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Abstract

A noteworthy stylized fact that has emerged recently in the literature on firm growth

is that both among firms on the upper tail and firms on the lower tail of the short run

firm growth rate distribution, from one year to the next, some persist, while significant

proportions bounce to the opposite tail. We find that innovation plays an important

role in generating this pattern in firm growth. Innovation, in terms of its component

stages, increase both the probability of sustaining or rebounding to extreme positive

growth, and the probability of sustaining or bouncing down to extreme negative decline,

with the former dominating the latter. Potential rewards of innovation are highest for

firms that are growing most rapidly. These findings have important implications for

innovation policy.



1. Introduction

It is universally acknowledged that innovation is crucially important for the long-term

fortunes of countries. The Schumpeterian theory of creative destruction, as also other in-

dustrial organisation theories, emphasise the central role of firm level innovation in national

economic fortunes (Aghion and Howitt, 1992). The causal effectiveness of innovation policy

continues to attract a large amount of empirical research, not least at the behest of pol-

icy makers who seek to support high-growth firms (for example see European Commission,

2011, p. 8). However, empirical research has struggled to unearth a compellingly robust

relationship between innovation and firm growth.

In the quest to bridge the gap between theory and empirics, a recent branch in the

investigation has focused on whether the growth effect of innovation is conditioned on the

rate at which the innovating firm has been growing. The robust finding is that innovation

does have significantly larger effects on growth at the upper quantiles of the growth rate

distribution (Capasso et al., 2015; Coad and Rao, 2008; Falk, 2012; Segarra and Teruel,

2014). At the same time, another stylized fact that has emerged from work by Capasso et al.

(2014) is the coexistence of persisting and ‘bouncing’ (or more accurately, ‘recoiling’) firms.

Striking patterns of extreme ‘growth’ over the short-term have been identified using quantile

regressions and transition probabilities based trajectory analyses. The authors highlight the

uncertainty intrinsic to the innovation process as a potential source of the extreme patterns

in growth. This is in line with the notion of a Schumpeterian Mark I [regime] (Capasso et al.,

2014, p. 1023): innovation effort may generate commercially viable knowledge, but may also

fail to do so. However, the authors do not attempt to identify the determinants that place

firms on the very different extreme growth paths.

In this paper we study the role of the innovation process in generating the striking het-

erogeneity found among firms at the extremes of the short-run firm growth rate distribution,

comprising both persistence and recoil in growth rates. To do this we disaggregate the in-

novation process in terms of its stages: R&D expenditure, the resulting output in the form

of patents, and the value of this output in terms of citations achieved; and evaluate the

importance of each of these stages in the innovation process in contributing to the above

described firm growth patterns.

The next section presents a review of the literature related to innovation and extreme

growth of firms. Building on this, section 3 presents hypotheses on the relationship between

firm growth and the various stages of innovation. Section 4 describes the data we anal-

yse. Section 5 outlines the econometric approach. Section 6 presents results and Section 7

concludes.
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2. Literature Review

In the empirical literature, R&D is consistently found to impact the growth of economies

positively (Zachariadis, 2003); but a robust link between R&D and firm level growth has

been elusive, even when conditioning the effect of R&D on firm characteristics such as age,

size and industry (Coad et al., 2016). Recent work has gone further, examining whether the

impact of innovation is conditional on firm growth rate itself (Coad and Rao, 2008).

One motivation for our study is the empirical finding that innovation tends to have a

larger positive impact on growth as a firm moves up the conditional growth distribution

(Capasso et al., 2015; Coad and Rao, 2008; Coad et al., 2016; Falk, 2012). The effect is not

linear; it pertains only to the fastest growers, for whom it constitutes an important driver for

their high-growth status. The effect of innovation on firms at lower quantiles of the growth

rate distribution is generally insignificant (Falk, 2012) or even negative (Coad et al., 2016).

One explanation for this finding draws on an argument from Freel (2000, p. 208) that R&D

investment is inherently uncertain, and at some level it has the nature of a ‘bet’, in that it

is not guaranteed to produce valuable knowledge. In this broad sense, three sub-classes of

innovation can be conceived: ‘tried and succeeded’, ‘tried and failed’ and ‘not tried’. For

the second among these categories, innovation constitutes a waste of resources and hence

it is likely that higher innovation actually worsens the growth performance for such firms,

explaining the negative coefficients on the lowest quantiles found by Coad and Rao (2008)

and Coad et al. (2016).

A related motivation for our study flows from growth patterns observed among fast

growing firms and declining firms by Capasso et al. (2014)1. They highlight the two sub-

populations that coexist, at both ends of the growth rate distribution: recoiling firms, whose

growth rates jump from one extreme to the other over the short run; and persistent firms, who

maintain their extreme growth performance from one year to the next, whether growing fast

or declining. The above mentioned study does not offer an explanation for these strikingly

heterogeneous growth paths. Indeed, the few papers that directly explore the relationship

between persistently outperforming firms and innovation have generally reported no dis-

cernible link. Bianchini et al. (2017) attempt to identify the characteristics that distinguish

persistently high-growing firms (over at least four of five years), from one-off high-growth

firms and find that the usual drivers of growth including innovation are not relevant to

persistent outperformance, supporting a ‘mere luck’ conjecture. Similarly, Guarascio and

Tamagni (2016) find that persistent innovators do not exhibit higher growth persistence.

These papers focus on the long-term association whereas the concept of persistence that

1See also Coad and Hölzl (2009); Hölzl (2014).
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we consider in this paper is akin to Capasso et al. (2014) and Coad and Hölzl (2009), and

pertain to the short-run.

