖

6.3 Proof of Proposition 2

We are now ready to prove Proposition 2. Lemma 5 shows that no agent benefits strictly
from cutting any link(s) starting from the optimal separating network. Lemma 6 then
shows that for c > c∗, there is no profitable deviation by forming any link not already
present. The two results together complete the proof.‖
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6.4 Uniqueness

Next, we present the second main result, which shows that the optimal separating struc-
ture is in fact the unique truthful equilibrium.

Proposition 3. For c > c∗, under the transfer function given by equation (4.1), the optimal
separating network is the unique truthful equilibrium.

Proof: From Lemma 3 we know that if θk > θq , we must haveM(θk) 6 M(θq) in any
truthful equilibrium. Lemma 4 shows that in any truthful equilibrium all infra-marginal
links are formed.

Given this, and given the network is connected and separating, it is clear that we must
have a connected nested split graph in a truthful equilibrium similar to the optimal sepa-
rating network, with any possible difference emerging from agents of some type θk being
connected to some, but not all, agents of the marginal typeM(θk).

Suppose there is such an equilibrium with agent i of type θk connected to ni
M(k) < nM(k)

agents of the marginal type M(θk). Now, for each marginal link formed, i receives a
transfer max[0,−MGk]. It follows that forming more marginal links must be (at least
weakly) beneficial. Now, a truthful equilibrium must be pairwise-stable, where the latter
is defined so that an agent forms all links that are at least weakly beneficial. It follows
that each agent would form all possible links with marginal types. This, in turn, implies
that the optimal separating structure is the only truthful equilibrium.‖

7 Credit rating benefits as transfers

The previous section specified a general transfer design that implements the optimal sep-
arating network as the unique PWS network. We now show that so long as credit ratings
generate well-defined benefits that are increasing in ratings and high enough ratings can
generate high enough benefits, we can match the transfers that we designed above with
rating benefits. In other words, if we have well-defined benefits from ratings, instead of
paying a certain transfer to an agent, we can provide a similar payoff by assigning an
appropriate credit rating to the agent. In this section we clarify the conditions for this to
be possible.
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As noted in Section 2, a credit rating is a real number belonging to a finite interval
[rmin, rmax] where rmax > rmin > 0, with higher numbers conveying greater creditwor-
thiness. Receiving a rating confers a benefit to an agent. For instance, those with high
ratings may have better access to formal sector credit, allowing them access to capital for
profitable investment. For credit rating benefits to be able to mimic the transfer function,
we need to impose some constraints at the outset.

First, for an individual without a credit rating and without access to formal credit, credit
rating can only provide positive benefits (even the worst rating can only bar access to
credit, which is the initial situation). Therefore, a credit rating system can only achieve
positive transfers (i.e. tk > tk+1 for all k ∈ {1, . . . , m − 1}). This is already true of our
transfer design mechanism.

Second, for any two types with different ratings, the payoff of the higher-rated type must
strictly exceed that of the other. From the previous section, we know that for c > c∗,
marginal links generate losses across type classes, i.e. MGk < 0 for all k. Therefore from
Lemma 2, for c > c∗, Ak > 0 for all k, and therefore transfers are given by

tk = Ak + tk+1 > tk+1

In other words, transfers are positive, and, for c > c∗, strictly monotonic, where c∗ is
given by equation (6.1). Figure 6 below shows a case of positive monotonic transfers. We
assume c > c∗ for the rest of the analysis.

7.1 Mimicking transfers through rating benefits

To see how rating benefits can mimic transfers, let us start with a simpler case where
the benefit is purely a function of the rating received by an agent. Let rk be the rating
given to an agent assigned type θk. Then the benefit function can be written as B(rk)

which maps ratings to positive real numbers, and is strictly increasing in rk. So long as
the benefits can be tuned through ranking, they can play the same role as the positive
transfers. Suppose there is a low rating rmin such that B(rmin) 6 tm and a high rating rmax

such that B(rmax) > t1. Then we can find r1, . . . , rm such that

B(rk) = tk.
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Figure 6: Positive monotonic transfers with types θ1 = 10, θ2 = 7, θ3 = 4, θ4 = 1 and two agents

per type. The figure is drawn assuming g(θi
k, θ

j
q) = θkθq, and c = 29, where the cost threshold for

monotonic transfers is c∗ = 28.

