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1 Introduction

It has become increasingly common to understand deprivation from a multi-dimensional

perspective. Practitioners undertaking such multidimensional assessments must

make several non-trivial methodological decisions, including which dimensions of

deprivation to consider among the several possible and how to combine these dif-

ferent dimensions into one single composite index of multi-dimensional poverty.

In combining these dimensions into a single index, a natural question to ask is

how much weight should we assign to each of them. This paper examines the

implications of using endogenous (data driven) weights on a broad set of desirable

properties for multidimensional poverty indices (see Bourguignon and Chakrav-

arty, 2003) and demonstrates their failure to satisfy key properties under endo-

genous weights.

In particular, we investigate analytically and empirically the consequences of

using endogenous weights on the fulfillment of two important policy relevant prop-

erties that multidimensional poverty indices are expected to satisfy, namely mono-

tonicity and subgroup consistency. Monotonicity states that if the poverty ex-

perience of an individual worsens in any dimension, then the overall poverty ex-

perience of the society to which this individual belongs, should not improve Tsui

(2002). Subgroup consistency requires that changes in overall poverty in a popu-

lation, should reflect the changes in poverty happening at the smaller population-

subgroup level. For instance, if the population of a country is divided into two

subgroups based on regions, say North and South, then if the poverty of the North

increases, while the poverty of the South remains unchanged, overall poverty in

the country should not decrease under fulfillment of subgroup consistency.

If monotonicity is not satisfied by the poverty index, then we might observe

societal poverty falling even when the poverty of some individuals in that society

may have increased, without any countervailing decrease in any other individu-

als’ poverty. Failure to satisfy monotonicity can lead to perverse policies whereby

increasing individuals deprivation in some dimensions can be deemed beneficial

since it will lead to an overall decrease in multidimensional poverty. Failure of

subgroup consistency, on the other hand, can lead to a situation where increase in

poverty in some regions or populations subgroups, ceteris paribus, may decrease
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societal poverty. This in turn can lead to policies where increasing poverty in

one region or one population subgroup is ignored because overall poverty has de-

creased. Without these key properties, it would be futile to use a poverty index to

undertake any kind of comparative exercise, whether across time, regions or popu-

lation groups, and thus any evaluation of anti-poverty policies would be ineffective

(see Sen, 1976; Foster and Shorrocks, 1991).

This paper demonstrates that for a broad class of endogenous weights and mul-

tidimensional poverty indices based on the popular counting approach (Alkire and

Foster, 2011), these two fundamental properties will be violated. Operationalisa-

tion of the counting approach entails first choosing deprivation dimensions (e.g.

access to health services, quality of the dwelling, etc.) and comparing each of

them against a deprivation line representing a minimally satisfactory level of that

dimension. If a dimension’s value is below the line then the person is deemed

deprived in that dimension. The total number of dimensions the person is de-

prived in, is used as a threshold to determine if the person is multidimension-

ally poor. This originated in the sociology literature where Townsend (1979) con-

sidered a person deprived in three or more dimensions as multidimensionally poor

in the context of measuring poverty in the UK. In the Alkire and Foster (2011)

approach, we can vary the threshold and use different number of dimensions as

the cut-off to identify who are multidimensionally poor. Then, typically, societal

poverty is measured as the average weighted deprivation count faced by those

who are identified as multidimensionally poor. This is broadly the path followed

by around fifty countries and twenty political organisations that measure mul-

tidimensional poverty including the United Nations Development Programme’s

(UNDP) flagship Multidimensional Poverty Index (MPI), which is used to evaluate

multidimensional poverty globally (see Alkire et al., 2015; MPPN, 2019).

For any such composite measure as the MPI, how to weight the different di-

mensions is a serious issue. A common approach is to use exogenous weights,

which are independent of the dataset and reflect the value judgements of the so-

ciety, the analyst or the policy-maker. In contrast, one can apply endogenous

weights, which are determined by the dataset, to reflect the importance of the dif-

ferent dimensions in the composite measure of deprivation (OECD, 2008; Decanq
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and Lugo, 2013). Endogenous weights are broadly divided into two classes. The

first relies on data reduction techniques such as Principal Components Approach

(PCA), Multiple Correspondence Analysis (MCA) or Data Envelopment Approach

(DEA) (see e.g. Njong and Ningaye, 2008; Asselin and Anh, 2008; Asselin, 2009; Al-

kire et al., 2015; Coromaldi and Drago, 2017). These methods assign the weights

based on optimisation procedures applied to statistical concepts such as correla-

tion or variance (e.g. the weights of the first principal component in PCA yield the

maximum possible variance).

The second broad class of endogenous weights, which is the focus of this pa-

per, establishes a straightforward relationship between the weight assigned to the

different dimensions and the frequency of deprivation among the population in

the different dimensions based on some normative judgement. For instance, if

deprivation along one particular dimension becomes endemic, it may no longer

serve as a distinguishing factor and hence should be weighted less in the com-

posite index. Thus as (Deutsch and Silber, 2005, p.150) notes, “...the lower the

frequency of poverty according to a given deprivation indicator, the greater the

weight this indicator will receive. The idea, for example, is that if owning a re-

frigerator is much more common than owning a dryer, a greater weight should be

given to the former indicator so that if an individual does not own a refrigerator,

this rare occurrence will be taken much more into account in computing the over-

all degree of poverty than if some individual does not own a dryer, a case which

is assumed to be more frequent.” One could also argue the opposite, namely, as

more people become deprived in a dimension, much of the overall deprivation could

be generated from that dimension, and hence it should carry a higher weighting

in the composite index. For instance, if we observe more people to be deprived

in terms of health, compared to say housing, then that situation may reflect in-

stitutional shortcomings in the provision of health relative to housing and as a

result, health should be given a greater weight to reflect that aspect. Examples

of these frequency-driven endogenous weights are ubiquitous in the literature on

multidimensional poverty measurement (e.g. see Deutsch and Silber, 2005; Njong

and Ningaye, 2008; Aaberge and Brandolini, 2014; Whelan et al., 2014; Alkire

et al., 2015; Cavapozzi et al., 2015; Rippin, 2016; Datt, 2017; Abdu and Delamon-
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ica, 2018).

This paper explores the problems that arise in multidimensional poverty meas-

urement from the second broad class of endogenous weights, which includes hy-

brid weights where exogenous weights are used for some dimensions in combin-

ation with endogenous weights for other dimensions (e.g. see Dotter and Klasen,

2014). The use of endogenous weights, however, is not just restricted to multidi-

mensional poverty measurement. We also find endogenous weights in other fields

such as survey sampling, where both design weights and posterior weights are en-

tirely data driven. In fact the logic of reducing the weighting of a dimension when

deprivation in that dimension becomes endemic is akin to the weighting based

on inverse sampling probabilities. It is well known that such weights can lead

to higher standard errors and can impact inferences and regression coefficients

(Kish and Frankel, 1974; Gelman, 2007; Young and Johnson, 2012; Solon et al.,

2015). In a similar vein, we demonstrate in this paper that using endogenous

(data driven) weights in the construction of composite indices can be problematic.

Endogenous weights, in our context, generate a measurement externality since

they depend on the distribution of deprivations across the dimensions. Change

in one person’s deprivation (e.g. because she is no longer deprived in some dimen-

sion) affects the deprivation scores of many other people through its impact on the

weighting vector. Our appraisal of other people’s poverty is thus altered, despite

the absence of any objective change in their deprivation status. By contrast, this

measurement externality is nonexistent if the weights are set exogenously. This

paper examines the implications of measurement externality; we derive results ex-

plaining the specific ways in which measurement externalities operate, including

how monotonicity and subgroup consistency are violated due to these externalities.

In addition, we illustrate the violations using a numerical example and real world

data based on the 2011 Peruvian National Household Survey (ENAHO 2011).

The rest of the paper is organized as follows: Section 2 introduces the notation

and discusses the basic poverty measurement framework including the important

properties of monotonicity and subgroup decomposability. Although our paper is

mainly based around these properties, we also discuss two other key properties of

multidimensional poverty indices: the focus axiom and the transfer axiom. While
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the focus axiom ensures that the multidimensional poverty indices are insensit-

ive to the experience of those who are identified as multidimensionally non-poor,

the transfer axiom takes in to account the degree of inequality in the depriva-

tions across individuals in the society. In section 3 we introduce a general class of

endogenous weights as functions of deprivation frequencies. Using a numerical

example we demonstrate violation of the properties monotonicity and subgroup

consistency under endogenous weights. Section 4 shows how measurement ex-

ternalities operate once a person’s deprivation status in some dimension changes.

This externality is also observed for hybrid weights, as we show. Section 5 provides

the main theoretical results on measurement externality and violation of monoton-

icity and subgroup consistency properties under endogenous weights. In contrast,

we also demonstrate analytically that under certain mild restrictions, the axioms

of focus and transfer will be satisfied by multidimensional poverty indices even if

the weights are endogenous. Using real-world data from Peru, section 6 presents

an empirical illustration of violation of the properties of monotonicity and sub-

group decomposability under a commonly used endogenous weighting rule. The

final section summarises the paper with some concluding remarks.

2 Preliminaries: Counting poverty measurement

Consider a deprivation matrix XND, with each of N rows representing an indi-

vidual (or household) and each of D columns representing a dimension of depriva-

tion. We denote any individual as n, where n = 1, 2, ..., i, i′, ...N , and any dimension

as d, where d = 1, 2, ..., j, j′, ...D. Let ρnd ∈ {0, 1} denote the deprivation of person

n in indicator d in the deprivation matrix XND. For any individual n, poverty is

determined by the deprivations faced by the individual, which are given by the

deprivation vector ρXND
n : {ρn1, ρn2, ..., ρnD}. Note that, for our purpose, we assume

that individuals are either fully deprived in a dimension (ρnd = 1) or not at all

(ρnd = 0).

