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Abstract

We examine economic mobility in India while rigorously accounting for measurement error.

Such an analysis is imperative to fully understand the welfare e¤ects of the rise in inequality

that has occurred in India over the past few decades. To proceed, we extend recently devel-

oped methods on the partial identi�cation of transition matrices and apply this methodology

to newly available panel data on household consumption. We �nd overall mobility has been

markedly low: at least 75 percent of the poor households remain poor or at-risk of being

poor between 2005 and 2012. We also �nd Muslims, lower caste groups, and rural house-

holds are in a more disadvantageous position in terms of escaping poverty or transitioning

into poverty compared to Hindus, upper caste groups, and urban households. These �ndings

suggest inequality in India is likely to be chronic and also challenges the conventional wisdom

that marginalized households are catching up on average.
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1 Introduction

There has been a phenomenal rise in economic inequality in India over the past few decades.

A 2018 Oxfam study reports a signi�cant increase in the consumption Gini index in both

rural and urban areas in India from 1993-94 to 2011-12.1 According to Global Wealth Report

(GWR) 2017, between 2002 and 2012, the share of the bottom 50% of the population in the

total wealth declined (increased) from 8.1% to only 4.2%, while that of top 1% increased

from 15.7% to 25.7%.2 Among the countries for which GWR gives the share of wealth held

by the top 1%, only Indonesia and the US have higher shares of wealth than India. In a

recent study Chancel and Piketty (2018) �nd that current inequality in India is at its highest

level in 96 years. The authors note, �India in fact comes out as a country with one of the

highest increase in top 1% income share concentration over the past thirty years�(Chancel

and Piketty 2018, p. 29).

Given this dramatic rise in inequality, it is imperative to accurately measure the ex-

tent of economic mobility in India. Mobility becomes salient because the long-term welfare

e¤ects of rising inequality depend crucially on the level of economic mobility. Economic

mobility (or a lack thereof) can attenuate (or accentuate) the adverse e¤ects of inequality.

Ceteris paribus, an economy with much economic mobility� one in which households move

more freely throughout the income/consumption distribution� will result in a more equal

distribution of lifetime incomes and consumption than an economy with low mobility. As

discussed in Glewwe (2012) and Dang et al. (2014), the nexus of inequality and mobility

has crucial implications for e¤ective policy design. On the one hand, if inequality is high

but mobility is low, then low socioeconomic status (SES) households will often �nd them-

selves in a poverty trap and policies should perhaps target the acquisition of assets by such

households. On the other hand, if inequality and mobility are both high, but households are

unable to smooth consumption during periods of low income, then policies that target the

sources of consumption volatility or expand access to credit and insurance markets may be

more e¤ective.
1https://www.oxfamindia.org/sites/default/files/WideningGaps_IndiaInequalityReport2018.

pdf.
2https://www.credit-suisse.com/about-us/en/reports-research/global-wealth-report.html.
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Here, we seek to analyze the degree of economic mobility in India while overcoming the

two data issues that have severely constrained prior attempts: (i) a lack of panel data on in-

come or consumption, and (ii) measurement error in income or consumption data. As noted

by Fields et al. (2007) among many others, studying mobility ideally requires panel data

that tracks a household�s income or consumption over time. However, nationally representa-

tive, household panel data for India are rarely available (Dang and Lanjouw, 2018). When

available, income and consumption is known to su¤er from measurement error. As noted by

Vanneman and Dubey (2013, p. 441), measurement error is particularly problematic in the

Indian context as �most Indian households receive income from more than one source�and

this �variety of income sources and household economic strategies presents a much greater

challenge for income measurement in India than is typical in rich-country data.� Focus-

ing on household consumption instead of income does not ameliorate these issues (Glewwe

1991). Vanneman and Dubey (2013, p. 443) state that, �survey measures of [consumption]

expenditures have their own measurement problems (for example, respondent fatigue) and

volatility (marriages, debts, and health crises can create unrepresentative spikes for some

households).�Deaton and Subramaniam (1996) also note that each item of consumption �is

certainly measured with some error�in household surveys, thus leading to measurement er-

ror in total expenditures as well. Meyer and Sullivan (2003, p. 1182) conclude: �In practice,

survey income, expenditure and consumption are all measured with signi�cant error.�

Overcoming measurement error in income or consumption data is not trivial as previous

research demonstrates that such errors are nonclassical in the sense that the errors are mean-

reverting and serially correlated (Duncan and Hill 1985; Bound and Krueger 1991; Bound

et al. 1994; Pischke 1995; Bound et al. 2001; Kapteyn and Ypma 2007; Gottschalk and

Huynh 2010; Jäntti and Jenkins, 2015). This introduces added complications in measuring

economic mobility. Pavlopoulos et al. (2012, p. 750) conclude that �ignoring [measurement

error] can cause �enormous bias�in the estimation of income/consumption dynamics.�

In this paper, we overcome the dual problems of data availability and measurement error

in order to examine intragenerational economic mobility in India. To do so, we extend recent

work in Millimet et al. (2019) on the partial identi�cation of transition matrices and apply

our methodology to newly available panel data on household consumption from the Indian
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Human Development Survey (IHDS). Our approach bounds consumption transition prob-

abilities under di¤erent assumptions concerning misclassi�cation errors and the underlying

consumption dynamics. First, we derive sharp bounds on transition probabilities under min-

imal assumptions concerning the measurement error process. Second, we narrow the bounds

by imposing more structure via shape restrictions, level set restrictions that relate transition

probabilities across observations with di¤erent attributes (Manski 1990; Lechner 1999), and

monotone instrumental variable (MIV) restrictions that assume monotonic relationships be-

tween the true consumption expenditure and certain observed covariates (Manski and Pepper

2000).

We focus on the measurement of consumption mobility for two reasons. First, India

determines a household�s o¢ cial poverty status using monthly per capita consumption ex-

penditure (see Government of India Planning Commission, 2014). As such, we are able to

examine economic mobility as it relates to poverty or poverty mobility. Second, consumption

is conventionally viewed as the preferred welfare indicator in developing countries because

it is thought to better capture long-run welfare levels than current income (e.g., Meyer and

Sullivan 2003; Carver and Grimes 2019).3

Our analysis yields some striking �ndings. First, we show that modest amounts

of measurement error leads to bounds on the true mobility estimates that can

be quite wide and almost uniformative in the absence of other information or

restrictions. In other words, irrespective of what the estimates of tramsition

probabilities based on the mismeasured data, the true mobility estimates could

potentially be very di¤erent from them. This indicates that mistakenly believ-

ing mobility estimates that do not account for measurement error in data gives

a false sense of certitude, and that these mobility estimates might be mislead-
3Meyer and Sullivan (2003, p. 1210) note:

�Conceptual arguments as to whether income or consumption is a better measure of material
well-being of the poor almost always favor consumption. For example, consumption captures
permanent income, re�ects the insurance value of government programs and credit markets,
better accommodates illegal activity and price changes, and is more likely to re�ect private and
government transfers.�

Furthermore, Carver and Grimmes (2019) �nd that a consumption-based measure outperforms (surveyed)
income in predicting subjective well-being using data from New Zealand.
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ing from a policy point of view. Second, the restrictions considered to address

measurement error contain signi�cant identifying power as the bounds can be

severely narrowed. Third, under our most restrictive set of assumptions but

allowing for misclassi�cation errors in up to 20% of the sample, we �nd that the

probability of being in poverty in 2012 conditional on being in poverty in 2005 is

at least 28%, the probability of being in a insecure nonpoor state (i.e., monthly

per capita household consumption expenditure is between the poverty line and

twice the poverty line) in 2012 conditional on being in poverty in 2005 is at least

47%, and the probability of being in a secure nonpoor state (i.e., monthly per

capita household consumption expenditure is at least twice the poverty line) in

2012 conditional on being in poverty in 2005 is at most 23%. Under the same

set of assumptions, we also �nd that the probability of being in poverty in 2012

conditional on being in a insecure nonpoor state in 2005 is at least 13% and at

most 15%, and the probability of being in poverty in 2012 conditional on being

in a secure nonpoor state in 2005 is at least 3% and at most 6%. These �gures

indicate that mobility has been remarkably low in India. Finally, even upon

imposition of the strongest albeit plausible set of assumptions to tighten the

bounds we cannot rule out that one could be underestimating the probability of

remaining poor over the seven year period and overestimating the probability

of escaping poverty to a nonpoor insecure state as well as to the secure nonpoor

state if one falsely believes that there is no misclassi�cation error. This indicates

that not accounting for misclassi�cation error could actually make the mobility

situation in India appear to be brighter than it actually is.

We also compare the mobility rates of various subpopulations, �nding evidence of sub-

stantial heterogeneity. First, Muslims are more vulnerable to falling below poverty line over

the seven year period compared to Hindus or other religious groups; they are also less likely

to achieve secure nonpoor status, or remain secure nonpoor. Second, compared to Brah-

min and Non-Brahmin Upper Caste groups and Other Backward Classes (OBCs), Scheduled

Castes (SCs) and Scheduled Tribes (STs) are less likely to escape poverty and more likely

to move into poverty. Between Brahmins and non-Brahmin Upper Castes and OBCs, OBCs
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are more likely to move into poverty and less likely to become secure nonpoor or remain

secure nonpoor. Finally, rural households, compared to urban households, are more likely

to remain in poverty. They are also less likely to escape poverty and more likely to enter

into poverty than the urban households. Overall, our �ndings suggest inequality in India is

paired with relatively low economic mobility. Our �ndings also challenge the conventional

wisdom that marginalized households �those belonging to minority religious groups, lower

castes, or living in rural regions �are catching up on average.

The rest of the paper unfolds as follows. In Section 2, we brie�y review the existing

studies on economic mobility pertaining to India. Section 3 presents the empirical approach.

In Section 4 we describe the data. Results are presented in Section 5. The last section

concludes.

2 Literature Review

Prior studies have examined economic mobility in India.4 Early studies in this literature

primarily relied on unrepresentative panel data collected for relatively small samples from

rural India.5 Moreover, none of these early studies address measurement error in income

or consumption. Subsequent studies assessing income or consumption mobility in India

utilize more representative data but continue to ignore measurement error (e.g., Krishna

and Shari¤ 2011; Gautam et al. 2012; Thorat et al. 2017). Recently, a few studies analyze

economic mobility in India while accounting for measurement error (Barrientos Q. et al.

2016; Pradhan and Mukherjee 2015; Azam 2016; Arunachalam and Shenoy 2017; Dang

and Lanjouw 2018). However, these studies use methods that rely on strong functional

form and distributional assumptions, address only certain classes of measurement error (e.g.,

rank preserving measurement error), or employ instrumental variable (IV) techniques where

validity is often suspect and mobility across the entire distribution of income or consumption

cannot be assessed.
4In addition to studies examining income or consumption mobility, a separate literature assesses inter-

generational educational mobility (e.g., Azam and Bhatt 2015; Asher et al. 2018) and intergenerational
occupational mobility (Hnatkovska et al. 2013) in India. However, given our focus on intragenerational
consumption mobility, we refrain from discussing these studies further.

5See Fields (2007) for a brief review of this literature.
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Barrientos Q. et al. (2016) use the a panel dataset of rural households collected by

the National Council of Applied Economic Research (NCAER) in 1994 and 2005. The

authors estimate a bivariate probit model with poverty status in 1994 and 2005 as outcomes.

Poverty status in 1994 is included a covariate in the equation for poverty status in 2005 and

is instrumented for using land ownership in 1994. However, measurement error in poverty

status in 2005 is not addressed, nor is the fact that instrumental variables is not generally

a valid solution to measurement error in binary outcomes (Black et al. 2000). Pradhan and

Mukherjee (2015) use the ARIS/REDS data spanning three decades (1982-2006) to assess

income mobility. The authors employ an IV strategy proposed in Glewwe (2012) to estimate

the correlation between �true�initial and �nal incomes. Initial income is instrumented for

using the dependency ratio (i.e., the ratio of family size to the number of income earners),

land ownership, land reform (a dummy that captures the e¤ect of implementation of land

reforms in the village), and rainfall shocks. In contrast to Barrientos Q. et al. (2016),

Pradhan and Mukherjee (2015) �nd evidence of low income mobility.

The consistency of these IV studies rests on the validity of the chosen instruments. As

noted by Lee et al. (2017, p. 39), �the plausibility of these instruments, as is often the case,

can be debated.�Speci�cally, one can argue that the chosen instruments may be correlated

with the error term due to the nonclassical nature of the measurement error or other omitted

sources of heterogeneity. Moreover, IV techniques require the speci�cation of a particular

regression model and thus estimate a single parameter to characterize mobility. Di¤erential

mobility across the full income or consumption distribution is absent.

In contrast, Azam (2016) examines economic mobility by calculating directional rank mo-

bility (in addition to the traditional transition probabilities) following a novel approach de-

veloped in Bhattacharya and Mazumdar (2011), Mazumdar (2014), and Corak et al. (2014).

This approach de�nes upward (downward) directional rank mobility as the probability that

a household�s position in the income distribution in the �nal period surpasses (falls below)

by a given amount the household�s position in the income distribution in the initial period,

conditional on the household�s initial position in the income distribution. The author uses

longitudinal household survey data collected by the NCAER to examine rural households

from 1994 to 2012, as well as data from the IHDS to examine urban households from 2005
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to 2012. By focusing on ranks, rather than actual incomes, rank-preserving measurement

errors �but not other types of errors �are allowed, as acknowledged in Bhattacharya and

Mazumder (2011). This seems like an untenable assumption.

Arunachalam and Shenoy (2017) design a new method to detect household poverty traps

and apply it to Indian data. Their method exploits a simple fact: a household just inside

the threshold of a poverty trap is likely to su¤er negative income growth as the trap pulls

the household towards the impoverished steady state. In contrast, a household just above

the threshold of a poverty trap is propelled to a higher steady state. Thus, at the threshold,

the probability a household experiences negative income growth decreases. More speci�-

cally, the existence of poverty trap implies that the probability of negative income growth

is a decreasing function of current household income. By contrast, if there are no poverty

traps and households are converging to a single steady state, the probability of negative

income growth is always rising. Using the ARIS-REDS data (1969-1999), the authors �nd

no evidence of poverty traps. However, as noted in Arunachalam and Shenoy (2017, p. 221),

�measurement error...may mask a poverty trap.�To address this issue, the authors attempt

to devise a consistent measure of household income across survey waves instead of using self-

reported income. Nonetheless, Arunachalam and Shenoy (2017, p. 223) state that �given

the complexity of a poor household�s balance sheet, it is not clear what the ideal measure

of income is, let alone whether our de�nition matches it�and that �[even] these precautions

may not remove all measurement error.�

Finally, Dang and Lanjouw (2018), using three cross-sectional rounds of data from the

National Sample Survet (NSS), compute rates of economic mobility using a synthetic panel

approach developed in Dang et al. (2014). The authors posit a static model of consumption

using only covariates that are collected in one survey round but whose values can be inferred

for the other round (e.g., time invariant variables). The model estimates, along with various

assumptions concerning how unobserved determinants of consumption are correlated over

time, are used to estimate a poverty transition matrix. The synthetic panel approach im-

plicitly addresses measurement error through the imputation process as missing data can be

considered an extreme form of measurement error. However, measurement error in observed

consumption used to estimate the static model and compute the poverty transition matrix
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is not addressed.

Our approach, relative to the approaches used in the existing literature, o¤ers several

distinct advantages. First, our approach is based on assumptions that are transparent,

easily understood by policymakers, and easy to impose or not impose depending on one�s

beliefs. Second, the approach is suitable to address a wide class of measurement errors

compared to existing methods. Third, given that the approach focuses on estimation of

transition matrices, it allows us to examine mobility over the entire distribution of income

and consumption. Fourth, the bounds require only data from two points in time and no

auxiliary sources of information. Finally, our approach is easy to implement (through the

creation of a generic Stata command).6

3 Empirical Framework

3.1 Setup

The setup is identical to previous work in Millimet et al. (2019). Thus, we provide only a

brief overview, and focus on the extensions in Section 3.2. We relegate the formal derivations

to Appendix A.

To begin, let y�it, denote the true consumption for household i, i = 1; :::; N , in period t,

t = 0; 1. De�ne the true K �K transition matrix as P �0;1, given by

P �0;1 =

26666664
p�11 � � � � � � p�1K
...

. . .
...

...
. . .

...

p�K1 � � � � � � p�KK

37777775 : (1)

6Available at http://faculty.smu.edu/millimet/code.html.
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Elements of this matrix have the following form

p�kl =
Pr(�0k�1 � y�0 < �0k; �1l�1 � y�1 < �1l )

Pr(�0k�1 � y�0 < �0k)
(2)

=
Pr(y�0 2 k; y�1 2 l)

Pr(y�0 2 k)
k; l = 1; :::; K;

where the �s are cuto¤ points between the K partitions such that 0 = �t0 < �t1 < �t2 <

� � � < �tK�1 < �tK < 1, t = 0; 1. Thus, p�kl is a conditional probability. A complete lack

of mobility implies p�kl equals unity if k = l and zero otherwise. Finally, we can de�ne

conditional transition matrices, conditioned upon X = x, where X denotes a vector of

observed attributes. Denote the conditional transition matrix as P �0;1(x), with elements

given by

p�kl(x) =
Pr(�0k�1 � y�0 < �0k; �1l�1 � y�1 < �1l jX = x)

Pr(�0k�1 � y�0 < �0kjX = x)
(3)

=
Pr(y�0 2 k; y�1 2 ljX = x)

Pr(y�0 2 kjX = x)
k; l = 1; :::; K:

Implicit in this de�nition is the assumption that X includes only time invariant attributes.

Moreover, while the probabilities are conditional on X, the cuto¤ points � are not. Thus,

we are capturing movements within the overall distribution among those with X = x.

As discussed in more detail in Section 4, in this study we set K = 3. The outcome,

y�, denotes household consumption expenditure relative to the o¢ cial poverty line. In each

period t, the partitions are set as �t0 = 0, �t1 = 1, �t2 = 2, and �t3 ! 1, t = 0; 1. Thus,

partition one includes households categorized as o¢ cially poor in period t. Partition 2

includes households between 100% and 200% of the o¢ cial poverty line in period t. Partition

3 includes all households with consumption exceeding 200% of the o¢ cial poverty line in

period t. In the terminology of Millimet et al. (2019), P �0;1 and P
�
0;1(x) utilize unequal-

sized partitions in our application since the sample is not equally split among the partitions.

This means that mobility is not zero-sum; for example, a household may move up to a new

partition without another household having to move down.

Our objective is to learn about the elements of P �0;1 or P
�
0;1(x). With a random sample
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fy�it; xig, the transition probabilities are nonparametrically identi�ed; consistent estimates

are given by the empirical transition probabilities. However, as stated previously, ample

evidence indicates that consumption is measured with error. Let yit denote the observed

consumption for household i in period t. With data fyit; xig, the empirical transition prob-

abilities are inconsistent for p�kl and p
�
kl(x). Rather than invoking overly strong, and likely

implausible assumptions, to point identify the transition probabilities, our goal is to bound

the probabilities given in (2) and (3).

To proceed, we characterize the relationships between the true partitions of fy�itg1t=0 and

the observed partitions of fyitg1t=0 using the following joint probabilities:

�
(k0;l0)
(k;l) = Pr(y0 2 k

0; y1 2 l0; y�0 2 k; y�1 2 l): (4)

While conditional misclassi�cation probabilities are more intuitive, these joint probabilities

are easier to work with (e.g., Kreider et al. 2012).

In (4) the subscript (k; l) indexes the true partitions in periods 0 and 1 and the superscript

(k0; l0) indicates the observed partitions. With this notation, we can now rewrite the elements

of P �0;1 as

p�kl =
Pr(y�0 2 k; y�1 2 l)
Pr(y�0 2 k)

=

Pr(y0 2 k; y1 2 l) +
X

k0;l0=1;2;:::;K
(k0;l0) 6=(k;l)

�
(k0;l0)
(k;l) �

X
k0;l0=1;2;:::;K
(k0;l0) 6=(k;l)

�
(k;l)
(k0;l0)

Pr(y0 2 k) +
X

k0;l0;el=1;2;:::;K
k0 6=k

�
(k0;l0)

(k;el) �
X

k0;l0;el=1;2;:::;K
k0 6=k

�
(k;l0)

(k0;el)

� rkl +Q1;kl �Q2;kl
pk +Q3;k �Q4;k

: (5)

Q1;kl measures the proportion of false negatives associated with partition kl (i.e., the prob-

ability of being misclassi�ed conditional on kl being the true partition). Q2;kl measures the

proportion of false positives associated with partition kl (i.e., the probability of being mis-

classi�ed conditional on kl being the observed partition). Similarly, Q3;k and Q4;k measure

the proportion of false negatives and positives associated with partition k, respectively.
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The data identify rkl and pk (and, hence, pkl � rkl=pk), but not the misclassi�cation

parameters, �. One can compute sharp bounds by searching across the unknown misclassi-

�cation parameters. However, absent further restrictions, obtaining informative bounds on

the transition probabilities is not possible. In the Section 3.2, we introduce assumptions on

the �s to potentially yield informative bounds. Some of these assumptions are considered

in Millimet et al. (2019), while some are new. Section 3.3 considers restrictions on the

underlying mobility process and are identical to those considered in Millimet et al. (2019).

3.2 Misclassi�cation

3.2.1 Assumptions

Allowing for measurement error, we obtain bounds on the elements of P �0;1, given in (5).
7 We

begin by considering the following misclassi�cation assumptions from Millimet et al. (2019).

Assumption 1 (Classi�cation-Preserving Measurement Error). Misreporting does not al-

ter an observation�s partition in the consumption distribution in either period. Formally,P
k;l �

kl
kl = 1 or, equivalently, X

k;k0;l;l0=1;2;:::;K
(k0;l0) 6=(k;l)

�
(k0;l0)
(k;l) = 0:

Assumption 2 (Maximum Misclassi�cation Rate).

