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Abstract

The fallout of nitrogen pollution is considered one of the largest global externalities facing
the world, impacting air, water soil and human health. In this paper we present new
evidence that nitrogen pollution in water is an important determinant of variations in
human capital. Numerous studies have shown a link between adverse conditions
experienced during early-life, such as those caused by conflict and disease, and adult
outcomes. However, causally derived links between early-life exposure to nitrogen
pollution in water and later-life health outcomes have not been extensively explored. In
this paper we combine data from the Demographic and Health Survey (DHS) dataset
across several countries, India, Vietnam and 33 African countries to analyze the causal
links between pollution exposure experienced during a woman’s very earliest stages of life
and her health as an adult. Our results show that pollution exposure experienced in the
critical years of development — from the period of birth up until year three — is associated
with decreased height as an adult, a well-known indicator of overall health and
productivity, and is robust to several statistical checks. Because adult height is related to
education, labor productivity, and income, this also implies a loss of earning potential.
The analysis begins within an assessment in India where data are more available and is
then extended to geographic settings including Vietnam, and across 33 countries in Africa.
Results are consistent and show that early-life exposure to nitrogen pollution in water can
lower height-for-age scores during childhood in Vietnam and during infancy in Africa.
These findings add to the evidence on the enduring consequences of water pollution and
identify a critical area for policy intervention.
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1. Introduction

A hundred years since the ingenious experiments in nitrogen fixation by Haber and Bosch
which resulted in the development of the first nitrogen-based synthetic fertilizers, the
fallout of nitrogen pollution is considered one of the most important environmental issues
of the twenty-first century (Kanter, 2018). Recent studies suggest that nitrogen may be
the world’s largest global externality, due to its effects on human health and the
environment (Keeler et al. 2016). The world has also surpassed the planetary boundary for
nitrogen-- a level of human interference beyond which environmental damage increases

dramatically and possibly permanently (Steffen et al. 2015).

In water, excess reactive nitrogen can promote the growth of algae, which can trigger
toxic blooms that can kill fish, and nitrate in drinking water can harm human health. It is
one of the few water pollutants that is trending upwards nearly everywhere, including in
developed countries like the United States, despite strong regulation (Keiser and Shapiro
2018). The legacy effects of nitrogen pollution on the environment are likely to endure
decades after nitrogen inputs have ceased with long time lags between the adoption of
conservation measures and any measurable improvements in water quality (Van Meter et
al. 2018)% In humans, the health impacts can be acute causing infant death due to
methemoglobinemia, or the blue baby syndrome, that reduces the blood’s ability to
transport oxygen.” However, causal evidence for the long-term and legacy health impacts

of early-life exposure to nitrogen pollution are still limited.

This paper addresses this gap by examining the impact of nitrate-nitrogen pollution on
height and well-being in India, along with supporting evidence from Vietnam and 33
countries in Africa. India, provides a compelling setting in which to study the impacts of

water pollution caused by nitrate-nitrogen. The Green Revolution, starting in the mid-

2 For instance, even if runoff of nitrogen was fully stemmed, it will still take 30 years to realize the 60% decrease in load needed
to reduce eutrophication in the Gulf of Mexico (Van Meter, 2018).

% This health hazard was responsible for triggering the creation of drinking water standards for nitrates at 10 parts
per million. Note that 10 mg/L as nitrate-nitrogen (NO3-N) is approximately equivalent to the World Health Organization
(WHO) guideline of 50 mg/L as NO3.



1960s, was a watershed moment in Indian agriculture. Along with a rapid increase in
agricultural productivity, it also led to a dramatic rise in the consumption of synthetic
nitrogenous fertilizers such as nitrogen-phosphate-potassium (NPK). The five-fold rise in
the use of NPK fertilizers per hectare of cultivated land since the mid-1960s resulted in
profound changes to the nitrogen cycle with impacts on India’s waters — runoff of excess
nitrogen from fields increased concentrations of nitrate in the waters to unsafe levels
(Fields, 2004). But agriculture is just one of the sources of nitrogen pollution. According
to the first-ever decade-long nitrogen assessment conducted for India by the Indian
Nitrogen Group (ING), a voluntary body of over a hundred scientists and other
stakeholders, sewage and organic solid wastes are some of the fastest growing sources of

nitrogen pollution in the country (INA, 2017).

Most previous work that provide causally interpretable estimates have primarily focused
on short-run and immediate birth outcomes (Brainerd and Menon, 2014; Jones, 2019)*.
These studies show that early-life exposure to nitrogen-related pollution can lead to infant
mortality (Brainerd and Menon, 2014) and low birthweight (Jones, 2019). The well-
established fetal origins literature suggests that intrauterine health impacts can lead to
lasting health damages, and that low birthweight is associated with shorter height in
adulthood (Barker, 1990; Almond and Currie, 2011; Currie and Vogl, 2013; Christian et
al., 2013; Almond, Currie and Duque, 2018). And low birthweight is a well-known marker
for many health problems later in life, including coronary heart disease (Barker 1995),
decreased glucose tolerance (and thus a higher propensity for obesity) (Ravelli et al.
1998), and increased rates of all-cause mortality (Risnes et al. 2011). Still, there has been
no attempt to quantify the full extent of health damages, especially the irreversible and

lagged human capital impacts, as a result of nitrogen pollution in water.

Evidence for lagged human capital impacts in environmentally vulnerable and poor
locations is severely limited due to the paucity of longitudinal data that can trace long-
term impacts. This is particularly challenging for water pollution since monitoring of

water quality is sparse in space and time, and is site-specific. In this paper, we exploit

4 A number of biomedical and epidemiological studies in the United States and other countries have documented a
relationship between agrichemical exposure and birth defects such as Down’s syndrome and Spina Bifida, especially
for children conceived during the crop-sowing months, and among children of agrichemical applicators who are
consistently exposed to toxins



temporal and geographic variation in nitrogen pollution exposure with a newly
constructed database of water quality that combines in situ monitoring station data with
a geospatial statistical model for stream networks developed by ver Hoef and Peterson
(2010). We carefully integrate early-life exposure to nitrogen pollution between the critical
years of development — from the period of birth up until year three — with women’s health
outcomes, climatic factors, correlated pollutants, household inputs and other

socioeconomic demographics for our analysis.