Let each dimension of XND be weighted, where weight in dimension d is rep-

resented as wXNDd . Then we have a weighting vector of strictly positive entries:

WXND = (wXND1 , wXND2 , ..., wXNDD ), such that:
∑D

d=1w
XND
d = 1. As alluded before,
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weights can be determined either endogenously or exogenously. While exogenous

weighting allocates a set value to weight each dimension (which can, for instance,

remain constant across different deprivation matrices), when we use endogenous

weights we take into account the distribution of the deprivation in each dimen-

sion. Thus, under endogenous weights, two different deprivation matrices XND

and X′ND, for instance, will have different weights for the dimensions. Specific-

ally, WXND = (wXND1 , wXND2 , ..., wXNDD ) and WX′ND = (w
X′ND
1 , w

X′ND
2 , ..., w

X′ND
D ), where

for some j and j′, wXNDj 6= w
X′ND
j and wXNDj′ 6= w

X′ND
j′ . We describe the weighting

functions with precision later in Section 3.

When it comes to measuring societal poverty in XND, there are two possible

paths one can take (Dutta et al., 2003). One path is to first aggregate the depriva-

tion across all the households in each dimension, yielding a dimension-specific

index, and then aggregate over all the dimensions to construct the composite in-

dex. A prominent example of this in the context of poverty is the UNDP’s Human

Poverty Index (UNDP, 2009). Under the second path, one aggregates over dimen-

sions for each household first, yielding a household- (or individual-) specific poverty

index, and then aggregates over households (or people) to obtain a societal poverty

index. The literature prefers the second path because we are interested in the

individuals’ poverty rather than the deprivation in the dimensions. The second

approach also allows us to capture the potential prevalence of multiple deprivation

concentrated among some individuals. Hence this is also the path followed by the

MPI of the Human Development Report (UNDP, 2010) (which effectively replaced

the Human Poverty Index). In our analysis below we take the second approach,

following most major contributions to multidimensional poverty measurement in-

cluding inter alia Tsui (2002); Bourguignon and Chakravarty (2003); Chakravarty

and D’Ambrosio (2006); Alkire and Foster (2011).

2.1 Individual poverty

We consider a generalised version of the counting-based poverty measures pro-

posed by Alkire and Foster (2011) where deprivation is measured through a two-

step procedure, allowing us to vary the number of dimensions over which a person

needs to be deprived in order to be considered multidimensionally deprived. Once
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we know which individuals are deprived, the measure takes a weighted aggregate

of their deprivation over all the dimensions. The resulting individual poverty func-

tion thus has two components: a poverty identification function, ψ, and a poverty

severity function, s (Silber and Yalonetzky, 2013).

Following Alkire and Foster (2011), a person is considered multidimensionally

deprived if they are deprived in at least k 6 D dimensions. For any individual

n, let the total count of deprivations be tn =
∑D

d=1 ρnd. The identification function

ψ, compares tn against a cutoff k ∈ {1, 2, .., D}, in order to identify the person as

either poor or non-poor from a multiple-deprivation perspective. Thus,

ψ(tn; k) = I(tn > k). (1)

When k = 1 the poverty identification function follows a ‘union’ approach whereby

any person with at least one deprivation is deemed poor. The ‘union’ approach is

implicitly or explicitly adopted in practice by a swathe of the literature, especially

that using endogenous weights based on data-reduction techniques (e.g. Njong and

Ningaye, 2008; Asselin and Anh, 2008; Asselin, 2009; Coromaldi and Drago, 2017).

On the other extreme, when k = D, poverty identification follows an ‘intersec-

tion’ approach which regards as poor only those who are deprived in all indicators.

Between both extremes, several other intermediate approaches exist in a counting

framework, corresponding to the other values that k can take (Alkire and Foster,

2011).

The severity component, s(Cn) : [0, 1] → [0, 1] measures the severity of the

multiple-deprivation experience among poor people (Chakravarty and D’Ambrosio,

2006; Alkire and Foster, 2011; Silber and Yalonetzky, 2013), where the weighted

deprivation score (or counting function) is:

Cn(XND;WXND) =

D∑
d=1

wdρnd, 0 6 CXND
n 6 1. (2)

The severity component satisfies the following properties: s(Ci) > s(Cj) whenever

Ci > Cj, s(0) = 0 and s(1) = 1. Additionally we may also include the restric-

tion that s′′(Cn) > 0. Thus the severity function is monotonic in the weighted

deprivation of each individual and it increases at a non-decreasing rate. Straight-
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forward examples of s(Cn) used in the literature include s(Cn) = Cn (Alkire and

Foster, 2011), s(Cn) = eαCn − 1 with α > 0 (Chakravarty and D’Ambrosio, 2006), or

s(Cn) = (Cn)β with β > 1 (Datt, 2018).

Thus, for any deprivation matrix XND, the individual poverty function for indi-

vidual n, pXNDn : {0, 1} × [0, 1] −→ [0, 1], takes the form:

pXNDn (tn, Cn; k) = ψ(tn; k)s(Cn). (3)

It combines the identification and the severity components to yield a measure of

overall deprivation at the individual level.

2.1.1 Properties of the Individual Poverty Function

In order to be useful as a poverty measure, we would demand the individual

poverty function to satisfy a minimum requirement of individual monotonicity

whereby an increase in an individual’s deprivation along some dimension should

not decrease their poverty.

We say X′ND is obtained by a simple increment of deprivation in dimension j of

individual i from XND if, ρX
′
ND

ij = 1, ρXNDij = 0 and ∀(n, d) 6= (i, j), ρX
′
ND

nd = ρXNDnd . Let

∆ρnd = ρ
X′ND
nd − ρXNDnd and ∆pn = p

X′ND
n (tn, Cn; k)− pXNDn (tn, Cn; k). Then we can state

the following:

Axiom 1. Individual monotonicity (IM): Suppose X′ND is obtained from XND by a

simple increment of deprivation in dimension j of individual i . Then ∆pi > 0.

Individual monotonicity is akin to the property of monotonicity put forth by As-

selin and Anh (2008), whereby the composite individual poverty function, pn, must

be monotonically increasing in the deprivation of each of the primary indicators.

Here we are linking changes in the individual’s deprivations to their poverty func-

tion (which depends on their counting function through equation (3)). Note that in

our definition of the axiom (1) an increase in one deprivation does not necessarily

translate into a strict increase in poverty. This is because, depending on the value

of k, an increase in one deprivation of a non-poor person may not be enough to

reclassify them as poor. Therefore, for that person, ψ = 0 even after the increase

in that deprivation, resulting in ∆pn = 0.
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2.2 Societal poverty

The societal poverty function aggregates the individual poverty experiences meas-

ured by the individual poverty function in (3). Therefore, we can represent it as

P : [0, 1]N −→ [0, 1]. In its most general form it could be written as:

P (XND;WXND , k) = f(pXND1 , pXND2 , ...., pXNDN )

where ∂P/∂pi > 0 and ∂P 2/∂pi∂pj = 0 (assuming differentiability of P ). It implies

that societal poverty P should be at the least non-decreasing in its constituent

parts and there is separability between them (Blackorby et al., 1978). Note that

WXND could be either exogenous or endogenous, in principle.

There are different methods of aggregation, each satisfying a set of properties.

Throughout the rest of the paper, we follow a common additively decomposable

societal poverty function:

P (XND;WXND , k) =
1

N

N∑
n=1

pXNDn (4)

A popular example of societal poverty function in (4) is the adjusted headcount

ratio by Alkire and Foster (2011) in which s(Cn) = Cn. Besides being additive

decomposable, the functions in (4) satisfy other key properties such as symmetry,

where each individuals impact on societal poverty depends on their level of poverty

and nothing else, and population invariance principle where if the population is

doubled with exactly the same distribution of deprivation, societal poverty remains

unchanged (see (Silber and Yalonetzky, 2013)).

2.2.1 Properties of the societal poverty function

The properties related to societal poverty functions can be broadly classified into

three types: invariance axioms, dominance axioms and subgroup axioms (Foster

et al., 2010, p. 497). We shall consider properties from each of these broad cat-

egories.

First, from the invariance axioms, we consider the focus axiom, which states

that the changing circumstances of the non-poor should not impact our assessment

of deprivation faced by the poor (as long as the non-poor do not fall into poverty
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themselves).

Let Q(XND) be the set of multi-dimensionally poor people inXND and let ∆P =

P (X′ND;WX′ND , k) − P (XND;WXND , k), then based on Alkire and Foster (2011) we

can write the focus axiom as:

Axiom 2. Focus (F): Suppose X′ND is obtained from XND by a simple increment of

deprivation in dimension j of individual i, where i /∈ Q(X′ND), then ∆P = 0.

Second, from the dominance axioms we consider two key properties. First,

following Bourguignon and Chakravarty (2003) and Alkire and Foster (2011), un-

der monotonicity an increase in a person’s deprivation should not decrease societal

poverty P . The monotonicity axiom can be written as:

Axiom 3. Monotonicity (M): SupposeX′ND is obtained fromXND by a simple incre-

ment of deprivation in dimension d of individual i, then ∆P > 0.