(i) (Arbitrary Misclassi�cation) The total misclassi�cation rate in the data is bounded from

above by Q 2 (0; 1). Formally, 1�
P

k;l �
00
kl � Q or, equivalently,

X
k;k0;l;l0=1;2;:::;K
(k0;l0) 6=(k;l)

�
(k0;l0)
(k;l) � Q:

(ii) (Uniform Misclassi�cation) The total misclassi�cation rate in the data is bounded from

7In the interest of brevity, we focus attention from here primarily on the unconditional transition matrix.
We return to the conditional transition matrix in Section 3.3.
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above by Q 2 (0; 1) and is uniformly distributed across partitions. Formally,

X
k;k0;l;l0=1;2;:::;K
(k0;l0) 6=(k;l)

�
(k0;l0)
(k;l) � Q

X
k0;l;l0=1;2;:::;K
(k0;l0) 6=(k;l)

�
(k0;l0)
(k;l) � Q

K
8k

X
k0;l;l0=1;2;:::;K
(k0;l0) 6=(k;l)

�
(k0;l0)
(k;l) � Q

K
8l:

Assumption 3 (Uni-Directional Misclassi�cation). Misclassi�cation occurs strictly in the

upward direction. Formally,

�
(k0;l0)
(k;l) = 0 8k0 < k

�
(k0;l0)
(k;l) = 0 8l0 < l:

Assumption 1 is quite strong, but is simply used as a benchmark. Under this assumption,

measurement error is allowed as long as it does not cause observations to be classi�ed into

incorrect partitions. Assumption 2 places restrictions on the total amount of misclassi�cation

allowed in the data. As discussed in Millimet et al. (2019), the amount of misclassi�cation is

unknown and dependent on the choice of K. We consider sensitivity to the choice of Q in the

application. Under Assumption 2, the number of �s de�ned by (4) isK2(K2�1); which, in our

case, equals 72. Assumptions 1 and 2 limit the sum of these parameters, but not the unique

number of parameters. In contrast, Assumption 3 rules out the possibility of false positives

(negatives) occurring in the worst (best) partition. It reduces the number of misclassi�cation

parameters in our case from 72 to 27. Note, Assumption 3 is consistent with mean-reverting

measurement error as long as the negative measurement errors for observations with high

consumption are not su¢ cient to lead to misclassi�cation.

Finally, we consider the following two additional assumptions not considered in Millimet

et al. (2019). It may be imposed in combination with any of the preceding assumptions.

Assumption 4 (Temporal Independence). Misclassi�cation probabilities are independent
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across time periods. Formally, �(k
0;l0)

(k;l) simpli�es to

�k
0

k � �l
0

l ;

where �k
0
k (�

l0

l ) is the probability of being observed in partition k
0 (l0) in the initial (terminal)

period when the true partition is k (l).

Assumption 5 (Temporal Invariance). Misclassi�cation probabilities are independent across

time periods as well as temporally invariant. Formally, �(k
0;l0)

(k;l) simpli�es to

�k
0

k � �l
0

l :

In other words, �k
0
k = �

k0

k 8k.

Assumption 4 restricts misreporting behavior such that the decision to misreport is indepen-

dent across periods. This rules out a household�s consumption history a¤ecting its propensity

to misreport its current consumption. It reduces the number of misclassi�cation parameters

to 2K(K � 1); or, in our case, to 12. Combining Assumptions 4 and 3 further reduces the

number of parameters in our case to six. Assumption 5 further restricts the probability of

misreporting in particular directions to be constant over the sample period. This assumes

that data accuracy and other sources of measurement error such as stigma do not change

across time periods. This restriction further reduces the number of parameters to K(K�1);

or, in our case, to six. Lastly, combining Assumptions 5 and 3 reduces the number of

parameters in our case to three.

3.2.2 Bounds

Under Assumption 1 consistent estimates are given by the empirical transition probabilities

(Proposition 1 in Millimet et al. (2019)):

bpkl = P
i I(y0i 2 k; y1i 2 l)P

i I(y0i 2 k)
:

13



Absent this assumption, the transition probabilities are no longer nonparametrically identi-

�ed. The bounds under various combinations of Assumptions 2 �5 are detailed in Appendix

A.

3.3 Mobility

3.3.1 Assumptions

The preceding section provides bounds on the transition probabilities considering only re-

strictions on the misclassi�cation process. Here, we introduce restrictions on the mobility

process that may further serve to tighten the bounds. The restrictions may be imposed alone

or in combination.

First, we consider shape restrictions which place inequality constraints on the population

transition probabilities. Speci�cally, we assume that large transitions are less likely than

smaller ones.

Assumption 6 (Shape Restrictions). The transition probabilities are weakly decreasing in

the size of the transition. Formally, p�kl is weakly decreasing in jk� lj, the absolute di¤erence

between k and l.

This assumption implies that within each row or each column of the transition matrix, the

diagonal element (i.e., the conditional staying probability) is the largest. The remaining

elements decline weakly monotonically moving away from the diagonal element. This as-

sumption, which may be plausible if large jumps in consumption are less common than

small ones.

Second, we consider level set restrictions which place equality constraints on population

transition probabilities across observations with di¤erent observed attributes (Manski 1990;

Lechner 1999).

Assumption 7 (Level Set Restrictions). The conditional transition probabilities, given in

(3), are constant across a range of conditioning values. Formally, p�kl(x) is constant for all

x 2 Ax� Rm, where x is an m-dimensional vector.
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For instance, if x denotes the age of the household head in years, one might wish to assume

that p�kl(z) is constant for all z within a �xed window around x.

From (3) and (5), we have

p�kl(x) =

Pr(y0 2 k; y1 2 ljX = x) +
X

k0;l0=1;2;:::;K
(k0;l0) 6=(k;l)

�
(k0;l0)
(k;l) (x)�

X
k0;l0=1;2;:::;K
(k0;l0) 6=(k;l)

�
(k;l)
(k0;l0)(x)

Pr(y0 2 kjX = x) +
X

k0;l0;el=1;2;:::;K
k0 6=k

�
(k0;l0)

(k;el) (x)�
X

k0;l0;el=1;2;:::;K
k0 6=k

�
(k;l0)

(k0;el)(x)

� rkl(x) +Q1;kl(x)�Q2;kl(x)
pk(x) +Q3;k(x)�Q4;k(x)

(6)

where now Qj;�(x), j = 1; :::; 4, represent the proportions of false positives and negatives con-

ditional on x. As such, we also consider the following assumption regarding the conditional

misclassi�cation probabilities.

Assumption 8 (Independence). Misclassi�cation rates are independent of the observed at-

tributes of observations, x. Formally,

�
(k0;l0)
(k;l) (x) = �

(k0;l0)
(k;l) ; 8k; k

0; l; l0; x:

The plausibility of Assumption 8 depends on one�s conjectures concerning the measurement

error process. However, two points are important to bear in mind. First, the misclassi�cation

probabilities, �(k
0�k;l0�l)

(k;l) , are speci�c to a pair of true and observed partitions. As a result,

even if misclassi�cation is more likely at certain parts of the consumption distribution and x

is correlated with consumption, this does not necessarily invalidate Assumption 8. Second,

Assumption 8 does not imply that misclassi�cation rates are independent of all individual

attributes, only those included in the variables used to de�ne the level set restrictions.

Finally, we consider monotonicity restrictions which place inequality constraints on popu-

lation transition probabilities across observations with di¤erent observed attributes (Manski

and Pepper 2000; Chetverikov et al. 2018).

Assumption 9 (Monotonicity). The conditional probability of upward mobility is weakly

increasing in a vector of attributes, u, and the conditional probability of downward mobility
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is weakly decreasing in the same vector of attributes. Formally, if u2 � u1, then

p�11(u1) � p�11(u2)

p�KK(u1) � p�KK(u2)

p�kl(u1) � p�kl(u2) 8l > k

p�kl(u1) � p�kl(u2) 8l < k:

For instance, if u denotes the education of an individual, one might wish to assume that the

probability of upward (downward) mobility is no lower (higher) for individuals with more

education. Note, the monotonicity assumption provides no information on the conditional

staying probabilities, p�kk(u), for k = 2; :::; K � 1.

3.3.2 Bounds

The bounds under various combinations of Assumptions 2 �9 are relegated to Appendix A.

However, as discussed in Millimet et al. (2019), estimates of the bounds su¤er from �nite

sample bias as they rely on in�ma and suprema. To circumvent this issue, we follow this

previous work and utilize a bootstrap bias correction, based on subsampling with replicate

samples of size N=2. To obtain con�dence intervals, we utilize subsampling along with the

Imbens-Manski (2004) correction to obtain 90% con�dence intervals (CIs).8 As with the bias

correction, we set the size of the replicate samples to N=2.

4 Data

4.1 Indian Human Development Survey

The data come from the IHDS. IHDS is a nationally representative multi-topic panel house-

hold survey conducted by NCAER in New Delhi and University of Maryland (Desai et al.

2010; Desai et al. 2015). It was designed to complement existing Indian household surveys

8The literature on inference in partially identi�ed models is expanding rapidly. However, as discussed in
Millimet et al. (2019), the Imbens-Manski (2004) approach is preferable in the current context.
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by bringing together a wide range of socio-economic topics in a single survey. The sample

was drawn using strati�ed random sampling.

The �rst wave of the survey was conducted in 2004-05 and covered 41,554 households in

1,503 villages and 971 urban neighborhoods across India.9 The second wave was conducted in

2011-12 and covered 42,152 households, 40,018 of whom were interviewed in the �rst wave.10

Both waves of the IHDS are based on interviews with a knowledgeable informant from the

household. The interviews covered health, education, employment, economic status, mar-

riage, fertility, gender relations, and social capital. The survey instruments were translated

into 13 Indian languages and were administered by local interviewers. Both waves are now

publicly available through the Inter-university Consortium for Political and Social Research

(ICPSR).

The IHDS is well-suited to our inquiry for the following reasons. First, the IHDS is the

most recent household panel survey conducted in India. Second, it is a nationwide panel

that follows rural and urban households. Moreover, the sample size is fairly large com-

pared to other panel surveys conducted in India. The closest alternative is the ARIS/REDS

panel study of Indian households. Although the ARIS/REDS data, collected in four rounds

between 1971 and 2006, covers a longer time period than the IHDS, it surveys only rural

households. Furthermore, the sample size of ARIS/REDS is much smaller; the �rst round of

the ARIS/REDS covered 4,527 households across 259 villages and the latest round covered

9,500 households.11

9The survey covered all the states and union territories of India except Andaman and Nicobar, and
Lakshadweep. These two account for less than 0.05 percent of India�s population.
10However, this includes �split-households,�which refers to those households who had split from a single unit

to multiple units between 2005 and 2012. Speci�cally, of the 40,018 households, the number of households
who were living as a single unit in both the �rst and second survey rounds was 30,462, while the rest of were
�split households�. For the �split households�, although their second period characteristics (e.g., household
income) di¤ers from one another, their �rst period characteristics are the same (since they were living as a
single entity in the �rst period).
11Other alternatives are a small sample from six ICRISAT villages beginning in the mid-1970s (Naschold

2012; Dercon et al. 2013) and the long-term study of the village of Palanpur since the 1950s (Himanshu and
Stern 2011). However, neither is as large or as representative as the IHDS.
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4.2 Analytic Sample

We examine economic mobility using per capita monthly consumption expenditure. It is

derived from total annual household consumption expenditure. In the 2004-05 wave, this is

aggregated from information on forty-seven di¤erent consumption categories. In the 2011-12

wave, this is aggregated from information on �fty-two di¤erent consumption categories.

Our outcome variable is based on the poverty ratio (POVRATIO) of the household,

de�ned as the ratio of a household�s per capita monthly household consumption expenditure

to the corresponding poverty line. The poverty line is based on the o¢ cial Indian poverty line

for per capita monthly consumption as recommended by the Suresh Tendulkar committee in

2012. The poverty line is state-, year-, and urban-/rural-speci�c (see Table B1 in Appendix

B).12 As noted by the former Deputy Chairman of the Planning Commission of India, Montek

Singh Ahluwalia, the Tendulkar poverty line is to be used as a relevant reference point �to

see how development is helping to take more and more individuals above a �xed line over

time and across states.�13 According to a recent report in The Hindu (18 March 2016), the

NITI Ayog, the policy think tank of the Government of India that replaced the Planning

Commission in 2015, also favors the use of the Tendulkar poverty line for tracking progress

in combating extreme poverty.14

Using POVRATIO, we partition the households into three parts. The �rst partition

consists of households whose POVRATIO is less than one; these are the households who are

o¢ cially classi�ed as poor. The second partition consists of households whose POVRATIO

is at least one but does not exceed 2; we refer to these households are insecure nonpoor since

these households are at-risk of becoming impoverished.15 The third partition consists of the

households whose POVRATIO is at least 2; we will refer to these as secure nonpoor. Using

these three partitions, we estimate 3� 3 consumption transition matrices for the full sample
12See Government of India Planning Commission (2009) report for details about the Suresh Tendulkar

poverty line.
13https://www.thehindu.com/news/national/tendulkar-poverty-line-will-remain-reference-

point/article2509910.ece.
14https://www.thehindu.com/business/Industry/niti-aayog-task-force-backs-tendulkar-

poverty-line/article8371390.ece.
15The term insecure nonpoor has been used in an USAID report to describe people living at a

level less than twice the poverty line in Uganda (see https://www.un.org/development/desa/dspd/wp-
content/uploads/sites/22/2018/03/Uganda-Case-Study.pdf)

18

 https://www.thehindu.com/news/national/tendulkar-poverty-line-will-remain-reference-point/article2509910.ece 
 https://www.thehindu.com/news/national/tendulkar-poverty-line-will-remain-reference-point/article2509910.ece 
https://www.thehindu.com/business/Industry/niti-aayog-task-force-backs-tendulkar-poverty-line/article8371390.ece
https://www.thehindu.com/business/Industry/niti-aayog-task-force-backs-tendulkar-poverty-line/article8371390.ece


as well as for di¤erent subsamples.

When imposing level set restrictions, we use age of the household head in the initial

period. Speci�cally, we group households into the age bins � less than 35, 35-44, 45-54,

55-64, 65 and above �and impose the restriction that mobility is constant across adjacent

bins. For example, we tighten the bounds for households where the head is, say, 35-44 by

assuming that mobility is constant across households where the head is less than 35 years of

age and where the head�s age is between 45 and 54 years. When imposing the monotonicity

restrictions, we use the education level of the household head in the initial period. Here,

households are grouped into four bins based on years of completed schooling: zero, 1-5, 6-10,

and 11-15.

Our sample consists of 38,737 households from across India: these are the households

who were interviewed in both the waves of the survey, who have no missing (or invalid)

information on consumption, income, and other demographic characteristics of the household

head (e.g., education, age, gender, caste, religion), annual total household income and annual

total consumption expenditure are non-negative, and age of the household head in the �rst

round is at least 18. Summary statistics are presented in Table 1.

5 Results

5.1 Full Sample Analysis

Results for the 3�3 transition matrix based on the full sample are presented in Tables 2-6.16

In all tables, for both the time periods, the partitions consisting of poor households, insecure

nonpoor households, and secure nonpoor households are represented by the numbers 1, 2,

and 3 respectively. Overall, between 2005 and 2012, the observed poverty rate declined from

33.5% to 15.4%, the proportion of insecure nonpoor households rose slightly from 42.7% to

43.9%, and the proportion of secure nonpoor households increased from 23.7% to more than

40% (see Table 1). Turning to mobility, Table 2 presents our baseline results under the strong

assumption of Classi�cation-Preserving Measurement Error (which is equivalent to the as-

16For brevity, we do not report bounds based on all possible combinations of restrictions. Unreported
results are available upon request.
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sumption that there is no misclassi�cation). The probability of a household remaining in

poverty across the initial and terminal period is 0.279, the probability of remaining insecure

nonpoor is 0.472, and the probability of remaining secure nonpoor is 0.670. Furthermore,

we �nd that the probabilities of observing larger transitions in the consumption distribu-

tion are less likely than smaller movements. For example, the probability of moving from

impoverished to insecure nonpoor is 0.510; the probability of moving from impoverished to

secure nonpoor is 0.211. Similarly, the probability of moving from the secure nonpoor state

to insecure nonpoor is 0.281; the probability of moving from the secure nonpoor state to

impoverished is 0.048.

Misclassi�cation Assumptions Table 3 allows for a wider class of misclassi�ca-

tion errors. For our baseline analysis, we assume the maximum misclassi�cation

rate as 20% (Q = 0:20). This choice is primarily guided by the �ndings of Mil-

limet et al. (2019). Speci�cally, Millimet et al. (2019) using data from the US

and employing a simulation-based approach to quantify Q show that the misclas-

si�cation rate is roughly 20% when the data is discretized into three partitions.

Since it is unlikely that the extent of measurement error is lower in a developing

country like India compared to the US, assuming Q = 20% for our baseline analy-

sis seems reasonable. However, since there is a possibility that Q could actually

be higher than 20%, in Appendix C, we present bounds for additional values of

Q ranging upto 40%.17

Panels I and II in Table 3 restrict misclassi�cation errors to be arbitrary (Assumption

2(i)) and uniform (Assumption 2(ii)), respectively. Panels III and IV further restrict the

misclassi�cation errors to be only in the upward direction (Assumption 3). Thus, Column A

presents results under Assumptions 2(i) and 2(ii) with and without Assumption 3. Column B

adds the assumption of temporal independence (Assumption 4) to the preceding assumptions,

17It would have been ideal to carry out an exercise similar to Millimet et al. (2019) to quantify Q in
context of India. However, in the present paper we could not do that. This is because Millimet et al.�s
(2019) approach relies heavily on the paramter values of the measurement error process which they obtain
from the previous literature on measurement error in US income and consumption data. For India (and
almost all other developing countries) such information is absent due to lack of previous research aiming to
quantify measurement error in consumption data for India.
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while Column C adds the assumption of temporal invariance (Assumption 5).

In Panel IA the bounds are nearly uninformative. This means a relatively moderate

amount of arbitrary misclassi�cation, in the absence of other information, results in an in-

ability to say much more about mobility over this time period. This indicates that mistakenly

believing mobility estimates that do not account for measurement error gives a false sense

of certitude. For example, while based on the assumption of no misclassi�cation error (or

rank preserving misclassi�cation error), one may be tempted to believe that probability of

a household remaining in poverty across the initial and terminal period is 28%, in reality

the true estimate of the probability of a household remaining in poverty across the initial

and terminal period could be anything between zero and 88%. Similarly, while based on the

assumption of no misclassi�cation error (or rank preserving misclassi�cation error), one may

be tempted to believe that probability of a household moving out of poverty to a nonpoor

secure state initial and terminal period is 21%, in reality the true estimate could anything

between zero and 81%. In order to get back some of this certitude and for being able to

something meaningful about the mobility rates while accounting for misclassi�cation error,

we go on to add misclassi�cation assumptions and mobility restrictions

We start by adding the assumption of temporal independence. As evident from the results

reported in Panel IIB, with the added assumption of temporal independence, the bounds

narrow signi�cantly. For example, the probability of remaining impoverished is at least

8.0%, and of transitioning from impoverished to insecure (secure) nonpoor is at least 31.1%

(1.2%).18 For households initially insecure nonpoor, their chances of remaining insecure

nonpoor is at least 31.6%, and of transitioning from insecure nonpoor to secure nonpoor

(impoverished) is at least (at most) 25.7% (27.1%). Adding the stronger assumption of

temporal invariance in Panel IC, the bounds are further tightened. For example, for the

poor, the bounds on probability remaining in poverty over the sample period narrows from

[0:080; 0:478] in Panel 1B to [0:107; 0:366]. While the assumptions of temporal independence

and temporal invariance have a lot of identifying power, these assumptions rule out behaviors

such as households impoverished in the initial period over-reporting their consumption in

18Throughout the discussion of the results, unless otherwise noted, we focus on the point estimates for
simplicity. The con�dence intervals are generally not much wider than the point estimates of the bounds.
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both the periods to avoid any stigma, or misclassi�cation probabilities changing over time

due to changes in stigma associated with poverty. Nonetheless, since the waves are seven

years apart, these assumptions may be plausible.

In Panel II misclassi�cation errors are assumed to be uniformly distributed across the

three partitions. This is a strong assumption as mean-reverting measurement error might

imply greater misclassi�cation at the tails of the distribution. With this in mind, the bounds

are considerably narrowed relative to their counterparts in Panel I. In Panel IIA, the condi-

tional staying probability for impoverished households is at least 8.0% and at most 59.7%.

The conditional staying probability for insecure (secure) nonpoor households is at least 31.6%

(39.0%). The probability of transitioning from impoverished to insecure (secure) nonpoor

is at least 31.1% (1.2%). Conversely, the probability of transitioning from insecure (secure)

nonpoor to impoverished is at most 32.2% (45.6%). However, we are not able to rule out the

possibility (at the 90% con�dence level) that no households transition into poverty over the

sample period from insecure nonpoor and secure nonpoor states. As in Panel I, the bounds

in Panels IIB and IIC are considerably more narrow. In Panel IIB, for example, the bounds

on probability of remaining impoverished in 2005 and 2012 narrow from [0:080; 0:597] to

[0:146; 0:345]. Similarly, the bounds on probability of transitioning from impoverished to

insecure (secure) nonpoor state narrow from [0:311; 0:886] ([0:012; 0:512]) to [0:377; 0:627]

([0:078; 0:278]). In Panel IIC, the bounds narrow further. Now, the bounds on probability of

remaining impoverished are [0:209; 0:329]. Similarly, the bounds on probability of transition-

ing from impoverished to insecure (secure) nonpoor narrows to [0:444; 0:601] ([0:161; 0:261]).