Our research design exploits the direction of river flow and the upstream-downstream
geographic relationship used in past literature (Do et al. 2018; Garg et al. 2016) to
estimate a pollution-health relationship. Because the costs imposed by water pollution are
largely felt in downstream regions, the analysis focuses on the impact of upstream
pollution on health outcomes in downstream regions. To isolate the average pollution
spillover at downstream locations, the analysis uses a rich set of controls. These are meant
to control for time-invariant, location-specific characteristics such as local soil quality and
natural resource endowments, as well as factors that vary by year and month, such as
weather, and national trends in economic output and technological development. The
analysis also controls for time-varying factors that are specific to states to capture state-
level policies. To ensure that later-life health outcomes are measured in the same location
of conception and birth where exposure occurred, the sample is restricted to individuals
that have never migrated from their place of birth. In this way, our empirical strategy
controls for a wide number of potential confounders in an effort to identify causal effects.
To test for external validity, similar analyses are conducted in geographies outside of

India - Vietnam and 33 countries in Africa.

Our results find that nitrogen exposure experienced by infants can have durable, long-
term impacts that stretch well into adulthood. In India, women exposed to nitrogen
pollution in their earliest years of life are shorter on average in adulthood than women of
similar circumstances who were not exposed to such pollution. Early-life exposure to
nitrogen pollution also lowers later-life labor productivity and depresses adult wages
decreasing overall welfare. This finding is robust to several sensitivity and falsification
tests. Analyses across different geographic settings in Vietnam and Africa that measure
the impact of nitrogen pollution during early-life provide further supporting evidence for

the results found in India. Taken together, this paper provides new evidence that early-life



exposure to nitrogen pollution has enduring and irreversible costs on human capital with
decreases in height observed across different life-stages: in adulthood (India), in childhood

(Vietnam), and in infancy (Africa).

The rest of the paper is organized as follows. In Section 2 we describe the health and
water quality data, the construction of the main variables used in the analysis as well as
the procedure we use to match the health data to upstream pollution. Section 3 outlines
our empirical strategy and Section 4 discusses the results. Robustness checks are provided
in Section 5. Section 6 investigates the external validity of the results reported for India in
other geographic settings such as Vietnam and Africa. Section 7 discusses the plausible

mechanisms linking nitrogen pollution to height impacts, and Section 8 concludes.

2. Data
In this section, we describe the data sources that were used in the empirical analysis, and
the construction of the main variables in the analysis.
2.1 Health Data
The data on our outcomes of interest come from the fourth round of the National Family
and Health Surveys (NFHS) conducted in India. The NFHS is the Demographic and
Health Survey (DHS) equivalent in India. The survey was conducted between January
2015 — December 2016 and covered all areas of the country. In a departure from the
previous DHS surveys, the sample for this survey was designed to be representative at the
district level. Close to 600,000 households were interviewed which included 0.7 million
eligible women in the age group 15-49. The main variables in this analysis come from the

woman’s questionnaire where a number of anthropometric measures are collected.

We make use of adult height as our main health variable. The micro-econometric
literature often uses adult height as a proxy indicator for overall health and long-term
adult well-being since it reflects the accumulation of shocks to health through childhood
and adolescence. A rough consensus drawn from this literature is that an improvement in
health associated with a 1-centimeter increase in adult height raises productivity by 3.4

percent (Kraay, 2018). Respondent’s height is reported in centimeters in the DHS data.

The DHS also records how long the individual has resided in the current location. We
utilize this information to restrict the sample to only those women whose birth-place

coincides with the current location. This allows us to guard against the possibility of mis-
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measuring exposure to nitrogen pollution if the woman was born in a different location
than the location in which she currently resides. We trace the birth-year histories of all
adult women ranging from 1966 to 1999, a period when the effect of the Green Revolution

was already in force yet nitrogen fertilizers were still increasing in use.

2.2 Water Quality Data

The Central Water Commission (CWC) within the Ministry of Water Resources monitors
data on ambient water quality throughout the country. We compile and harmonize a rich
dataset of water pollution measurements between the years 1963-2017 along a network of
375 river monitoring stations throughout India. Many gaps in the data exist since the
pollution measures are not consistently recorded over the entire sample time frame and
the panel is unbalanced. Over the 1963-2017 period, 75% of water quality data are missing
(60% between 1986-2017). To circumvent these problems, we build on a new class of
spatial statistical network model for stream data to interpolate and fill in missing
observations across monitor-year pairs (ver Hoef and Peterson, 2010). The model takes
advantage of the fact that water quality in a station downstream depends on
environmental conditions and human activities upstream of the station, and on the water
quality “received” from upstream (directed network). Therefore, spatial covariates in a
well-defined upstream area and the spatial dependence between observations based on
stream distance allow to model water quality and predict it in unsampled locations. We
train such model to fill-in missing observations. We then collapse monitor level
observations to the district level. A more complete description of the model is provided in

Appendix 1.

We focus on cumulative exposure to nitrate-nitrogen when the concentrations exceed
safety thresholds of 10mg/l from the year of birth to age 3. Prior work suggests that the
first 1000 days of a child’s life are the most critical for early childhood development and
for determining whether a child will grow up stunted. It has also been shown that height
at age three strongly predicts adult height (Maccini & Yang, 2009). Lower height-for-age
scores can lead to severe consequences for cognitive development, overall health, and even

socio-economic conditions that carry into adulthood.