However, in general, given the same credit terms, a more productive agent derives a
greater benefit.11 It is therefore natural for the benefit derived from ranking to depend
directly on the agent’s type. That is, the benefit that an agent of type θk derives from
rating rk depends not just on the rating, but also on the agent’s type. A general benefit
function therefore take the form B(rk, θ), which is strictly increasing in both arguments.
As above, assume B(rmax, θ1) > t1 and B(rmin, θm) 6 tm. In this case, however, it may not
be possible to match transfers exactly with ranking benefits - the latter might exceed the
former. To see why, recall (from Lemma 2 and given the case c > c∗) that

t1 = (nM(1) − 1)(−MG1) + (−MGk+1) + t2 > t2

Suppose B(r2, θ2) = t2. Now, suppose B(r2, θ1)− B(r2, θ2) > t1 − t2. This implies

B(r2, θ1) > t1 + B(r2, θ2) > t1 − t2 = t1

Then for any r1 > r2, B(r1, θ1) > t1. Note that the same conclusion would obtain if we
assumed B(r2, θ2) > t2. So in general B(rk, θk) > tk, with strict inequality possible in some
cases.

However, this presents no incentive problem since the inequality is caused by the impact
of the type θ1 being higher than θ2 - so that the fact that benefits exceed transfers does not

11See footnote 2 for an example.
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cause any incentive problems (type θ2 cannot get the extra benefit of type θ1 by imitating
type θ1). To ensure that the higher rating r1 does not cause any incentive problems it is
sufficient to have r1 such that for θ2, forming additional links to increase rating is not
beneficial:

B(r1, θ2)− B(r2, θ2) < nm(c− g(θ2, θm))

where the left hand side is the increase in benefit from a higher ranking for type θ2, and
the right hand side is the extra cost from additional links required to imitate type θ1. Since
B is continuous in r, given any r2 it is always possible to find a r1 that is higher than r2

that satisfies the above inequality. Figure 7 illustrates the point.

Figure 7: The benefit from rating for different types. If the distance GH is larger than tk − tk+1,

then B(rk+1, θk) > tk implying that for any rk > rk+1, B(rk, θk) > tk. This does not create incentive

problems. Suppose rk is close enough to rk+1 such that the difference between the heights G′

and G (the extra benefit from higher rating for an agent of type θk+1 if they were able to form

the extra marginal links of type θk) is lower than the loss from forming these links (given by

nM(k)(c− g(θk+1,M(θk)))). This is sufficient to maintain incentives. It is clear that such a value

of rk > rk+1 can always be found.
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The discussion above shows that in general we can write B(rk, θk) > tk, and if strict in-
equality holds, a sufficient condition for preserving incentives is that rk is close enough to
rk+1 so that type θk+1 does not want to form extra connections to mimic type θk. Thus the
benefit function can be written in a recursive form as follows.

Definition 8. (Mimicking transfers) A ratings vector r1, . . . , rm, where ri denotes the rating
given to agents assigned type θi, i ∈ {1, . . . , m} is said to mimic transfers if the following holds.
Using values of transfers and Ak from Lemma 2, we can find r1, . . . , rm such that

B(rm, θm) = tm

B(rk, θk) > Ak + B(rk+1, θk+1) for k < m

Further, if strict inequality holds for any k < m, then rk > rk+1 is such that

B(rk, θk+1)− B(rk+1, θk+1) < nM(k) (c− g(θk+1,M(θk)))

Since the benefits function B(r, ·) is continuous in r, it is always possible to find r1, . . . , rm

that satisfy the properties above, implying that the same result as under transfers holds
under ratings as well. This is noted in the result below.

Proposition 4. For c > c∗, where c∗ is given by equation (6.1), and given ratings that mimic
transfers in the sense given by definition 8, the network that is optimal among those that lead to
consistent rating (the optimal separating network) is obtained as the unique truthful equilibrium.