Panels III and IV add Assumption 3. This assumption is consistent with mean-reverting

measurement error as long as downward measurement errors among households truly in the

upper part of the distribution are not su¢ cient to cause them to be misclassi�ed into lower

partitions, which seems reasonable. This assumption has no identifying power on the down-

ward transition probabilities. However, it does tighten the remaining bounds. In Panel IIIA,

bounds on the probability of remaining impoverished are [0:174; 0:876]. In Panel IVA the

bounds on the probability of remaining impoverished are narrowed further to [0:232; 0:478].

Thus, the probability of escaping poverty is at least 17.4% and 23.2%, respectively. Further-

more, in Panel IIIA, the probability of transitioning from impoverished to insecure (secure)
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nonpoor is at most 82.6% (50.6%); 70.9% (34.2%) in Panel IVA. These bounds, as before,

signi�cantly narrow in Columns B and C. For example, in Panel IIIB (Panel IIIC), the

bounds on the probability of remaining impoverished are [0:279; 0:478] ([0:279; 0:366]). In

Panel IVB (Panel IVC), the corresponding bounds are [0:279; 0:345] ([0:279; 0:329]). These

bounds are very narrow.

While the assumptions of uniform and uni-directional misclassi�cation certainly tighten

the bounds, Table 3 highlights the limited information that can be learned under Assump-

tions 2 and 3 alone, allowing for a 20% misclassi�cation rate. Thus, even relatively modest

amounts of misclassi�cation add considerable uncertainty to estimates of poverty mobility.

That said, one still learns that even if misclassi�cation is not temporally independent or

temporally invariant, the seven-year poverty persistence rate is at least 17.4% under As-

sumptions 2(i) and 3 and is at least 23.2% under Assumptions 2(ii) and 3. Moreover, at

most 50.6% (34.2%) transition from impoverished to secure nonpoor over the seven-year

sample period under Assumptions 2(i) (2(ii)) and 3. Adding Assumptions 4 or 5 certainly

adds to identi�cation.

Level Set Restrictions Table 4 imposes di¤erent combinations of assumptions along

with Assumptions 7 and 8. The level set restrictions are based on the age of the household

head in the initial period. The level set restriction (Assumption 7) seem reasonable in that

households with similarly aged heads may face the same mobility rates. The independence

assumption (Assumption 8) may be more problematic as it assumes that households with

di¤erent aged heads have similar patterns of mis-reporting. This might be violated if di¤erent

cohorts experience di¤erent levels of stigma associated with economic well-being. However,

absent Assumption 7 without Assumption 8 has no identifying power. With that in mind,

our primary result is that the level set and independence restrictions considered here have a

modest amount of identifying power relative to the corresponding bounds in Table 3.

For example, bounds for conditional staying probability for impoverished (insecure non-

poor) under arbitrary misclassi�cation in Panel IA of Table 3 are [0:000; 0:876] ([0:004; 0:940])

and are [0:000; 0:851] ([0:030; 0:929]) in Panel IA in Table 4. Bounds on the probability of

transitioning from secure nonpoor to impoverished under uniform, uni-directional, and tem-
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porally independent (invariant) misclassi�cation in Panel IVB (Panel IVC) are [0:000; 0:142]

([0:000; 0:119]). This is tightened to [0:000; 0:131] ([0:026; 0:086]) in Panel IIIC in Table 4.

In this �nal case, this means that under the Assumptions 2(ii), 3, 5, 7, and 8, we reject (at

the 90% con�dence level) the hypothesis that no households transition secure to nonpoor to

impoverished over the seven-year sample period. The majority of the remaining bounds in

Table 4 are similarly tightened relative to their counterparts in Table 3.

Shape Restrictions Table 5 adds the shape restriction (Assumption 6) to the previous

set of assumptions considered in Table 4. The shape restriction imposes the belief that

households are more likely to experience smaller transitions in the consumption distribution

than larger transitions. This assumptions seems reasonable given the typical assumed pattern

of consumption dynamics. Compared to Table 4, we �nd that adding the shape restriction

modestly narrows some, but not all, of the bounds. In particular, the bounds in Panels IIC,

IIIB, and IIIC are not narrowed at all, while the bounds in Panels IA, IB, and IIB are only

minorly a¤ected. Thus, under the strongest set of assumptions considered to this point,

shape restrictions have limited or no additional identifying power.

The largest impact is on the bounds in Panels IIA and IIIA. For example, under uniform

and independent misclassi�cation errors in Panel IIA, the bounds on the conditional staying

probability for being impoverished are [0:318; 0:574] versus [0:107; 0:574] in Panel IIA of

Table 4. When adding the uni-directional assumption in Panel IIIA, the bounds on the

conditional staying probability for being impoverished are [0:318; 0:463] versus [0:250; 0:463]

in Panel IIIA of Table 4.

Monotonicity Restrictions Table 6 adds the monotonicity restriction (Assumption 9) to

the previous set of assumptions considered in Table 5. The monotonicity restriction requires

upward mobility to be weakly increasing in the household head�s education level. Given

the returns to human capital, this seems to be a reasonable assumption. The monotonicity

assumption has some additional identifying power across all panels.

First, under arbitrary and independent misclassi�cation errors in Panel IA, the bounds

now exclude the lower endpoint of zero in some instances. Moreover, adding the assump-
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tion of temporally invariant errors in Panel IC, the probability of remaining impoverished

increases from at least 16.1% to at least 23.6% and falls from at most 35.7% to at most

34.2%. Second, under our strongest set of assumptions (i.e., uniform, independent, uni-

directional and temporally invariant misclassi�cation) in Panel IIIC, bounds on the con-

ditional staying probability of remaining impoverished narrow from [0:281; 0:327] without

monotonicity in Table 5 to [0:281; 0:313]. Similarly, monotonicity tightens the bounds on

the probability of transitioning from being impoverished to insecure (secure) nonpoor; from

[0:446; 0:542] ([0:177; 0:227]) without monotonicity in Table 5 to [0:468; 0:506] ([0:187; 0:227])

with monotonicity in Table 6. Finally, monotonicity tightens the bounds on the probability

of entering poverty from insecure nonpoor state over the seven-year period from [0:124; 0:145]

to [0:126; 0:145].

To sum up, over the seven-year sample period, under the strongest set of

assumptions, between 28% to 31% impoverished households remain so, between

47% and 51% escape poverty but remain at-risk of poverty, and between 19%

and 23% impoverished households exceed twice the poverty line. If we relax the

assumption of temporal independence and invariance, but continue to maintain

the other assumptions, our �ndings we �nd that between 32% and 44% impov-

erished households remain so, between 37% and 45% households escape poverty

but remain at-risk, and between 13% and 31% households exceed the poverty

line. Under the assumption of no misclassi�cation error, these corresponding �g-

ures are 28%, 51% and 21%. These results have two implications. First, mobility

out of poverty over the seven year period is remarkably low in India. Second, if

we mistakenly believe that there is no misclassi�cation error, we might be un-

derestimating the probability of the poor remaining poor, and over estimating

the probability of the poor escaping poverty and becoming insecure nonpoor or

secure nonpoor. In other words, not accounting for measurement error could

actually make the mobility situation in India appear brighter than it actually is.

Sensitivity to Q Perhaps the biggest unknown in constructing the bounds, in the Indian

context, is the appropriate choice of Q. There is not available administrative data that one
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can draw upon, or other source of institutional knowledge to know the extent of misclassi�ca-

tion. However, the advantage of the partial identi�cation approach is that we can investigate

the sensitivity of the bounds to the choice of Q. To this end, we re-estimate the bounds for

several values of Q ranging from 0 to 0.40. For the sake of computational time, we focus on

the point estimates of the bounds, not the con�dence regions. Select results are presented

in Figures C1-C5 in Appendix C.

There are four primary takeaways. First, with small Q, the bounds on transition prob-

abilities are informative under arbitrary and uniform misclassi�cation alone. For example,

under arbitrary misclassi�cation with Q = 0:05, the conditional staying probability of be-

ing impoverished is at least 13% and no more than 43%. At least 36% and no more than

66% transition from impoverished to insecure nonpoor, while at least 6% but no more than

36% transition to secure nonpoor. Under uniform misclassi�cation with Q = 0:10, the con-

ditional staying probability of being impoverished is at least 18% and no more than 42%.

These bounds get reasonably narrowed if we impose additional shape, level set, and/or

monotonicity restrictions.

Second, for misclassi�cation error rates higher than Q = 0:20, not much can be learned

from the estimated bounds under arbitrary or uniform misclassi�cation errors alone. How-

ever, if we impose the shape restriction, the bounds under uniform misclassi�cation on at

least some of the transition probabilities become reasonably narrow and informative. For

example, under uniform misclassi�cation with Q = 0:30 and the shape restriction, the con-

ditional staying probability of being impoverished is at least 21%; in contrast, without shape

restriction the minimum conditional staying probability is zero. On the other hand, at least

21% of the impoverished will transition to insecure nonpoor and at the most 58% will tran-

sition to secure nonpoor. As such, the shape restriction has some identifying power even

when 30% households are misclassi�ed. Instead of shape restrictions, if we impose the level

set and/or monotonicity restriction and assume that misclassi�cation is independent and

uniform, the bounds are not very informative for Q � 0:30.

Third, with high Q, the restriction of temporal independence or temporal invariance

combined with the shape restriction and assumption of uni-directional misclassi�cation have

signi�cant identifying power. For example, under arbitrary, uni-directional, and temporally
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independent misclassi�cation with Q = 0:30 and the shape restriction, bounds on the con-

ditional staying probability of being impoverished are [0:210; 0:580] and the bounds on the

probability of transitioning from being impoverished to secure nonpoor are [0:000; 0:270];

under arbitrary misclassi�cation with only the shape restriction, both of these bounds in-

clude the entire unit interval. Instead of temporal independence, if we invoke the assumption

of temporal invariance, these bounds become remarkably tighter. Speci�cally, under arbi-

trary, uni-directional, and temporally independent misclassi�cation with Q = 0:30 and the

shape restrictions, bounds on the conditional staying probability of being impoverished are

[0:360; 0:390] and the bounds on the probability of transitioning from being impoverished to

secure nonpoor are [0:210; 0:250]. Not only do these assumptions yields a lot information

when examining transitions out of poverty, but they also have substantial identifying power

when examining transitions into poverty. For example, under arbitrary, uni-directional, and

temporally independent (invariant) misclassi�cation with Q = 0:30 and shape restrictions,

now we learn that at most 35% (23%) of the secure nonpoor become impoverished over the

seven-year sample period.

In sum, we �nd that, despite allowing nearly 1 in 3 households to be misclassi�ed, at least

4 out of 10 impoverished households will either remain impoverished or insecure nonpoor over

the sample period under transparent and reasonably plausible assumptions (uniform misclas-

si�cation with shape restrictions). If we are willing to impose stronger restrictions (arbitrary,

uni-directional, and temporally invariant misclassi�cation with shape restrictions), the num-

ber of impoverished households remaining impoverished or insecure nonpoor is at least 7 out

of 10.

5.2 Heterogeneity Analysis

Finally, we analyze heterogeneity in economic mobility across di¤erent population subgroups.

In Table 7, we report the results for the 3� 3 transition matrix by religion. Table 8 contains

the results by caste. Table 9 presents the results by geographic area (urban or rural). For

brevity, for all the cases, we present results only based on a select combination of misclassi-

�cation assumptions in combination with level set, shape, and monotonicity restrictions.
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Religion India contains multiple religious groups; namely, Hindus and various minority

groups including Muslims, Christian, Sikh, Buddhist, Jain, Tribal, and others. We divide

the minority groups into two groups, Muslims and others. Table 7 presents the results.

Under arbitrary and independent misclassi�cation with level set, shape, and monotonicity

restrictions in Panel I, the bounds are wide but informative. For example, the conditional

staying probability of being impoverished is at least 3.8% for Hindus, 10.0% for Muslims,

and 5.2% for others. While this suggests a disadvantage for Muslims, the conditional staying

probability of being impoverished is at most 67.4% for Muslims, while it is at most 74.5%

and 76.0% for Hindus and others, respectively. Moreover, the probability of transitioning

from impoverished to insecure nonpoor is at least 19.5% for Muslims, while it is at least only

7.8% and 11.5% for Hindus and others, respectively. On the other hand, the conditional

staying probability of being secure nonpoor may be as low as 3.9% for Muslims, whereas it

is at least 10.2% and 17.7% for Hindus and others, respectively.

Under the assumption of uniform and independent misclassi�cation in Panel II, the

bounds for all subsamples are narrowed considerably. For example, bounds on the conditional

staying probability of being impoverished are narrowed from [0:038; 0:745] to [0:312; 0:515] for

Hindus, from [0:100; 0:674] to [0:394; 0:441] for Muslims, and from [0:052; 0:760] to [0:267; 0:445]

for others; bounds on the probability of transitioning from insecure nonpoor to impoverished

narrow from [0:000; 0:549] to [0:006; 0:285] for Hindus, from [0:000; 0:548] to [0:017; 0:299] for

Muslims, and from [0:000; 0:559] to [0:033; 0:209] for others. Again, we �nd that Muslims

have the highest minimum, but the smallest maximum, conditional staying probability of

being impoverished over the sample period.

Adding the assumption of uni-directional misclassi�cation (results not shown) modestly

narrows the bounds. However, if we also add the assumption of temporal independence or

temporal invariance (Panels III and IV), the bounds narrow signi�cantly. Speci�cally, under

the assumptions of uniform, independent, uni-directional, and temporally invariant misclas-

si�cation in Panel IV, the following �ndings stand out. First, Muslims have the lowest

conditional staying probability of remaining impoverished and highest probability of transi-

tioning from impoverished to insecure nonpoor as the bounds for Muslims do not overlap the

bounds for Hindus and others. The bounds on the probability of staying impoverished and
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of transitioning from impoverished to insecure nonpoor are [0:268; 0:279] and [0:524; 0:560]

for Muslims, [0:288; 0:315] and [0:463; 0:520] for Hindus, and [0:304; 0:316] and [0:451; 0:480]

for others. However, in terms of transitioning from impoverished to secure nonpoor, Mus-

lims are not in an unambiguously better position than Hindus and others; in fact, others

are strictly better o¤ than Muslims in that the bounds for this group do not intersect the

bounds for Muslims.

Second, the minimum probability of transitioning from either insecure (secure) nonpoor

to impoverished is highest for the Muslims; the probability is at least 13.5% (6.6%) for

Muslims, 12.1% (2.7%) for Hindus, and 11.8% (1.9%) for others. Third, insecure nonpoor

Muslims have the lowest probability of transitioning to secure nonpoor. Speci�cally, bounds

on the probability of transitioning from insecure nonpoor to secure nonpoor are [0:338; 0:341]

for Muslims, [0:380; 0:414] for Hindus, and [0:468; 0:494] for others. Thus, there is a strict

ranking among the three groups. Finally, there is also a strict ranking among the groups in

terms of the conditional staying probability of being secure nonpoor and the probability of

transitioning from secure nonpoor to insecure nonpoor. Bounds on the conditional staying

probability of being secure nonpoor are [0:594; 0:599] for Muslims, [0:665; 0:666] for Hindus,

and [0:746; 0:778] for others. Bounds on the probability of transitioning from secure nonpoor

to insecure poor are [0:325; 0:335] for Muslims, [0:259; 0:307] for Hindus, and [0:192; 0:235]

for others.

In sum, Muslims seem to be doing better than Hindus or other religious groups in terms of

escaping poverty. However, in terms of transitioning to secure nonpoor or remaining secure

nonpoor, Muslims are at a disadvantage compared to Hindus and other religious groups.

Caste Next, we explore heterogeneity in economic mobility across castes; namely, Brah-

mins and non-Brahmin Upper Castes (UCs), Scheduled Castes and Scheduled Tribes (SCs/STs),

and Other Backward Classes (OBCs). The results are shown in Table 8.

Under arbitrary and independent misclassi�cation with level set, shape, and monotonicity

restrictions in Panel I, the bounds are modestly informative. For example, the conditional

staying probability of being impoverished is at least 1.1% for UCs, 8.4% for SCs/STs, and

3.8% for OBCs. While suggestive of a disadvantage for SCs/STs, the conditional staying
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probability of being impoverished is at most 72.9% for SCs/STs, while it is at most 77.8%

for UCs. Moreover, the probability of transitioning from impoverished to insecure nonpoor

is at least 11.1% for SCs/STs, while it may be as low as 5.2% and 7.9% for UCs and OBCs,

respectively. On the other hand, the conditional staying probability of being secure nonpoor

may be as low as 2.5% for SCs/STs, whereas it is at least 24.9% and 6.2% for UCs and

OBCs, respectively.

Under the assumption of uniform and independent misclassi�cation in Panel II, the

bounds for all subsamples are signi�cantly narrowed. For example, bounds on the conditional

staying probability of being impoverished are narrowed from [0:011; 0:778] to [0:231; 0:493] for

UCs, from [0:084; 0:729] to [0:355; 0:542] for SCs/STs, and from [0:038; 0:704] to [0:330; 0:487]

for OBCs; bounds on the probability of transitioning from insecure nonpoor to impoverished

narrow from [0:000; 0:499] to [0:002; 0:212] for UCs, from [0:000; 0:636] to [0:044; 0:367] for

SCs/STs, and from [0:000; 0:532] to [0:016; 0:269] for OBCs. This is suggestive of SCs/STs

being at a disadvantage relative to other castes, but it is inconclusive given the overlap in

the bounds.

Adding the assumption of uni-directional misclassi�cation (results not shown) modestly

narrows the bounds. However, combining this with the assumption of temporal independence

or temporal invariance (Panels III and IV) signi�cantly narrows the bounds. In particular,

under the assumptions of uniform, independent, uni-directional, and temporally invariant

misclassi�cation in Panel IV, the following conclusions emerge. First, SCs/STs have the

highest conditional staying probability of remaining impoverished and lowest probability of

transitioning from impoverished to insecure or secure nonpoor as the bounds for SCs/STs

do not overlap the bounds for the other castes. Among the remaining groups, there is some

evidence in favor of UCs being in a more advantageous position than OBCs. Speci�cally,

bounds on the probability of staying impoverished and of transitioning from impoverished

to insecure (secure) nonpoor are [0:368; 0:370] and [0:456; 0:491] ([0:141; 0:174]) for SCs/STs,

[0:244; 0:252] and [0:506; 0:530] ([0:242; 0:266]) for UCs, and [0:249; 0:283] and [0:496; 0:547]

([0:204; 0:235]) for OBCs.

Second, bounds on the probability of staying secure nonpoor and of transitioning from se-

cure nonpoor to insecure poor (impoverished) are [0:459; 0:508] and [0:329; 0:383] ([0:158; 0:180])
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for SCs/STs, [0:751; 0:762] and [0:216; 0:227] ([0:017; 0:032]) for UCs, and [0:613; 0:633] and

[0:315; 0:339] ([0:040; 0:072]) for OBCs. Again, there is a clear ranking with UCs being in

the most secure economic position, followed by OBCs and then SCs/STs.

Finally, insecure nonpoor SCs/STs have the lowest probability of transitioning to secure

nonpoor. Speci�cally, bounds on the probability of transitioning from insecure nonpoor to

secure nonpoor are [0:299; 0:308] for SCs/STs, [0:460; 0:461] for UCs, and [0:382; 0:411] for

OBCs. Thus, there continues to be a strict ranking among the three groups.

In sum, SCs/STs have the lowest probability of escaping poverty and highest probability

of entering poverty over the sample period. Comparing UCs and OBCs, OBCs have a

higher probability of becoming impoverished and lower probability of becoming or remaining

secure nonpoor. However, in terms of remaining impoverished or transitioning just above

the poverty line, it is not clear �even under our most stringent assumptions �whether OBCs

are worse o¤ than UCs.

Geographic Location Lastly, we explore heterogeneity in economic mobility across house-

holds living in rural and urban areas. Table 9 displays the results.

As in the previous cases, under arbitrary and independent misclassi�cation with level set,

shape, and monotonicity restrictions in Panel I, the bounds are at best modestly informative.

For example, the conditional staying probability of being impoverished is at least 2.4% and

at most 70.5% for urban households; the corresponding probabilities are 5.0% and 74.7% for

rural households. In addition, the probability of transitioning from impoverished to insecure

nonpoor is at least 9.2% for urban households, yet at least only 8.6% for rural households.

Moreover, the conditional staying probability of being secure nonpoor may be as low as 4.9%

for rural households, whereas it is at least 22.2% for urban households. The probability of

transitioning from secure nonpoor to insecure nonpoor (impoverished) is at most 74.7%

(45.7%) for urban households, whereas it is at most 90.5% (57.1%) for rural households.

Under the assumption of uniform and independent misclassi�cation in Panel II, the

bounds for all subsamples are signi�cantly narrowed. For example, bounds on the conditional

staying probability of being impoverished are narrowed from [0:024; 0:705] to [0:265; 0:477] for

urban households and from [0:050; 0:747] to [0:331; 0:524] for rural households; bounds on the
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probability of transitioning from insecure nonpoor to impoverished narrow from [0:000; 0:499]

to [0:004; 0:178] for urban households and from [0:000; 0:578] to [0:011; 0:321] for rural house-

holds. This is suggestive of a distinct advantage for urban households, but it is inconclusive

given the overlap in the bounds.

Adding the assumption of uni-directional misclassi�cation (results not shown) continues

to narrow the bounds only modestly. However, combining this with the assumption of

temporal independence or temporal invariance (Panels III and IV) signi�cantly narrows the

bounds. Speci�cally, under the assumptions of uniform, independent, uni-directional, and

temporally invariant misclassi�cation in Panel IV, we document the following. First, rural

households have a higher conditional staying probability of remaining impoverished and

lower probability of transitioning from impoverished to insecure or secure nonpoor as the

bounds do not overlap across the two groups. Speci�cally, bounds on the probability of

staying impoverished and of transitioning from impoverished to insecure (secure) nonpoor

are [0:228; 0:261] and [0:514; 0:531] ([0:225; 0:226]) for urban households; the corresponding

bounds are [0:312; 0:325] and [0:463; 0:472] ([0:203; 0:216]) for rural households.