We assign each woman a fractional measure of the share of years exposed to high levels of
nitrate-nitrogen between the year of birth and age 3 in the district where she was born.
Since districts have split over time, we use parent districts to allow comparability across
time. We then compare later-life health outcomes among cohorts with more and less

pollution exposure after accounting for a rich set of controls.

Even though direct measures of drinking water quality are unavailable, in-situ monitoring
data serve as a reasonable proxy for proximate levels of nitrates in drinking water. This is
because nitrates are notoriously expensive and difficult to clean out of water, and cannot
be sufficiently treated using conventional methods.” Evidence from a slew of countries
around the world, including Morocco, Niger, Nigeria, Senegal, India, Pakistan, Japan,
Lebanon, Philippines, the Gaza Strip and Turkey, show that nitrates in drinking water
often cross conventional safety thresholds (Ward et al., 2018).°

2.3 Additional Controls
We control for both average rainfall in millimeters and average temperature in degrees
Celsius as these have been shown to impact adult outcomes (Maccini and Yang 2009,
Fishman et al. 2019, Hyland and Russ 2019) and are known to also interact with nitrate
loadings in waterways (Zheng et al. 2016, Desbureaux et al. 2019). These are obtained
from the Indian Meteorological Department. In some specifications, we also control for
fecal coliforms from the CWC dataset. They are an oft-used measure of domestic
pollution, and are a major focus of water supply, sanitation, and hygiene (WASH)
operations. It is measured as the “most probable number” of coliform organisms per 100

mL of water (MPN/100 ml, reported in thousands).

® Indeed, even in the US the percentage of public water systems that have violated safety limits for nitrates
in drinking water have increased in the 15 year period between 1994 and 2009, due to the difficulty of
coping with the rising nitrate pollution and the concomitant rise in the costs of water treatment (Ward et

al. 2018).

% In Senegal, studies have recorded nitrate-nitrogen levels going beyond 40 mg/I, more than 4 times the safety limit
for NO3-N. Extremely high levels of nitrate have also been reported in The Gaza Strip, where nitrate reached
concentrations of 500 mg/L NOgs in some areas (10 times the safety limit for NO3), and more than 50% of public-
supply wells had nitrate concentrations above 45 mg/L NOs. Other site-specific studies in India have found nitrates
in drinking water supplies to be particularly high in rural areas, where average levels are reported to be between 46
mg/L NO; and 66.6 mg/L NO; with maximum levels exceeding 100 mg/L NOs in several regions.



2.4 Matching Health data to Water Quality data

The primary challenge to evaluate the pollution-health relationship is the endogeneity of
pollution exposure. Pollution is not randomly assigned and is often the byproduct of
productive activities. In the case of nitrates in the water, it is largely a byproduct of
intensive agriculture and untreated urban waste. Thus, a naive approach which examines
impacts of local pollution on local impacts will likely conflate the positive effects of
increased production with the negative externalities of water pollution, and underestimate
the latter’s effect. To circumvent this bias, we construct a measure of upstream pollution
using the geography of river flow. Similar techniques to identify upstream-downstream
relationships have been applied in recent economics literature (Garg et al., 2018” Do et al.,
2018 and Keiser, 2018). This choice is predicated on the fact that the decision to pollute
upstream is orthogonal to downstream health, while geography dictates that pollution

flows downstream.

We make use of a digital elevation model from the Shuttle Radar Topography Mission
(SRTM) mission to identify the direction of stream flow and to track upstream and
downstream through surface waters in India. We link the districts in our sample to all
other districts that are upstream from it as connected by the stream network as shown in
Figure 1. Since water quality decays over time, we bound the distance between upstream
and downstream district-pairs such that the upstream district is the closest upstream
district, and up to 300 km apart. For any given downstream district, we then calculate

the average concentrations of nitrate-nitrogen pollution in the upstream districts.

2.5 Data for Vietnam and Sub-Saharan Africa

To test for external validity of the results from India, we also measure the impact of
nitrogen pollution on health in other geographic settings: Vietnam and 33 countries in
Africa.

Data for Vietnam

Water quality data comes from the Mekong River Commission (MRC) which collects data
for four countries (Cambodia, Lao PDR, Thailand, and Vietnam) spanning the years
1985-2010, and covers the main tributaries of the Mekong River. Our health data comes
from the latest Vietnam Living Standards Survey (VLSS) of 1997-98 where we focus on



the health outcomes of children aged 4 to 12 years. The VLSS 97-98 was a nationally
representative survey that sampled almost 6,000 households across the country. For each
member of the surveyed household, the survey contains information on gender, year of
birth, age, and anthropometric outcomes. At the household level, information is available
on the ethnicity of the household head and the province of residence. Our sample is
restricted to those that have always resided in the same place. Because nitrate-nitrogen
levels in Vietnam are relatively lower, exposure to nitrate pollution is examined at levels
that are above the 75th percentile in the distribution, or roughly 2 mg/L. Following a
similar methodology described in 2.4, each VLSS commune is matched to its upstream

pollution counterpart.
Data for Sub-Saharan Africa

We use data from 33 Demographic and Health Surveys (DHS) spanning over a period of
25 years (1990-2015) to account for all child and household variables presented in the
analysis. Figure 2 shows the 31 countries included in the analysis from Sub-Saharan
Africa, as well as Morocco and Egypt. The dots represent the approximate locations of the
communities where households in the survey live. We focus on anthropometric measures
of children up to 5 years of age. We convert children heights into Z-scores using the WHO
growth standards (WHO 2006). Doing so allows us to assess child height relative to well-
nourished children of the same age and sex. For our main outcome variable, we use
height-for-age Z-score (HAZ) and low HAZ (i.e. HAZ below -2) which reflects stunting.
Water quality data comes from a machine learning algorithm presented in Desbureaux et
al. (2019). Each birth record is then matched to nitrate pollution flowing from urban
centers that are farther upstream. These urban centers where identified using data of
urban agglomerations from Africapolis (OECD/SWAC (2018)).