Additionally, we can also define another dominance axiom which captures the

intuition that whenever a relatively poorer individual is made less deprived in one

dimension at the expense of a relatively richer individual, then societal poverty

should not increase. As an example consider a multidimensional poverty assess-

ment over five dimensions and let health be one of them. Let individual A be

deprived in one dimension but not in health and individual B be deprived in all

dimensions including health. Suppose individuals are identified as multidimen-

sionally poor if they are deprived in any dimension (i.e. a ‘union’ approach). Now

consider a new situation where individual B is not deprived in health, but in-

dividual A is now deprived in health, with all else remaining the same. Thus

individual B’s total deprivation will decrease while A’s will increase. In that case

a transfer axiom demands that societal poverty should not increase (Bourguignon

and Chakravarty, 2003). This is because, in some sense the deprivation burden

after the transfer is shared more equally.

To formally express the transfer axiom we say X̃ND is obtained from XND by

a rank-preserving progressive transfer of deprivation j if for two poor individuals,

i, i′ ∈ Q(XND), such that the weighted deprivation score of i is less than i′’s, i.e.

CXND
i < CXND

i′ : ρij = 0 ρi′j = 1; ρ̃ij = 1, ρ̃i′j = 0, ρnd = ρ̃nd for all n 6= {i, i′} and
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d 6= {j}, and CX̃ND
i 6 CX̃ND

i′ (i.e. the deprivation scores do not switch ranks). Then

the transfer axiom can be written as:

Axiom 4. Transfer (T): Suppose X̃ND is obtained from XND by a progressive trans-

fer, then ∆P 6 0.

Finally, from the third broad category of subgroup axioms we consider the

property of subgroup consistency. Following Foster and Shorrocks (1991), sub-

group consistency is the requirement whereby if two societies XND and YND are

each composed of two subgroups, then if societal poverty of two of the subgroups

across the societies are same, then the difference in poverty between XND and

YND should reflect the difference in poverty between the two other subgroups. In

other words, the changes in the poverty of the subgroups should be reflected in the

societal poverty.

For a formal definition, we first say the deprivation matrix XND is a subgroup

decomposable matrix if it is formed by vertical concatenation of two matricesXN1D

and XN2D where N = N1 + N2. We represent it as XND = (XN1D ‖ XN2D). Then

the axiom of Subgroup Consistency can be stated as:

Axiom 5. Subgroup Consistency (SC): SupposeXND = (XN1D ‖ XN2D) andYND =

(YN1D ‖ YN2D) be two subgroup-decomposable deprivation matrices. P satisfies

subgroup consistency if [P (XN1D;WXN1D , k) > P (YN1D;WYN1D , k) ∧ P (XN2D;WXN2D , k) =

P (YN2D;WYN2D , k)]⇒ P (XND;WXND , k) > P (YND;WYND , k).

When weights are exogenous, P in equation (4) satisfies both monotonicity and

subgroup consistency (in fact the latter is implied by additive decomposability).

However, as shown below, P does not satisfy either monotonicity or subgroup con-

sistency when weights are endogenous (notwithstanding being additively decom-

posable).

3 A class of endogenous weights

We first introduce a general class of endogenous weights which includes some of

the proposals in the literature (see Deutsch and Silber, 2005; Datt, 2017, for re-
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views) . For that purpose, consider a deprivation matrix XND. We define the

function of aggregate deprivation in dimension d as:

hd = h(ρ1d, ρ2d, ..., ρqd) (5)

such that h(ρ1d, ..., ρid = 1, ..., ρqd)−h(ρ1d, ..., ρid = 0, ..., ρqd) > 0 where q is the number

of multi-dimensionally deprived people (i.e. the cardinality of the set Q). In ad-

dition, we assume that re-arranging the deprivations across individuals in dimen-

sion d, will not change the aggregate deprivation in that dimension, hd. Therefore

the aggregate deprivation is based only on those individuals who are identified as

deprived. We now define the weight of dimension d as:

wd = Hd(h1, ..., hd, ..., hD), (6)

where Hd(.) is continuous, and ∂Hd(h1, ..., hj, ..., hD)/∂hj T 0, ∀j. Thus weights are

based on some continuous function of the aggregate deprivation in each dimen-

sion. We allow for the possibility that if the aggregate deprivation in dimension

j increases, the weight of that dimension may increase, decrease or remain un-

altered. Since these are weights over dimensions, a natural constraint requires

that the weights sum up to one, i.e.
∑D

d=1wd = 1.

3.1 Hybrid weights

In this paper we investigate broad cases where the weights are endogenously

determined for all the dimensions. However, we could also consider situations

where the weights of some dimensions are exogenously given while the rest of

the dimensions bear endogenously determined weights. This type of weighting

would be deemed hybrid since it includes both exogenous and endogenous weight-

ing schemes. For instance, consider a multi-dimensional deprivation assessment

over four dimensions: health, income, housing and education. Suppose the weights

on health and income are determined exogenously and those on housing and edu-

cation are determined endogenously. It may be reasonable to have, for instance, a

certain proportion of the total weight, say θ, on health and income. Within health

and income one may decide to allocate αh and (1 − αh) proportions of the total θ
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weight to health and income respectively. Hence, the remainder (1− θ) proportion

would be assigned to the endogenously weighted dimensions and within the endo-

genous dimensions the allocation of the (1 − θ) proportion of the total weight will

be based on endogenous weighting schemes given in (6).

Suppose S is the set of all dimensions, SE ⊂ S is the set of endogenously

weighted dimensions with cardinality dE, and S ′E represents the set of exogen-

ously weighted dimensions. We can represent a hybrid weighting function for a

deprivation matrix XND as Wm,XND = (wm,XND1 , wm,XND2 , ..., wm,XNDD ) as:

wmj = θ.αj for all j ∈ S ′E (7)

wmj = (1− θ).Hj(h1, ..., hj, ..., hdE) for all j ∈ SE ⊂ S

where Hj follows the properties in equation (6), θ is the proportion of total weight

given to all the exogenous dimensions, αd is a fixed proportion of θ going to the exo-

genous dimension d, such that
∑D

d=1w
m
d = 1, and dE > 2. Given that the weights

add up to one, there needs to be a minimum of two dimensions whose weights are

endogenously determined, otherwise all the weights would be exogenously determ-

ined.

3.2 Examples of endogenous weights

Equations (5), (6) and (7) characterise a broad class of endogenous weights. Spe-

cific examples of such class, which we use for our numerical example and empirical

illustration, are:

hd =
1

N

q∑
n=1

ρnd. (8)

with the endogenous weight for dimension j being:

wj = Hj(h1, ..., hj, ..., hD) =
f(hj)∑D
d=1 f(hd)

, (9)

where the function f(hj) is continuous, and for δ > 0, f(hj + δ) − f(hj) ≷ 0. One

example of f with f(hj+δ)−f(hj) > 0 is: f(hj) = hj. On the other hand, an example
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of f with f(hj + δ) − f(hj) 6 0 is: f(hj) = − ln[h(j)] (see Deutsch and Silber, 2005,

p. 150). Another possibility is: f(hj) = 1 − hj. We use this functional form along

with equations (8) and (9) for our numerical and empirical expositions. In the

original formulations of Cerioli and Zani (1990) and Cheli and Lemmi (1995), the

function h maps from a population average of fuzzy membership functions related

to dimension j; but, as Deutsch and Silber (2005) explain, these averages boil down

to hd in equation (8) whenever the variable is dichotomic.

This can be easily extended to accommodate the general class of hybrid weights

given by (7). As before, let S be the set of all dimensions and SE ⊂ S be the set

of endogenous dimensions with cardinality dE and S ′E be the set of exogenous di-

mensions. Therefore the number of exogenous dimensions is D− dE. Suppose the

proportion of total weight given to exogenous variables is θ = 0.5. Furthermore,

assume that the weight is equally divided among the exogenous dimensions. Then

an example of a hybrid weighting function would be given by:

wmj =
0.5

dE
∀ j ∈ S ′E, (10)

wmj =
0.5f(hj)∑
d∈SE

f(hd)
∀ j ∈ SE ⊂ S

3.3 Numerical example

To demonstrate the violation of the key properties of monotonicity and subgroup

consistency by a multidimensional counting poverty index under endogenous weights,

we consider a simple deprivation matrix with ten individuals (in rows) and four di-

mensions (in columns) in Table 1:
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Table 1: Deprivation Matrix showing the Initial Distribution of Deprivation

Individuals Dimensions
Deprivation

Count

D1 D2 D3 D4

1 0 0 0 1 1

2 1 0 1 0 2

3 0 0 1 1 2

4 0 0 1 1 2

5 1 0 1 1 3

6 0 1 1 1 3

7 0 1 1 1 3

8 1 1 1 1 4

9 0 1 1 1 3

10 0 0 1 1 2

As a first step, we identify the individuals who are multidimensionally poor

using equation (1) which depends on individuals’ total number of deprived dimen-

sions. We use cutoff values k = 1, 2, 3, 4. Since k determines the number of poor

people (q), there will be a different vector of endogenous weights for each k (as per

equation 1). For this numerical example, we calculate individual poverty based

on (i) pn = ψ(tn; k)Cn; and (ii) pn = ψ(tn; k)C2n. The societal poverty P is an average

of individual poverty functions as in (4). We use endogenous weights of functional

form given by equation (9), with f(hj) = 1− hj for our computations.

3.3.1 Violation of Monotonicity

To show the violation of monotonicity, we compute P on the initial deprivation

matrix in Table 1 and a changed deprivation matrix derived from Table 1 by an

increase in deprivation of individual 2 in dimension D4. Although the total num-

ber deprivations in society now has increased, we show that the under endogenous

weights P will decrease for several measurement choices (e.g. of k) thus violating

16



monotonicity. In addition, we demonstrate that this violation also holds under

hybrid weights, attaching exogenous weights to dimensions D2 and D3, and en-

dogenous weights to dimension D1 and D4. Dimensions D2 and D3 has 35 and

15 percent of the overall weight respectively, giving the exogenous dimensions a

share of 50 percent of the total weight. The endogenous weights share jointly 50

percent of the overall weight. For the hybrid weights we follow (10).