Second, bounds on the probability of staying secure nonpoor and of transitioning from se-

cure nonpoor to insecure poor (impoverished) are [0:762; 0:774] and [0:210; 0:210] ([0:016; 0:028])

for urban households; the corresponding bounds for rural households are [0:580; 0:586] and

[0:290; 0:384] ([0:030; 0:130]) for rural households. Again, there is a clear ranking as the

bounds do not overlap. Finally, insecure nonpoor rural households have a lower probability

of transitioning to secure nonpoor. Speci�cally, bounds on the probability of transitioning

from insecure nonpoor to secure nonpoor are [0:355; 0:383] for rural households, but are

[0:449; 0:464] for urban households.

In sum, our �ndings indicate that, compared to urban households, rural households have

greater probability of remaining impoverished over the sample period. Rural households also

have a lower probability of escaping poverty and higher probability of becoming impoverished

than their urban counterparts.
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6 Conclusion

In this paper, we provide bounds on the extent of economic mobility in India over the period

2005 to 2012 using IHDS panel data on household consumption while rigorously accounting

for measurement error in a transparent manner. Methodologically, we extend recent work

in Millimet et al. (2019) on the partial identi�cation of transition matrices by considering

the identifying power of additional assumptions on the misclassi�cation process: temporal

independence and temporal invariance. In the application, we reveal how little can be learned

about poverty dynamics under relatively small amounts of misclassi�cation absent additional

information. We then show the identifying power the accompanies additional information

via assumptions on the nature of the misclassi�cation as well as restrictions on consumption

dynamics.

We �nd that, under reasonable assumptions, for the population as a whole, mobility in

India is remarkably low: allowing for misclassi�cation errors in up to 20% of the sample, at

least 3 in 10 poor households remain poor between 2005 and 2012, at least 4 in 10 households

manage to escape poverty but remain in at-risk, and at most 3 in 10 poor households manage

to attain the status of secure nonpoor. Further, we show that if we mistakenly believe

that there is no misclassi�cation error, we might be underestimating the probability of the

poor remaining poor, and over estimating the probability of the poor escaping poverty and

becoming insecure nonpoor. Under stronger assumptions, we also �nd clear rankings among

di¤erent population subgroups in terms of economic status. Among religious groups, Muslims

are at a disadvantage compared to Hindus or other religious groups. Among castes, SCs/STs

are the worst o¤, followed by OBCs and then UCs. Finally, rural households are at a distinct

disadvantage relative to urban households.

Our results for the population as a whole suggest that inequality in India can be char-

acterized as chronic as households belonging to the lower rungs of the economic ladder are

likely to �nd themselves caught in a poverty trap. As a result, our �ndings suggest that

poverty reduction e¤orts should focus on ways to improve the permanent economic status

of households, possibly through acquisition of assets and capabilities, rather than on ways

to deal with temporary volatility. Our �ndings also challenge the conventional wisdom that
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marginalized groups in India �households belonging to minority communities, lower castes,

or living in rural regions � are catching up on average. This casts doubt about the e¢ -

cacy of existing a¢ rmative action and social programs in improving the economic status of

marginalized groups in India.

34



References

[1] Akee, R. (2011). �Errors in self-reported earnings: The role of previous earnings volatil-

ity and individual characteristics. �Journal of Development Economics, 96(2), 409-421.

[2] Angel, S., Disslbacher, F., Humer, S., & Schnetzer, M. (2019). �What did you really

earn last year?: explaining measurement error in survey income data. �Journal of the

Royal Statistical Society: Series A (Statistics in Society).

[3] Arunachalam, R. and Shenoy, A. (2017), �Poverty traps, convergence, and the dynamics

of household income,�Journal of Development Economics, 126, 215-230.

[4] Asher, S., Novosad, P. and Rafkin, C. (2018), �Intergenerational Mobility in India:

Estimates from New Methods and Administrative Data,�Working Paper. Available

at http://www.dartmouth.edu/~novosad/anr-india-mobility.pdf (Accessed on July 4,

2019).

[5] Azam, M. (2016), �Household Income Mobility in India: 1993-2011,�Discussion Paper

No. 10308, IZA, Bonn.

[6] Azam, M. and Bhatt, V. (2015). �Like Father, Like Son? Intergenerational Educational

Mobility in India,�Demography, 52, 1929�1959.

[7] Barrientos Q, P. A., Blunch, N. H., and Datta Gupta, N. (2019). �Income Conver-

gence and the Flow Out of Poverty in Rural India,�The Indian Economic Journal,

0019466218810035.

[8] Bhattacharya, D. and Mazumder, B. (2011), �A Nonparametric Analysis of Black-White

Di¤erences in Intergenerational Income Mobility in the United States,�Quantitative

Economics, 2, 335-379.

[9] Black, D.A., Berger, M.C. and Scott, F.A. (2000), �Bounding Parameter Estimates with

Nonclassical Measurement Error,�Journal of the American Statistical Association, 95,

739-748.

35



[10] Bound, J. and Krueger, A.B. (1991), �The Extent of Measurement Error in Longitudinal

Earnings Data: Do Two Wrongs Make a Right?,� Journal of Labor Economics, 9, p.

1-24

[11] Bound, J , Brown, C., Duncan, G.J. and Rodgers, W.L. (1994), "Evidence on the validity

of cross-sectional and longitudinal labor market data", Journal of Labor Economics, 12,

p. 345-368.

[12] Bound, J., Brown, C. and Mathiowitz, N. (2001), �Measurement Error in Survey Data�

in J. J. Heckman and E. Leamer (eds.) Handbook of Econometrics, New York: Elsevier

Science, 3707-3745.

[13] Breen, R., & Moisio, P. (2004). �Poverty dynamics corrected for measurement error. �

Journal of Economic Inequality, 2(3), 171-191.

[14] Carver, T. and Grimes, A. (2019). �Income or Consumption: Which Better

Predicts Subjective Well-Being?,� Review of Income and Wealth, forthcoming,

https://doi.org/10.1111/roiw.12414.

[15] Chancel, L. and Piketty, T. (2018). �Indian income inequality, 1922-2015: From British

Raj to Billionaire Raj?"WID.worldWORKING PAPER SERIES N� 2017/11. Available

at https://wid.world/document/chancelpiketty2017widworld/

[16] Chetverikov, D., Santos, A., and Shaikh, A.M. (2018), �The Econometrics of Shape

Restrictions,�Annual Review of Economics, 10, 31-63.

[17] Corak, M., Lindquist, M.J. and Mazumder, B. (2014), �A comparison of upward and

downward intergenerational mobility in Canada, Sweden and the United States,�Labour

Economics, 30, 185-200.

[18] Dang, H., Lanjouw, P., Luoto, J. and McKenzie, D. (2014), �Using Repeated Cross-

Sections to Explore Movements Into and Out of Poverty,� Journal of Development

Economics, 107, 112-128.

36



[19] Dang, H. and Lanjouw, P. (2018),�Poverty Dynamics in India between 2004 and 2012

Insights from Longitudinal Analysis Using Synthetic Panel Data,�Economic Develop-

ment and Cultural Change (forthcoming).

[20] Deaton, A. and Subramaniam, S. (1996), �The Demand for Food and Calories,�Journal

of Political Economy 104, 133-162.

[21] Dercon, S., Krishnan, P. and Krutikova, S. (2013), �Changing living standards in South-

ern Indian Villages 1975�2006: Revisiting the ICRISAT village level studies,�Journal

of Development Studies, 49, 1676-1693.

[22] Desai, S., Dubey, A., and Vanneman, R. (2015), India Human Development Survey-

II (IHDS-II) [Computer �le], University of Maryland and National Council of Applied

Economic Research, New Delhi [producers], 2015, Ann Arbor, MI: Inter-university Con-

sortium for Political and Social Research [distributor].

[23] Desai, S, Vanneman, R., and National Council of Applied Economic Research, New

Delhi (2010), India Human Development Survey (IHDS), 2005, ICPSR22626-v8, Ann

Arbor, MI: Inter-university Consortium for Political and Social Research [distributor],

2010-06-29. http://doi.org/10.3886/ICPSR22626.v8.

[24] Duncan, G. and Hill, D.H. (1985). �An Investigation of the Extent and Consequences

of Measurement Error in Labor-Economic Survey Data,�Journal of Labor Economics,

3, 508-32

[25] Fields, G.S., Hernández, R.D., Freije, S., Puerta, M.L.S., Arias, O. and Assunção,

J. (2007), �Intragenerational income mobility in Latin America [with Comments],�

Economía, 7, 101-154.

[26] Gautam, M., Nagarajan, H.K. and Pradhan, K.C. (2012), �The income, consumption

and asset mobility in Indian rural households: evidence from ARIS/ REDS surveys,�

NCAER Working Papers on Decentralisation and Rural Governance in India, National

Council of Applied Economic Research, New Delhi.

37



[27] Glewwe, P. (1991), �Investigating the determinants of household welfare in Cote

d�Ivoire,�Journal of Development Economics, 35, 307�337.

[28] Glewwe, P. (2012), �How Much of Observed Economic Mobility is Measurement Error?

IV Methods to Reduce Measurement Error Bias, with an Application to Vietnam,�

World Bank Economic Review, 26, 236-264.

[29] Gottschalk, P. and Huynh, M. (2010), �Are Earnings Inequality and Mobility Over-

stated? The Impact of Nonclassical Measurement Error,�Review of Economics and

Statistics, 92, 302-315.

[30] Government of India Planning Commission (2009), �Report of the Expert Group to

Review the Methodology for Estimation of Poverty,�Government of India. Available

online at http://planningcommission.gov.in/reports/genrep/rep_pov.pdf

[31] Government of India Planning Commission (2014), �Report of the Expert Group to

Review the Methodology for Estimation of Poverty,�Government of India. Available

online at http://planningcommission.nic.in/reports/genrep/pov_rep0707.pdf

[32] Himanshu, H. and Stern, N., 2011. �India and an Indian village: 50 years of economic

development in Palanpur,�LSE Asia Research Centre Working Paper 43.

[33] Hnatkovska, V., Lahiri, A. and Paul, S.B. (2013), �Breaking the caste barrier intergen-

erational mobility in India,�Journal of Human Resources, 48, pp.435-473.

[34] Imbens, G.W. and Manski, C.F. (2004), �Con�dence Intervals for Partially Identi�ed

Parameters,�Econometrica, 72, 1845-1857.

[35] Jäntti, M. and Jenkins, S. (2015), �Economic Mobility,�in A.B. Atkinson and F. Bour-

guignon (eds.) Handbook of Income Distribution, Vol. 2, Amsterdam: Elsevier-North

Holland, 807-935.

[36] Kapteyn, A. and Ypma, J.Y. (2007), �Measurement Error and Misclassi�cation: A

Comparison of Survey and Administrative Data,�Journal of Labor Economics, 25, 513-

551.

38



[37] Kreider, B., Pepper, J.V. , Gundersen, J. V. and Jolli¤e, D. (2012), �Identifying the

E¤ects of SNAP (Food Stamps) on Child Health Outcomes When Participation Is En-

dogenous and Misreported,�Journal of the American Statistical Association, 107, 958-

975.

[38] Krishna, A. and Shari¤, A. (2011), �The Irrelevance of National Strategies? Rural

Poverty Dynamics in States and Regions of India, 1993�2005,�World Development, 39,

533-549.

[39] Lechner, M. (1999), �Nonparametric Bounds on Employment and Income E¤ects of

Continuous Vocational Training in East Germany,�Econometrics Journal, 2, 1-28.

[40] Lee, N., Ridder, G. and Strauss, J. (2017), �Estimation of Poverty Transition Matrices

with Noisy Data,�Journal of Applied Econometrics, 32, 37-55.

[41] Manski, C.F. (1990), �Nonparametric Bounds on Treatment E¤ects,�American Eco-

nomic Review, 80, 319-323.

[42] Manski, C.F. and Pepper, J.V. (2000), �Monotone Instrumental Variables: With an

Application to the Returns to Schooling,�Econometrica, 68, 997-1010.

[43] Mazumder, B. (2014), �Black-White Di¤erences in Intergenerational Mobility in the

United States,�Economic Perspectives, 38, 1-18.

[44] Meyer, B.D. and Sullivan, J.X. (2003), �Measuring the Well-Being of the Poor Using

Income and Consumption,�Journal of Human Resources, 38, 1180�1220.

[45] Millimet, D.L., Li, H., and Roychowdhury, P. (2019). �Partial Identi�cation of Economic

Mobility: With an Application to the United States,�Journal of Business & Economic

Statistics (forthcoming), DOI: 10.1080/07350015.2019.1569527

[46] Naschold, F. (2012). ��The poor stay poor�: Household asset poverty traps in rural

semi-arid India,�World Development, 40, 2033-2043.

39



[47] Pavlopoulos, D., Mu¤els, R., and Vermunt, J.K. (2012), �How Real is Mobility Between

Low Pay, High Pay and Non-Employment?�Journal of the Royal Statistical Society, 175,

749-773.

[48] Pischke, J.-S. (1995), �Measurement Error and Earnings Dynamics: Some Estimates

From the PSID Validation Study,�Journal of Business & Economic Statistics, 3, 305-

314.

[49] Pradhan, K.C. and Mukherjee, S. (2015), �The Income Mobility in Rural India: Ev-

idence from ARIS/REDS Surveys,�Working Paper No. 109/2015, Madras School of

Economics.

[50] Thorat, A., Vanneman, R., Desai, S. and Dubey, A. (2017), �Escaping and falling into

poverty in India today,�World Development, 93, 413-426.

[51] Vanneman, R., and Dubey, A. (2013), �Horizontal and Vertical Inequalities in India,�

in J.C. Gornick and M. Janttti (eds.), Income Inequality: Economic Disparities and the

Middle Class, Stanford University Press, California, 439-458.

40



Table 1. Summary Statistics

Mean SD Mean SD
Household Consumption
   Total Consumption (in Rs.) 54,493.00 52,225.89 115,364.00 119,271.50
   Per Capita Consumption (in Rs.) 863.08 896.88 2200.60 2584.49
Poverty Status
   Poor  (POVRATIO < 1) 0.3347 0.4719 0.1541 0.3611
   Insecure Nonpoor  (POVRATIO >= 1, < 2) 0.4274 0.4947 0.4393 0.4963
   Secure Nonpoor  (POVRATIO >= 2) 0.2379 0.4258 0.4066 0.4912
Household Size 5.85 3.02 4.87 2.33
Age Group  (Household Head)
   <=34 0.1520 0.3590
   35-44 0.2536 0.4351
   45-54 0.2647 0.4412
   55-64 0.1897 0.3921
   >=65 0.1400 0.3470
Education (Household Head) : Years of Schooling
   0  ( Illiterate) 0.3636 0.4810
   1-5 years 0.2074 0.4054
   6-10 years 0.3094 0.4622
   11-15 years 0.1196 0.3245
Caste (Household Head)
   Brahmin and Others 0.3008 0.4586
   OBC 0.3996 0.4898
   SC/ST 0.2996 0.4581
Religion
   Hindu 0.8107 0.3917
   Muslims 0.1155 0.3196
   Other Religions 0.0738 0.2615
Percentage of Males (Household Head) 0.9054 0.2927
Percentage of Urban Residents (Household Head) 0.2994 0.4580
Number of Observations

2005 (Wave 1) 2012 (Wave 2)

Notes: POVRATIO is defined as  the ratio of household per capita monthly household consumption expenditure to the poverty line per capita 
monthly consumption expenditure. In our analysis we use information pertaining to education level, age, caste, religion and the living region of 
household heads only from the first wave; hence we report summary statistics of these variables only for the first wave.
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Table 2. Full Sample Transition Matrices: Classification-Perserving Misclassification
1 2 3

1 [0.279, 0.279] [0.510, 0.510] [0.211, 0.211]
(0.272, 0.285) (0.504, 0.516) (0.206, 0.217)

2 [0.115, 0.115] [0.472, 0.472] [0.413, 0.413]
(0.111, 0.120) (0.466, 0.472) (0.407, 0.419)

3 [0.048, 0.048] [0.281, 0.281] [0.670, 0.670]
(0.045, 0.052) (0.273, 0.289) (0.663, 0.678)

Notes: Outcome = POVRATIO.  1 = poverty ratio < 1. 2 = poverty ratio is between 1 and 2. 3 = 
poverty ratio >= 2. Point estimates for bounds provided in brackets obtained using 100 
subsamples of size N/2 for bias correction.  90% Imbens-Manski confidence intervals for the 
bounds provided in parentheses obtained using 250 subsamples of size N/2. See text for further 
details.



Table 3. Full Sample Transition Matrices: Misclassification Assumptions

I.  Arbitrary Misclassification
1 2 3 1 2 3 1 2 3

1 [0.000, 0.876] [0.000, 1.000] [0.000, 0.809] 1 [0.080, 0.478] [0.311, 0.773] [0.012, 0.410] 1 [0.107, 0.366] [0.395, 0.734] [0.111, 0.311]
(0.000, 0.883) (0.000, 1.000) (0.000, 0.815) (0.074, 0.483) (0.306, 0.786) (0.007, 0.415) (0.100, 0.370) (0.391, 0.742) (0.107, 0.316)

2 [0.000, 0.583] [0.004, 0.940] [0.000, 0.881] 2 [0.000, 0.271] [0.316, 0.628] [0.257, 0.569] 2 [0.037, 0.194] [0.408, 0.507] [0.334, 0.543]
(0.000, 0.589) (0.000, 0.946) (0.000, 0.887) (0.000, 0.275) (0.311, 0.633) (0.252, 0.573) (0.034, 0.197) (0.402, 0.511) (0.330, 0.549)

3 [0.000, 0.889] [0.000, 1.000] [0.000, 1.000] 3 [0.000, 0.329] [0.001, 0.562] [0.390, 0.999] 3 [0.000, 0.189] [0.140, 0.334] [0.666, 0.670]
(0.000, 0.899) (0.000, 1.000) (0.000, 1.000) (0.000, 0.333) (0.000, 0.568) (0.384, 1.000) (0.000, 0.192) (0.134, 0.343) (0.656, 0.678)

II.  Uniform Misclassification
1 2 3 1 2 3 1 2 3

1 [0.080, 0.597] [0.311, 0.886] [0.012, 0.512] 1 [0.146, 0.345] [0.377, 0.627] [0.012, 0.257] 1 [0.209, 0.329] [0.444, 0.601] [0.161, 0.261]
(0.074, 0.604) (0.306, 0.893) (0.007, 0.519) (0.141, 0.350) (0.372, 0.635) (0.007, 0.260) (0.203, 0.333) (0.440, 0.607) (0.157, 0.266)

2 [0.000, 0.322] [0.316, 0.743] [0.257, 0.674] 2 [0.011, 0.167] [0.368, 0.534] [0.309, 0.465] 2 [0.076, 0.155] [0.445, 0.492] [0.370, 0.469]
(0.000, 0.326) (0.311, 0.748) (0.252, 0.680) (0.008, 0.171) (0.363, 0.541) (0.304, 0.469) (0.073, 0.158) (0.440, 0.496) (0.366, 0.474)

3 [0.000, 0.456] [0.001, 0.610] [0.390, 0.999] 3 [0.000, 0.142] [0.095, 0.375] [0.484, 0.905] 3 [0.000, 0.119] [0.211, 0.331] [0.669, 0.670]
(0.000, 0.464) (0.000, 0.616) (0.384, 1.000) (0.000, 0.145) (0.088, 0.381) (0.478, 0.912) (0.000, 0.121) (0.204, 0.337) (0.662, 0.678)

III.  Arbitrary, Uni-Directional Misclassification
1 2 3 1 2 3 1 2 3

1 [0.174, 0.876] [0.000, 0.826] [0.000, 0.506] 1 [0.279, 0.478] [0.311, 0.709] [0.012, 0.257] 1 [0.279, 0.366] [0.395, 0.610] [0.111, 0.239]
(0.174, 0.883) (0.000, 0.829) (0.000, 0.509) (0.274, 0.483) (0.306, 0.715) (0.007, 0.260) (0.274, 0.370) (0.391, 0.615) (0.107, 0.243)

2 [0.000, 0.583] [0.004, 0.940] [0.000, 0.776] 2 [0.000, 0.271] [0.316, 0.628] [0.257, 0.483] 2 [0.115, 0.194] [0.408, 0.507] [0.334, 0.437]
(0.000, 0.589) (0.000, 0.946) (0.000, 0.786) (0.000, 0.275) (0.311, 0.633) (0.252, 0.491) (0.112, 0.197) (0.402, 0.511) (0.330, 0.443)

3 [0.000, 0.889] [0.000, 1.000] [0.000, 1.000] 3 [0.000, 0.329] [0.001, 0.562] [0.390, 0.999] 3 [0.000, 0.189] [0.140, 0.334] [0.666, 0.670]
(0.000, 0.899) (0.000, 1.000) (0.000, 1.000] (0.000, 0.333) (0.000, 0.568) (0.384, 1.000) (0.000, 0.192) (0.134, 0.343) (0.656, 0.678)

IV.  Uniform, Uni-Directional Misclassification
1 2 3 1 2 3 1 2 3

1 [0.232, 0.478] [0.311, 0.709] [0.012, 0.342] 1 [0.279, 0.345] [0.444, 0.576] [0.078, 0.231] 1 [0.279, 0.329] [0.444, 0.560] [0.161, 0.227]
(0.228, 0.483) (0.306, 0.715) (0.007, 0.346) (0.274, 0.350) (0.439, 0.581) (0.074, 0.235) (0.274, 0.333) (0.440, 0.565) (0.157, 0.231)

2 [0.000, 0.322] [0.316, 0.743] [0.257, 0.492] 2 [0.075, 0.167] [0.405, 0.524] [0.309, 0.427] 2 [0.115, 0.155] [0.445, 0.492] [0.370, 0.423]
(0.000, 0.326) (0.311, 0.748) (0.252, 0.496) (0.071, 0.171) (0.400, 0.528) (0.304, 0.433) (0.112, 0.158) (0.440, 0.496) (0.366, 0.428)

3 [0.000, 0.456] [0.001, 0.610] [0.390, 0.931] 3 [0.000, 0.142] [0.188, 0.375] [0.484, 0.812] 3 [0.000, 0.119] [0.211, 0.331] [0.669, 0.670]
(0.000, 0.464) {0.000, 0.616) (0.384, 0.941) (0.000, 0.145) (0.181, 0.381) (0.478, 0.819) (0.000, 0.121) (0.204, 0.337) (0.662, 0.678)

A. Without Temporal Independence/Invariance B. With Temporal Independence C. With Temporal Invariance

Notes: Outcome = POVRATIO.  1 = poverty ratio < 1. 2 = poverty ratio is between 1 and 2. 3 = poverty ratio >= 2. Point estimates for bounds provided in brackets obtained using 100 subsamples of size N/2 for 
bias correction.  90% Imbens-Manski confidence intervals for the bounds provided in parentheses obtained using 250 subsamples of size N/2. For all cases Q  = 0.20. See text for further details.