3. Empirical Methods
To estimate the long-run health impacts of childhood exposure to nitrogen pollution, the
research design exploits quasi-random variation in exposure to nitrogen pollution
experienced by different birth cohorts in different districts. Specifically, the analysis
compares height outcomes between exposed and non-exposed cohorts, controlling for

average differences in these outcomes across birth years and across districts. The



estimating equation for individual-level outcome Y of person i during time t and born in

district d and state s is presented below.

birth, 3
Y =a+ BNUE',dt ] + AX e + ’YDZ + Pt T P+ g+ €y (1)

N UEZ;”’“ 3], where superscript U denotes upstream, is the fraction of years from the time of

birth to age 3 that individual ¢ was exposed to nitrate-nitrogen levels from upstream areas
that exceeded safe limits in their birth district d. It serves as a measure of cumulative
pollution exposure in early life during generally accepted critical periods for biological
growth and development. These values are recorded from upstream districts exploiting
the natural flow of rivers and the fact that pollution flows downstream even as the
decision to pollute upstream is orthogonal to downstream health. In this way, we exploit
quasi-random variation in pollution that originates upstream and yet flows downstream to
other districts. The analysis then uses these spillovers to ascertain how much of the health

impact persists in the next district downstream of pollution incidence.

The analysis compares later-life height among cohorts with duration of nitrate-nitrogen
exposure, controlling for birth year, birth month, district fixed effects and state-trends. In
this way, the analysis exploits within-district variation in birth timing relative to

pollution exposure to identify S.

The birth-year and birth-month fixed effects (pp,; ) are included to account for age effects
in health outcomes as well as unobserved national or seasonal shocks such as
macroeconomic conditions or seasonal weather patterns, which might otherwise confound
the relationship between pollution exposure and height. Similarly, district fixed effects
are included to control for any time-invariant unobservable differences between districts
that can affect health. For example, access to local nutrition programs is one such factor
that may be constant across individuals born in the same location. The analysis also
includes state-trends (pst ) to flexibly control for heterogeneous changes in demographic

factors, technological progress in agriculture and other policies that differ across states.

A number of other district and household specific variables are included in the analysis.

Xase are a vector of district time-varying variables (include temperature and precipitation
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and concentrations of other water quality indicators like fecal coliform). DY are controls
for household characteristics such as religion and caste that are salient to the Indian
context. Lastly, we use cluster-robust standard errors to account for within-district
clustering of errors and arbitrary correlation of observations across time. Our baseline
specification, therefore, compares two women from the same district who are subjected to
different levels of nitrate-nitrogen exposure based on their year of birth, over and above
any unobserved shocks to height that vary by the year of birth, and any long-run trends
(or annual patterns) in height in the state of birth.

Thus, following established statistical methods in applied economics, the relationship
between water pollution and height (f) is identified by removing any confounding
differences attributable to location and time. The reduced-form relationship provides a
causal estimate of the health damages caused by downstream spillovers of pollution,
adding to related work on pollution spillovers by Do et al. (2018), Garg et al., (2018),
Keiser and Shapiro (2018), Lipscomb and Mobarak (2017) and Sigman (2002, 2005).
Further, since the identification strategy uses multiple exposure events over time and
space, it alleviates concerns that the results are being driven by confounding factors to

health that may be correlated with single events.

So far, our estimation strategy allows us to quantify the persistence of water quality
impacts in downstream districts by focusing on downstream spillovers. We are also
interested in the within-district externality: to what extent does nitrogen pollution within
a given district affect health outcomes in the same district? To address this question, we
instrument local pollution concentrations in a given location and time with upstream
concentrations. This effectively uses variations in local water quality that are induced by
exogenous upstream concentrations. The validity of this approach rests on the assumption
that river flow is unidirectional and pollution from far away distances affects health, but
only through its effect on local pollution concentrations. The first-stage (equation (2))
and second stage (equation (3)) of the two-stage least squares strategy are presented

below.
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Coefficient B in equation (3) gives us the estimated impact of pollution exposure on
health in the average district. Together with the spillover health impact in downstream
districts estimated in equation (1), we are able to measure the full external health costs

imposed by pollution.

It is important to highlight that this paper does not include a structural model that
describes the mechanism(s) for our baseline results. Therefore, we interpret our main
result as a reduced form relationship between nitrogen pollution and adult health. We

provide discussion on the possible mechanisms in Section 7.

4. Results
Summary statistics are provided in Table 1. About 3% of the sample experienced high
levels of nitrate-nitrogen pollution in water (exceeding 10 mg/1) in the year of birth and
on average women were exposed to high levels of nitrate-nitrogen pollution for 2% of their
lives up to age three. Table 2 presents the main results from estimating equation (1).
Column (1) presents results from the preferred specification. We find that exposure to
nitrate pollution that exceeds safety standards over the entire period decreases height by
2.24 centimeters. At the mean fraction of early life exposed to pollution, this decrease in
height is 0.5 centimeters. Columns (2), (3) and (4) use an indicator for high-level exposure
in-utero, in the birth year and at age one rather than a cumulative measure of exposure.
The results show a lowering of height with exposure but these effects are not significant
compared to the effect from cumulative exposure in column (1). Column (5) includes an

indicator for whether concentrations of fecally derived bacteria related to poor sanitation
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from upstream locations are above desired limits from the time of birth to age three, to
confirm that it is not this correlated water quality indicator that is driving the result.
Exposure to nitrogen pollution continues to be statistically significant, and the magnitude
is even higher. This suggests that exposure to nitrogen pollution matters for health in
addition to exposure from excreta-related bacteria. In Column (6), stricter control of
birth month-by-birth year fixed effects are included to control for unobserved factors that
are constant across all individuals born in the same year and month. Results are
qualitatively similar. The results show that exposure to nitrate pollution that exceeds

safety standards over the entire period decreases height by 1.96 centimeters.