Table 2 shows the computed results for (a) the head-count ratio (proportion of

multidimensionally poor in the population (i.e. P1 = 1
N

∑N
n=1 ψ(tn; k))), (b) societal

poverty when severity functions are linear (i.e. P2 = 1
N

∑N
n=1 ψ(tn; k)Cn), (c) so-

cietal poverty when severity functions are squared (i.e. P3 = 1
N

∑N
n=1 ψ(tn; k)C2n),

and (d) societal poverty under linear severity function but with hybrid weights as

described above (P4). The first four columns of results relate to the deprivation

matrix in Table 1, whereas the last four columns correspond to the deprivation

matrix when deprivation of individual 2 increases. In both cases, the rows show

results for different choices of the k cutoff.

Table 2: Societal poverty and Monotonicity

Initial deprivation matrix
Changed deprivation matrix:

Simple increment

k P1 P2 P3 P4 P1 P2 P3 P4

1 1.00 0.420 0.256 0.463 1.00 0.386 0.242 0.425

2 0.90 0.438 0.270 0.481 0.90 0.420 0.263 0.463

3 0.50 0.375 0.290 0.373 0.60 0.443 0.335 0.435

4 0.10 0.100 0.100 0.100 0.10 0.100 0.100 0.100

Note in Table 2 the differences in the values of societal poverty indices between

the two deprivation matrices. For values of k = 1, 2 societal poverty decreases

even though the only change was an increase in one person’s deprivation. This is

true not only when the severity function is linear, but also when it is squared. We

also find that this is the case for hybrid weights. Hence, the monotonicity axiom

is clearly violated. The intuition is that, after the change undergone by individual
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2, the decreased weight of dimension D4 reduces the deprivation score of all the

individuals who are deprived in that dimension. Since most people are deprived in

dimension D4, the impact is big enough to trigger a reduction in societal poverty.

However for k = 3, the headcount (P1) is 0.6 instead of 0.5 because individual

2 now is deprived in three dimensions rather than two. The poverty of individual

2 is now part of the k = 3 case, which was not the case in the original deprivation

matrix. This new identification of individual 2 as poor (when k = 3) dominates

any decrease in the other individuals’ poverty. Hence, societal poverty increases

for k = 3. For k = 4 societal poverty remains unaltered because the proportion of

individuals deprived in every dimension remains unaltered (even after becoming

deprived in dimension D4, individual 2 is not identified as poor when k = 4). In

fact, only one individual (8) is poor in all dimensions in both the matrices. We

analytically show later that when a person is deprived in all dimensions, then

the changes in weights do not impact their deprivation score. Hence, weights

become irrelevant in counting poverty indices when the poor are identified using

an intersection approach (deeming someone poor only if they are deprived in every

dimension).

3.3.2 Violation of Subgroup Consistency

We divide our initial population into two subgroups. Subgroup I consists of in-

dividuals 1, 2, 3 and 8 from Table 1, while Subgroup II comprises the remaining

seven individuals. Subgroup consistency implies that if, say, poverty in a sub-

group changes with all else remaining unchanged, then societal poverty should

reflect that change. To that end, in this example, we decrease the poverty in sub-

group 1, while keeping everything else unchanged. Under subgroup consistency

this would mean that societal poverty should decrease too.

For Subgroup I, Subgroup II and the whole population we compute P1, P2, P3

and P4 under different k cut-off values: Table 3a shows the results for the original

deprivation matrix as given in Table 1.
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Table 3a: Subgroup Consistency: Societal Poverty under Initial Deprivation Mat-
rix

Subgroup

I

Subgroup

II

Total

Population

k P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

1 1.00 0.464 0.321 0.492 1.00 0.292 0.135 0.408 1.00 0.420 0.256 0.463

2 0.75 0.438 0.320 0.450 1.00 0.292 0.135 0.408 0.90 0.438 0.270 0.481

3 0.25 0.250 0.250 0.250 0.67 0.417 0.264 0.430 0.50 0.375 0.290 0.373

4 0.25 0.250 0.250 0.250 0.00 0.000 0.000 0.000 0.10 0.100 0.100 0.100

Table 3b shows the computation for societal poverty when we decrease the

deprivation of individuals 3 and 8 in dimension D4 and D3 respectively. Note

that change in deprivation is happening both in dimensions with exogenous and

endogenous weights. This should only impact the poverty values for Subgroup I

and the overall population.

Table 3b: Subgroup Consistency: Societal Poverty under the Changed Deprivation
Matrix

Subgroup

I

Subgroup

II

Total

Population

k P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

1 1.00 0.417 0.225 0.413 1.00 0.292 0.135 0.408 1.00 0.453 0.265 0.466

2 0.50 0.295 0.184 0.300 1.00 0.292 0.135 0.408 0.80 0.458 0.285 0.455

3 0.25 0.173 0.120 0.213 0.67 0.417 0.264 0.430 0.50 0.356 0.254 0.358

4 0.00 0.000 0.000 0.000 0.00 0.000 0.000 0.000 0.00 0.000 0.000 0.000

Comparing Tables 3a and 3b we can see that for k = 1 and k = 2, societal

poverty in Subgroup I has decreased. This holds true for all the three measures

of poverty, P2, P3 and P4. As expected, Subgroup II’s poverty remains unchanged
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because none of the individuals whose deprivation status changed is in that group.

Yet when it comes to the whole population, instead of a decrease in societal poverty,

for k = 1, we see an increase in societal poverty for all the poverty measures

including the hybrid weights, and for k = 2, for P2 and P3 only. Thus the axiom of

subgroup consistency is violated.

This violation is occurring because, when the total population is considered,

the change in the weights triggers poverty increases among some individuals in

Subgroup II. For k = 3, we can see that societal poverty is now reduced in line

with what the axiom of subgroup consistency would suggest. As the number of

multidimensionally poor is reduced (due to increase in the cutoffs k) the decrease in

poverty of individual 8 now dominates any possible increase in individual poverty.

For k = 4, there is no societal deprivation in Table 3b because there are no longer

individuals deprived in all dimensions in the new deprivation matrix, as individual

8, the only one deprived in all dimensions (see Table 1), ceases to be deprived in

one dimension.

4 Endogenous weights and measurement extern-

alities

Why do we observe this violation of basic properties when using endogenous weights?

In this section, we investigate this issue in greater depth. Our focus will be on the

weighted deprivation score (or counting function) Cn, because that is where the

endogenous weights come in to play. We establish that the change in one person’s

deprivation status in one dimension changes the counting functions for everyone

else too. Thus, there are clear measurement externalities among individuals,

which as will be shown later, lead to situations where fundamental properties of

poverty functions are violated.

Consider a deprivation matrix XND, where individual i is considered deprived.

LetX′ND be obtained fromXND by a simple increment of deprivation in dimension j

of individual i in XND. Then the change in the counting function of any individual

n 6= i, who is also identified as deprived, is:
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∆Cn = C
X′ND
n − CXND

n = ρnj∆wj +
D∑
d=1
d6=j

ρnd∆wd, (11)

where ∆Cn = C
X′ND
n − CXND

n ; and ∀d ∈ {1, 2, ..., D}, ∆wd = w
X′ND
d − wXNDd . For

simplicity of notation we denote ρXNDnj = ρnj, ρ
X′ND
nd = ρ′nd.

For the ith individual who became deprived in the jth dimension, we know that

ρ′ijw
′
j−ρijwj = w′j. Thus, ∆Ci due to a change in the status of person i with respect

to dimension j, is given by:

∆Ci = w′j +
D∑
d=1
d 6=j

ρid∆wd. (12)

As long as person i is also deprived in some other dimension, the changes in the

other weights produced by the change in i’s status regarding j (i.e. ∀d 6= j, ∆wd)

also affect the total change in Ci. These same changes in weights led by the change

in deprivation status of person i in dimension j produce, in turn, changes in the

counting function of every other person.

Note that in (11), the change in the counting function will depend on how the

endogenous weights change (the signs of ∆wd ∀d), and thus will depend on the

weighting rule. Hence, a priori, the change in any person’s counting function

(which in turn affects her individual poverty measure, pn) is ambiguous. Propos-

ition 1 captures how changes in ρij can impact weights in each dimension and,

through that channel, the counting function of everybody besides person i:

Proposition 1. Suppose X′ND is obtained from XND by a simple increment of

deprivation of deprivation in dimension j for individual i. For all n 6= i:

(i) if ∀d, ρnd = 0, or ∀d, ρnd = 1, then ∆Cn = 0,

(ii) if 0 <
∑D

d=1 ρnd < D, then

 ∆Cn S 0⇐⇒ ∆wj S 0 if ρnj = 1

∆Cn T 0⇐⇒ ∆wj S 0 if ρnj = 0
.

Proof: Let ∀d ∈ {1, 2, ..., D},∆wd = {Hd(h1, ..., hj + δ, ..., hD)−Hd(h1, ..., hj, ..., hD)},

where δ ≡ hj(ρ1j, ..., ρij = 1, ..., ρNj)− hj(ρ1j, ..., ρij = 0, ..., ρNj).
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Case (i): Suppose individual n is not deprived in any dimension. In that case,

∀d, ρnd = 0. Thus from (11), we know that ∆Cn = 0. Now suppose individual n is

deprived in all D dimensions. Since
∑D

d=1wd = 1, we can deduce that:

D∑
d=1

∆wj = 0 (13)

Thus,

∆wj = −
D∑
d=1
d6=j

∆wd. (14)

Hence, from (11), ∆Cn = 0.