In the management literature, a discussion of how R&D may vary conditioned on firm

performance draws on the behavioral theory of the firm to offer an explanation for why R&D

expenditure may be driven up relatively more at either end of the performance range (Greve,

2003). At the poor performance end, falling short of aspiration can stimulate R&D aimed at

the perceived causes of poor performance. Managers are likely to consider any performance

below their aspirational level as a loss situation, leading them to greater tolerance for risk

in the quest for improvement (Kahneman and Tversky, 1979). In studies of organizational

change and risk taking, greater risk taking has been found to accompany such problemistic

search (Bolton, 1993; Bromiley, 1991; Greve, 1998; Grinyer and McKiernan, 1990; Miller and

Leiblein, 1996).

At the outperformance end, insofar as good performance generates slack in resources,

“innovations that would not be approved in the face of scarcity but have strong subunit

[e.g., R&D department] support” are more readily accommodated (Cyert and March, 1963,

p. 208). Such firms will have greater latitude for experimentation and for organizational

change, which, when combined with less strict performance monitoring, affords both the

resources and managerial patience that enable risky innovation effort.

These arguments offer theoretical bases for why firms at the extremes of the growth rate

distribution may differ from firms in the middle range of growth in the quantum of R&D

effort they choose to undertake. Combined with the inherent uncertainty underlying R&D

outcomes, a plausible explanation for the co-existence of the recoiling firms and persistent

firms at both ends of the growth distribution emerges.

3. Hypotheses

On the basis of the above discussion, we formulate a set of hypotheses concerning the

effects of innovation on firm growth. In Section 5, we set out to test each hypothesis empir-

ically.

3.1. Baseline

We begin by examining whether the effect of innovation on growth is positive for the

representative firm, in line with past findings such as Coad and Rao (2008) and Falk (2012):

Hypothesis 1a: On average, greater input into the innovation process (R&D expenditure)
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translates into a higher growth rate for the firm, controlling for the productivity of such

innovation input.

Turning from the effect of input to that of outcome, we next examine whether innovation

output and its quality contribute positively to firm growth, controlling for the input into

the innovation process. The rationale is the obvious one that growth value of innovation

input should be less uncertain once a tangible outcome of innovation in terms of quantity

and quality are observed:

Hypothesis 1b: On average, the greater the magnitude of innovation output, higher the

growth rate, controlling for the level of innovation input.

Hypothesis 1c: On average, the greater the quality of innovation output, higher the growth

rate, controlling for the level of innovation input.

3.2. Dynamics at the extremes

Before turning to the role of innovation in generating extreme growth patterns at the

extremes, we explore whether the patterns of persistence and recoil found by Capasso et al.

(2014) are evident in our sample:

Hypothesis 2 - Persistent growth: The probabilities that firms with growth rates at

either extreme of the range of growth rates continue in their respective growth categories

in the following period are higher than the probability that a firm in the middle range of

growth rates experience an extreme growth event in the following period.

Hypothesis 3 - Recoiling growth: The probability that a firm at the underperform-

ing extreme of the range of growth rates bounces up to the outperforming extreme in the

following period; and the probability that a firm at the outperforming extreme bounces down

to the underperforming extreme in the following period, are both higher than the probability

that a firm in the middle range of growth rates experience an extreme growth event in the

following period.

3.3. Heterogeneity in innovation outcome

We now turn to the characterisation of innovation as a “bet”, to see if the pattern of

higher input into innovation being associated with both a higher probability of ending up in

4



the right and left tails of the growth distribution can be explained in the following terms:

Hypothesis 4a: On average, greater input into the innovation process increases both the

probability of underperformance and outperformance in the following period.

It is reasonable to expect that, controlling for innovation input, greater innovation output

and higher quality signals higher R&D productivity, and reduces the uncertainty of growth

payoff from R&D investment. Greater innovation output and higher quality of such output

must improve growth prospects of the firm at all points of the growth rate distribution:

Hypothesis 4b: On average, greater innovation output reduces the probability of underper-

formance and raises the probability of outperformance in the subsequent period, controlling

for the level of input.

Hypothesis 4c: On average, more valuable innovation output reduces the probability of

underperformance and raises the probability of outperformance in the subsequent period,

controlling for the level of input.

Hypothesis 4a relates to the heterogeneity in growth outcomes that result even when in-

novation input is the same; to similar firms experiencing divergent growth paths due to

the uncertainty inherent in the innovation process. Heterogeneity may also be across sub-

populations of firms: R&D and patenting may be riskier or more rewarding for different

types of firms. For example, if previously outperforming firms have a stronger R&D culture

on average, then it is plausible that the increase in the probability of outperformance in the

next period resulting from an increase in R&D may be higher for the average top tier firm

compared to a middle tier firm. This possibility is explored in Section 5.

4. Data

Our sample is constructed by matching firm level data from Compustat with the NBER

patent database2 which has information on all USPTO patents granted between 1970 and

2006. The sample is restricted to North American Compustat firms with positive sales and

R&D expenditures.3 Firm-years in which the firm has been engaged in a merger or an acqui-

sition have been excluded, as also the entry and exit years for the firm. For comparability

2The version used can be found at: https://sites.google.com/site/patentdataproject/Home
3Excluding observations with zero R&D mitigates the issue of misreporting (Capasso et al., 2015).
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with existing literature, we limit the analysis to manufacturing firms (SIC codes 2000-3999).