So far, the results have focused on the persistence of water quality impacts in downstream
areas by measuring the direct spillover externality imposed by upstream pollution. In
Table 3, we provide the estimated impact of the within-district externality by measuring
the impact of pollution on health in the same district using the 2SLS procedure outlined
in equations (2) and (3).

The first-stage is strong across all columns and the upstream concentrations are
significant. When local concentrations are instrumented with upstream pollution levels in
the second-stage, all specifications yield statistically significant estimates of the pollution
impact and the effect of nitrogen pollution in water on height is negative, and large in
magnitude. Diagnostic statistics for instrument relevance such as the Kleibergen-Paap F
(Kleibergen and Paap, 2006) statistic shows that the instrument is very strong. The F-
statistic exceeds the Stock-Yogo (Stock and Yogo, 2005) weak identification critical value
for 10% maximal instrumental variables size.” The point estimates from the 2SLS
procedure are relatively much larger than the corresponding downstream spillover impact
in Table 2 supporting the logic that as water pollution decays with river flow and time,
the downstream impacts are likely to be smaller in magnitude than the within-district
health impact. The results show that exceeding the nitrate-nitrogen safety standards over

the entire period decreases height by 2.81 centimeters.

Because adult height is associated with income, this implies a productivity loss of around
7% using decrease in height estimates under full exposure derived from column 1 and

using estimates of the economic returns to height assumed in the World Bank Human

" Baum et al. (2007) and Bazzi and Clemens (2013) provide explanations of these tests.
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Capital Project (Kraay, 2018). When using estimates of a decrease in height under mean
exposure derived from column 1, this translates into a 1.7% fall in productivity or earning

potential.®

5. Robustness Checks

We carry out several robustness exercises to further corroborate our baseline results.

In order to examine the possibility that these results are driven by spurious spatial or
temporal patterns, the analysis is subjected to falsification tests. The first test involves re-
estimating equation (1) while replacing each individual’s exposure condition with
exposures that occur for 6 different four-year periods before or after birth up to age 9. The
resulting coefficient estimates are plotted in Figure 3 against the different window periods
of exposure. All the “shifted” coefficients are smaller than the “true” coefficient, plotted

at 0-3, and are all statistically insignificant.

The second test involves replacing the upstream pollution variable with a falsified value
using pollution data from the nearest off-river region farther downstream—a location that
is disconnected from river flow dynamics and from where the pollution cannot flow
(upstream) to areas where the health outcomes are measured. In the case that the
‘falsified’” upstream pollution variable shows a significant impact on health, then it would
be likely that our baseline results are capturing spurious spatial correlations. Table 4,
however, reveals otherwise. There is no significant impact of the falsified value on health
suggesting that the upstream variable utilized in the analysis is indeed isolating quasi-

random variation in pollution.

In Table 5, in addition to the district fixed effect we also include district time trends to
address the concern that broad secular trends at the district level might be influencing our
results. The results are of the same sign and magnitude as our baseline estimates, and

remain significant at the 5 percent level.

8 As a robustness check, we also make use of the Indian Human Development Survey (IHDS) to measure the
impact of early-life exposure to nitrogen pollution on later-life wages using a similar methodology described
in Section 2. The THDS is a nationally representative survey. The survey provided a more complete
recording of men’s earnings that we use as our main variable of interest. In unreported results, we find that
full exposure in early-life decreases wages in adult life by 9%, on average, providing direct proof of the
impact on labor productivity.
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In Table 6, we cluster the standard errors by state in DHS, as well as survey cluster in
DHS, instead of district. Standard errors are more or less similar using either of these

alternatives, and the results remain significant and unchanged.

6. Evidence from other regions
In Vietnam, home to one of the fastest-growing and urbanizing societies in the world,
agricultural growth and intensification have played significant roles in spurring
development. But in parts of the country, the environmental footprint of the agricultural
sector is deepening. In intensively farmed areas, agriculture has become a significant
contributor to water pollution. This is particularly so in the intensively farmed Mekong
delta region (Cassou, Jaffee, and Ru 2018; Chea, Grenouillet, and Lek 2016). To measure
the consequences of nitrogen pollution, the analysis focuses on children aged four to
twelve years surveyed in the latest Living Standards Survey of 1997-98. Table 7 shows
that repeated exposure to nitrate pollution for the first three years of life substantially
lowers height-for-age scores in childhood, with full exposure decreasing height-for-age
scores by 0.7 standard deviations. These effects occur despite nitrate-nitrogen
concentrations being below the recommended safety thresholds of 10 mg/L and emerge

even after accounting for exposures from other contaminants.

In Africa, although present-day fertilizer usage is lower than in Asia, it is growing. Other
sources of nitrate exposure include expanding urban centers that lack wastewater
treatment facilities and increased livestock farming. The analysis is based on the entire
universe of child records up to age 5 years across 33 countries in Africa from DHS records.
The results in Table 8 show that in utero exposure to nitrate pollution emanating from
upstream urban agglomerations lowers the height-for-age scores and increases the
likelihood of stunting for children younger than five years, even at low levels of nitrate
exposure. The negative effects are most pronounced downstream from urban centers
where nitrate levels are relatively higher. Stunting already remains a widespread problem
in Sub-Saharan Africa, where more than 35 percent of children younger than five years
are considered stunted (World Development Indicators). This suggests an urgent need for

potable water treatment in urban agglomerations.