Case (ii): Suppose for n, ρnj = 1 and ∃d 6= j such that ρnd = 0. Then, from (14),

we can infer:

|∆wj| >

∣∣∣∣∣∣∣∣
D∑
d=1
d6=j

ρnd∆wd

∣∣∣∣∣∣∣∣ ,
since the right-hand side of the inequality aggregates over only those dimensions

in which individual n is deprived, except j. Thus:

∆Cn T 0⇐⇒ ∆wj = {Hj(h1, ..., hj + δ, ..., hD)−Hj(h1, ..., hj, ..., hD)} T 0.

On the other hand if, for n, ρnj = 0; then from (11) we get:

∆Cn =
D∑
d=1
d6=j

ρnd∆wd.

Then:
D∑
d=1
d 6=j

ρnd∆wd T 0if ∆wj S 0.

Thus: ∆Cn T 0⇐⇒ ∆wj = {Hj(h1, ..., hj + δ, ..., hD)−Hj(h1, ..., hj, ..., hD)} S 0. �
Proposition 1 reveals that the effect of rendering individual i deprived in di-

mension j on the counting function of other individuals, n 6= i, only depends on the

direction of change in the weight of dimension j, in combination with the depriva-

tion status of n in dimension j. Note that dimension j is the only one where
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the number of deprived people changes. It plays a central role in understanding

the changes in the counting function and, as result, changes in individual poverty

levels. If individual n is deprived in j, then an increase (respectively decrease) in

the weight of j leads to an increase (respectively decrease) in n’s counting function.

Otherwise, if n is not deprived in j then an increase (respectively decrease) in the

weight of j reduces (respectively increases) n’s counting function.

Will this result hold for hybrid weights too? So long as the dimension in

which the changes occur is endogenous, we will see a similar impact as before

on the counting function. Consider a deprivation matrix XND with an endogen-

ous weighting vector Wm = (wm1 , w
m
2 , ..., w

m
D), where dimension j is endogenously

determined. Now suppose we get X ′ND from XND, through a simple increment of

deprivation in dimension j for person i. Then we can write (11) and (12) as:

∆Cn = ρnj∆w
m
j +

dE∑
d=1
d 6=j

ρnd∆w
m
d (15)

∆Ci = w′mj +

dE∑
d=1
d 6=j

ρid∆w
m
d . (16)

where d ∈ SE ⊂ S and ∆wmd is based on (7). Note that for the dimensions whose

weights are exogenous: ∆wmd = 0. Thus we can write the following proposition:

Proposition 2. Suppose X′ND be obtained from XND by a simple increment of

deprivation in dimension j of individual i. Suppose we have a hybrid weight-

ing vector Wm,XND = (wm,XND1 , wm,XND2 , ..., wm,XNDD ), where dimension j ∈ SE, the set

of endogenously determined dimensions. For all n 6= i,

(i) if ∀d, ρnd = 0, or ∀d, ρnd = 1, then ∆Cn = 0,

(ii) if 0 <
∑D

d=1 ρnd < D, and ∀d ∈ SE, ρnd = 1 then ∆Cn = 0,

(iii) if 0 <
∑D

d=1 ρnd < D, and ∃d ∈ SE, ρnd = 0 then

 ∆Cn S 0⇐⇒ ∆wmj S 0 if ρnj = 1

∆Cn T 0⇐⇒ ∆wmj S 0 if ρnj = 0

Proof: The part (i) of the proof is similar to Proposition 1. For part (ii),
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∑D
d=1w

m
d = 1, implies:

D∑
d=1

∆wmj = 0 (17)

Given that exogenous weights do not change, from (17) one can deduce that:

∆wj = −
dE∑
d=1
d6=j

∆wd (18)

Note that (18) holds over SE. Thus if ∀d ∈ SE, ρnd = 1, then from (15) we can im-

mediately deduce that ∆Cn = 0. For part (iii), using similar logic as in Proposition

1 and ∆wmj , if ∃d ∈ SE, ρnd = 0, then ∆Cn will be dependent on ∆wmj . �
Proposition 2 demonstrates that so long as the change in the level of depriva-

tion of individual i takes place in an endogenous dimension, then measurement

externalities will spill over to other individuals, particularly those who are not de-

prived in all the dimensions whose weights are determined endogenously. This

means that the impact of a change in a person’s deprivation in a certain dimen-

sion on the overall deprivation of others is ambiguous. Hence, societal poverty

may increase, decrease or remain the same. Thus, for hybrid weights the broad

thrust of our results based on endogenous weights will carry through.

In fact, this problem of measurement externalities is also present in the meas-

urement of monetary poverty with so-called strongly relative poverty lines where

the poverty line is usually set as a proportion of the mean or the median of the in-

come distribution (Foster et al., 2013; Ravallion, 2016). A typical example would

be for the poverty line to be set at 60 percent of the median income as is done in the

UK. If the relative poverty line is based on the mean, then a change in any per-

son’s income will generate changes in everyone else’s individual poverty function

by way of changes in the poverty line itself. At a more practical level, Ravallion

(2016, p. 210) reports some empirical cases in Ireland and New Zealand where

relative poverty measures moved in exact opposite direction to their counterparts

based on absolute poverty lines (i.e. exogenously determined).

The arguments presented in this paper are independent of the externality is-

sues involved in relative poverty lines of monetary poverty measures. For us the

‘deprivation line’ for each dimension, which determines whether a person is de-
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prived in that specific dimension or not, is fixed and insensitive to the distribution

of deprivations. In fact, we take the deprivation of individuals in the different

dimensions as a primitive for our analysis. Thus we do not have any externality

issues emanating from changing the deprivation lines.

5 Endogenous weights and societal poverty

In this section we discuss how endogenous weights impact on the fulfillment of

important properties of multidimensional poverty. The discuss specific properties

that taken together, come from a broad set of axioms, such as invariance axioms,

dominance axioms and subgroup axioms. We demonstrate that while multidimen-

sional poverty based on endogenous weights under certain conditions satisfies the

focus axiom and the transfer axiom, it will invariably violate axioms of monoton-

icity and subgroup consistency.

5.1 Focus

The Focus axiom effectively states that any changes in the deprivations of the

non-poor should not alter societal poverty assessments (as long as the non-poor do

not fall into poverty). Hence the ‘focus’ remains on the poor. In this section, we

show that under endogenous weights, given the identification function in equation

1 and the class of endogenous weights based on equations 5 and 6, changes in

the non-poor’s deprivation does not change overall poverty. We demonstrate that

by showing that an increase the deprivation of the non-poor does not lead to a

different poverty level.

Consider a deprivation matrix XND such that someone is identified as poor if

they are deprived in at least k dimensions, i.e. for any individual n, ψ(tn; k) =

I(tn > k). Thus pXNDn = 0 for all n such that tn < k. Note that it is still possible

for non-poor individuals to be deprived in more than one dimension. The societal

poverty from (3) can be written as:

P (XND;WXND , k) =
1

N

q∑
n=1

pXNDn , (19)
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where q is the number of poor people in the society. Now supposeX′ND was derived

fromXND by a simple increment of deprivation for some non-poor individual i /∈ Q.

Clearly, if i /∈ Q(X′ND), i.e. ti < t′i < k, then the number of poor people remains

the same, which implies that the weights based on (5) and (6) do not change either.

Hence, P (X′ND;WXND , k) = P (XND;WXND , k). Thus the Focus axiom is satisfied.

However, this result whereby the focus axiom is satisfied works because: (i) our

identification function is based purely on the total number of deprived dimensions,

which essentially weights them exogenously; and (ii) our broad class of endogen-

ous weights does not take into account the non-poor’s deprivation status in any di-

mension. Modifying any of these functional assumptions would immediately trig-

ger a violation of the focus axiom. For example, if equation 5 were replaced with

hd = h(ρ1d, ρ2d, ..., ρNd (noticeN replacing q at the end), then changes in the depriva-

tion status of the non-poor in any dimension would alter the endogenous weights

with concomitant measurement externalities and changes in societal poverty level.

Likewise,changing the identification function ψ by replacing ti with an endo-

genously weighted sum of deprivations (essentially the deprivation score Cn) ap-

plying to the whole matrix XND would also lead to a violation of the Focus axiom,

unless we adopted the union approach to the identification of the poor by setting

k = 0. In other words, unless we allowed anybody in society to be potentially poor

as long as they are deprived in at least one dimension.

5.2 Monotonicity

One of the main implications of Proposition 1 for societal poverty indices based

on endogenous weights (at least those of the form (6)) is that they can violate the

desirable axiom of monotonicity (axiom 3). This violation implies, inter alia, that

when poor individuals in a society become less deprived, societal poverty may in-

crease. In order to understand how this situation comes about, it is important to

derive the impact produced by this change in the deprivation status of person i on

the societal poverty index.

For any XND, let Pr[ρnj = 1|n 6= i] ≡ 1
N−1

∑N
n=1,n6=i I(ρnj = 1|n 6= i) (and similar

definition for Pr[ρnj = 0|n 6= i]). Suppose X′ND is obtained from XND by increasing
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deprivation in dimension j of individual i. Then:

∆P = 1
N

∆pi

+N−1
N

Pr[ρnj = 1|n 6= i] 1
(N−1)Pr[ρnj=1|n6=i]

∑N
n=1,n 6=i I(ρnj = 1|n 6= i)∆pn

+N−1
N

Pr[ρnj = 0|n 6= i] 1
(N−1)Pr[ρnj=0|n6=i]

∑N
n=1,n 6=i I(ρnj = 0|n 6= i)∆pn

(20)

where:

∆pn = ψ(tn; k)s(CXND
n + ∆Cn)− ψ(tn; k)s(CXND

n ). (21)

That is, the change in societal poverty, ∆P , depends on (i) the change in per-

son i’s individual poverty (∆pi), (ii) the total change in deprivation of other in-

dividuals deprived in j (captured in (20) as the average change in the poverty

of other people deprived in j
(

1
(N−1)Pr[ρnj=1|n6=i]

∑N
n=1,n 6=i I(ρnj = 1|n 6= i)∆pn

)
multi-

plied by the proportion of people, other than i, deprived in j (Pr[ρnj = 1|n 6= i])), and

(iii) the total change in deprivation of other individuals who are not deprived in j

(shown in (20) as the average change in the poverty of other people not deprived

in j
(

1
(N−1)Pr[ρnj=0|n6=i]

∑N
n=1,n6=i I(ρnj = 0|n 6= i)∆pn

)
multiplied by the proportion of

people, other than i, not deprived in j (Pr[ρnj = 0|n 6= i])).