We follow the matching process outlined in Hall et al. (2001) to extract the number of

patents and forward citations received each year for each firm from the NBER database,

resulting in a final sample which contains both patenters and non-patenters. The NBER

database suffers from two main truncation issues. The first pertains to patent counts and

arises from the fact that the average lag between patent application and grant is two years;

hence the final few years of data only capture a fraction of patents that were eventually

granted. Secondly, citation counts for patents in later years suffer in a similar way since

forward citations typically pick up over lengthy durations. To mitigate these problems we

limit the analysis, insofar as innovation output is concerned, to patents that were applied

for in years up until and including 2000. In terms of the number of patents per year, Coad

and Rao (2008, p. 639) find evidence of a clear structural break for certain sectors at the

beginning of the 1980s which they suggest may be a result of reforms to patent regulations.

This leads us to limit our analysis to the period after 1980. The final sample consists of an

unbalanced panel of 3636 firms that meet the above restrictions and have data for at least

two consecutive years between 1981 and 2000. To investigate how the effect of innovation

has changed over time, and to check the robustness of our results we also split the overall

duration into four 5-year sub-periods and replicate the analysis.

4.1. Descriptive Statistics

In what follows, we adopt the terminology used by Capasso et al. (2014) and use ‘un-

derperformer’ to refer to firms in the bottom 10% of the growth rate distribution, and

‘outperformer’ or ‘high-growth’ to refer to firms in the top 10% of the growth rate distribu-

tion in the given year. Table 1 gives the summary statistics for the key variables categorised

by their location in the sales growth rate distribution (bottom 10%, middle 80% and top

10% of firms in ascending order of growth rate) for the full sample of 27,137 firm years over

the period 1981-2000.

Firms at both extremes of the growth distribution have significantly higher R&D to sales

ratios on average compared to firms in the middle 80%; this is seen in Figures 1 and 2 which

present the kernel densities of the logarithm of the ratio of R&D to sales for each growth

category, and average ratios of R&D to sales by growth quantile. Kolmogorov-Smirnov

tests for equality of distributions between each extreme sub-sample and the middle 80%

sub-sample reject equality at the 1% level in both cases. Insofar as R&D effort poses both

risk as well as reward with in terms of growth, these descriptive findings offer a preliminary

indication that differences in inputs into innovation may have a bearing on the polarised
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Table 1: Descriptive statistics by growth outcome (1981-2000)
Mean Median p25 p75 S.D. # Obs

Bottom 10%
Public Age 14.62 11 7 19 10.59 2,725
Total Sales 793.7 27.69 7.235 143.4 4,888 2,725
Citations-per-Patent* 11.81 8 4 14.25 14.03 1,007
R&D to Sales 1.650 0.0785 0.0223 0.226 7.607 2,725
Patents to R&D 0.264 0 0 0.199 0.749 2,725
Middle 80%
Public Age 19.29 16 9 28 12.62 21,687
Total Sales 2,704 202.7 44.42 1,105 11,692 21,687
Citations-per-Patent* 11.63 8.592 4.667 14.08 12.60 11,341
R&D to Sales 0.125 0.0340 0.0132 0.0803 0.888 21,687
Patents to R&D 0.324 0.0393 0 0.339 0.760 21,687
Top 10%
Public Age 9.568 7 5 11 7.489 2,725
Total Sales 567.6 43.44 10.37 193.4 3,401 2,725
Citations-per-Patent* 17.69 10.50 4.750 22 22.55 1,157
R&D to Sales 0.613 0.0866 0.0307 0.237 2.262 2,725
Patents to R&D 0.318 0 0 0.210 0.893 2,725
Note: Total Sales and R&D expenditure in deflated ($million)

* Of patenting firms

growth patterns of firms at the extremes of the growth rate distribution. It is also notable

that high-growth firms have, on average, significantly higher citations-per-patent than others.

5. Method

We borrow the broad analytical framework of the structural CDM model outlined by

Crepon et al. (1998), which has been a workhorse in empirical research on firm level inno-

vation over the past 20 years (Lööf et al., 2016). In its original application, the model was

used to understand how research investment translates into innovation output, which in turn

translates into increased productivity. Our focus being on firm performance, it is important

to distinguish between alternative dimensions of firm performance. Improved productivity

from innovation is likely to translate into higher sales growth on average; but the effect on

employment growth could be negative if innovation takes the form of labour-saving pro-

cess innovation. While employment growth is also of policy interest, sales growth has been
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Fig. 1. Kernel density of Log R&D to Sales
by growth outcome (1981-2000)

Fig. 2. Kernel smoothing of Log R&D to Sales
by growth quantile (1981-2000)

highlighted as the primary channel through which innovation improves firm profits, and as

a particularly meaningful indicator of post-innovation performance (Geroski and Machin,

1992; Scherer, 1965; Coad and Rao, 2008). We follow the latter in measuring firm size in

terms of sales and firm growth rate as the difference of log sales.

In the most general form, the data-generating process may be written as:

Growthit = α + β1it−1InnovationF low
′
it−1 +X ′it−1β2it−1 + µi + θt + εit (1)

Where InnovationF low is a measure of the addition to the knowledge stock generated in

year t − 1 by firm i, and X is a vector of other explanatory variables including age, size

and industry. This unrestricted form, with parameter values allowed to vary between firms

and time periods, cannot be estimated with the available data, but it serves as a guide for

introducing heterogeneous effects.