15



7. Mechanisms
These results are perhaps the first demonstration of such widespread links between
exposure to elevated nitrate levels during early-life and long-run health outcomes.
Nevertheless, they are consistent with several well-established streams of biomedical
literature that are indicative of such a link. First, increased dietary-nitrate intake has
been associated with hypothyroidism and thyroid cancer (Aschebrook-Kilfoy et al. 2012;
Ward et al. 2010, 2018). The thyroid is an important gland for regulating hormone
production and metabolism regulation. Hypothyroidism in children is therefore linked to
stunting of growth and a delay in the process of maturation (Wilkins 1953). Thus, the
path from increased nitrate consumption from water, to diseases of the thyroid, to stunted
growth and development is seemingly clear and direct. Another potential causal link
between nitrates in water and reduced health and growth is through the buildup of algae
and bacteria in water. Nitrogen in waterways often causes cyanobacteria fueled algal
blooms. These bacteria can emit cyanotoxins that are toxic to humans and, if consumed,
can lead to diarrhea-related illnesses. Repeated bouts of diarrhea increase the probability
of nutritional deficiencies in children and thus stunted child development. Exposure to
such toxins can also adversely affect birth outcomes by lowering infant birthweight (Jones

2019), an important predictor of stunting later in childhood (Christian et al. 2013).

Finally, and related to the prior point, exposure to higher levels of pathogens can disrupt
the gut microbiome. The first months after birth are particularly critical for establishing
the composition of the gut microbiome that persists for the rest of a person’s life
(Robertson et al. 2019). There is evidence in the medical literature that this microbiome is
difficult to permanently change later in life, although this matter is under debate. If true,
then the resulting change in gut microbiome from exposure to nitrate-induced toxins like
those from cyanobacteria could permanently handicap the digestive system of individuals
and reduce their capacity to absorb nutrients throughout their lives. However, more
research is required on how and when exposure of fetuses and young children to high
nitrate levels influence microbiome function, growth, and development, especially in

settings in which pathogenic infections and food insecurity are problematic.
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8. Conclusion
Recent studies have focused attention on the loss of human lives and immediate birth
outcomes as a result of water pollution. In a departure from previous studies, this paper
underscores the long-lasting health damages, and decreased economic capability that
survivors of water pollution endure. We find a statistically significant negative effect of
early-life exposure to nitrogen pollution on women’s height in India with supporting
evidence of a decrease in child height in Vietnam, and infant HAZ scores and increased
incidence of stunting in Africa. These results are robust to several checks for confounding
factors. By demonstrating the long-term effects of nitrogen pollution, our results draw
attention to the critical role that local environmental spillovers play for population health

outcomes, and highlight the need for closer policy attention to nitrogen pollution.

The policy relevance of our results is underscored by the fact that health effects also
emerge at levels well below prescribed limits, raising questions about what constitutes safe
standards for nitrates in water. Emerging evidence from epidemiological studies have also
found relationships between nitrate ingestion and cancer, thyroid disease, and adverse
pregnancy outcomes, such as neural tube defects, at concentrations below regulatory
limits (Temkin et al., forthcoming; Ward et al. 2018). Even as far back as 1977, a report
by the U.S. National Academy of Sciences warned that “there is little margin of safety” in
the 10 mg/L safety limit for nitrates (National Research Council 1977). More research and
assessments across even more geographies and populations are needed to make definitive
claims. It is possible that future research will uncover even more health effects as more
data becomes available to link exposures that began decades ago to diseases that develop
today. However, the body of evidence so far suggests that there still remains a great deal
of uncertainty surrounding drinking water standards for nitrates set by environmental
agencies. The magnitude of people impacted by nitrate contaminated water is, therefore,

likely to be much larger than presently thought.

This work also speaks to the consequentiality of fertilizer subsidies in developing countries
that are tipped in the favor of nitrogen fertilizer use. In India, a system of domestic price
controls by way of large subsidies has significantly distorted market prices for nitrogen
fertilizer compared to other nutrients resulting in an inefficient balance of fertilizer
application (Gulati and Banerjee 2015). By 2015, subsidy costs amounted to $11.6 billion

per year in India, roughly five times more than what was recorded 15 years earlier (Gulati
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and Banerjee 2015). This is exemplified by the wide gap between global and Indian
domestic nitrogen prices -—-world prices were almost four times higher than regulated
Indian prices in 2014 (Huang, Gulati, and Gregory 2017). In recent years the government
has made efforts to improve nitrogen use efficiency in agriculture and has has mandated
urea manufacturers to produce neem-coated urea. Since neem acts as a nitrification
inhibitor, it allows a more gradual release of nitrogen into the soil thereby improving
nitrogen use efficiency. More research is needed to quantify the environmental and

economic consequences of such measures, and its impacts on water pollution.

Finally, unlike much of the literature on water quality and health that focuses on
developed countries, this work adds to the growing evidence on water pollution impacts in
the developing world that is subject to different exposure profiles, institutions and levels
of economic development. While our analysis controlled for correlated pollutants where
possible, it was primarily focused on a single pollutant. It is possible that the combined
health impacts of co-occurring pollutants are different or even more harmful (Stoiber et al.

2019). More work is needed to investigate these issues in the developing world.
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Tables

Table 1: Descriptive Statistics

Variable Mean Std. Dev. Min Max
Height (cm) 151.584 6.315048 80 209.2
Mean upstream nitrate-N concentrations 1.776662  2.887341 0 20.18191
1[Exceedance of nitrate-N in year of birth] 0.0257691  0.1584502 0 1
Fraction of early childhood nitrate-N exposure 0.0190851 0.0732628 0 0.5
Annual Precipitation (mm) 882.8155  500.6614  99.29888  4463.666
Average temperature in the Wet Season 28.57736 1.785982  22.61299 32.91105
Average temperature in the Dry Season 20.75181  2.642523  13.20256 27.45295

Notes: Table shows descriptive statistics from the DHS surveys as well as the water quality data from
CWC. Sample based on 19,138 respondents who have not migrated from their birth place.
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Table 2: The long-term impacts of upstream pollution on health

Dependent variable: Height (cm)