Table 4. Full Sample Transition Matrices: Level Set Restrictions

I.  Arbitrary, Independent Misclassification
1 2 3 1 2 3 1 2 3

1 [0.000,0.851] [0.000,1.000] [0.000,0.769] 1 [0.107,0.463] [0.318,0.757] [0.025,0.386] 1 [0.143,0.357] [0.397,0.725] [0.121,0.291]
(0.000,0.861) (0.000,1.000) (0.000,0.777) (0.099,0.470) (0.311,0.774) (0.018,0.392) (0.133,0.362) (0.392,0.734) (0.115,0.297)

2 [0.000,0.573] [0.030,0.929] [0.000,0.834] 2 [0.000,0.258] [0.338,0.614] [0.287,0.527] 2 [0.057,0.180] [0.435,0.495] [0.360,0.489]
(0.000,0.579) (0.021,0.937) (0.000,0.844) (0.000,0.262) (0.330,0.621) (0.279,0.535) (0.052,0.184) (0.425,0.500) (0.355,0.500)

3 [0.000,0.824] [0.000,1.000] [0.000,1.000] 3 [0.000,0.304] [0.034,0.526] [0.429,0.966] 3 [0.019,0.165] [0.169,0.311] [0.666,0.670]
(0.000,0.836) (0.000,1.000) (0.000,1.000) (0.000,0.309) [0.034,0.526] (0.421,0.976) (0.003,0.179) (0.157,0.317) (0.656,0.678)

II.  Uniform, Independent Misclassification
1 2 3 1 2 3 1 2 3

1 [0.107,0.574] [0.318,0.868] [0.025,0.478] 1 [0.171,0.332] [0.410,0.623] [0.089,0.258] 1 [0.236,0.316] [0.445,0.590] [0.175,0.242]
(0.099,0.584) (0.311,0.879) (0.018,0.486) (0.164,0.338) (0.402,0.635) (0.083,0.264) (0.227,0.321) (0.440,0.599) (0.169,0.248)

2 [0.000,0.306] [0.338,0.713] [0.287,0.623] 2 [0.063,0.153] [0.423,0.513] [0.339,0.424] 2 [0.096,0.140] [0.450,0.486] [0.380,0.454]
(0.000,0.311) (0.330,0.721) (0.279,0.633) (0.052,0.157) (0.413,0.522) (0.332,0.433) (0.090,0.144) (0.440,0.492) (0.371,0.469)

3 [0.000,0.412] [0.034,0.571] [0.429,0.966] 3 [0.000,0.131] [0.119,0.355] [0.514,0.881] 3 [0.026,0.086] [0.245,0.304] [0.669,0.670]
(0.000,0.420) (0.024,0.579) (0.421,0.976) (0.000,0.135) (0.108,0.363) (0.506,0.892) (0.016,0.104) (0.233,0.311) (0.662,0.678)

III.  Uniform, Independent, Uni-directional Misclassification
1 2 3 1 2 3 1 2 3

1 [0.250,0.463] [0.318,0.703] [0.025,0.324] 1 [0.279,0.345] [0.444,0.576] [0.086,0.217] 1 [0.281,0.327] [0.446,0.542] [0.177,0.227]
(0.244,0.470) (0.311,0.710) (0.018,0.328) (0.274,0.350) (0.439,0.581) (0.079,0.221) (0.274,0.332) (0.440,0.551) (0.170,0.231)

2 [0.000,0.306] [0.338,0.713] [0.287,0.457] 2 [0.117,0.153] [0.473,0.509] [0.338,0.374] 2 [0.124,0.145] [0.450,0.486] [0.379,0.423]
(0.000,0.311) (0.330,0.721) (0.279,0.464) (0.104,0.157) (0.457,0.516) (0.331,0.390) (0.117,0.150) (0.440,0.492) (0.373,0.428)

3 [0.000,0.412] [0.034,0.571] [0.429,0.889] 3 [0.000,0.131] [0.220,0.355] [0.514,0.780] 3 [0.026,0.086] [0.245,0.304] [0.669,0.670]
(0.000,0.420) (0.024,0.579) (0.421,0.905) (0.000,0.135) (0.208,0.363) (0.506,0.792) (0.016,0.104) (0.233,0.311) (0.662,0.678) 

Notes: Outcome = POVRATIO.  1 = poverty ratio < 1. 2 = poverty ratio is between 1 and 2. 3 = poverty ratio >= 2. Point estimates for bounds provided in brackets obtained using 100 subsamples of size N/2 for 
bias correction.  90% Imbens-Manski confidence intervals for the bounds provided in parentheses obtained using 250 subsamples of size N/2. For all cases Q  = 0.20. See text for further details.

A. Without Temporal Independence/Invariance B. With Temporal Independence C. With Temporal Invariance



Table 5. Full Sample Transition Matrices: Level Set  + Shape Restrictions

I.  Arbitrary, Independent Misclassification
1 2 3 1 2 3 1 2 3

1 [0.000,0.851] [0.000,0.851] [0.000,0.769] 1 [0.318,0.463] [0.318,0.463] [0.074,0.357] 1 [0.161,0.357] [0.398,0.570] [0.150,0.268]
(0.000,0.861) (0.000,0.861) (0.000,0.777) (0.311,0.470) (0.311,0.470) (0.060,0.368) (0.133,0.362) (0.392,0.642) (0.127,0.283) 

2 [0.000,0.573] [0.030,0.929] [0.000,0.834] 2 [0.000,0.258]  [0.338,0.614] [0.287,0.527] 2 [0.057,0.180] [0.435,0.495] [0.360,0.485]
(0.000,0.579) (0.021,0.937) (0.000,0.844) (0.000,0.262) (0.330,0.621) (0.279,0.535) (0.052,0.184) (0.425,0.500) (0.355,0.492) 

3 [0.000,0.573] [0.000,0.929] [0.000,1.000] 3 [0.000,0.258] [0.034,0.526] [0.429,0.966] 3 [0.019,0.158] [0.176,0.311] [0.666,0.670]
(0.000,0.579) (0.000,0.937) (0.000,1.000) (0.000,0.262) (0.024,0.534)  (0.421,0.976)  (0.003,0.177) (0.164,0.317) (0.656,0.678)

II.  Uniform, Independent Misclassification
1 2 3 1 2 3 1 2 3

1 [0.318,0.574] [0.318,0.574] [0.025,0.365] 1 [0.219,0.332] [0.410,0.523] [0.145,0.258] 1 [0.236,0.316] [0.445,0.590] [0.175,0.242]
(0.311,0.584) (0.311,0.584) (0.018,0.379) (0.182,0.338) (0.402,0.571) (0.103,0.264) (0.227,0.321) (0.440,0.599) (0.169,0.248)

2 [0.000,0.306] [0.338,0.713] [0.287,0.623] 2 [0.063,0.153] [0.423,0.513]  [0.339,0.424] 2 [0.096,0.140] [0.450,0.486] [0.380,0.446]
(0.000,0.311) (0.330,0.721) (0.279,0.633) (0.052,0.157) (0.413,0.522) (0.332,0.433) (0.090,0.144) (0.441,0.492) (0.371,0.457) 

3 [0.000,0.306] [0.034,0.571] [0.429,0.966] 3 [0.000,0.131] [0.119,0.355] [0.514,0.881] 3 [0.026,0.086] [0.245,0.304] [0.669,0.670]
(0.000,0.311) (0.024,0.579) (0.421,0.976) (0.000,0.135) (0.108,0.363) (0.506,0.892) (0.016,0.104) (0.233,0.311) (0.662,0.678)

III.  Uniform, Independent, Uni-directional Misclassification
1 2 3 1 2 3 1 2 3

1 [0.318,0.463] [0.318,0.463] [0.074,0.324] 1 [0.279,0.345] [0.444,0.576] [0.086,0.217] 1 [0.281,0.327] [0.446,0.542] [0.177,0.227]
(0.311,0.470) (0.311,0.470) (0.060,0.328) (0.274,0.350) (0.439,0.581) (0.079,0.221) (0.274,0.332) (0.440,0.551) (0.170,0.231)

2 [0.000,0.306] [0.338,0.713] [0.287,0.457] 2 [0.117,0.153] [0.473,0.509] [0.338,0.374] 2 [0.124,0.145] [0.450,0.486]  [0.379,0.423]
(0.000,0.311) (0.330,0.721) (0.279,0.464) (0.104,0.157) (0.457,0.516) (0.331,0.390) (0.117,0.150) (0.441,0.492) (0.373,0.428)

3 [0.000,0.306] [0.034,0.571] [0.429,0.889] 3 [0.000,0.131] [0.220,0.355] [0.514,0.780] 3  [0.026,0.086] [0.245,0.304] [0.669,0.670]
(0.000,0.311) (0.024,0.579) (0.421,0.905) (0.000,0.135) (0.208,0.363) (0.506,0.792) (0.016,0.104) (0.233,0.311) (0.662,0.678)

Notes: Outcome = POVRATIO. 1 = poverty ratio < 1. 2 = poverty ratio is between 1 and 2. 3 = poverty ratio >= 2. Point estimates for bounds provided in brackets obtained using 100 subsamples of size N/2 for 
bias correction.  90% Imbens-Manski confidence intervals for the bounds provided in parentheses obtained using 250 subsamples of size N/2. For all cases Q = 0.20.  See text for further details.

A. Without Temporal Independence/Invariance B. With Temporal Independence C. With Temporal Invariance



Table 6. Full Sample Transition Matrices: Level Set + Shape + Monotonicity Restrictions

I.  Arbitrary, Independent Misclassification
1 2 3 1 2 3 1 2 3

      1 [0.043,0.735] [0.088,0.790] [0.000,0.707] 1 [0.318,0.435] [0.369,0.448] [0.131,0.314] 1 [0.236,0.342] [0.426,0.570] [0.170,0.268]
(0.038,0.747) (0.077,0.799) (0.000,0.713) (0.311,0.443) (0.358,0.457) (0.113,0.331) (0.210,0.348) (0.418,0.635) (0.156,0.276)

2 [0.000,0.555] [0.070,0.913] [0.037,0.498] 2 [0.059,0.247] [0.405,0.610] [0.287,0.366] 2 [0.084,0.180] [0.435,0.495] [0.360,0.455]
(0.000,0.561) (0.062,0.921) (0.031,0.508) (0.038,0.253) (0.392,0.617) (0.279,0.393) (0.073,0.184) (0.426,0.500) (0.355,0.466)

          3 [0.000,0.538] [0.000,0.854] [0.099,1.000] 3 [0.000,0.246] [0.079,0.526] [0.429,0.921] 3 [0.021,0.116] [0.218,0.311] [0.667,0.669]
(0.000,0.544) (0.000,0.861) (0.095,1.000) (0.000,0.251) (0.067,0.534) (0.421,0.933) (0.003,0.137) (0.207,0.317) (0.656,0.677)

II.  Uniform, Independent Misclassification
1 2 3 1 2 3 1 2 3

1 [0.318,0.515] [0.369,0.534] [0.052,0.314] 1 [0.301,0.311] [0.444,0.523] [0.248,0.254] 1 [0.236,0.303] [0.469,0.567] [0.188,0.240]
(0.311,0.527) (0.358,0.547) (0.042,0.331) (0.182,0.318) (0.433,0.571) (0.103,0.264) (0.227,0.309) (0.461,0.593) (0.180,0.247)

2 [0.009,0.290] [0.380,0.702] [0.287,0.427] 2 [0.063,0.153] [0.423,0.513] [0.339,0.424] 2 [0.107,0.140] [0.458,0.482] [0.382,0.433]
(0.004,0.298) (0.372,0.710) (0.279,0.438) (0.052,0.157) (0.415,0.522) (0.332,0.433) (0.100,0.144) (0.452,0.488) (0.376,0.442)

3 [0.000,0.290] [0.079,0.571] [0.429,0.921] 3 [0.000,0.131] [0.148,0.355] [0.514,0.852] 3 [0.034,0.056] [0.275,0.298] [0.669,0.669]
(0.000,0.297) (0.067,0.579) (0.421,0.933) (0.000,0.135) (0.136,0.363) (0.506,0.864) (0.025,0.074) (0.264,0.311) (0.662,0.677)

III.  Uniform, Independent, Uni-directional Misclassification
1 2 3 1 2 3 1 2 3

1 [0.318,0.435] [0.369,0.453] [0.131,0.314] 1 [0.313,0.329] [0.471,0.564] [0.123,0.216] 1 [0.281,0.313] [0.468,0.506] [0.187,0.227]
(0.311,0.443) (0.358,0.462) (0.113,0.328) (0.286,0.336) (0.461,0.581) (0.115,0.221) (0.274,0.319) (0.459,0.546) (0.180,0.231) 

2 [0.011,0.290] [0.380,0.702] [0.287,0.410] 2 [0.117,0.153] [0.473,0.509] [0.338,0.374] 2 [0.126,0.145] [0.458,0.482] [0.379,0.404]
(0.005,0.298) (0.372,0.709) (0.279,0.418) (0.104,0.157) (0.457,0.516) (0.331,0.390) (0.121,0.150) (0.452,0.488) (0.373,0.411)

3 [0.000,0.290] [0.079,0.571] [0.429,0.857] 3 [0.000,0.131] [0.239,0.355] [0.514,0.761] 3 [0.032,0.057] [0.275,0.299] [0.669,0.669]
(0.000,0.297) (0.067,0.579) (0.421,0.876) (0.000,0.135) (0.227,0.363) (0.506,0.773) (0.024,0.076) (0.262,0.311) (0.662,0.677)

Notes: Outcome = POVRATIO. 1 = poverty ratio < 1. 2 = poverty ratio is between 1 and 2. 3 = poverty ratio >= 2. Point estimates for bounds provided in brackets obtained using 100 subsamples of size N/2 for 
bias correction.  90% Imbens-Manski confidence intervals for the bounds provided in parentheses obtained using 250 subsamples of size N/2.  For all cases Q  = 0.20. See text for further details.

A. Without Temporal Independence/Invariance B. With Temporal Independence C. With Temporal Invariance



Table 7. Subsample Transition Matrices (Religion): Level Set + Shape + Monotonicity Restrictions

I.  Arbitrary, Independent Misclassification
1 2 3 1 2 3 1 2 3

1 [0.038,0.745] [0.078,0.794] [0.000,0.710] 1 [0.100,0.674] [0.195,0.745] [0.000,0.665] 1 [0.052,0.760] [0.115,0.802] [0.000,0.718]
(0.032,0.757) (0.065,0.804) (0.000,0.717) (0.084,0.696) (0.168,0.770) (0.000,0.685) (0.033,0.801) (0.068,0.837) (0.000,0.750)

2 [0.000,0.549] [0.070,0.913] [0.039,0.493] 2 [0.000,0.548] [0.115,0.939] [0.016,0.430] 2 [0.000,0.559] [0.111,0.828] [0.066,0.548]
(0.000,0.557) (0.060,0.922) (0.032,0.504) (0.000,0.562) (0.092,0.961) (0.003,0.477) (0.000,0.583) (0.084,0.850) (0.046,0.592)

3 [0.000,0.531] [0.000,0.853] [0.102,1.000] 3 [0.000,0.546] [0.000,0.938] [0.039,1.000] 3 [0.000,0.512] [0.000,0.767] [0.177,1.000]
(0.000,0.538) (0.000,0.862) (0.096,1.000) (0.000,0.560) (0.000,0.961) (0.026,1.000) (0.000,0.531) (0.000,0.787) (0.160,1.000)

II.  Uniform, Independent Misclassification
1 2 3 1 2 3 1 2 3

1 [0.312,0.515] [0.357,0.537] [0.043,0.331] 1 [0.394,0.441] [0.438,0.458] [0.122,0.169] 1 [0.267,0.445] [0.418,0.539] [0.137,0.315]
(0.303,0.529) (0.347,0.552) (0.035,0.350) (0.372,0.462) (0.417,0.501) (0.099,0.211) (0.232,0.524) (0.382,0.587) (0.094,0.385)

2 [0.006,0.285] [0.387,0.701] [0.292,0.421] 2 [0.017,0.299] [0.404,0.730] [0.231,0.379] 2 [0.033,0.209] [0.422,0.597] [0.348,0.370]
(0.001,0.296) (0.377,0.711) (0.284,0.438) (0.003,0.315) (0.384,0.752) (0.213,0.411) (0.000,0.234) (0.395,0.622) (0.323,0.413)

3 [0.000,0.285] [0.086,0.567] [0.433,0.914] 3 [0.000,0.299] [0.058,0.698] [0.283,0.942] 3 [0.000,0.208] [0.091,0.455] [0.545,0.909]
(0.000,0.293) (0.071,0.578) (0.422,0.929) (0.000,0.313) (0.025,0.722) (0.250,0.975) (0.000,0.233) (0.053,0.482) (0.518,0.947)

III.  Uniform, Independent, Uni-directional, Temporally Independent Misclassification
1 2 3 1 2 3 1 2 3

1 [0.309,0.330] [0.464,0.571] [0.120,0.217] 1 [0.274,0.275] [0.537,0.596] [0.130,0.188] 1 [0.302,0.331] [0.463,0.490] [0.181,0.206]
(0.281,0.338) (0.453,0.577) (0.111,0.223) (0.253,0.295) (0.512,0.631) (0.115,0.213) (0.272,0.356) (0.420,0.554) (0.140,0.232)

2 [0.121,0.149] [0.478,0.506] [0.345,0.373] 2 [0.131,0.164] [0.509,0.542] [0.302,0.327] 2 [0.141,0.147] [0.397,0.419] [0.442,0.456]
(0.106,0.154) (0.459,0.514) (0.335,0.392) (0.101,0.176) (0.488,0.559) (0.283,0.349) (0.105,0.161) (0.365,0.440) (0.418,0.487)

3 [0.000,0.131] [0.240,0.354] [0.515,0.755] 3 [0.000,0.159] [0.321,0.443] [0.436,0.579] 3 [0.000,0.111] [0.202,0.267] [0.622,0.769]
(0.000,0.135) (0.226,0.363) (0.505,0.771) (0.000,0.169) (0.276,0.470) (0.398,0.635) (0.000,0.119) (0.169,0.288) (0.593,0.814)

IV.  Uniform, Independent, Uni-directional, Temporally Invariant Misclassification
1 2 3 1 2 3 1 2 3

1 [0.288,0.315] [0.463,0.520] [0.191,0.228] 1 [0.268,0.279] [0.524,0.560] [0.171,0.198] 1 [0.304,0.316] [0.451,0.480] [0.216,0.245]
(0.281,0.321) (0.453,0.536) (0.184,0.232) (0.251,0.293) (0.504,0.590) (0.158,0.210) (0.279,0.335) (0.423,0.527) (0.194,0.269)

2 [0.121,0.149] [0.454,0.483] [0.380,0.414] 2 [0.135,0.151] [0.508,0.523] [0.338,0.341] 2 [0.118,0.150] [0.374,0.414] [0.468,0.494]
(0.117,0.154) (0.444,0.489) (0.373,0.421) (0.123,0.162) (0.480,0.539) (0.320,0.361) (0.104,0.164) (0.344,0.440) (0.447,0.519)

3 [0.027,0.077] [0.259,0.307] [0.665,0.666] 3 [0.066,0.081] [0.325,0.335] [0.594,0.599] 3 [0.019,0.062] [0.192,0.235] [0.746,0.778]
(0.016,0.099) (0.246,0.315) (0.655,0.674) (0.016,0.136) (0.296,0.372) (0.563,0.620) (0.000,0.100) (0.164,0.267) (0.731,0.799)

A. Hindu B. Muslim C. Others

Notes: Outcome = POVRATIO. 1 = poverty ratio < 1. 2 = poverty ratio is between 1 and 2. 3 = poverty ratio >= 2. Point estimates for bounds provided in brackets obtained using 100 subsamples of size N/2 for 
bias correction.  90% Imbens-Manski confidence intervals for the bounds provided in parentheses obtained using 250 subsamples of size N/2. For all cases Q  = 0.20. See text for further details.