5.1. Choice of innovation measures

To bring the innovation process to data, we use an empirical specification which adheres to

the conceptual framework outlined in Hall et al. (2005). In this study, the knowledge creation

process begins with R&D expenditure as an input, which translates with uncertainty into

codifiable knowledge in the form of patents, which may be considered a quantity measure of

the output of the innovation process. Though widely used as a proxy for innovation output,

patent counts have two distinct drawbacks. First, they do not capture all new knowledge

generated from research efforts. This is because there are firms who choose not to patent

innovations, opting instead for secrecy to protect their intellectual property. The second
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drawback is that patents can differ hugely in economic value. To overcome this second issue,

we use the number of forward citations for any given patent as a measure of its ‘importance’,

and thus a proxy for the value of the innovation output (Akcigit and Kerr, 2016; Akcigit

et al., 2016).4

However, including citations directly in the model would censor the sample to only firms

that have patented successfully. We solve this problem by conducting two parallel analyses:

one which includes R&D and an unweighted patent count measure, and another which in-

cludes R&D and a measure where patents are weighted by the number of forward citations

received. We follow Trajtenberg (1990) in using a linear weighting scheme in which a value

of one is assigned to each patent and each citation. The citation counts are summed to give

the ‘weighted patent count’ for each firm for each year:

WPCit =
K∑
k=0

(Ck + 1) (2)

Where K is the total number of patents received by firm i at time t and Ck gives the total

number of citations subsequently received by patent k.

While the weighted patent count does not have a rigorous theoretical justification,5 it

nevertheless has the useful feature of being able to distinguish between three kinds of firms:

those that successfully patented and in doing so generated commercially valuable knowledge

(large WPC), those that successfully patented yet produced patents of little or no value

(non-zero but small WPC), and firms that were unsuccessful in translating R&D into patents

(zero WPC). In contrast, the unweighted patent count (UPC) fails to discriminate between

the first two. Due to high collinearity between UPC and WPC, we do not include both

simultaneously in the same regression, but run separate regressions. For brevity, we do not

present separate tables for each, and instead report both sets of estimates in the same table

sequentially. The reported estimates for the R&D intensity are from the regression that

includes WPC.6

Table 2 describes the relevant variables. Given the focus on short-term growth patterns,

we follow the extant literature7 in using the logarithm of deflated R&D expenditure divided

by deflated sales in the previous period as the R&D intensity measure, whose first lag enters

the model. As explained by Hall et al. (2005, p. 17), a specification that already includes

R&D intensity implies that the additional value of patents is captured by the number of

4A number of studies have directly investigated the relationship between citation counts and patent value
and found a robust link (Harhoff et al., 1999; Trajtenberg, 1990).

5See Shane and Klock (1997, p. 137) for an exposition and alternative weighting scheme.
6Estimates for R&D from regressions including UPC are very similar.
7For example, see Capasso et al. (2015); Falk (2012); Segarra and Teruel (2014) for similar specifications.
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patents per unit ($million) of R&D intensity. As such, our patent measures enter into the

regression models as the first lags of the respective patent counts divided by deflated R&D

expenditure, with the names weighted and unweighted patent yields (WPY and UPY here-

after). Patents are counted in the year in which they were applied for, not the year in

which they were granted; this provides a rationale for including them contemporaneously

with R&D. While there is some gestation lag between the outlay of R&D expenditure and

the application for patents, it is significantly shorter than the average lag between the appli-

cation for the patent and its grant, with Trajtenberg (1990, p.183) commenting that ‘there

is a strong statistical association between patents and R&D expenditure; this relationship

appears to be mostly contemporaneous... supporting previous findings of short gestation

lags’.

Graphing sales growth rate against patent counts suggests a positive yet diminishing

marginal effect of patents on growth; based on this, we accommodate potential non-linearity

in the effect of patent yields through a squared term.8

Table 2: Variable definitions
Variable Definition
GrSales Annual growth rate calculated by taking the difference of logs of firm size as

measured by deflated sales in $million
RDIntensity Logarithm of the ratio of deflated R&D expenditure in $million to lagged

deflated sales in $million
UPY Ratio of unweighted patent count to deflated R&D expenditure
WPY Ratio of weighted patent count to deflated R&D expenditure
Logsize Logarithm of deflated sales in $million
Logage Logarithm of age in Compustat database

5.2. Linear Model

We specify the empirical model as:

GrSalesit = β1 RDIntensityit−1 + β2 PATYit−1 + β3 PATY
2
it−1

+ β4 GrSalesit−1 +Controls′it−1β5 + µi + θt + εit
(3)

The above model is estimated twice; for PATY = UPY and PATY = WPY .

8In further exercises, omission of the squared term left the pattern of results unchanged.
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Insofar as R&D intensity measures input into the innovation process, and patents and

citations measure the corresponding output and its quality, β1 captures the growth effect of

increased input into the innovation process, controlling for the productivity of R&D. This

accommodates the fact that firms may vary considerably in their R&D productivity, and the

omission of innovation output from the regressor set can be a source of bias for the R&D

input coefficient – if more productive firms tend to do more R&D, higher productivity would

be falsely attributed to higher R&D, biasing β1 upwards. In the model that includes R&D

intensity, β2 and β3 measure the growth effects of higher innovation output and its quality,

for given input. These interpretations are in line with extant research.

We begin with hypothesis 1, and estimate the growth effect of innovation for the repre-

sentative firm. To control for short run autocorrelation in growth, we include lagged growth

rate as a regressor (Coad and Rao, 2008; Demirel and Mazzucato, 2012). All regressions in-

clude lagged age and size as controls, as well as year fixed effects (θt) to control for common

macroeconomic shocks. OLS and GMM regressions also include industry dummies. Full

sample regressions are complemented with analyses of four 5-year sub-periods – 1981-1985,

1986-1990, 1991-1995, 1996-2000 – to ensure that the results are not affected by structural

breaks. All reported standard errors are robust to heteroscedasticity and clustered at the

firm level.

System GMM estimation is the preferred specification as it is well suited to the ‘small

T , large N ’ setting. It also directly accounts for the dynamic nature of growth and can deal

with endogeneity arising both from the ‘feedback’ effect of growth on R&D intensity and

the presence of firm fixed effects which influence both R&D decisions and growth outcomes,

as captured by µi. We also present pooled OLS, and fixed effects estimates but note that

with fixed T , the within estimator is inconsistent if the data generating process is dynamic

(Nickell, 1981).