In the following discussion we show how the three components highlighted

above react to an increase in one person’s deprivation. First we show that an

increase in deprivation in any one dimension for any individual increases their

poverty. In others words we show that individual monotonicity (axiom 1) is satis-

fied.

A helpful corollary stems from (7) and the definition of individual poverty (3):

Corollary 1. Let X′ND be obtained from XND by a simple increment of depriva-

tion in dimension j of individual i. Then individual i’s poverty function does not

decrease, that is ∆pi > 0.

Proof: First we prove that ∆ρij > 0 leads to ∆Ci > 0. From equation (12) we

can get:
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∆Ci = w′j +
D∑
d=1
d6=j

ρid∆wd, (22)

where w′j is the weight of dimension j in X′ND. Since
∑D

d=1 ∆wd = 0, then

∆wj ≷ 0 implies
∑D

d=1,d6=j ∆wd ≶ 0. Thus:

|∆wj| =

∣∣∣∣∣∣∣∣
D∑
d=1
d6=j

∆wd

∣∣∣∣∣∣∣∣ >
∣∣∣∣∣∣∣∣
D∑
d=1
d6=j

ρid∆wd

∣∣∣∣∣∣∣∣ . (23)

Suppose, ∆wj > 0. Thus from (23) |w′j| > |
∑D

d=1,d 6=j ρid∆wd| which from (22)

implies ∆Ci > 0. Likewise if ∆wj < 0, we know from (23)
∑D

d=1,d 6=j ∆wd > 0. Given

w′j > 0 we can deduce from (22) that ∆Ci > 0.

Let ti be the total number of dimensions in which individual i is deprived and k

is the cut-off for the number of dimensions one has to be deprived to be identified

as multidimensionally poor. Then if ti > k, given ∆Ci > 0 and the definition of pn,

we can infer that ∆pn > 0. Likewise, if ti < k and t′i > k given ∆Ci > 0, then again

∆pn > 0. Otherwise ∆pn = 0. �
An increase in a person’s deprivation does not decrease their individual poverty

function, therefore the latter satisfies individual monotonicity (axiom 1). Thus,

the main problem with counting poverty functions relying on endogenous weights

lies elsewhere with the presence of measurement externalities.

Next we investigate how the poverty of other individuals change as a result of

the change in i’s deprivation. Two helpful corollaries stem from (11) combined

with Proposition 1 and the definition of individual poverty (3):

Corollary 2. Let X′ND be obtained from XND by a simple increment of deprivation

in dimension j of individual i. Suppose ∆wj > 0. For any individual n 6= i:

∆pn > 0⇐⇒ ∆wj > |
∑D

d=1,d 6=j ρnd∆wd| if ρnj = 1

∆pn 6 0⇐⇒
∑D

d=1,d 6=j ρnd∆wd < 0 if ρnj = 0
.

When ∆wj > 0, from (23) we know that
∑D

d=1,d6=j ρnd∆wd < 0. Thus, ∆Cn > 0.

Hence if either tn > k, or [tn < k and t′n > k], then ∆pn > 0. Otherwise, ∆pn = 0.

Using a similar logic, we get the following result when ∆wj < 0:
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Corollary 3. Let X′ND be obtained from XND by a simple increment of deprivation

in dimension j of individual i. Suppose ∆wj < 0. For any individual n 6= i:

∆pn 6 0⇐⇒ |∆wj| >
∣∣∣∑D

d=1,d 6=j ρnd∆wd

∣∣∣ ifρnj = 1

∆pn > 0⇐⇒
∑D

d=1,d 6=j ρnd∆wd > 0 if ρnj = 0
.

Corollary 2 and Corollary 3 demonstrate that, with endogenous weights, ∆ρij 6=

0 is bound to produce changes in the poverty of other individuals, ∆pn 6= 0 where

n 6= i, which will differ based on their deprivation status regarding j. Therefore,

the aforementioned average changes (among those deprived in j and among those

not deprived in j) will bear opposite signs. Hence, a priori, expression (20) may be

positive, negative, or even nil. Thus we can deduce the following result:

Proposition 3. Let X′ND be obtained from XND by a simple increment of depriva-

tion in dimension j of individual i. Then, ∆P T 0, thereby violating monotonicity

(axiom 3).

This is a general result, not relying on any particular functional form of the

weighting function, or any particular parameters or data. It demonstrates that

the change in societal poverty, ∆P , resulting from a change in deprivation in

any one dimension experienced by any one poor individual would be ambiguous,

thereby violating monotonicity (axiom 3). Therefore, under endogenous weights it

is quite possible that if the deprivation of an individual increases in some dimen-

sion, overall poverty will decline. Note that this result also holds for any hybrid

weighting rule where endogenous weights have been used alongside exogenous

weights.

From (21) we know the magnitude of change depends on k; therefore the same

change in the deprivation status of i (regarding j) may generate different values

and signs for ∆P , depending on the choice of k. Likewise, the specific functional

forms chosen for the weights and the severity function, s, also influence the total

effect. This was evident in the numerical example in the previous section.

Finally, note that, by contrast, with exogenous weights the score of everybody,

except i, remains unaltered: ∆Cn = 0, ∀n 6= i. Consequently: ∆pn = 0, ∀n 6= i.

Hence, finally, ∆P = 1
N

∆pi. That is, with exogenous weights, societal poverty
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changes coherently with the change in person i’s individual poverty, as the latter

does not affect the poverty measurement of anybody else. Hence monotonicity is

fulfilled.

5.3 Transfer

The transfer axiom is also a part of the broad group of dominance properties re-

lated to poverty indices (Foster et al., 2010). The basic intuition of our transfer

axiom is that if a poor person experiences a new deprivation in a certain dimen-

sion, whilst another poor person suffering from a higher deprivation score ceases

to be deprived in that same dimension, then we would consider that overall poverty

should not increase (as long as the two deprivation scores involved do not switch

ranks). Here we demonstrate that for the endogenous weights the transfer prop-

erty holds as long as the severity function s is convex.

Consider two poor individuals i, i′ ∈ Q(XND), such that total deprivation score

of i is less than n, i.e. Ci < Cn. Moreover, we obtain X′ND from XND the following

way: ρij = 0 ρi′j = 1; ρ′ij = 1, ρ′i′j = 0, and ρnd = ρ′nd for all n 6= {i, i′} and d 6= {j}.

Imagine also that C ′i 6 C ′n.

Now recall function hd (equation 5). If hd is a symmetric function (i.e. a per-

mutation of the deprivation statuses ρid will not affect hd) then it should be the case

that: hj(ρ1j, ..., ρij = 0, ρnj = 1, ..., ρqj) = hj(ρ1j, ..., ρij = 1, ρnj = 0, ..., ρqj) . Therefore,

since all hd remain unchanged, the endogenous weights remain unaltered in turn,

i.e. ∆wd = 0 ∀d ∈ {1, ..., D}. Hence the change in poverty due to the transfer is the

following:

N∆P = ∆pi + ∆pn = [ψ(ti + 1; k)s(CXND
i + wj)− ψ(ti; k)s(CXND

i )] (24)

+[ψ(tn − 1; k)s(CXND
n − wj)− ψ(tn; k)s(CXND

n )]

Since i and n remain poor after the transfer, equation 24 boils down to:

N∆P = [s(CXND
i + wj)− s(CXND

i )] + [s(CXND
n − wj)− s(CXND

n )] (25)

Now, it is clear from equation 25 that the convexity of s guarantees that ∆P 6 0
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in the event of a transfer (since |s(CXND
n −wj)−s(CXND

n )| > |s(CXND
i +wj)−s(CXND

i )|).

Finally, note that if s is not convex, the transfer axiom is violated (as it is ap-

parent from equation 25), because the convexity of s is a requirement for the fulfil-

ment of the transfer axiom. In other words, it is a necessary condition irrespective

of how the weights are determined (whether endogenously or not).

5.4 Subgroup consistency

Another key implication of Proposition 1, is that societal poverty indices based on

endogenous weights (those of the form (6) can also violate the desirable property of

subgroup consistency (axiom 5). In other words, we may find that poverty of a sub-

group of the population had declined, all else subgroups remaining unchanged, yet

poverty of the whole society has increased. However, this does not mean that sub-

group consistency is only relevant when the poverty of one subpopulation changes

and all other subpopulations’ remaining unchanged. Through repeated applica-

tion of the property of subgroup consistency we can compare situations when the

poverty of one or more of the subpopulations changes (Foster and Szekely, 2008).

Violation of subgroup consistency, on the other hand, will essentially imply that

societal poverty may increase even if the poverty of all the subpopulations have

reduced. Thus this is a powerful axiom which ensures that changes in the poverty

of the total population is consistent with the changes happening at the subpopula-

tion level. We claim the following:

Proposition 4. Suppose for any deprivation matrixXND, the societal poverty meas-

ure is given by an additively decomposable poverty function P (XND;W, k), where

W represents the class of endogenous weights in (6). Then P (XND;W, k) fails to

satisfy the subgroup consistency (axiom 5).