Table 8. Subsample Transition Matrices (Caste): Level Set + Shape + Monotonicity Restrictions

I.  Arbitrary, Independent Misclassification
1 2 3 1 2 3 1 2 3

      1 [0.011,0.778] [0.052,0.843] [0.000,0.824] 1 [0.084,0.729] [0.111,0.744] [0.000,0.561] 1 [0.038,0.704] [0.079,0.774] [0.000,0.714]
(0.005,0.812) (0.029,0.857) (0.000,0.837) (0.068,0.744) (0.100,0.770) (0.000,0.570) (0.027,0.722) (0.061,0.787) (0.000,0.724)

2 [0.000,0.499] [0.106,0.867] [0.061,0.518] 2 [0.000,0.636] [0.058,0.956] [0.006,0.538] 2 [0.000,0.532] [0.094,0.891] [0.042,0.469]
(0.000,0.511) (0.092,0.879) (0.049,0.527) (0.000,0.647) (0.047,0.966) (0.000,0.565) (0.000,0.542) (0.082,0.902) (0.033,0.483)

3 [0.000,0.449] [0.000,0.724] [0.249,1.000] 3 [0.000,0.631] [0.000,0.949] [0.025,1.000] 3 [0.000,0.527] [0.000,0.861] [0.062,1.000]
(0.000,0.458) (0.000,0.736) (0.236,1.000) (0.000,0.642) (0.000,0.959) (0.020,1.000) (0.000,0.536) (0.000,0.873) (0.053,1.000)

II.  Uniform, Independent Misclassification
1 2 3 1 2 3 1 2 3

1 [0.231,0.493] [0.384,0.532] [0.050,0.385] 1 [0.355,0.542] [0.368,0.542] [0.040,0.277] 1 [0.330,0.487] [0.381,0.517] [0.074,0.290]
(0.213,0.521) (0.359,0.555) (0.026,0.429) (0.341,0.556) (0.354,0.573) (0.030,0.306) (0.321,0.504) (0.367,0.531) (0.060,0.312)

2 [0.002,0.212] [0.420,0.626] [0.360,0.424] 2 [0.044,0.367] [0.382,0.772] [0.184,0.452] 2 [0.016,0.269] [0.407,0.679] [0.304,0.387]
(0.000,0.227) (0.407,0.636) (0.350,0.469) (0.030,0.379) (0.369,0.791) (0.171,0.484) (0.005,0.281) (0.393,0.692) (0.291,0.431)

3 [0.000,0.210] [0.072,0.415] [0.585,0.928] 3 [0.000,0.368] [0.061,0.758] [0.160,0.939] 3 [0.000,0.269] [0.082,0.628] [0.368,0.918]
(0.000,0.224) (0.057,0.426) (0.574,0.943) (0.000,0.379) (0.034,0.775) (0.150,0.966) (0.000,0.282) (0.061,0.641) (0.351,0.939)

III.  Uniform, Independent, Uni-directional, Temporally Independent Misclassification
1 2 3 1 2 3 1 2 3

1 [0.224,0.275] [0.505,0.630] [0.140,0.271] 1 [0.374,0.387] [0.472,0.523] [0.104,0.142] 1 [0.276,0.290] [0.500,0.589] [0.125,0.223]
(0.210,0.297) (0.484,0.643) (0.098,0.298) (0.347,0.395) (0.457,0.545) (0.092,0.156) (0.239,0.300) (0.488,0.601) (0.111,0.242)

2 [0.077,0.119] [0.412,0.458] [0.422,0.470] 2 [0.186,0.194] [0.504,0.541] [0.265,0.302] 2 [0.114,0.139] [0.480,0.505] [0.355,0.380]
(0.066,0.125) (0.399,0.469) (0.407,0.487) (0.172,0.205) (0.478,0.553) (0.251,0.312) (0.096,0.145) (0.455,0.516) (0.344,0.396)

3 [0.000,0.083] [0.215,0.262] [0.655,0.785] 3 [0.000,0.199] [0.361,0.513] [0.332,0.632] 3 [0.000,0.133] [0.286,0.397] [0.470,0.714]
(0.000,0.087) (0.201,0.273) (0.643,0.799) (0.000,0.220) (0.310,0.537) (0.291,0.690) (0.000,0.139) (0.264,0.412) (0.454,0.736)

IV.  Uniform, Independent, Uni-directional, Temporally Invariant Misclassification
1 2 3 1 2 3 1 2 3

1 [0.244,0.252] [0.506,0.530] [0.242,0.266] 1 [0.368,0.370] [0.456,0.491] [0.141,0.174] 1 [0.249,0.283] [0.496,0.547] [0.204,0.235]
(0.217,0.283) (0.487,0.561) (0.227,0.289) (0.344,0.378) (0.442,0.522) (0.134,0.181) (0.240,0.290) (0.485,0.565) (0.195,0.246)

2 [0.100,0.105] [0.433,0.439] [0.460,0.461] 2 [0.184,0.202] [0.499,0.508] [0.299,0.308] 2 [0.112,0.144] [0.458,0.491] [0.382,0.411]
(0.088,0.111) (0.416,0.448) (0.450,0.479) (0.171,0.215) (0.489,0.517) (0.290,0.319) (0.107,0.150) (0.450,0.499) (0.374,0.421)

3 [0.017,0.032] [0.216,0.227] [0.751,0.762] 3 [0.158,0.180] [0.329,0.383] [0.459,0.508] 3 [0.040,0.072] [0.315,0.339] [0.613,0.633]
(0.011,0.053) (0.203,0.239) (0.744,0.772) (0.128,0.191) (0.306,0.437) (0.435,0.526) (0.028,0.103) (0.296,0.356) (0.601,0.641)

A. Brahmin/Other Upper Castes B. SC/ST C. OBC

Notes: Outcome = POVRATIO. 1 = poverty ratio < 1. 2 = poverty ratio is between 1 and 2. 3 = poverty ratio >= 2. Point estimates for bounds provided in brackets obtained using 100 subsamples of size N/2 for 
bias correction.  90% Imbens-Manski confidence intervals for the bounds provided in parentheses obtained using 250 subsamples of size N/2. For all cases Q = 0.20.  See text for further details.



Table 9. Subsample Transition Matrices (Rural/Urban): Level Set + Shape + Monotonicity Restrictions

I.  Arbitrary, Independent Misclassification
1 2 3 1 2 3

1 [0.024,0.705] [0.092,0.791] [0.000,0.768] 1 [0.050,0.747] [0.086,0.797] [0.000,0.686]
(0.016,0.733) (0.069,0.805) (0.000,0.782) (0.044,0.758) (0.074,0.810) (0.000,0.693)

2 [0.000,0.499] [0.125,0.867] [0.087,0.500] 2 [0.000,0.578] [0.055,0.929] [0.016,0.499]
(0.000,0.510) (0.111,0.882) (0.071,0.512) (0.000,0.586) (0.046,0.938) (0.011,0.512)

3 [0.000,0.457] [0.000,0.747] [0.222,1.000] 3 [0.000,0.571] [0.000,0.905] [0.049,1.000]
(0.000,0.466) (0.000,0.759) (0.206,1.000) (0.000,0.579) (0.000,0.914) (0.044,1.000)

II.  Uniform, Independent Misclassification
1 2 3 1 2 3

1 [0.265,0.477] [0.403,0.512] [0.079,0.332] 1 [0.331,0.524] [0.362,0.548] [0.042,0.308]
(0.248,0.500) (0.383,0.535) (0.055,0.369) (0.322,0.536) (0.354,0.562) (0.034,0.324)

2 [0.004,0.178] [0.449,0.626] [0.361,0.373] 2 [0.011,0.321] [0.362,0.727] [0.253,0.435]
(0.000,0.200) (0.428,0.642) (0.346,0.421) (0.005,0.329) (0.354,0.736) (0.244,0.448)

3 [0.000,0.175] [0.050,0.396] [0.604,0.950] 3 [0.000,0.318] [0.096,0.681] [0.303,0.904]
(0.000,0.196) (0.033,0.409) (0.591,0.967) (0.000,0.325) (0.078,0.690) (0.291,0.922)

III.  Uniform, Independent, Uni-directional, Temporally Independent Misclassification
1 2 3 1 2 3

1 [0.263,0.264] [0.522,0.587] [0.150,0.216] 1 [0.293,0.340] [0.464,0.557] [0.107,0.205]
(0.241,0.278) (0.503,0.624) (0.135,0.250) (0.288,0.347) (0.456,0.571) (0.099,0.211)

2 [0.064,0.115] [0.438,0.470] [0.415,0.466] 2 [0.140,0.168] [0.479,0.518] [0.314,0.352]
(0.045,0.121) (0.425,0.482) (0.398,0.476) (0.128,0.174) (0.464,0.526) (0.299,0.366)

3 [0.000,0.084] [0.200,0.252] [0.664,0.800] 3 [0.000,0.165] [0.266,0.429] [0.406,0.734]
(0.000,0.088) (0.180,0.264) (0.652,0.820) (0.000,0.171) (0.247,0.440) (0.394,0.753)

IV.  Uniform, Independent, Uni-directional, Temporally Invariant Misclassification
1 2 3 1 2 3

1 [0.228,0.261] [0.514,0.531] [0.225,0.226] 1 [0.312,0.325] [0.463,0.472] [0.203,0.216]
(0.220,0.288) (0.496,0.566) (0.212,0.239) (0.289,0.331) (0.455,0.547) (0.164,0.222)

2 [0.086,0.106] [0.439,0.452] [0.449,0.464] 2 [0.140,0.164] [0.469,0.493] [0.355,0.383]
(0.080,0.112) (0.427,0.462) (0.438,0.471) (0.135,0.169) (0.462,0.498) (0.347,0.390)

3 [0.016,0.028] [0.210,0.210] [0.762,0.774] 3 [0.030,0.130] [0.290,0.384] [0.580,0.586]
(0.006,0.052) (0.194,0.223) (0.754,0.800) (0.000,0.146) (0.274,0.402) (0.569,0.593)

A. Urban B. Rural

Notes: Outcome = POVRATIO. 1 = poverty ratio < 1. 2 = poverty ratio is between 1 and 2. 3 = poverty ratio >= 2. Point estimates for bounds provided 
in brackets obtained using 100 subsamples of size N/2 for bias correction.  90% Imbens-Manski confidence intervals for the bounds provided in 
parentheses obtained using 250 subsamples of size N/2.  For all cases Q = 0.20. See text for further details.



Supplemental Appendix

Measuring Economic Mobility in India Using Noisy Data:
A Partial Identi�cation Approach



A Derivation of Bounds

A.1 Misclassi�cation Assumptions

� Baseline case: Assumption 2(i), 2(ii)
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�Now only 27 elements

� General: # elements = K4 + 2K3 +
P

k

P
l [kl � (k + l)(K + 1)]
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� Add Temporal Independence assumption

�k
0l0

kl = �k
0

k �
l0

l

�k
0

k = Pr(yo 2 k0; y�o 2 k)
�kk = Pr(yo 2 k; y�o 2 k) = 1� �k

0

k

�l
0

l = Pr(y1 2 l0; y�1 2 l)
�ll = Pr(y1 2 l; y�1 2 l) = 1� �l

0

l

�Now only 12 elements

� General: # elements = 2K(K � 1)
� Implies

�1211 =
�
1� �21 � �31

�
�21 �1112 =

�
1� �21 � �31

�
�12 �1113 =

�
1� �21 � �31

�
�13 �1121 = �
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�
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�
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1
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�1311 =
�
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�
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�
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�
�32 �1213 =

�
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�
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2
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1
2

�
1� �12 � �13
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�
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�
�2112 = �

2
1�

1
2 �2113 = �
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�
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�
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2
3 �2221 =

�
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�
�21 �2122 =

�
1� �12 � �32

�
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1 �2312 = �
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3
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�
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�
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�
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�
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�
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�
�3223 = �

3
2�

2
3 �3231 =

�
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�
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�
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�
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�
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�
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�3323 = �
3
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�
1� �13 � �23

�
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�
1� �13 � �23

�
�31 �3332 =

�
1� �13 � �23

�
�32 �3233 =

�
1� �13 � �23

�
�23

� Under Assumption 2(i)X
�k

0l0

kl =
�
1� �21 � �31
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�
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�
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) �21; �
3
1; �

1
2; �

3
2; �

1
3; �

2
3; �

2
1; �

3
1; �

1
2; �

3
2; �

1
3; �

2
3 � Q=3

) �; � � Q=K (generally)
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� Under Assumption 2(ii) X
�k

0l0

11 =
�
1� �21 � �31

� �
�21 + �

3
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�
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2
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�
3� �21 � �31 � �12 � �32 � �13 � �23

� �
�21 + �

3
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�
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�k
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12 +
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22 +
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3
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1
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3
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1
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2
3 +

�
3� �21 � �31 � �12 � �32 � �13 � �23

� �
�12 + �

3
2

�
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�k
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13 +
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23 +
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�k
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3
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1
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3
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�
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which imply
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3
1; �
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3
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1
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2
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2
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3
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3
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)
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+
�
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+
�
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;
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�21; �

3
1

	
+
�
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3
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+
�
�13; �
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	�
� Q=3

) �; � � Q=K2 (generally)

)
X

k

n
�k

0

k

o
;
X

k

n
�k

0

k

o
� Q=K (generally)

�Add Uni-directional assumption

� Implies
�12 = �

1
2 = �

1
3 = �

1
3 = �

2
3 = �

2
3 = 0

� Now only 6 elements
� General: # elements = K(K � 1)
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� Add Temporal Invariance assumption

�k
0l0

kl = �k
0

k �
l0

l

�k
0

k = Pr(yo 2 k0; y�o 2 k) = Pr(y1 2 k0; y�1 2 k)
�kk = Pr(yo 2 k; y�o 2 k) = Pr(y1 2 k; y�1 2 k) = 1� �k

0

k

�Now only 6 elements

� General: # elements = K(K � 1)
� Implies
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K2 �Q (generally)

� Under Assumption 2(ii) (solution: set one all �s but one to zero, solve using quadratic formula)X
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) �21; �
3
1; �

1
2; �

3
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1
3; �

2
3 �

�
4�

p
16� 4Q=3

�
=2

) � �
�
K + 1�

q
(K + 1)

2 � 4Q=K
�
=2 (generally)

�Add Uni-directional assumption

� Implies
�12 = �

1
3 = �

2
3 = 0

� Now only 3 elements
� General: # elements = K(K � 1)=2
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A.1.1 p�11

p�11 =

r11 +

Q1;11z }| {�
�1211
�
+ �1311

�
+ �2111 + �

22
11 + �

23
11 + �

31
11 + �

32
11 + �

33
11

�
�

Q2;11z }| {�
�1112
�
+ �1113

�
+ �1121 + �

11
22 + �

11
23 + �

11
31 + �

11
32 + �

11
33

�
p1 +

�
�2111 + �

22
11 + �

23
11 + �

31
11 + �

32
11 + �

33
11 + �

21
12
�
+ �2212

�
+ �2312

�
+ �3112

�
+ �3212

�
+ �3312

�
+ �2113

�
+ �2213

�
+ �2313

�
+ �3113

�
+ �3213

�
+ �3313

�

�
| {z }

Q3;1

�
�
�1121 + �

11
22 + �

11
23 + �

12
21
�
+ �1222

�
+ �1223

�
+ �1321

�
+ �1322

�
+ �1323

�
+ �1131 + �

11
32 + �

11
33 + �

12
31
�
+ �1232

�
+ �1233

�
+ �1331

�
+ �1332

�
+ �1333

�

�
| {z }

Q4;1

� �k
0l0

kl
�
= unique element

Arbitrary, Uniform Errors: Assumptions 2(i), 2(ii)

LB11 =
r11 � eQ
p1

� 0 eQ = � Q AE
Q=3 UE

UB11 =
r11 + eQ
p1 � eeQ � 1 eeQ = � 0 AE

minfp1; Q=3g UE

Uni-Directional Errors: Assumption 3

� Simplifying

p�11 =

r11 +

Q1;11z }| {�
�1211
�
+ �1311

�
+ �2111 + �
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11 + �

23
11 + �
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11 + �
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11 + �
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+ �3312

�
+ �2313

�
+ �3313

�

�
| {z }

Qu
3;1

� Yields

LBu11 =
r11

p1 +
eeQ � 0 eeQ = minn1� p1; eQo ; eQ = � Q AE

Q=3 UE

UBu11 =
r11 + eQ
p1

� 1 eQ = � Q AE
Q=3 UE
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Temporal Independence, Temporal Invariance

� Implies

p�11 =
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� Simplifying

Q1;11 =
�
�21 + �

3
1

�
+
�
�21 + �

3
1

� �
1� �21 � �31

�
(TI)

= 2
�
�21 + �

3
1

�
�
�
�21 + �

3
1

�2
(TIV)

Q2;11 =
�
�12 + �

1
3

� �
1 + �12 + �

1
3 � �21 � �31

�
+
�
�12 + �

1
3

� �
1� �21 � �31
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(TI)

= 2
�
�12 + �

1
3

� �
1� �21 � �31

�
+
�
�12 + �

1
3

�2
(TIV)

Q3;1 = 3
�
�21 + �

3
1

�
(TI)

= 3
�
�21 + �

3
1

�
(TIV)

Q4;1 = 3
�
�12 + �

1
3

�
(TI)

= 3
�
�12 + �

1
3

�
(TIV)
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� Under Temporal Independence

p�11 =
r11 +

�
�21 + �

3
1 � �12 � �13

�
+
�
�21 + �

3
1 � �12 � �13

� �
1 + �12 + �

1
3 � �21 � �31

�
p1 + 3 (�21 + �

3
1 � �12 � �13)

�Yields

LBTI11 = min

8<:r11 �
::

Q

p1
;
r11 +

eeQ
p1 + 3

eeQ; r11 �
bQ

p1 � 3 bQ
9=; � 0

eeQ = minn1� r11; (1� p1)=3; eQo ; bQ = minnr11; p1=3; ::Qo ; eQ = � Q=3 AE
Q=9 UE

;
::

Q =

�
Q=3 AE
2Q=9 UE

UBTI11 = max

8<:r11 + eQ
p1

;
r11 +

eeQ
p1 + 3

eeQ; r11 �
bQ

p1 � 3 bQ
9=; � 1

eeQ = minn1� r11; (1� p1)=3; eQo ; bQ = minnr11; p1=3; ::Qo ; eQ = � Q=3 AE
Q=9 UE

;
::

Q =

�
Q=3 AE
2Q=9 UE

�Proof:

1.
::

Q in r11�
::
Q

p1
can be 2Q=9 as �12; �

1
3 = Q=9 under UE.

2. bQ in r11� bQ
p1�3 bQ can be 2Q=9 as �12; �

1
3 = Q=9 under UE.

3. Evaluate @
�
r11+

eeQ
p1+3

eeQ
�
=@
eeQ and see when the sign is positive/negative. Both are possible.

sgn

0BB@@
�
r11+

eeQ
p1+3

eeQ
�

@
eeQ

1CCA = sgn

��
p1 + 3

eeQ�� 3�r11 + eeQ��

= sgn (p1 � 3r11)

4. Evaluate @
�
r11� bQ
p1�3 bQ

�
=@ bQ and see when the sign is positive/negative. Both are possible.

sgn

0@@
�
r11� bQ
p1�3 bQ

�
@ bQ

1A = sgn
�
�
�
p1 � 3 bQ�+ 3�r11 � bQ��

= sgn (3r11 � p1)

�Adding the uni-directional assumption

p�11 =
r11 +

�
�21 + �

3
1

�
+
�
�21 + �

3
1

� �
1� �21 � �31

�
p1 + 3 (�21 + �

3
1)

� Yields

LBTI;u11 =
r11 +

eeQ
p1 + 3

eeQ � 0 eeQ = ( 0 r11 < p1=3

min
n
1� r11; (1� p1)=3; eQo otherwise

; eQ = � Q=3 AE
Q=9 UE

UBTI;u11 = max

8<:r11 + eQ
p1

;
r11 +

eeQ
p1 + 3

eeQ
9=; � 1 eeQ = minn1� r11; (1� p1)=3; eQo ; eQ = � Q=3 AE

Q=9 UE

� Proof: Same as above.
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� Under Temporal Invariance

p�11 =
r11 + 2

�
�21 + �

3
1 � �12 � �13

�
�
�
�21 + �

3
1 � �12 � �13

�2
p1 + 3

�
�21 + �

3
1 � �12 � �13

�
�Yields

LBTIV11 = min

8<:r11 + 2 bQ� bQ2
p1 + 3 bQ ;

r11 � 2eeQ� eeQ2
p1 � 3eeQ

9=; � 0

bQ = minn(1� p1)=3; eQo ;
eeQ =

8<: 0 r11 � 2p1=3

min

�
(2=3)p1+

p
(4=9)p21+4[(2=3)p1�r11]

2 ; (�1 +
p
1 + r11); p1=3; eQ� otherwise

;

eQ = ( 3�
p
9�Q AE�

4�
p
16� 4Q=3

�
=2 UE

UBTIV11 = max

8<:r11 + 2 bQ� bQ2
p1 + 3 bQ ;

r11 � 2eeQ� eeQ2
p1 � 3eeQ

9=; � 0

bQ =
8<: 0 r11 � 2p1=3

min

�
�(2=3)p1+

p
(4=9)p21+4[(2=3)p1�r11]

2 ; (1� p1)=3; eQ� otherwise
;

eeQ =
8<: 0 r11 < 2p1=3

min

�
(2=3)p1�

p
(4=9)p21+4[(2=3)p1�r11]

2 ; (�1 +
p
1 + r11); p1=3; eQ� otherwise

;

eQ = ( 3�
p
9�Q AE�

4�
p
16� 4Q=3

�
=2 UE

8



�Proof:

1. Evaluate @
�
r11�2eeQ�eeQ2

p1�3eeQ
�
=@
eeQ and see when the sign is positive/negative. Both are possible.