We use a two-step system GMM procedure9 using first-differencing and Windmeijer

(2005) corrected cluster-robust standard errors. Coad et al. (2016) highlight the possibility

of endogeneity arising from feedback effects between growth and innovation, although it has

been suggested by Capasso et al. (2015, p. 49) that the influence of this channel is more

pertinent to long-term analyses. Nevertheless, we follow Demirel and Mazzucato (2012) in

treating all innovation measures as endogenous, instrumenting each with their lagged values

in the GMM estimation.

9Near random walk nature of growth rates can lead to weak instruments and hence inconsistency when
using difference GMM, especially as T is small (Blundell and Bond, 1998). Stationarity, which is required
to satisfy the necessary moment conditions was confirmed through a series of Harris-Tzavalis (1999) panel
unit root tests on sales growth rates for each sub-period, which rejected the presence of a unit root at the
1% level.
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5.3. Multinomial Logit

Turning to the role of innovation in the observed persistence and recoil behaviour re-

ported in Capasso et al. (2014), we estimate a multinomial ‘choice’ model with three growth

outcomes:

CatGrSalesit =


0, if the growth rate of firm i is in the bottom 10% at time t

1, if the growth rate of firm i is in the middle 80% at time t

2, if the growth rate of firm i is in the top 10% at time t

(4)

The parsimony in the number of outcome categories is in order to focus on the drivers of

growth at the extremes. Discrete choice models are suggested as an alternative to conditional

quantile regressions by Koenker and Hallock (2001, p. 148). With the multinomial specifi-

cation, partial effects have a natural interpretation as changes in the probability of ending

up in different parts of the conditional growth distribution, and also permits comparisons

with the transition probability matrices in Capasso et al. (2014).

We estimate the multinomial model with the same set of regressors as in the linear

model, and address hypotheses 2 and 3. To test hypothesis 4 we determine the average

partial effects of innovation – the average increase in the probability that a firm experiences

underperformance or outperformance in the following period associated with a 1% increase

in R&D intensity. Finally, to elucidate polarisation in growth behaviour at the extremes, we

consider how average partial effects differ based on past growth performance. Inference is

based on bootstrapped standard errors (100 replications) with clustering at the firm level.

In all results, the middle 80% is treated as the base outcome.

The choice between the multinomial logit (MNL) and probit (MNP, in which errors may

be correlated and heteroscedastic) comes down to the distribution of the error term: type-1

extreme value, i.i.d. vs. multivariate normal. The nature of the data precludes estimation of

an unrestricted MNP – for any given firm-year we observe only one growth outcome, and no

’alternative-specific’ variables, in the data. The (unrestricted) MNP relaxes the independence

of irrelevant alternatives (IIA) assumption, and allows for temporal correlation of the errors.

In our case, the Small-Hsiao tests consistently failed to reject IIA at the 10% level across all

sub-periods. However, independence also requires unobserved variation in the growth rate

to be independent over time. In general terms this may not be unreasonable, as growth rates

are known to be best approximated by a random walk, in the spirit of Gibrat’s Law (Coad,

2009; Geroski, 1999).10 As in the linear case, we include lagged growth rate as a regressor

10We re-ran all specifications using the independent MNP model (Kropko, 2007, p. 11) – these returned
near identical partial effects as the MNL model.
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in order to control for short run autocorrelation.

Notwithstanding the natural ordering of the dependent variable, we preferred the multi-

nomial specification to the ordered specification, as the latter would constrain the effect of

innovation to be equal across all growth outcomes: this would defeat the purpose of this

study by obviating one of the central hypotheses to be tested. We therefore estimated the

multinomial logit model via full maximum likelihood.

The probability that firm i experiences growth outcome j at time t, Pr(CatGrSalesit = j),

is given by equation 5 below:

eαj+βj,1RDIntensityit−1+βj,2PATYit−1+βj,3PATY
2
it−1+βj,4GrSalesit−1+Controls

′
it−1βj,5∑2

k=0 e
αk+βk,1RDIntensityit−1+βk,2PATYit−1+βk,3PATY

2
it−1+βk,4GrSalesit−1+Controls

′
it−1βk,5

(5)

Controls include lagged age and size, as well as year and industry dummies. As with the linear

model, we estimate the multinomial model separately: for PATY = UPY and PATY =

WPY .

The partial effect, the change in the probability of ending up in the top 10% at time t

for firm i, of a 1% increase in that firm’s R&D intensity at t− 1, holding constant all other

regressors is:

∂Pr(CatGrSalesit = 2)

∂RDIntensityit−1
= Pr(CatGrSalesit = 2)

[
β2,1 −

2∑
k=0

Pr(CatGrSalesit = k)βk,1

]
(6)

Because the slope parameters, βks, are alternative-specific, the above partial effects are

not constrained to be the same across all outcomes. This accommodates the possibility

that an increase in R&D intensity simultaneously raises the probability of ending up in the

bottom 10% and in the top 10%. The average partial effect is found by evaluating equation

6 for each firm at their respective covariate values and taking the mean. As eluded to at the

end of section 3, it is also possible that there are heterogeneous effects across different kinds

of firms. The above outlined multinomial framework can be used to analyse this hypothesis

by evaluating the average partial effect for subsets of the population to identify, for example,

whether R&D is riskier and/or more rewarding conditional on past growth or on firm size.

We do not run a fixed effects multinomial logit regression due to the incidental parameters

problem which, due to fixed T , leads to the estimates not being consistent with respect to the

number of firms. Valid inference cannot be performed on any quantities that are a function

of the fixed effects and thus the partial effects of innovation cannot be reliably estimated.
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This is problematic because for the non-linear model it is precisely these partial effects which

are of interest and not the coefficient estimates. That said, the closeness of the OLS, FE

and GMM estimates are encouraging.