(1) (2) (3) 4) (5) (6)
Fraction early childhood N exposure — -2.246%** -3.044%F* 11,963 %**
(0.497) (0.996) (0.506)
Exposure in-utero 0.541
(0.463)
Exposure at birth -0.385
(0.458)
Exposure at age 1 -0.411
(0.392)
Observations 19138 17399 17618 17417 13862 19138
mean Dependent Variable 151.6 151.6 151.6 151.7 151.4 151.6
R-sq 0.0793 0.0812  0.0795  0.0769 0.0656 0.0908
RMSE 6.082 6.076 6.093 6.114 6.089 6.046
Birth-year Fixed Effects Y Y Y Y Y
Birth-Month Fixed Effects Y Y Y Y Y
District Fixed Effects Y Y Y Y Y Y
State Trends Y Y Y Y Y Y
Weather controls Y Y Y Y Y Y
Fraction early childhood FColi Y
exposure
Birth-Year by Month Fixed Effects Y

Notes: Table shows results from estimating Eq. (1) via ordinary least squares (OLS). Each column displays
estimates from a separate regression. Fraction of early childhood exposed to N pollution is the fraction of
years from year of birth to age 3 that nitrate pollution exceeds safety guidelines. Standard errors are
clustered at the district level, and are presented in parentheses. *** ** * denote statistical significance at
the 1%, 5% and 10% levels respectively.
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Table 3: The long-term impacts of local pollution on health using instrumental

variables
(1) (2) (3) (4)
First-stage Second- First-stage Second-
stage stage
Upstream: Fraction early childhood N exposure 0.748*** 0.745%F*
(0.166) (0.163)
Local: Fraction early childhood N exposure -2 .819%** -2.6047%F*
(0.645) (0.634)
Observations 17755 17755 17755 17755
mean Dependent Variable 151.6 151.6
R-sq 0.0186 0.0187
RMSE 0.0407 5.956 0.0407 5.921
Kleibergen-Papp F-stat 20.34 20.94
(F=16.38) (F=16.38)
Birth-year Fixed Effects Y Y
Birth-Month Fixed Effects Y Y
District Fixed Effects Y Y Y Y
State Trends Y Y Y Y
Weather controls Y Y Y Y
Birth-Year by Birth-Month Fixed Effects Y Y

Notes: Table shows results from estimating Eq. (2) and Eq. (3) using Two-Stage Least Squares (2SLS).
Each column displays estimates from a separate regression. Fraction of early childhood exposed to N
pollution is the fraction of years from year of birth to age 3 that nitrate pollution exceeds safety guidelines.
Columns 2 and 4 show 2nd-stage results and columns 1 and 3 show 1st-stage results. The endogenous
variable(Local: Fraction early childhood N exposure) is instrumented using its upstream analog. For
Kleibergen-Paap rkWald F Stat, Stock-Yogo weak identification critical value for 10% maximal
instrumental variable size in parentheses. Critical value for 15% maximal instrumental variable size equals
8.96. Standard errors are clustered at the district level, and are presented in parentheses. ***, ** * denote

statistical significance at the 1%, 5% and 10% levels respectively.
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Table 4: Falsification test

Placebo Districts

@)

(2)

Fraction childhood N 0.106 -0.010
exposure

(0.430)  (0.413)

Observations 23338 23338

R-sq 0.0773  0.0683

RMSE 5.796 5.821
Birth-year Fixed Effects Y Y
Birth-Month Fixed Effects Y Y
District Fixed Effects Y Y
State Trends N Y
Weather controls Y Y

Notes: Columns 1 and 2 show results from a placebo test, in which the upstream district for each
observation is replaced by a different, neighboring district that is not upstream. Each column displays
estimates from a separate regression. Fraction of early childhood exposed to N pollution is the fraction of
years from year of birth to age 3 that nitrate pollution exceeds safety guidelines.

Standard errors are

clustered at the district level, and are presented in parentheses. *** ** * denote statistical significance at
the 1%, 5% and 10% levels respectively.
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Table 5: Main results with trends for districts

Dependent variable:
Height (cm)

&y (2)

Fraction childhood N exposure -2.273%F 2 392%**

(0.887) (0.891)

Observations 19450 19138

R-sq 0.0846 0.0835

RMSE 6.047 6.064
Birth-year Fixed Effects Y Y
District Fixed Effects Y Y
District Trends Y Y
Weather controls N Y

Notes: Table shows results from estimating Eq. (1) via ordinary least squares (OLS). Each column displays
estimates from a separate regression. Fraction of early childhood exposed to N pollution is the fraction of
years from year of birth to age 3 that nitrate pollution exceeds safety guidelines. Standard errors are
clustered at the district level, and are presented in parentheses. *** ** * denote statistical significance at
the 1%, 5% and 10% levels respectively.
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Table 6: Alternative clustering

Dependent variable: Height (cm)

L)

(2)

Fraction childhood N exposure -2.246 -1.963
s.e. clustered by district (0.497)*+* (0.506)**+*
s.e. clustered by state (0.552)** (0.488)**
s.e. clustered by survey cluster (0.928)*** (0.944 )***
Observations 19138 19138
R-sq 0.0793 0.0908
Birth-year Fixed Effects Y
Birth-Month Fixed Effects Y
District Fixed Effects Y Y
State Trends Y Y
Weather controls Y Y
Birth-Year by Month Fixed Effects Y

Notes: Table shows results from estimating Eq. (1) via ordinary least squares (OLS). Each column displays

estimates from a separate regression. Fraction of early childhood exposed to N pollution is the fraction of
years from year of birth to age 3 that nitrate pollution exceeds safety guidelines.
clustered at the district level, state level and survey cluster level and are presented in parentheses.
denote statistical significance at the 1%, 5% and 10% levels respectively.