Proof: Assume c > c∗. Since B(rk, θk) > tk, the fact that no type has any incentive to
drop any links under transfers still applies. Further, the construction of ratings rules out
the incentive to form any extra links to mimic a higher type even when B(rk, θk) > tk.
Therefore credit-rating benefits satisfy the incentive compatibility constraints in the op-
timal separating network, implying that Proposition 2 holds under such benefits. Fur-
ther, Proposition 3 applies as before, showing that the optimal separating network is the
unique truthful equilibrium.‖
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8 Related Literature

König, Tessone, and Zenou (2014) study a decentralized dynamic link formation game
where linking opportunities arrive at random. Links decay but links formed with more
central agents decay more slowly. Here agents prefer to form link with an agent of high
centrality and the resulting equilibrium structure is in the Nested Split Graph (NSG) class.
Belhaj, Bervoets, and Deroı̈an (2016) study the problem of a planner who aims to design
the network that maximizes the sum of Bonacich centralities of agents where the cost per
link is also a function of the linking types of the agents. They show that the efficient
networks belong to the NSG family, and they single out specific members of this family
as function of the assumed cost structure. Our work complements these, but our focus
is different: given different productivity types, we study how a mechanism designer can
use network features to extract information embedded in the network by creating credit
rating incentives that lead to endogenous reorganization of the network. Interestingly,
the networks that allow the planner to both rank agents consistently with their types and
maximize social benefit under the constraint of consistent ranking belong to the NSG
class.

Bloch and Olckers (2018) study the question of ordinal ranking of agents who are con-
nected in a network. Agents can rank others directly connected to them. In this setting
they consider a mechanism design exercise to elicit the ranking information from agents
who have local information: they can rank their neighbors ordinally. The mechanism asks
agents to report this ranking and shows that an ex post efficient ranking can be achieved.
Here the network itself is exogenous, and is simply a conduit for local information. Our
exercise is very different. In our model, a designer uses the network structure itself to
elicit local information to construct credit ratings. Since credit ratings confer benefits to
agents, the structure of the network is endogenous: knowing that the network architec-
ture will affect rating changes the link-formation incentives.

In an interesting paper Wei, Yildirim, Van den Bulte, and Dellarocas (2016) too study the
problem of credit ratings that take into account the social network of the population. They
propose a model of network formation where individuals with heterogeneous types have
a preference for homophily. A planner imperfectly observes agents’ types but can use the
social network to refine his posterior. Since it is common knowledge that agents prefer
to connect to similar types, agent i provides a signal about i’s type. In their model the
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network matters, but only through the fact that linkages are informative in homophilous
networks, so the equilibrium network becomes more assortative. In contrast, our model
does not assume any preference for homophily, although homophilous structures might
still arise in equilibrium through complementarities. Further, our focus is quite different:
we are directly interested in the structure of the entire network and how that can be used
in extracting information seeded in the network. In our setting the pairwise-stable equi-
librium network does not shrink and become more assortative but expands to become a
CNSG, which also maximizes social benefit among the class of separating networks.

A feature of our work is that we study a network with agents of heterogeneous types.
Galeotti, Goyal, and Kamphorst (2006) study a model of network formation with het-
erogeneity in both costs and benefits of forming links. The benefits arise from flow of
information: agent i can access j’s information (including information obtained by j from
nodes j alone connects to) and vice versa. Their paper concludes that high centrality
and short average distances are robust features of equilibrium. Our setting is different:
the benefit from a connection arises from synergy between types of the agents connected
rather than from accessing information. This creates different link-formation incentives.
Our focus is also different since we take a design approach on networks where the planner
reformulates the network through rating incentives to uncover underlying information.