6. Results

6.1. Linear Model

Results for the linear model are presented in Table 3. The consistently positive and sig-

nificant coefficient on R&D intensity across all specifications offers support for hypothesis 1a.

This is in line with results in Demirel and Mazzucato (2012): R&D intensity retains a signif-

icantly positive impact on sales growth even after accounting for innovation output. There

is some evidence in favour of hypotheses 1b and 1c, with a positive linear term and negative

quadratic term suggesting positive but diminishing marginal effects of higher quantity and

quality of patents on sales growth.

The similarity of the FE and GMM results reassures us that feedback effects are not

substantial in the data, since the latter additionally instruments for endogeneity of the

measures of innovation. Moreover the OLS coefficient on RDintensityt−1 is a little over half

of the magnitude of the FE estimate which is in line with findings by Coad and Rao (2008, p.

644). GMM sub-period results11 to be found in Table A1 in the appendix suggest that these

magnitudes, although consistently positive, have not been stable over time; the estimates

suggest increasing average returns to R&D over the 20-year period. In their totality, these

results offer strong evidence for innovation having a discernible positive effect on the growth

of the representative firm; and for the quantity and quality of innovation output positively

affecting firm growth over and above the effects of R&D expenditure.

6.2. Multinomial Logit

Evidence of persistence and recoil patterns (hypotheses 2 and 3) can be found in Table

4; if the probability of ending up in any particular decile in the next period was uniformly

distributed for any given growth rate in the current period, then we would expect the values

not to be statistically different from 0.1. Instead what we see is that firms who previously

experienced extreme growth events have predicted probabilities that are significantly greater

than 0.1 of having either an extreme positive or negative growth event at time t, and also

larger predicted probabilities compared to firms previously in the middle 80%. In particular,

11FE and OLS sub-period results are available on request.
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Table 3: Linear Model Results (1981-2000)
OLS FE GMM

GrSalest−1 0.0228 -0.0371** -0.00544
(0.0160) (0.0171) (0.0232)

RDIntensityt−1 0.0396*** 0.0731*** 0.0623***
(0.00288) (0.00830) (0.0160)

WPYt−1 0.000935*** 0.000528** 0.000814***
(0.000153) (0.000257) (0.000240)

WPY2
t−1 -6.36e-07*** -7.79e-07*** -6.18e-07***

(1.21e-07) (1.64e-07) (1.67e-07)
UPYt−1 0.0244*** 0.0211*** 0.0181**

(0.00521) (0.00653) (0.00896)
UPY2

t−1 -0.00175** -0.00169* -0.000687
(0.000886) (0.000926) (0.00119)

Observations 27,137 27,137 27,137
R-squared 0.068 0.162
# Instruments 74
Hansen OverID test 0.139
Arellano-Bond AR(2) test 0.682
All regressions include lagged age, size and year dummies.

OLS and GMM include industry dummies. Robust standard errors clustered at the firm

level in parentheses.

*** p<0.01, ** p<0.05, * p<0.1

persistence among outperformers stands out, with almost a quarter of outperforming firms

coming from the group of firms whose growth rates were in the top 10% in the previous

period. These patterns can be seen visually in Table A2 in the appendix which contains a

heat map generated from sub-period results. Such results corroborate the TPM results in

Capasso et al. (2014, p. 1029), which led them to conclude that: “if a firm, at a given year,

experiences an extreme growth event, it is safe to say that the same firm is unlikely to be

stable in the following year and can be expected to experience another extreme event”.

We now turn to the extent to which innovation can explain these extreme growth patterns.

To investigate hypothesis 4a, we present the average partial effect of RDIntensityt−1 for all

firms in Table 5, represented graphically in Figure 3. Sub-period results can be found in

the appendix in Table A3. The pattern in Figure 3 points to the inherent uncertainty of

R&D, with the average partial effects being positive and significant for extreme outcomes at

both ends at time t. On average, higher R&D intensity is associated with increases in both

the probability of extreme positive growth and the probability of extreme negative growth

- although the probability of the latter increases by less. Combining this finding with the

descriptive results presented in Section 2 that show that firms experiencing extreme growth

events tend to have a higher R&D intensity, a possible explanation for the observed patterns

15



Table 4: Multinomial Logit Predicted Probabilities (1981-2000)
Growth Pattern

Bot 10% Persist 0.148***
(0.00531)

Bot 10%t−1 to Top 10%t 0.128***
(0.00418)

Mid 80%t−1 to Bot 10%t 0.0926
(0.00219)

Mid 80%t−1 to Top 10%t 0.0745
(0.00191)

Top 10%t−1 to Bot 10%t 0.115***
(0.00533)

Top 10% Persist 0.245***
(0.00691)

Observations 27,137
All regressions include lagged age, size and growth rate as

well as year and industry dummies

Bootstrapped standard errors (100 reps) clustered at the firm.

level in parentheses.

*** p<0.01, ** p<0.05, * p<0.1 (Null of H0: Coeff ≤ 0.1)

of persistence and recoil emerges: firms at the extremes of the growth distribution engage in

more R&D than other firms, and this carries both risk and reward. This finding explicates

Bianchini et al. (2017, p. 653) who suggest that “innovativeness... is not able to discriminate

persistent high-growth”. Moreover, on the basis of the sub-period results in Table A3, R&D

appears to have become riskier over time, which may explain the results in Table A2 which

show that the probability of underperformance by previously outperforming firms has been

increasing over time.