sgn

0BB@@
�
r11�2eeQ�eeQ2

p1�3eeQ
�

@
eeQ

1CCA = sgn

��
�2� 2eeQ��p1 � 3eeQ�+ 3�r11 � 2eeQ� eeQ2��

= sgn

�
�(2=3)p1

�
1 +

eeQ�+ eeQ2 + r11�

) sgn

0BB@@
�
r11�2eeQ�eeQ2

p1�3eeQ
�

@
eeQ

1CCA
��������eeQ=0

= sgn (�(2=3)p1 + r11) ? 0

) sgn

0BB@@
�
r11�2eeQ�eeQ2

p1�3eeQ
�

@
eeQ

1CCA
��������eeQ=1

= sgn (�(4=3)p1 + 1 + r11) ? 0

2. Ensure r11 � 2eeQ� eeQ2 � 0
r11 � 2eeQ� eeQ2 � 0

) eeQ2 + 2eeQ� r11 � 0
) eeQ � �2 +

p
4 + 4r11
2

) eeQ � �1 +p1 + r11
3. Minimize r11�2eeQ�eeQ2

p1�3eeQ s.t. eeQ being feasible and r11 < 2p1=3
@

�
r11�2eeQ�eeQ2

p1�3eeQ
�

@
eeQ / �(2=3)p1

�
1 +

eeQ�+ eeQ2 + r11 = 0
) eeQ� = (2=3)p1 +

p
(4=9)p21 + 4[(2=3)p1 � r11]

2

4. Maximize r11�2eeQ�eeQ2

p1�3eeQ s.t. eeQ being feasible and r11 > 2p1=3
@

�
r11�2eeQ�eeQ2

p1�3eeQ
�

@
eeQ / �(2=3)p1

�
1 +

eeQ�+ eeQ2 + r11 = 0
) eeQ� = (2=3)p1 �

p
(4=9)p21 + 4[(2=3)p1 � r11]

2

Note: If
p
(4=9)p21 + 4[(2=3)p1 � r11] = :, then maximize

eeQ.
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5. Evaluate @
�
r11+2 bQ� bQ2

p1+3 bQ
�
=@ bQ and see when the sign is positive/negative. Both are possible.

sgn

0@@
�
r11+2 bQ� bQ2

p1+3 bQ
�

@ bQ
1A = sgn

��
2� 2 bQ��p1 + 3 bQ�� 3�r11 + 2 bQ� bQ2��

= sgn
�
(2=3)p1

�
1� bQ�� bQ2 � r11�

) sgn

0@@
�
r11+2 bQ� bQ2

p1+3 bQ
�

@ bQ
1A������ bQ=0 = sgn ((2=3)p1 � r11) ? 0

) sgn

0@@
�
r11+2 bQ� bQ2

p1+3 bQ
�

@ bQ
1A������ bQ=1 = sgn (�1� r11) < 0

6. Maximize r11+2 bQ� bQ2

p1+3 bQ s.t. bQ being feasible and r11 < 2p1=3
@
�
r11+2 bQ� bQ2

p1+3 bQ
�

@
eeQ / (2=3)p1

�
1� bQ�� bQ2 � r11 = 0

) eeQ� = �(2=3)p1 +
p
(4=9)p21 + 4[(2=3)p1 � r11]

2

7. Minimize r11+2
bQ� bQ2

p1+3 bQ ) bQ = 0 or maximize bQ. However, if the minimum occurs when bQ = 0, then r11�2eeQ�eeQ2

p1�3eeQ <
r11
p1
and this will be the binding LB.
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�Adding the uni-directional assumption

p�11 =
r11 + 2�

2
1 �

�
�21
�2

p1 + 2�
2
1

� Yields

LBTIV;u11 = min

8<:r11p1 ; r11 + 2
eeQ� eeQ2

p1 + 3
eeQ

9=; � 0

eeQ = minn(1� p1)=3; eQo ;
eQ = ( 3�

p
9�Q AE�

4�
p
16� 4Q=3

�
=2 UE

UBTIV;u11 =
r11 + 2

eeQ� eeQ2
p1 + 3

eeQ � 1

eeQ =
8<: 0 r11 � 2p1=3

min

�
�(2=3)p1+

p
(4=9)p21+4[(2=3)p1�r11]

2 ; (1� p1)=3; eQ� otherwise
;

eQ = ( 3�
p
9�Q AE�

4�
p
16� 4Q=3

�
=2 UE

� Proof: Same as above.
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A.1.2 p�12

p�12 =

r12 +

Q1;12z }| {�
�1112
�
+ �1312

�
+ �2112 + �

22
12 + �

23
12 + �

31
12 + �

32
12 + �

33
12

�
�

Q2;12z }| {�
�1211
�
+ �1213

�
+ �1221 + �

12
22 + �

12
23 + �

12
31 + �

12
32 + �

12
33

�
p1 +

�
�2111 + �

22
11 + �

23
11 + �

31
11 + �

32
11 + �

33
11 + �

21
12
�
+ �2212

�
+ �2312

�
+ �3112

�
+ �3212

�
+ �3312

�
+ �2113

�
+ �2213

�
+ �2313

�
+ �3113

�
+ �3213

�
+ �3313

�

�
| {z }

Q3;1

�
�
�1121 + �

11
22 + �

11
23 + �

12
21
�
+ �1222

�
+ �1223

�
+ �1321

�
+ �1322

�
+ �1323

�
+ �1131 + �

11
32 + �

11
33 + �

12
31
�
+ �1232

�
+ �1233

�
+ �1331

�
+ �1332

�
+ �1333

�

�
| {z }

Q4;1

� �k
0l0

kl
�
= unique element

Arbitrary, Uniform Errors: Assumptions 2(i), 2(ii)

LB12 =
r12 � eQ
p1

� 0 eQ = � Q AE
Q=3 UE

UB12 =
r12 + eQ
p1 � eeQ � 1 eeQ = � 0 AE

minfp1; Q=3g UE

Uni-Directional Errors: Assumption 3

� Simplifying

p�12 =

r12 +

Qu
1;12z }| {�

�1312
�
+ �2212 + �

23
12 + �

32
12 + �

33
12

�
�

Qu
2;12z }| {�
�1211
�

�
p1 +

�
�2111
�
+ �2211

�
+ �2311

�
+ �3111

�
+ �3211

�
+ �3311

�
+ �2212 + �

23
12 + �

32
12 + �

33
12 + �

23
13
�
+ �3313

�

�
| {z }

Qu
3;1

� Yields

LBu12 = min

(
r12 � eQ
p1

;
r12

p1 +
eeQ
)
� 0 eeQ = minf1� p1; eQg; eQ = � Q AE

Q=3 UE

UBu12 =
r12 + eQ
p1

� 1

12



Temporal Independence, Temporal Invariance

� Implies

p�12 =
r12 +

Q1;12z }| {h
�
1
1�

1
2 + �

1
1�

3
2 + �

2
1�

1
2 + �

2
1�

2
2 + �

2
1�

3
2 + �

3
1�

1
2 + �

3
1�

2
2 + �

3
1�

3
2

i�
Q2;12z }| {h

�
1
1�

2
1 + �

1
1�

2
3 + �

1
2�

2
1 + �

1
2�

2
2 + �

1
2�

2
3 + �

1
3�

2
1 + �

1
3�

2
2 + �

1
3�

2
3

i
p1 +

h
�
2
1�

1
1 + �

2
1�

2
1 + �

2
1�

3
1 + �

3
1�

1
1 + �

3
1�

2
1 + �

3
1�

3
1 + �

2
1�

1
2 + �

2
1�

2
2 + �

2
1�

3
2 + �

3
1�

1
2 + �

3
1�

2
2 + �

3
1�

3
2 + �

2
1�

1
3 + �

2
1�

2
3 + �

2
1�

3
3 + �

3
1�

1
3 + �

3
1�

2
3 + �

3
1�

3
3

i
| {z }

Q3;1

�

h
�
1
2�

1
1 + �

1
2�

1
2 + �

1
2�

1
3 + �

1
2�

2
1 + �

1
2�

2
2 + �

1
2�

2
3 + �

1
2�

3
1 + �

1
2�

3
2 + �

1
2�

3
3 + �

1
3�

1
1 + �

1
3�

1
2 + �

1
3�

1
3 + �

1
3�

2
1 + �

1
3�

2
2 + �

1
3�

2
3 + �

1
3�

3
1 + �

1
3�

3
2 + �

1
3�

3
3

i
| {z }

Q4;1

� Simplifying

Q1;12 =
�
�21 + �

3
1

�
+
�
�12 + �

3
2

� �
1� �21 � �31

�
(TI)

=
�
�21 + �

3
1

�
+
�
�12 + �

3
2

� �
1� �21 � �31

�
(TIV)

Q2;12 =
�
�12 + �

1
3

� �
1 + �21 + �

2
3 � �12 � �32

�
+
�
�21 + �

2
3

� �
1� �21 � �31

�
(TI)

=
�
�12 + �

1
3

� �
1 + �21 + �

2
3 � �12 � �32

�
+
�
�21 + �

2
3

� �
1� �21 � �31

�
(TIV)

Q3;1 = 3
�
�21 + �

3
1

�
(TI)

= 3
�
�21 + �

3
1

�
(TIV)

Q4;1 = 3
�
�12 + �

1
3

�
(TI)

= 3
�
�12 + �

1
3

�
(TIV)
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� Under Temporal Independence

p�12 =
r12 +

�
�12 + �

3
2 � �21 � �23

�
+
�
�21 + �

3
1 � �12 � �13

� �
1 + �21 + �

2
3 � �12 � �32

�
p1 + 3 (�21 + �

3
1 � �12 � �13)

�Yields

LBTI12 = min

8<:r12 �
::

Q

p1
;
r12 +

eeQ
p1 + 3

eeQ; r12 �
bQ

p1 � 3 bQ
9=; � 0

eeQ < minn1� r12; (1� p1)=3; eQo ; bQ < minnr12; p1=3; ::Qo ; eQ = � Q=3 AE
Q=9 UE

;
::

Q =

�
Q=3 AE
2Q=9 UE

UBTI12 = max

8<:r12 + eQ
p1

;
r12 +

eeQ
p1 + 3

eeQ; r12 �
bQ

p1 � 3 bQ
9=; � 1

eeQ < minn1� r12; (1� p1)=3; eQo ; bQ < minnr12; p1=3; ::Qo ; eQ = � Q=3 AE
Q=9 UE

;
::

Q =

�
Q=3 AE
2Q=9 UE

�Proof:

1.
::

Q in r12�
::
Q

p1
can be 2Q=9 as �21; �

2
3 = Q=9 under UE.

2. bQ in r12� bQ
p1�3 bQ can be 2Q=9 as �12; �

1
3 = Q=9 under UE.

3. Evaluate @
�
r12+

eeQ
p1+3

eeQ
�
=@
eeQ and see when the sign is positive/negative. Both are possible.

sgn

0BB@@
�
r12+

eeQ
p1+3

eeQ
�

@
eeQ

1CCA = sgn

��
p1 + 3

eeQ�� 3�r12 + eeQ��

= sgn (p1 � 3r12)

4. Evaluate @
�
r12� bQ
p1�3 bQ

�
=@ bQ and see when the sign is positive/negative. Both are possible.

sgn

0@@
�
r12� bQ
p1�3 bQ

�
@ bQ

1A = sgn
�
�
�
p1 � 3 bQ�+ 3�r12 � bQ��

= sgn (3r12 � p1)

Since both derivatives can take either sign, it is possible either could be the LB, UB.

�Adding the uni-directional assumption

p�12 =
r12 +

�
�32 � �21

�
+
�
�21 + �

3
1

� �
1 + �21 � �32

�
p1 + 3 (�21 + �

3
1)

� Yields

LBTI;u12 = min

8<:r12 � eQ
p1

;
r12 +

eeQ
p1 + 3

eeQ
9=; � 0 eeQ < minn1� r12; (1� p1)=3; eQo ; eQ = � Q=3 AE

Q=9 UE

UBTI;u12 = max

8<:r12 + eQ
p1

;
r12 +

eeQ
p1 + 3

eeQ
9=; � 1 eeQ < minn1� r12; (1� p1)=3; eQo ; eQ = � Q=3 AE

Q=9 UE

� Proof: Same as above except now
::

Q is not feasible.
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� Under Temporal Invariance

p�12 =
r12 +

�
�31 + �

3
2 � �13 � �23

�
+
�
�21 + �

3
1 � �12 � �13

� �
�21 + �

2
3 � �12 � �32

�
p1 + 3

�
�21 + �

3
1 � �12 � �13

�
�Yields

LBTIV12 = min

8<:r12 � eQ
p1

;
r12 +

eeQ2
p1 + 3

eeQ
9=; � 0

eeQ = min(�(2=3)p1 +p(4=9)p21 + 4r12
2

;
p
1� r12; (1� p1)=3; eQ) ; eQ = ( 3�

p
9�Q AE�

4�
p
16� 4Q=3

�
=2 UE

UBTIV12 = max

8<:r12 + eQ
p1

;
r12 +

eeQ2
p1 � 3eeQ

9=; � 1 eeQ = minnp1� r12; p1=3; eQo ; eQ = ( 3�
p
9�Q AE�

4�
p
16� 4Q=3

�
=2 UE

�Proof:

1. Evaluate @LBTIV12 =@
eeQ and see when the sign is positive/negative.

sgn

 
@LBTIV12

@
eeQ

!
= sgn

�
2
eeQ�p1 + 3eeQ�� 3�r12 + eeQ2��

= sgn

�eeQ�(2=3)p1 + eeQ�� r12�
) sgn

 
@LBTIV12

@
eeQ

!�����eeQ=0 = sgn (�r12) < 0

) eeQ > 0

2. Minimize LBTIV12 s.t. eeQ being feasible
@LBTIV12

@
eeQ / eeQ�(2=3)p1 + eeQ�� r12 = 0

) eeQ� = �(2=3)p1 +
p
(4=9)p21 + 4r12
2

So, derivative starts o¤ negative and then reaches zero at eeQ�. Thus, r12+eeQ2

p1+3
eeQ is minimized at eeQ�.

�Adding the uni-directional assumption

p�12 =
r12 +

�
�31 + �

3
2

�
+
�
�21 + �

3
1

� �
�21 � �32

�
p1 + 3

�
�21 + �

3
1

�
� Yields

LBTIV;u12 =
r12 +

eeQ2
p1 + 3

eeQ � 0

eeQ = min(�(2=3)p1 +p(4=9)p21 + 4r12
2

;
p
1� r12; (1� p1)=3; eQ) ; eQ = ( 3�

p
9�Q AE�

4�
p
16� 4Q=3

�
=2 UE

UBTIV;u12 =
r12 + eQ
p1

� 1 eQ = ( 3�
p
9�Q AE�

4�
p
16� 4Q=3

�
=2 UE

� Proof: Same as above.
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A.1.3 p�13

p�13 =

r13 +

Q1;13z }| {�
�1113
�
+ �1213

�
+ �2113 + �

22
13 + �

23
13 + �

31
13 + �

32
13 + �

33
13

�
�

Q2;13z }| {�
�1311
�
+ �1312

�
+ �1321 + �

13
22 + �

13
23 + �

13
31 + �

13
32 + �

13
33

�
p1 +

�
�2111 + �

22
11 + �

23
11 + �

31
11 + �

32
11 + �

33
11 + �

21
12
�
+ �2212

�
+ �2312

�
+ �3112

�
+ �3212

�
+ �3312

�
+ �2113

�
+ �2213

�
+ �2313

�
+ �3113

�
+ �3213

�
+ �3313

�

�
| {z }

Q3;1

�
�
�1121 + �

11
22 + �

11
23 + �

12
21
�
+ �1222

�
+ �1223

�
+ �1321

�
+ �1322

�
+ �1323

�
+ �1131 + �

11
32 + �

11
33 + �

12
31
�
+ �1232

�
+ �1233

�
+ �1331

�
+ �1332

�
+ �1333

�

�
| {z }

Q4;1

� �k
0l0

kl
�
= unique element

Arbitrary, Uniform Errors: Assumptions 2(i), 2(ii)

LB13 =
r13 � eQ
p1

� 0 eQ = � Q AE
Q=3 UE

UB13 =
r13 + eQ
p1 � eeQ � 1 eeQ = � 0 AE

minfp1; Q=3g UE

Uni-Directional Errors: Assumption 3

� Simplifying

p�13 =

r13 +

Qu
1;12z }| {�

�2313 + �
33
13

�
�

Qu
2;12z }| {�

�1311
�
+ �1312

�

�
p1 +

�
�2111
�
+ �2211

�
+ �2311

�
+ �3111

�
+ �3211

�
+ �3311

�
+ �2212

�
+ �2312

�
+ �3212

�
+ �3312

�
+ �2313 + �

33
13

�
| {z }

Qu
3;1

� Yields

LBu13 = min

(
r13 � eQ
p1

;
r13

p1 +
eeQ
)
� 0 eeQ = minf1� p1; eQg; eQ = � Q AE

Q=3 UE

UBu13 =
r13 +

eeQ
p1 +

eeQ � 1 eeQ = minn1� p1; eQo ; eQ = � Q AE
Q=3 UE
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Temporal Independence, Temporal Invariance

� Implies

p�13 =
r13 +

Q1;13z }| {h
�
1
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3
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i
| {z }
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�

h
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1
1 + �

1
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1
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1
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1
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2
1 + �

1
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2
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1
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2
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1
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1 + �

1
2�

3
2 + �

1
2�

3
3 + �

1
3�

1
1 + �

1
3�

1
2 + �

1
3�

1
3 + �

1
3�

2
1 + �

1
3�

2
2 + �

1
3�

2
3 + �

1
3�

3
1 + �

1
3�

3
2 + �

1
3�

3
3

i
| {z }

Q4;1

� Simplifying

Q1;13 =
�
�21 + �

3
1

�
+
�
�13 + �

2
3

� �
1� �21 � �31

�
(TI)

=
�
�21 + �

3
1

�
+
�
�13 + �

2
3

� �
1� �21 � �31

�
(TIV)

Q2;13 =
�
�12 + �

1
3

� �
1 + �31 + �

3
2 � �13 � �23

�
+
�
�31 + �

3
2

� �
1� �21 � �31

�
(TI)

=
�
�12 + �

1
3

� �
1 + �31 + �

3
2 � �13 � �23

�
+
�
�31 + �

3
2

� �
1� �21 � �31

�
(TIV)

Q3;1 = 3
�
�21 + �

3
1

�
(TI)

= 3
�
�21 + �

3
1

�
(TIV)

Q4;1 = 3
�
�12 + �

1
3

�
(TI)

= 3
�
�12 + �

1
3

�
(TIV)
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� Under Temporal Independence

p�13 =
r13 +

�
�13 + �

2
3 � �31 � �32

�
+
�
�21 + �

3
1 � �12 � �13

� �
1 + �31 + �

3
2 � �13 � �23

�
p1 + 3 (�21 + �

3
1 � �12 � �13)

�Yields

LBTI13 = min

8<:r13 �
::

Q

p1
;
r13 +

eeQ
p1 + 3

eeQ; r13 �
bQ

p1 � 3 bQ
9=; � 0

eeQ = minn1� r13; (1� p1)=3; eQo ; bQ = minnr13; p1=3; ::Qo ; eQ = � Q=3 AE
Q=9 UE

;
::

Q =

�
Q=3 AE
2Q=9 UE

UBTI13 = max

8<:r13 + eQ
p1

;
r13 +

eeQ
p1 + 3

eeQ; r13 �
bQ

p1 � 3 bQ
9=; � 1

eeQ = minn1� r13; (1� p1)=3; eQo ; bQ = minnr13; p1=3; ::Qo ; eQ = � Q=3 AE
Q=9 UE

;
::

Q =

�
Q=3 AE
2Q=9 UE

�Proof:

1.
::

Q in r13�
::
Q

p1
can be 2Q=9 as �31; �

3
3 = Q=9 under UE.

2. bQ in r13� bQ
p1�3 bQ can be 2Q=9 as �12; �

1
3 = Q=9 under UE.