Standard errors are
sokk Kok K
b b
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Table 5: Impacts in Vietnam

Height-for-age scores (1) (2)
Fractional Exposure to Nitrate-Nitrite -0.776%* -0.779%*
(0.338) (0.337)
Birth-year Fixed Effects Y Y
Birth-Month Fixed Effects Y Y
Commune Fixed Effects Y Y
Province Trends Y Y
Other controls N Y
N 691 691
R-sq 0.132 0.156

Notes: Statistical significance is given by * p<0.10 ** p <0.05 ***p < 0.01. Standard errors in parentheses
are clustered at the commune level. Other controls include precipitation, temperature, ethnicity (tribe), sex,
conductivity, phosphorus, water-treatment at home, household asset value, years of education of head,

farm/non-farm household
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Table 6: Impacts in Africa

In-utero exposure Stunting HAZ Stunting HAZ
Downstream of N pollution 0.0172%+%* -0.0729%**
(0.00636) (0.0228)
Downstream of N pollution x
Rural 0.0209%**  -0.0848%**
(0.00597) (0.0222)
Fixed effects Year-Month of Birth, Grid Cell
Other controls Y Y Y Y
N 204,886 204,886 204,886 204,886
R-Sq 0.106 0.143 0.106 0.144

Notes: Statistical significance is given by * p<0.10 ** p <0.05 ***p < 0.01. Standard errors in parentheses
are clustered at gridcell level. Other controls include household variables — if it is in a rural location,

indicator for improved sanitary facilities, improved water source and no sanitation facility (open defecation),

child age in months, age of mother at birth giving, if child is a girl, a household wealth index, body mass
index (BMI) of mother, an index of mother empowerment (health decisions), mother’s years of education

and mother’s partner’s years of education — and community variables — percentage of improved water

source, improved sanitation and open defecation, and total population of urban area; temperature and

precipitation; and year specific country trend.
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Figures

Figure 1: Upstream-Downstream hydrologic breakdown

Note: The map shows direction of streamflow from upstream to downstream districts
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Figure 2: Countries Studied, Africa

Note: The map shows locations of enumeration areas that were surveyed as part of the DHS Program.
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Figure 3: Different window periods of exposure

Woman's height (cm)

L6-L3 L5-L2 L4-L1 L3-0 L2-1 L1-2 0-3 1-4 2-5 3-6 4-7 5-8 6-9

Note: Estimated coefficients from variants of the main regression equation, in which the period of pollution
exposure is shifted by 6 four-year periods (horizontal axis) from the main 0-3 period. Each marker’s vertical
position therefore measures the estimated impact of exposure at the appropriate period of exposure. For
example, the purple marker represents the impact of exposure discussed in the report. Other markers
represent the impact of “placebo” exposures. Error bars represent 95% confidence intervals.
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Appendix 1: Spatial Stream Network model.

Water quality downstream directly depends on upstream water quality as well as weather
related variables and anthropogenic activities happening in between. Models developed
by ver Hoef, Peterson and Theobald (2006) and ver Hoef and Peterson (2010) allow to
statistically represent these stream dependencies within a network and predict water
quality in a spatially valid framework. They allow to flexibly control for spatial auto-
correlation between observations belonging to the same river network based on stream
distances, to take into account accumulation of pollutants as well as their dilution. They
present important improvement to classic geospatial models based on Euclidean distances

which were to be proved to be biased in such settings.

Here, we used the model developed by ver Hoef and Peterson (2010) to fill missing
observations in the CWC nitrogen data between 1986 and 2017 where over 60% of the
nitrogen observations are missing in this dataset, limiting our understanding of the
evolution of water quality over the period. More specifically, we used the openSTARS
package in R (Kattwinkel and Szcos 2018) to derive a topographically correct stream
network for all India. First, a Digital Elevation Model from the SRTM mission was used
to derive all streams across India. For computational limits, the original DEM 30 meters
model was resampled at a 100m resolution. Second, the upstream area of each CWC
station was determined. Third, the stream distance between each station belonging to a
given network was calculated. Fourth, the annual level of rainfall, average temperature,
average elevation and average slope were computed to better account for dilution of
pollution.

Then, we used the SSN package (ver Hoef et al. 2014) to model the determinants of water
quality in CWC stations. The original model developed by the authors is:

n=X;f+S,+S4+S.+Wy +ei

Where n; is the nitrogen level in station i, X; = (Xil ...Xiq) are environmental covariates
defined over the upstream area of each station. Sy, Sq, Se are a set of spatially auto-
correlated random variables that models spatial dependence inside a network. The main
dependency we want to capture is the upstream to downstream relation between stations
(Su)- The authors also provide the possibility to incorporate downstream to upstream
dependencies (Sq), as well as standard Euclidean relationships (Se). Following common
practices in spatial statistics, we assumed exponential spatial dependencies between
observations. Finally, Wy represents a possible set of fixed effects, such as watershed fixed
effects. The model was estimated for each year between 1986 and 2008 — the year of birth
of the last woman in the DHS data used in the analysis. Years before 1986 were excluded
for an insufficient number of observations (<100).
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Our objective year is to find the model that predict best nitrogen levels. To do so, we
create loops to estimate for each year 93 models that represent all the possible
combinations of covariates and spatial dependencies. Models were validated through a
Leave One Out Cross Validation (LOOCV) strategy. The final model was chosen based
on a Mean Square Prediction Error (MPSE) criteria. The maximization of the predictive
power of the model was achieved by introducing one trick in the original approach: we
included as a predictor the average value of nitrate in a station between 1986-2008. For
each year, the model was trained on available observations and predictions of nitrate was
done for missing observations. The final dataset was then used to study the long term

impact of nitrogen level on health outcomes.

Additional references

Kattwinkel M, Szocs E. 2018, openSTARS: open source implementation of the STARS
ArcGIS toolbox. Seehttps://github.com/MiKatt/openSTARS

Ver Hoef, Jay M., Erin Peterson, and David Theobald. "Spatial statistical models that use
flow and stream distance." Environmental and Ecological statistics 13.4 (2006): 449-464.

Ver Hoef, Jay, et al. "SSN: An R package for spatial statistical modeling on stream
networks." Journal of Statistical Software 56.3 (2014): 1-45.
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