Average partial effects of patent yields can also be found in Table 5. These offer some

support for hypothesis 4b insofar as it points towards a higher quantity of innovation output

being associated with improved growth outcomes at the lower end of the growth distribu-

tion; increases in UPY are associated with a reduced probability of underperformance in the

following period. However unweighted patent yields appear not to have a discernible effect

on the probability of outperformance. In contrast, there is strong support that more valu-

able innovation improves growth outcomes along the entire growth distribution (hypothesis

4c), with a higher WPY being associated with a significant reduction in the probability of

underperformance and increase in the probability of outperformance.
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Fig. 3. Average Partial Effects of RDIntensityt−1 (1981-2000)

Table 5: Multinomial Logit Innovation Average Partial Effects (1981-2000)
1981-2000

RDIntensityt−1 CatSalest = 0 0.00823***
(0.00163)

CatSalest = 2 0.0224***
(0.00188)

UPYt−1 CatSalest = 0 -0.0228***
(0.00532)

CatSalest = 2 0.00563
(0.00463)

WPYt−1 CatSalest = 0 -0.000711***
(0.000221)

CatSalest = 2 0.000586***
(0.000131)

Observations 27,137
All regressions include lagged age, size and growth rate as

well as year and industry dummies

Bootstrapped standard errors (100 reps) clustered at the firm.

level in parentheses.

*** p<0.01, ** p<0.05, * p<0.1
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We turn now to a distinct channel in which innovation may play a role in generating

observed growth patterns; through heterogeneous effects across different kinds of firms. To

investigate this possibility, we present the partial effects of innovation by lagged growth

outcome in Table 6.12 These are illustrated in Figures 4 and 5. R&D tends to be more

rewarding for firms that previously experienced extreme growth compared to firms previ-

ously in the middle 80% of growth rates. In Figure 4, this is captured by the ‘V-shaped’ blue

line. Such a finding suggests that the comparatively higher R&D intensities of outperformers

and underperformers may be justified. In contrast, it is not clear whether R&D is riskier

for any particular growth based subpopulation, as captured by the flat orange line. It is

however possible that the true risk of previously underperforming firms persisting as under-

performers into the subsequent period is actually higher due to a left truncation arising from

the exclusion of the exit year of non-surviving firms. This would imply that the reported

increase in the probability of persisting as an underperformer associated with higher R&D

represents a lower bound. Similarly, as can be seen in Figure 5, the pattern of partial effects

for WPY across lagged growth subpopulations supports the above findings that innovation

tends to be more rewarding for firms that previously experienced extreme growth: higher

weighted patent yields are associated with both significantly greater reductions in the prob-

ability of underperformance at time t and significantly greater increases in the probability

of outperformance at time t for firms who previously experienced an extreme growth event.

A possible explanation for why higher R&D intensity and patent yields are more reward-

ing for firms that previously experienced extreme growth is that such firms are, on average,

younger and smaller than firms in the middle 80%, as seen in Table 1. Balasubramanian

and Lee (2008) find that firm age and size have a significant and negative association with

the technical quality of innovation, thereby attenuating the positive impact of R&D in-

tensity. We find evidence supporting this conjecture. Figure 6 gives the partial effects of

RDIntensity on the probability of outperformance and underperformance evaluated at each

decile of the log size distribution: the increase in the probability of outperformance associ-

ated with higher RDIntensity is decreasing in firm size. Interestingly however, this same

inverse relationship appears to hold true for the effect of RDIntensity on the probability

of underperformance. This finding offers further support for the second explanation which

links innovation to patterns of recoil and persistence, namely that R&D is both riskier and

more rewarding for different firm subpopulations.

12Sub-period results available on request.
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Fig. 4. Partial Effects of RDIntensityt−1 by lagged growth outcome (1981-2000)

Fig. 5. Partial Effects of WPYt−1 by lagged growth outcome (1981-2000)
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Table 6: Multinomial Logit Innovation Partial Effects by Lagged Growth Outcome
(1981-2000)

Growth outcomes at time t− 1
CatSalest−1 = 0 CatSalest−1 = 1 CatSalest−1 = 2

RDIntensityt−1 CatSalest = 0 0.00929*** 0.00866*** 0.00467**
(0.00219) (0.00154) (0.00188)

CatSalest = 2 0.0272*** 0.0186*** 0.0431***
(0.00245) (0.00156) (0.00368)

UPYt−1 CatSalest = 0 -0.0316*** -0.0212*** -0.0212***
(0.00730) (0.00499) (0.00617)

CatSalest = 2 0.00912 0.00423 0.0120
(0.00584) (0.00381) (0.00903)

WPYt−1 CatSalest = 0 -0.00102*** -0.000644*** -0.000908***
(0.000306) (0.000207) (0.000252)

CatSalest = 2 0.000796*** 0.000470*** 0.00117***
(0.000108) (0.000108) (0.000255)

Observations 27,137 27,137 27,137
All regressions include lagged age, size and growth rate as well as year and industry dummies.

Bootstrapped standard errors (100 reps) clustered at the firm level in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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Fig. 6. Partial Effect of RDIntensityt−1 on the probability of outperformance by logsize
decile (1981-2000)

7. Conclusions

We investigated the role of innovation in generating the observed patterns in firm growth.

The aim was to reconcile the observed coexistence of persistent and recoiling firms at both

extremes of the growth rate distribution, with the pattern in the growth effects of inno-

vation which has been found to depend on firm growth itself. The primary results can

be summarised as follows: while the growth effect of R&D intensity on the representative

manufacturing firm is positive, the short term growth effects of innovation on firms at the

two extreme ends of the conditional growth rate distribution are decidedly polarised, with

significantly higher probabilities of both extreme positive and of extreme negative growth

rates in the next period. Insofar as a firm is able to generate valuable patents, the downside

risk is reduced. R&D may have become riskier over time, but is not intrinsically riskier for

firms growing at extreme rates.