Proof: Consider a deprivation matrix decomposed by subgroups XND = (XN1D ‖

XN2D) where N = N1 + N2,∀n ∈ XN1D, ρnj = 1 and ∀n ∈ XN2D, ρnj = 0. Sup-

pose X ′ND = (XN1D ‖ X ′N2D), where X ′N2D is obtained from XN2D by increasing

deprivation of person i in dimension j, i.e. ∆ρij = 1, i ∈ XN2D. Suppose for X ′N2D:

∆wj = wj(ρij = 1)− wj(ρij = 0) < 0.
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To be subgroup consistent it must be the case that ∆PX′ND−XND S 0 if and only

if ∆PX′N2D
−XN2D S 0. Applying (20) we get:

∆P
X′N2D

−XN2D
=

1

N2
∆p

X′N2D
−XN2D

i +
1

N2

N2∑
n6=i

I(ρnm = 0)∆p
X′N2D

−XN2D
n . (26)

In (26), ∆p
X′N2D

−XN2D
i > 0 from Corollary (1). Also ∆p

X′N2D
−XN2D

n > 0 ∀n 6= i due

to Corollary 3. Therefore, ∆P
X′N2D

−XN2D > 0. Now:

∆P
X′ND−XND =

1

N
∆p

X′ND−XND
i +

1

N
[

N∑
n6=i

I(ρnm = 0)∆p
X′ND−XND
n +

N∑
n 6=i

I(ρnm = 1)∆p
X′ND−XND
n ]

(27)

Again, in (27) ∆p
X′ND−XND
i > 0. Likewise,

∑N
n6=i I(ρnm = 0)∆p

X′ND−XND
n > 0. How-

ever, from Corollary 3,
∑N

n 6=i I(ρnm = 1)∆p
X′ND−XND
n 6 0. Therefore, ∆P

X′ND−XND S 0,

unlike ∆PX′N2D
−XN2D > 0. In fact, with N1 →∞, we can obtain ∆P

X′ND−XND 6 0. �
Proposition 4 thus demonstrates, in general terms, that endogenous weights

will lead to the violation of subgroup consistency (axiom 5). Note that the class

of endogenous weights used is very general. As before, this result will also ap-

ply to any hybrid weights which includes both endogenous and exogenous weights,

so long as the changes in deprivation status are happening in dimensions where

the weights are endogenous. In our numerical example, in Section 3.3, where we

have shown the violation of subgroup consistency for hybrid weights, the changes

in deprivation happened also in dimensions with endogenous weights too. If the

changes happen solely in the dimensions with exogenous weights, subgroup con-

sistency will not be violated, as weights would remain the same for all the dimen-

sions.

6 Empirical illustration

We now illustrate the aforementioned measurement externalities in counting poverty

indices with endogenous weights, and how they lead to violations of monotonicity

and subgroup consistency, in real world data rather than a constructed example,

by assessing the impact of a change in one household’s deprivation status in one
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single variable on regional poverty rates in Peru, using the Peruvian National

Household Survey 2011 (ENAHO 2011). What is important to keep in mind here

is not the magnitude of the change, since it will invariably be small given that the

changes happen in a few households in a large data set, but the direction of the

change.

For all illustrations, we use seven deprivation indicators covering dwelling in-

frastructure quality and access to basic services (electricity, telephone, water, and

sewerage). The specific indicators, together with their respective deprivation lines,

are the following:

• Quality of dwelling floor: household deprived if earth floor or any other lower

quality material (not deprived if floor made of parquet, polished wood, tiles,

wood, concrete, ‘azulejo’ tiles).

• Quality of dwelling walls: household deprived if walls made of ‘quincha’, fiber,

or other inferior material (not deprived if walls made of brick, concrete, mud

brick, wood, mud and stone, rammed earth).

• Quality of dwelling roof: household deprived if roof made of canes, straw,

fiber, palm leaves, or other inferior material (not deprived if roof made of

concrete, wood, tiles, sheet metal).

• Access to electricity: household deprived if dwelling lacks electricity service.

• Access to telephone: household deprived if dwelling lacks either land-line or

mobile telephone.

• Access to water: household deprived if dwelling lacks access to public net-

work (in urban areas), or deprived if lacking access to public network, water

reservoir, or water truck (in rural areas).

• Access to sewerage: household deprived if dwelling lacks access to public

network (in urban areas), or deprived if lacking access to public network, or

sceptic tank (in rural areas).

All computations are performed for the following geographic regions (sample

sizes in parentheses): Northern Coast (3,276), Central Coast (1,951), Southern

Coast (1,414), Northern Highlands (1,542), Central Highlands (4,716), Southern

Highlands (3,564), Rainforest (5,081), and Metropolitan Lima (2,776).

For the construction of endogenous weights we used the formula given by (9),
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with f(hj) = 1−hj. Weights were computed separately for each geographic domain

and depend on the poverty cut-off k since the latter determines the number of poor

people, q, which in turn affects the computation of hj (see 5). As with our numer-

ical example, we compute the individual poverty function pn = ψCn. The ensuing

societal poverty measure is also known as the adjusted headcount ratio (Alkire and

Foster, 2011) and will be denoted by P2. Secondly, we also consider the individual

poverty function pn = ψC2n proposed by Silber and Yalonetzky (2013). Unlike the

previous individual poverty index, this functional form features a severity func-

tion that is sensitive to the distribution of deprivation scores among the poor (i.e.

fulfills the transfer axiom). The ensuing societal poverty index will be denoted by

P3.

Table 4 shows the baseline regional estimates of societal poverty as measured

by the adjusted headcount ratio (P2) with the values for k reported on the left-most

column. Among some interesting results, note that the relative ranks of the re-

gions based on societal poverty are fairly robust to different choices of k. Only

when k = 7 (the intersection approach), usually involving very few people with the

most severe poverty experience, some regional ranks flip about (e.g. in the com-

parison between the Central and the Southern Highlands, or between the Central

and Southern Coast). For most values of k the regions turn up ordered in terms of

societal poverty the following way (from lowest to highest values): Lima, Southern

Coast, Central Coast, Northern Coast, Central Highlands, Southern Highlands,

Northern Highlands, Rainforest. In a nutshell, the coastal regions are the least

poor, followed by the Highlands, and then the Rainforest exhibits the highest soci-

etal poverty levels.

6.1 Violation of Monotonicity

In order to show how poverty measures based on endogenous weights violate the

axiom of Monotonicity we performed the following computations using counterfac-

tual deprivation matrices: In each geographical domain we chose a household that

was deprived only in two deprivations, including flooring. To all those households

34



Table 4: Baseline actual estimates of the adjusted headcount ratio with endogen-
ous weights by region

k Northern Central Southern Northern Central Southern Rainforest Lima
Coast Coast Coast Highlands Highlands Highlands

1 0.174 0.143 0.099 0.242 0.199 0.211 0.291 0.065
2 0.134 0.116 0.076 0.213 0.165 0.176 0.259 0.039
3 0.087 0.076 0.053 0.162 0.118 0.131 0.217 0.022
4 0.047 0.049 0.030 0.090 0.068 0.084 0.169 0.009
5 0.018 0.023 0.017 0.032 0.029 0.039 0.117 0.003
6 0.003 0.011 0.006 0.014 0.006 0.003 0.072 0.000
7 0.000 0.001 0.002 0.002 0.001 0.000 0.037 0.000

(one per region) we reduced the deprivation in quality of dwelling floor (i.e. we

“granted” them a good-quality floor and reduced their number of deprivations to

one). Since f(hj) = 1−hj, the removal of these deprivations increases their weight

while decreasing the weights of the other dimensions.

As indicated by Proposition 1, and Corollary 3, all households which were de-

prived in floor quality, experience an increase in their counting function, while the

opposite occurs to household that were not deprived in floor quality. The total im-

pact on societal poverty depends on the proportions of household deprived, and not

deprived, in floor quality, as well as on the average change in their respective indi-

vidual poverty functions as a consequence of the simulation (following expressions

(20) and (21)). Additionally, the change in the individual poverty of the household

whose deprivation was relieved by the simulated relief also contributes to the total

change in each region’s societal poverty.

Table 5 summarizes the changes in societal poverty measured by P2 and P3

produced by the re-computation involving the removal of floor deprivations. The

magnitude of changes is small, as should be expected given that only one house-

hold per geographic domain was directly affected by the simulation, and that each

region has a relatively large sample size (1,414 valid observations in the case of

the region with the smallest sample size). Moreover, we only report poverty dif-

ferences for k = 1, 2 because the households affected by the removal of deprivation

are not identified as poor in the original deprivation matrix whenever k > 2, hence

the differences in regional societal poverty are nil for these poverty identification
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criteria.

As predicted by the theoretical results in the preceding sections, the differences

in regional societal poverty are not always negative even though in all cases one

person is free from one deprivation, ceteris paribus. For instance, in the case of

P2 societal poverty actually increases in the Northern Highlands. This is a clear

violation of monotonicity, further corroborated by increases in P3 for 5 out of 16

region-cutoff combinations (bottom of Table 5) despite reductions in the number of

deprivations.