Finally, it is worth mentioning an empirical paper in a different context. Benson, Iyer,
Kemper, and Zhao (2018) study company director networks with a large data set and
show that companies where directors have greater degree centrality receive higher rat-
ings. Further, companies with directors who score higher on other centrality measures
such as eigenvector centrality or Bonacich centrality are also rated higher. To the extent
that links here display complementarities, our results would imply that an NSG structure
might emerge in such networks, explaining that the data would show precisely such cor-
relations, although, as our results explain, centrality does not cause higher rating, rather
the underlying NSG structure implies that in equilibrium, higher rated agents would also
have higher centrality.
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9 Conclusion

We present a model in which credit ratings are based on the network formed among
productive agents. Individuals differ in their innate productivity or type and can observe
the types of other individuals. Links take the form of bilateral collaborative projects. We
assume that outside planners or agencies can observe the network but not the types of
the individuals. We ask whether it is possible for the planner to infer the productivity
of individuals from observing network characteristics alone. We consider networks that
allow separation of types and show that the optimal separating structure is a connected
nested split graph.

The intention of the credit rating system is to increase individuals’ access to credit and,
with higher ratings conferring greater benefits. Since ratings depends on network prop-
erties, they affect the incentives to form links. This implies that given any rating system
and the scheme of associated benefits, the network structure and credit ratings are jointly
determined in equilibrium. We call an equilibrium “truthful” if the network structure
satisfies certain properties that allow separation of types from observing the network. We
show that when the cost of link formation is not too low, it is possible to design a credit
rating system that implements the optimal separating network as the unique truthful
equilibrium.

The paper clarifies a crucial aspect of emerging ‘fin-tech’ ideas that intend to exploit net-
work characteristics to sort individuals according to their creditworthiness. However the
very realization that such metrics are credit relevant alter incentives and behavior, thereby
altering the network and therefore the network characteristics on which the metrics are
based. The key consideration in designing a credit rating scheme is to recognize this im-
pact on incentives, to ensure that the scheme’s design can sort individuals in a consistent
manner.
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A Appendix

A.1 Proof of Lemma 1

Consider a connected separating-dense network with m > 1 type classes. Label types
according to the size of Θk, with k ∈ {1, . . . , m}, thus |Θ1| ≥ |Θ2| ≥ . . . ≥ |Θm|. The
network is connected so the minimal size of a set Θk must be 1, while the maximal size is
m since there are m type classes. This implies that, in order to have type separation with
m distinct sizes for the sets Θk, we must have the following sets

Θ1 = {θ1, θ2, . . . , θm}, Θ2 = {θ1, θ2, . . . , θm−1}, . . . , Θm = {θ1}

This implies

Θm ⊂ Θm−1 ⊂ . . . ⊂ Θ2 ⊂ Θ1 (A.1)

Finally, (A.1) together with the fact that, by Definition 3, in a separating-dense network
each agent with type θk is connected to all the agents with types in Θk, imply that the
neighborhood structure must be nested. This concludes the proof. ‖

A.2 Proof of Proposition 1

Consider an optimal separating network G. Since G is separating-dense, by Lemma 1, G is
also a CNSG. We then need to show that higher types are connected to more type-classes
compared to lower types.

Suppose this is not true. Suppose θk1 > θk2 and agents of type θk2 connect to agents of
type θk3 , while agents of type θk1 do not. Let i be an agent of type θki , i ∈ {1, 2, 3}. If there
were a link between 1 and 3, this would generate marginal externality E13 as given by
equation (2.3). Now,

E13 − E23 = e(TG\{23})− e(TG\{13})

Since g(θk1 , θk3) > g(θk2 , θk3), this implies taking away link 23 reduces externality less
than taking away link 13, so that e(TG\{23})− e(TG\{13}) > 0. Thus E13 − E23 > 0.
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Now replace the existing link 23 with the non-existing link 13. For the original configu-
ration to be an optimal separating network, we need, from Definition 4, that the replaced
link has higher value, i.e.

g(θk2 , θk3) + E23 > g(θk1 , θk3) + E13

But since g(θk1 , θk3) > g(θk2 , θk3) and E13 > E23, this inequality does not hold (indeed the
opposite is true). Therefore we have a contradiction.