These results suggest that the inherently uncertain nature of innovation can help explain

the striking patterns in extreme firm growth. In terms of policy, support for innovation is
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justified by the finding that innovation has a positive growth effect on average, and further,

by the finding that for firms at growth rate extremes, innovation increases the probability of

sustaining or rebounding to positive extreme growth more than it increases the probability

of sustaining or bouncing down to negative extreme growth. Potential rewards of innovation

are highest for firms experiencing extreme growth.

The multinomial model we estimated does not exploit the panel structure of the data. But

results (available on request) of separate binary fixed-effects logistic regressions,13 one for the

bottom growth decile and another for the top growth decile, both relative to the mid-range

growers, produced very similar results that reinforce our main finding: innovation increases

the probability of both underperformance and outperformance. Further work employing

methods that allow for heterogeneity of outcomes in a panel setting, for example panel

quantile regression (Coad et al., 2016), is the next step. Selection effects due to including

only innovating firms (Segarra and Teruel, 2014), failing to control for firm survival (Capasso

et al., 2015), and not controlling for sectoral heterogeneity within manufacturing (Coad and

Rao, 2008) are also to be addressed in further work.

The focus on short-term growth has led us to consider only innovation in the immediately

preceding year. This masks some of the complexity in the dynamics of the innovation process

and its effect on firm growth over time (Coad and Rao, 2010).14 It would be worthwhile to

extend the analysis to consider more longer term growth patterns (for example, in the vein

of Bianchini et al., 2017; Capasso et al., 2015; Stam and Wennberg, 2009). Alternative inno-

vation measures are also worth considering: for example, self-citation ratio that characterise

patents as ‘external’ or ‘internal’, as in Akcigit and Kerr (2016, p. 9)15, and measures of tech-

nological spillover from the innovation network that links patent fields together (Acemoglu

et al., 2016).

13 Koenker and Hallock (2001) highlight the validity of estimating ‘a family of binary response models for
the probability that the response variable exceeded some prespecified cutoff values’.

14In defence of a short-term focus, see Geroski and Machin (1992, p. 81).
15See also Segarra and Teruel (2014).
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Appendix A.

Table A1: GMM Results by Sub-period
1981-1985 1986-1990 1991-1995 1996-2000

GrSalest−1 0.201*** 0.0112 -0.0222 -0.0862**
(0.0565) (0.0582) (0.0509) (0.0396)

RDIntensityt−1 0.0289 0.0311 0.0587** 0.0837***
(0.0354) (0.0485) (0.0269) (0.0319)

WPYt−1 -0.000129 0.000274 0.00107 0.000417
(0.000413) (0.000517) (0.000695) (0.00132)

WPY2
t−1 -3.68e-08 9.49e-08 -7.21e-07 -2.46e-06

(2.56e-07) (8.03e-07) (9.71e-07) (5.69e-06)
UPYt−1 -0.00656 0.0175 0.0131 0.00398

(0.0187) (0.0161) (0.0164) (0.0245)
UPY2

t−1 0.00300 -0.00117 0.00139 -0.00117
(0.00234) (0.00225) (0.00241) (0.00370)

Observations 6,161 6,465 6,796 7,715
Firm Count 1,696 1,853 1,883 2,213
# Instruments 49 59 59 59
Hansen OverID test 0.596 0.239 0.209 0.160
Arellano-Bond AR(2) test 0.0421 0.985 0.536 0.328
All regressions include lagged age, size as well as industry and year dummies.

Robust standard errors clustered at the firm level in parentheses.

*** p<0.01, ** p<0.05, * p<0.1

Table A2: Multinomial Logit Predicted Probabilities by Sub-period

Growth Pattern 1981-1985 1986-1990 1991-1995 1996-2000
Bot 10% Persist 0.159 0.143 0.158 0.154

Bot 10%t−1 to Top 10%t 0.0880 0.112 0.144 0.154
Mid 80%t−1 to Bot 10%t 0.0945 0.0937 0.0911 0.0897
Mid 80%t−1 to Top 10%t 0.0744 0.0737 0.0745 0.0732
Top 10%t−1 to Bot 10%t 0.0941 0.112 0.117 0.129

Top 10% Persist 0.273 0.264 0.235 0.233

Warmer colours represent higher probability
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Table A3: Multinomial Logit Innovation Average Partial Effects by Sub-period
1981-1985 1986-1990 1991-1995 1996-2000

RDIntensityt−1 CatSalest = 0 -0.00472 0.00833** 0.00654** 0.0127***
(0.00372) (0.00378) (0.00279) (0.00300)

CatSalest = 2 0.0191*** 0.0247*** 0.0189*** 0.0263***
(0.00386) (0.00371) (0.00350) (0.00317)

UPYt−1 CatSalest = 0 -0.0269** -0.0149 -0.0230** -0.0289***
(0.0133) (0.0126) (0.0105) (0.0104)

CatSalest = 2 0.000658 0.00608 0.00409 0.0159**
(0.00916) (0.00882) (0.0101) (0.00734)

WPYt−1 CatSalest = 0 -0.000825 -0.000768 -0.000698* -0.00193**
(0.000643) (0.000471) (0.000385) (0.000818)

CatSalest = 2 0.000317 0.000931*** 0.000523 0.00139**
(0.000198) (0.000323) (0.000324) (0.000555)

Observations 6,161 6,465 6,796 7,715
All regressions include lagged age, size and growth rate as well as year and industry dummies.

Bootstrapped standard errors (100 reps) clustered at the firm level in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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