Table 5: Monotonicity: Difference in societal poverty from baseline data in each
region

P2 P3

Regions k=1 k=2 k=3,..,k=7 k=1 k=2 k=3,..,k=7

Northern Coast -0.026 -0.077 0.000 -0.008 -0.018 0.000

Central Coast -0.071 -0.120 0.000 -0.022 -0.023 0.000

Southern Coast -0.092 -0.200 0.000 -0.038 -0.053 0.000

Norther Highlands 0.038 -0.051 0.000 0.030 0.031 0.000

Central Highlands -0.016 -0.030 0.000 0.003 0.003 0.000

Southern Highlands -0.091 -0.048 0.000 0.002 -0.001 0.000

Rain Forest -0.024 -0.042 0.000 -0.008 -0.007 0.000

Lima -0.050 -0.110 0.000 -0.021 -0.031 0.000

Note: The values in the table are all multiples of 10−3

Finally, three observations are worth bearing in mind regarding this compu-

tation with counterfactual deprivation matrices. Firstly, it changes the counting

functions of many households in different directions, thereby affecting their rank-

ing within society in terms of pn, with potential implications for social program

targeting that prioritises households with the lowest poverty indices.

Secondly, in the preceding empirical illustration we found 6 instances of soci-

etal poverty increases despite reductions in deprivation out of 32 combinations (2

values of k times 8 regions times 2 poverty measures). Similar manifestations of

monotonicity violations may be more or less ubiquitous depending on the dataset

and alternative methodological choices including societal poverty functions and
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selection of deprivation indicators. The key message is that monotonicity is not

guaranteed when using counting poverty measures with the broad classes of en-

dogenous weights considered in the theoretical sections.

Thirdly, had this computation been performed with exogenous weights, the

counting functions of households not directly affected would have remained un-

changed, so that: ∆P = 1
N

∆pi where i is the person whose deprivation in sewerage

we relieved by simulation. In our particular case, we would get ∆pi = −we (where

we is the exogenous weight attached to floor quality) for ti > k, and ∆pi = 0 for

k > ti. Clearly, with exogenous weights household rankings would change signi-

ficantly less, and societal poverty would decrease in every geographic domain for

ti > k. For other values of k societal poverty would not be affected.

6.2 Violation of Subgroup consistency

In order to show how poverty measures based on endogenous weights violate the

axiom of subgroup consistency we considered only three regions, Southern coast,

Southern highlands and Lima with Lima as Subgroup I and Southern coast and

Southern highland as Subgroup II. As before (with the numerical example in

Section 3.3) we compute estimates for the head count ratio (P1), and the societal

poverty when severity functions are linear (P2) and societal poverty when severity

functions are squared (P3) for Subgroup I, Subgroup II and the total population

which takes all three regions in to account. Table 6a shows the societal poverty

based on the data, before any changes are made.
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Table 6a: Subgroup Consistency: Societal Poverty under Baseline Data

Subgroup I

Lima

Subgroup II

Southern Coast

Southern Highlands

Pooled

Population

k P1 P2 P3 P1 P2 P3 P1 P2 P3

1 0.27 0.071 0.024 0.60 0.210 0.099 0.48 0.165 0.076

2 0.14 0.053 0.022 0.44 0.193 0.099 0.33 0.146 0.075

3 0.06 0.031 0.016 0.29 0.159 0.093 0.21 0.115 0.068

4 0.02 0.014 0.009 0.17 0.113 0.077 0.12 0.079 0.053

5 0.01 0.005 0.004 0.09 0.068 0.052 0.06 0.046 0.035

6 0.00 0.001 0.001 0.03 0.027 0.023 0.02 0.018 0.015

7 0.00 0.000 0.000 0.00 0.001 0.001 0.00 0.001 0.001

Note that for subgroup I there is no household which is deprived in all dimen-

sions. In order to check for subgroup consistency we change the deprivation of

some households in Lima. We reduce deprivation in the quality of the flooring

of the house for three households and increased deprivation in terms the quality

of the wall of the house for two households. We leave Subgroup II unchanged.

Table 6b shows the difference between the baseline distribution and the distribu-

tion after the changes in deprivation for societal poverty measures in P2 and P3.
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Table 6b: Subgroup Consistency: Societal poverty when
poverty in Subgroup I has decreased

Subgroup I

Lima

Subgroup II

Southern Coast

Southern Highlands

Pooled

Population

k P2 P3 P2 P3 P2 P3

1 -0.326 -0.303 0.000 0.000 0.068 0.126

2 -0.324 -0.298 0.000 0.000 0.045 0.104

3 -0.443 -0.424 0.000 0.000 -0.034 0.022

4 -0.484 -0.473 0.000 0.000 -0.097 -0.055

5 -4.628 -2.861 0.000 0.000 -1.607 -0.948

6 3.088 2.646 0.000 0.000 1.114 0.961

7 0.000 0.000 0.000 0.000 0.000 0.000

Note: The values in the table are all multiples of 10−4

Negative values mean that societal poverty has decreased compared to the

baseline, whereas positive values show an increase vis-a-vis the baseline. From

Table 6b we observe societal poverty for subgroup I has decreased for both P2 and

P3 and for k = 1, 2, 3, 4 and 5. Subgroup II obviously remains unchanged. In ac-

cordance with the axiom of subgroup consistency (5, as defined in section 2.2.1), we

would expect societal poverty for the pooled population to decrease as well, when

measured with the same indices and choices of k. However from Table 6b it is

clear that for the pooled population, societal poverty for k = 1, 2 has increased for

P2; for P3 it has increased for k = 1, 2, and 3. Thus for several values of the cutoff

k and different measures of societal poverty, subgroup consistency is violated.

As with the illustration discussed in the previous subsection, this violation may

severe the relationship between trends in national poverty and geographic target-

ing (whereby anti-poverty programs are prioritised for people living in the most de-

prived regions; Bigman and Fofack (2000)) if both the national trends and the geo-

graphic targeting were operationalised with the same multidimensional poverty

measures and these, in turn, were based on endogenous weights. In such circum-

stances, it could happen that a well-implemented anti-poverty program succeeds
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in reducing poverty in a country’s most deprived region while seemingly failing to

induce an amelioration at the national level. Meanwhile, the problem would be

absent if weights of the dimensions were exogenous and thus common across the

different deprivation matrices.

7 Conclusions

The use of endogenous weights in multidimensional poverty measurement has en-

joyed some popularity, yet the implications of letting weights depend on the data-

set have not been studied in depth, above and beyond some reflections and sens-

ible warnings (e.g. Alkire et al., 2015). In this paper we focused on a broad class

of endogenous weights, inspired by the examples compiled in Deutsch and Silber

(2005). Interestingly the main idea of using frequency weights to generate endo-

genous weights, is similar to the rank-ordering weights proposed by Sen (1976).

The idea also stems from applying the frequency-based weights of the fuzzy-set

literature (e.g. as summarised in Deutsch and Silber, 2005) to multidimensional

poverty measurement with binary variables. Similar to the Sen (1976) measure,

we also find that endogenous weighting leads to violations of monotonicity and

subgroup consistency in the context of counting poverty measurement.

Firstly, we precisely explained how genuine changes in the deprivation status

of a household (or individual) generate measurement externalities in the form of

changes in the counting function of many other households (or people), despite the

absence of any changes in the latter’s deprivation profiles. These transformations

operate through the effect of the original changes in deprivation status on the

weights.

Secondly, we found that, depending on the composition of the different contra-

dictory effects on a population’s societal poverty measure, new deprivations in one

household can increase, decrease, or leave unchanged, the value of societal poverty.

That is, societal poverty indices based on endogenous weights violate monotonicity

and subgroup consistency. Even though this analysis is yet to be extended to cover

endogenous weights based on Multiple Correspondence Analysis (MCA) formally,

it is very likely that indices based on these weights suffer from the same prob-
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lem. As explained by Asselin and Anh (2008) and Asselin (2009, p. 29-30), MCA

weights are an inverse function of their respective category’s frequency and a dir-

ect function of the covariance between that category and the normalised score on a

particular factorial axis. In fact, Asselin and Anh (2008) acknowledge this poten-

tial problem of inconsistency empirically, and suggest some methods to overcome

it (involving dropping indicators or using more than one eigenvector). However,

as mentioned, the formal analysis performed in this paper has not yet been imple-

mented for weights based on this technique.

By contrast, societal poverty indices based on exogenous weights satisfy mono-

tonicity and subgroup consistency, so that if one household’s poverty experience

worsens, then societal poverty will increase, ceteris paribus. Likewise, with exo-

genous weights, the change in the poverty experience of one household produces

fewer changes in households’ ranks. In fact, relative comparisons between the

other households are left unaffected; whereas with endogenous weights many

other comparisons of individual poverty are affected, even though deprivation pro-

files remain intact. Of course, resorting to exogenous weights involves tricky,

even potentially arbitrary choices. Best-practice suggestions for choosing exo-

genous weights are in their infancy, but emerging. For instance, Esposito and

Chiappero-Martinetti (2019) monitor multidimensional poverty in the Dominican

Republic using exogenous weights generated from a field experiment (independent

from their main dataset).

One way of reflecting the relative occurrence of each deprivation in the weights,

while satisfying monotonicity and subgroup consistency, could be to compute en-

dogenous weights with one particular dataset and then leave them fixed toward

future comparisons. This is precisely what Asselin and Anh (2008) do in their

application to poverty comparisons in Vietnam with weights derived from MCA.

However this option would not really simplify the complexity of the decision re-

garding weight selection, since one would still need to decide on the dataset to use

in poverty comparisons (e.g. should one use a particular dataset or pool datasets?).

Moreover, as pointed out by Alkire et al. (2015, p. 99), if datasets are pooled to com-

pute weights based on data reduction techniques (e.g. MCA, principal component

analysis, factor analysis, etc), there is no guarantee that a poverty comparison will
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be robust to sample updating, e.g. adding new time periods and including the new

datasets in a recalculation of weights. Clearly, the latter decisions are hardly less

arbitrary than choosing a vector of exogenous weights.
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