It is also clear that by replacing the link 23 with the link 13 we can generate higher value,
so that, in any optimal separating network, agents of θk1 rather than θk2 must be connected
to the type class θk3 . It follows that higher types must be connected to more type classes,
so that Θj ⊂ Θi for all agents i, j where i has higher type than j.‖

A.3 Proof of Lemma 2

In this case, since all marginal and infra-marginal links are formed, we have ni
q(θk) = nq

for all k and q. This implies that the transfer to all agents of the same type is the same -
so the transfer does not depend on the agent’s identity (the superscript i) any longer. We
can therefore drop the superscript i in ti

k. For k > `,

tk =
M(k)

∑
q=1

nq max
[
0,−MGq

]
= nM(k) max

[
0,−MGk

]
+
M(k+1)

∑
q=1

nq max
[
0,−MGq

]
= nM(k) max

[
0,−MGk

]
+ tk+1 (A.2)

where tm+1 ≡ 0.

Next, for k = `,

t` = (n`− 1)max
[
0,−MG`

]
+
M(`+1)

∑
q=1

nq max
[
0,−MGq

]
= (n`− 1)max

[
0,−MG`

]
+ t`+1

where the second step follows from equation (A.2) using k = `+ 1.

Finally, consider a type θk where k < `. An agent of type θk forms connections with all
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other agents of types 1 toM(θk). Therefore

tk = (nk − 1)max
[
0,−MGk

]
+

k−1

∑
q=1

nq max
[
0,−MGq

]
+
M(k)

∑
q=k+1

nq max
[
0,−MGq

]
Similarly,

tk+1 = (nk+1 − 1)max
[
0,−MGk+1

]
+

k

∑
q=1

nq max
[
0,−MGq

]
+
M(k+1)

∑
q=k+2

nq max
[
0,−MGq

]
Therefore

tk − tk+1 = −max
[
0,−MGk

]
+ max

[
0,−MGk+1

]
+ nM(k) max

[
0,−MGk

]
= (nM(k) − 1)max

[
0,−MGk

]
+ max

[
0,−MGk+1

]
This completes the proof.‖

A.4 Proof of Lemma 5

Lemma 4 shows that all infra-marginal connections must be formed in any truthful equi-
librium. Next consider marginal connections. Consider first the case where an agent
drops some (but not all) of the marginal connections in an optimal separating network.
This does not alter type assignment. Further, by construction an agent cannot lose (and
might strictly gain) by forming marginal connections. Therefore there can be no strict
benefit from such a deviation that drops a marginal link.

Next, suppose an agent of type θk drops all marginal connections for that type. Such an
agent would then be classified as θk+1. Let the new transfer to agents classified as θk+1 be
given by t̃k+1.

First, consider a type θk for k 6 `.

The deviation would change the agent’s payoff as follows. First, each agent of type θM(k)

now has one fewer link, so that tM(k) goes down by max[0,−MGk]. Since transfers are
recursive (Lemma 2), the transfer to θk+1 also goes down by that amount. Further, there
is now one fewer agent classified as θk (so that transfer goes down by max[0,−MGk]) and
one more classified as θk+1 (raising transfer by max[0,−MGk+1]), which implies that the
new transfer to type θk+1 (which is the transfer received by the deviating agent) is given

38



by
t̃k+1 = tk+1 − 2 max[0,−MGk] + max[0,−MGk]

From Lemma 2, this implies

t̃k+1 = tk − (nM(k) + 1)max[0,−MGk]

Clearly, deviation leads to a transfer that is weakly lower than the original transfer for the
deviating agent.

Next, consider a type θk for k > `. In this case, dropping all marginal connections simply
leads to the loss of transfer for these connections:

t̃k+1 = tk − nM(k) max[0,−MGk]

which is again implies a weak loss from deviation.

Finally, if there are an odd number of degree-classes and there are exactly two agents in
class θ` (lowest type in clique), dropping a single link between agents will change the
number of degree classes. This is exactly the case covered by case 3 in the example in
Section 6.1.1. Type θ` (` = 3 in the example) cannot benefit since infra-marginal types for
` will now have higher marginal types, weakly reducing transfers.

This completes the proof that under the transfers specified, starting from the optimal
separating structure, no agent can benefit by cutting any links.‖
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