3. Evaluate @
�
r13+

eeQ
p1+3

eeQ
�
=@
eeQ and see when the sign is positive/negative. Both are possible.

sgn

0BB@@
�
r13+

eeQ
p1+3

eeQ
�

@
eeQ

1CCA = sgn

��
p1 + 3

eeQ�� 3�r13 + eeQ��

= sgn (p1 � 3r13)

4. Evaluate @
�
r13� bQ
p1�3 bQ

�
=@ bQ and see when the sign is positive/negative. Both are possible.

sgn

0@@
�
r13� bQ
p1�3 bQ

�
@ bQ

1A = sgn
�
�
�
p1 � 3 bQ�+ 3�r13 � bQ��

= sgn (3r13 � p1)

�Adding the uni-directional assumption

p�13 =
r13 �

�
�31 + �

3
2

�
+
�
�21 + �

3
1

� �
1 + �31 + �

3
2

�
p1 + 3 (�21 + �

3
1)

� Yields

LBTI;u13 = min

8<:r13 �
::

Q

p1
;
r13 +

eeQ
p1 + 3

eeQ
9=; � 0

eeQ = minn1� r13; (1� p1)=3; eQo ; eQ = � Q=3 AE
Q=9 UE

;
::

Q =

�
Q=3 AE
2Q=9 UE

UBTI;u13 =
r13 +

eeQ
p1 + 3

eeQ � 1 eeQ = ( 0 r13 � p1=3
min

n
(1� p1)=3; eQo otherwise

; eQ = � Q=3 AE
Q=9 UE

� Proof: Same as above.
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� Under Temporal Invariance

p�13 =
r13 +

�
�23 + �

2
1 � �12 � �32

�
+
�
�21 + �

3
1 � �12 � �13

� �
�31 + �

3
2 � �13 � �23

�
p1 + 3

�
�21 + �

3
1 � �12 � �13

�
�Yields

LBTIV13 = min

8<:r13 � eQ
p1

;
r13 +

eeQ2
p1 + 3

eeQ
9=; � 0

eeQ = min(�(2=3)p1 +p(4=9)p21 + 4r13
2

;
p
1� r13; (1� p1)=3; eQ) ; eQ = ( 3�

p
9�Q AE�

4�
p
16� 4Q=3

�
=2 UE

UBTIV13 = max

8<:r13 + eQ
p1

;
r13 +

eeQ2
p1 � 3eeQ

9=; � 1 eeQ = minnp1� r13; p1=3; eQo ; eQ = � 2�
p
4�Q AE�

3�
p
9� 2Q

�
=2 UE

�Proof:

1. Evaluate @LBTIV13 =@
eeQ and see when the sign is positive/negative.

sgn

 
@LBTIV13

@
eeQ

!
= sgn

�
2
eeQ�p1 + 3eeQ�� 3�r13 + eeQ2��

= sgn

�eeQ�(2=3)p1 + eeQ�� r13�
) sgn

 
@LBTIV13

@
eeQ

!�����eeQ=0 = sgn (�r13) < 0

) eeQ > 0

2. Minimize LBTIV13 s.t. eeQ being feasible
@LBTIV13

@
eeQ / eeQ�(2=3)p1 + eeQ�� r13 = 0

) eeQ� = �(2=3)p1 +
p
(4=9)p21 + 4r13
2

So, derivative starts o¤ negative and then reaches zero at eeQ�. Thus, r13+eeQ2

p1+3
eeQ is minimized at eeQ�.
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�Adding the uni-directional assumption

p�13 =
r13 +

�
�21 � �32

�
+
�
�21 + �

3
1

� �
�31 + �

3
2

�
p1 + 3

�
�21 + �

3
1

�
� Yields

LBTIV;u13 = min

8<:r13 � eQ
p1

;
r13 +

eeQ2
p1 + 3

eeQ
9=; � 0

eeQ = min(�(2=3)p1 +p(4=9)p21 + 4r13
2

;
p
1� r13; (1� p1)=3; eQ) ; eQ = ( 3�

p
9�Q AE�

4�
p
16� 4Q=3

�
=2 UE

UBTIV;u13 =
r13 +

eeQ
p1 + 3

eeQ � 1 eeQ = ( 0 r13 � p1=3
min

n
(1� p1)=3; eQo otherwise

; eQ = ( 3�
p
9�Q AE�

4�
p
16� 4Q=3

�
=2 UE

� Proof: Evaluate @
�
r13+

eeQ
p1+3

eeQ
�
=@
eeQ and see when the sign is positive/negative. Both are possible.

sgn

0BB@@
�
r13+

eeQ
p1+3

eeQ
�

@
eeQ

1CCA = sgn

��
p1 + 3

eeQ�� 3�r13 + eeQ��

= sgn (p1 � 3r13)
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A.1.4 p�21

p�21 =

r21 +

Q1;21z }| {�
�1121 + �

12
21 + �

13
21 + �

22
21
�
+ �2321

�
+ �3121 + �

32
21 + �

33
21

�
�

Q2;21z }| {�
�2111 + �

21
12 + �

21
13 + �

21
22
�
+ �2123

�
+ �2131 + �

21
32 + �

21
33

�
p2 +

�
�1121 + �

12
21 + �

13
21 + �

31
21 + �

32
21 + �

33
21 + �

11
22
�
+ �1222

�
+ �1322

�
+ �3122

�
+ �3222

�
+ �3322

�
+ �1123

�
+ �1223

�
+ �1323

�
+ �3123

�
+ �3223

�
+ �3323

�

�
| {z }

Q3;2

�
�
�2111 + �

21
12 + �

21
13 + �

22
11
�
+ �2212

�
+ �2213

�
+ �2311

�
+ �2312

�
+ �2313

�
+ �2131 + �

21
32 + �

21
33 + �

22
31
�
+ �2232

�
+ �2233

�
+ �2331

�
+ �2332

�
+ �2333

�

�
| {z }

Q4;2

� �k
0l0

kl
�
= unique element

Arbitrary, Uniform Errors: Assumptions 2(i), 2(ii)

LB21 =
r21 � eQ
p2

� 0 eQ = � Q AE
Q=3 UE

UB21 =
r21 + eQ
p2 � eeQ � 1 eeQ = � 0 AE

minfp2; Q=3g UE

Uni-Directional Errors: Assumption 3

� Simplifying

p�21 =

r21 +

Qu
1;21z }| {�

�2221
�
+ �2321

�
+ �3121 + �

32
21 + �

33
21

�
�

Qu
2;21z }| {�
�2111
�

p2 +

�
�3121 + �

32
21 + �

33
21 + �

32
22
�
+ �3322

�
+ �3323

�

�
| {z }

Qu
3;2

�
�
�2111 + �

22
11
�
+ �2212

�
+ �2311

�
+ �2312

�
+ �2313

�

�
| {z }

Qu
4;2

� Yields

LBu21 = min

8<:r21 �
eeQ

p2 � eeQ ;
r21

p2 + bQ
9=; ;� 0 eeQ = minfr21; p2; eQg; bQ = minf1� p2; eQg; eQ = � Q AE

Q=3 UE

UB21 =
r21 + eQ
p2 � eeQ � 1 eeQ = � 0 AE

minfp2; eQg UE
; eQ = � Q AE

Q=3 UE
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Temporal Independence, Temporal Invariance

� Implies

p�21 =
r21 +

Q1;21z }| {h
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i
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�
h
�
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1�

1
1 + �

2
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1
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2
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2
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2
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3
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2
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3
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2
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3
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2
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1
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2
3�

1
2 + �

2
3�

1
3 + �

2
3�

2
1 + �

2
3�

2
2 + �

2
3�

2
3 + �

2
3�

3
1 + �

2
3�

3
2 + �

2
3�

3
3

i
| {z }

Q4;2

� Simplifying

Q1;21 =
�
�12 + �

3
2

�
+
�
�21 + �

3
1

� �
1� �12 � �32

�
(TI)

=
�
�12 + �

3
2

�
+
�
�21 + �

3
1

� �
1� �12 � �32

�
(TIV)

Q2;21 =
�
�21 + �

2
3

� �
1 + �12 + �

1
3 � �21 � �31

�
+
�
�12 + �

1
3

� �
1� �12 � �32

�
(TI)

=
�
�21 + �

2
3

� �
1 + �12 + �

1
3 � �21 � �31

�
+
�
�12 + �

1
3

� �
1� �12 � �32

�
(TIV)

Q3;2 = 3
�
�12 + �

3
2

�
(TI)

= 3
�
�12 + �

3
2

�
(TIV)

Q4;2 = 3
�
�21 + �

2
3

�
(TI)

= 3
�
�21 + �

2
3

�
(TIV)
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� Under Temporal Independence

p�21 =
r21 +

�
�21 + �

3
1 � �12 � �13

�
+
�
�12 + �

3
2 � �21 � �23

� �
1 + �12 + �

1
3 � �21 � �31

�
p2 + 3 (�12 + �

3
2 � �21 � �23)

�Yields

LBTI21 = min

8<:r21 �
::

Q

p2
;
r21 +

eeQ
p2 + 3

eeQ; r21 �
bQ

p2 � 3 bQ
9=; � 0

eeQ = minn1� r21; (1� p2)=3; eQo ; bQ = minnr21; p2=3; ::Qo ; eQ = � Q=3 AE
Q=9 UE

;
::

Q =

�
Q=3 AE
2Q=9 UE

UBTI21 = max

8<:r21 + eQ
p2

;
r21 +

eeQ
p2 + 3

eeQ; r21 �
bQ

p2 � 3 bQ
9=; � 1

eeQ = minn1� r21; (1� p2)=3; eQo ; bQ = minnr21; p2=3; ::Qo ; eQ = � Q=3 AE
Q=9 UE

;
::

Q =

�
Q=3 AE
2Q=9 UE

�Proof:

1.
::

Q in r21�
::
Q

p2
can be 2Q=9 as �12; �

1
3 = Q=9 under UE.

2. bQ in r21� bQ
p2�3 bQ can be 2Q=9 as �21; �

2
3 = Q=9 under UE.

3. Evaluate @
�
r21+

eeQ
p2+3

eeQ
�
=@
eeQ and see when the sign is positive/negative. Both are possible.

sgn

0BB@@
�
r21+

eeQ
p2+3

eeQ
�

@
eeQ

1CCA = sgn

��
p2 + 3

eeQ�� 3�r21 + eeQ��

= sgn (p2 � 3r21)

4. Evaluate @
�
r21� bQ
p2�3 bQ

�
=@ bQ and see when the sign is positive/negative. Both are possible.

sgn

0@@
�
r21� bQ
p2�3 bQ

�
@ bQ

1A = sgn
�
�
�
p2 � 3 bQ�+ 3�r21 � bQ��

= sgn (3r21 � p2)
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�Adding the uni-directional assumption

p�21 =
r21 +

�
�21 + �

3
1

�
+
�
�32 � �21

� �
1� �21 � �31

�
p2 + 3 (�32 � �21)

� Yields

LBTI;u21 = min

8<: r21 +
eeQ

p2 + 3
eeQ; r21 �

bQ
p2 � 3 bQ

9=; � 0

eeQ = minn1� r21; (1� p2)=3; eQo ; bQ = minnr21; p2=3; eQo ; eQ = � Q=3 AE
Q=9 UE

UBTI;u21 = max

8<:r21 + eQ
p2

;
r21 +

eeQ
p2 + 3

eeQ; r21 �
bQ

p2 � 3 bQ
9=; � 1

eeQ = minn1� r21; (1� p2)=3; eQo ; bQ = minnr21; p2=3; eQo ; eQ = � Q=3 AE
Q=9 UE

� Proof: UB is same as above except now
::

Q is not feasible. The LB is not r21=p2 as the derivative of one of
the terms in minf�g wrt Q must be negative.

sgn

0BB@@
�
r21+

eeQ
p2+3

eeQ
�

@
eeQ

1CCA = sgn

�
p2 + 3

eeQ� 3�r21 + eeQ��

= sgn (p2 � 3r21)

sgn

0@@
�
r21� bQ
p2�3 bQ

�
@ bQ

1A = sgn
�
p2 + 3 bQ� 3�r21 + bQ��

= sgn (3r21 � p2)
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� Under Temporal Invariance

p�21 =
r21 +

�
�31 + �

3
2 � �13 � �23

�
+
�
�12 + �

3
2 � �21 � �23

� �
�12 + �

1
3 � �21 � �31

�
p2 + 3

�
�12 + �

3
2 � �21 � �23

�
�Yields

LBTIV21 = min

8<:r21 � eQ
p2

;
r21 +

eeQ2
p1 + 3

eeQ
9=; � 0

eeQ = min(�(2=3)p2 +p(4=9)p22 + 4r21
2

;
p
1� r21; (1� p2)=3; eQ) ; eQ = ( 3�

p
9�Q AE�

4�
p
16� 4Q=3

�
=2 UE

UBTIV21 = max

8<:r21 + eQ
p2

;
r21 +

eeQ2
p2 � 3eeQ

9=; � 1 eeQ = minnp1� r21; p2=3; eQo ; eQ = ( 3�
p
9�Q AE�

4�
p
16� 4Q=3

�
=2 UE

�Proof:

1. Evaluate @LBTIV21 =@
eeQ and see when the sign is positive/negative.

sgn

 
@LBTIV21

@
eeQ

!
= sgn

�
2
eeQ�p2 + 3eeQ�� 3�r21 + eeQ2��

= sgn

�eeQ�(2=3)p2 + eeQ�� r21�
) sgn

 
@LBTIV21

@
eeQ

!�����eeQ=0 = sgn (�r21) < 0

) eeQ > 0

2. Minimize LBTIV21 s.t. eeQ being feasible
@LBTIV21

@
eeQ / eeQ�(2=3)p2 + eeQ�� r21 = 0

) eeQ� = �(2=3)p2 +
p
(4=9)p22 + 4r21
2

So, derivative starts o¤ negative and then reaches zero at eeQ�. Thus, r21+eeQ2

p2+3
eeQ is minimized at eeQ�.
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�Adding the uni-directional assumption

p�21 =
r21 +

�
�31 + �

3
2

�
�
�
�32 � �21

� �
�21 + �

3
1

�
p2 + 3

�
�32 � �21

�
� Yields

LBTIV;u21 =
r21 +

eeQ
p2 + 3

eeQ � 0

eeQ = ( 0 r21 < p2=3

min
n
1� r21; (1� p2)=3; eQo otherwise

; eQ = ( 3�
p
9�Q AE�

4�
p
16� 4Q=3

�
=2 UE

UBTIV;u21 = max

8<:r21 + eQ
p2

;
r21 +

eeQ2
p2 � 3eeQ

9=; � 1 eeQ = minnp1� r21; p2=3; eQo ; eQ = ( 3�
p
9�Q AE�

4�
p
16� 4Q=3

�
=2 UE

� Proof: Evaluate @LBTIV21 =@
eeQ and see when the sign is positive/negative.
sgn

 
@LBTIV21

@
eeQ

!
= sgn

�
p2 + 3

eeQ� 3�r21 + eeQ��
= sgn (p2 � 3r21)
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A.1.5 p�22

p�22 =

r22 +

Q1;22z }| {�
�1122 + �

12
22 + �

13
22 + �

21
22
�
+ �2322

�
+ �3122 + �

32
22 + �

33
22

�
�

Q2;22z }| {�
�2211 + �

22
12 + �

22
13 + �

22
21
�
+ �2223

�
+ �2231 + �

22
32 + �

22
33

�
p2 +

�
�1121
�
+ �1221

�
+ �1321

�
+ �3121

�
+ �3221

�
+ �3321

�
+ �1122 + �

12
22 + �

13
22 + �

31
22 + �

32
22 + �

33
22 + �

11
23
�
+ �1223

�
+ �1323

�
+ �3123

�
+ �3223

�
+ �3323

�

�
| {z }

Q3;2

�
�
�2111
�
+ �2112

�
+ �2113

�
+ �2211 + �

22
12 + �

22
13 + �

23
11
�
+ �2312

�
+ �2313

�
+ �2131

�
+ �2132

�
+ �2133

�
+ �2231 + �

22
32 + �

22
33 + �

23
31
�
+ �2332

�
+ �2333

�

�
| {z }

Q4;2

� �k
0l0

kl
�
= unique element

Arbitrary, Uniform Errors: Assumptions 2(i), 2(ii)

LB22 =
r22 � eQ
p2

� 0 eQ = � Q AE
Q=3 UE

UB22 =
r22 + eQ
p2 � eeQ � 1 eeQ = � 0 AE

minfp2; Q=3g UE

Uni-Directional Errors: Assumption 3

� Simplifying

p�22 =

r22 +

Qu
1;22z }| {�

�2322
�
+ �3222 + �

33
22

�
�

Qu
2;22z }| {�

�2211 + �
22
12 + �

22
21
�

�
p2 +

�
�3121
�
+ �3221

�
+ �3321

�
+ �3222 + �

33
22 + �

33
23
�

�
| {z }

Qu
3;2

�
�
�2111
�
+ �2211 + �

22
12 + �

23
11
�
+ �2312

�
+ �2313

�

�
| {z }

Qu
4;2

� Yields

LBu22 =
r22 � eQ
p2

� 0 eQ = � Q AE
Q=3 UE

UBu22 =
r22 + eQ
p2 � eeQ � 1 eeQ = � 0 AE

minfp2; Q=3g UE
; eQ = � Q AE

Q=3 UE
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Temporal Independence, Temporal Invariance

� Implies

p�22 =
r22 +

Q1;22z }| {h
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Q4;2

� Simplifying

Q1;22 =
�
�12 + �

3
2

�
+
�
�12 + �

3
2

� �
1� �12 � �32

�
(TI)

= 2
�
�12 + �

3
2

�
�
�
�12 + �

3
2

�2
(TIV)

Q2;22 =
�
�21 + �

2
3

� �
1 + �21 + �

2
3 � �12 � �32

�
+
�
�21 + �

2
3

� �
1� �12 � �32

�
(TI)

= 2
�
�21 + �

2
3

� �
1� �12 � �32

�
+
�
�21 + �

2
3

�2
(TIV)

Q3;2 = 3
�
�12 + �

3
2

�
(TI)

= 3
�
�12 + �

3
2

�
(TIV)

Q4;2 = 3
�
�21 + �

2
3

�
(TI)

= 3
�
�21 + �

2
3

�
(TIV)

28



� Under Temporal Independence

p�22 =
r22 +

�
�12 + �

3
2 � �21 � �23

�
+
�
�12 + �

3
2 � �21 � �23

� �
1 + �21 + �

2
3 � �12 � �32

�
p2 + 3 (�12 + �

3
2 � �21 � �23)

�Yields

LBTI22 = min

8<:r22 �
::

Q

p2
;
r22 +

eeQ
p2 + 3

eeQ; r22 �
bQ

p2 � 3 bQ
9=; � 0

eeQ = minn1� r22; (1� p2)=3; eQo ; bQ = minnr22; p2=3; ::Qo ; eQ = � Q=3 AE
Q=9 UE

;
::

Q =

�
Q=3 AE
2Q=9 UE

UBTI22 = max

8<:r22 + eQ
p2

;
r22 +

eeQ
p2 + 3

eeQ; r22 �
bQ

p2 � 3 bQ
9=; � 1

eeQ = minn1� r22; (1� p2)=3; eQo ; bQ = minnr22; p2=3; ::Qo ; eQ = � Q=3 AE
Q=9 UE

;
::

Q =

�
Q=3 AE
2Q=9 UE

�Proof:

1.
::

Q in r22�
::
Q

p2
can be 2Q=9 as �21; �

2
3 = Q=9 under UE.

2. bQ in r22� bQ
p2�3 bQ can be 2Q=9 as �21; �

2
3 = Q=9 under UE.

3. Evaluate @
�
r22+

eeQ
p2+3

eeQ
�
=@
eeQ and see when the sign is positive/negative. Both are possible.

sgn

0BB@@
�
r22+

eeQ
p2+3

eeQ
�

@
eeQ

1CCA = sgn

��
p2 + 3

eeQ�� 3�r22 + eeQ��

= sgn (p2 � 3r22)

4. Evaluate @
�
r22� bQ
p2�3 bQ

�
=@ bQ and see when the sign is positive/negative. Both are possible.

sgn

0@@
�
r22� bQ
p2�3 bQ

�
@ bQ

1A = sgn
�
�
�
p2 � 3 bQ�+ 3�r22 � bQ��

= sgn (3r22 � p2)

�Adding the uni-directional assumption

p�22 =
r22 +

�
�32 � �21

�
+
�
�32 � �21

� �
1 + �21 � �32

�
p2 + 3 (�32 � �21)

� Yields

LBTI;u22 = min

8<:r22 � eQ
p2

;
r22 +

eeQ
p2 + 3

eeQ; r22 �
bQ

p2 � 3 bQ
9=; � 0

eeQ = minn1� r22; (1� p2)=3; eQo ; bQ = minnr22; p2=3; eQo ; eQ = � Q=3 AE
Q=9 UE

UBTI;u22 = max

8<:r22 + eQ
p2

;
r22 +

eeQ
p2 + 3

eeQ; r22 �
bQ

p2 � 3 bQ
9=; � 1

eeQ = minn1� r22; (1� p2)=3; eQo ; bQ = minnr22; p2=3; eQo ; eQ = � Q=3 AE
Q=9 UE

� Proof: Same as above except now
::

Q is not feasible.
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� Under Temporal Invariance

p�22 =
r22 + 2

�
�12 + �

3
2 � �21 � �23

�
�
�
�12 + �

3
2 � �21 � �23

�2
p2 + 3

�
�12 + �

3
2 � �21 � �23

�
�Yields

LBTIV22 = min

8<:r22 + 2 bQ� bQ2
p2 + 3 bQ ;

r22 � 2eeQ� eeQ2
p2 � 3eeQ

9=; � 0

bQ = minn(1� p2)=3; eQo ;
eeQ =

8<: 0 r22 � 2p2=3

min

�
(2=3)p2+

p
(4=9)p22+4[(2=3)p2�r22]

2 ; (�1 +
p
1 + r22); p2=3; eQ� otherwise

;

eQ = ( 3�
p
9�Q AE�

4�
p
16� 4Q=3

�
=2 UE

UBTIV22 = min

8<:r22 + 2 bQ� bQ2
p2 + 3 bQ ;

r22 � 2eeQ� eeQ2
p2 � 3eeQ

9=; � 0

bQ =
8<: 0 r22 � 2p2=3

min

�
�(2=3)p2+

p
(4=9)p22+4[(2=3)p2�r22]

2 ; (1� p2)=3; eQ� otherwise
;

eeQ =
8<: 0 r22 < 2p2=3

min

�
(2=3)p2�

p
(4=9)p22+4[(2=3)p2�r22]

2 ; (�1 +
p
1 + r22); p2=3; eQ� otherwise

;

eQ = ( 3�
p
9�Q AE�

4�
p
16� 4Q=3

�
=2 UE
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�Proof:

1. Evaluate @
�
r22�2eeQ�eeQ2

p2�3eeQ
�
=@
eeQ and see when the sign is positive/negative. Both are possible.

sgn

0BB@@
�
r22�2eeQ�eeQ2

p2�3eeQ
�

@
eeQ

1CCA = sgn

��
�2� 2eeQ��p2 � 3eeQ�+ 3�r22 � 2eeQ� eeQ2��

= sgn

�
�(2=3)p2

�
1 +

eeQ�+ eeQ2 + r22�

) sgn

0BB@@
�
r22�2eeQ�eeQ2

p2�3eeQ
�

@
eeQ

1CCA
��������eeQ=0

= sgn (�(2=3)p2 + r22) ? 0

) sgn

0BB@@
�
r22�2eeQ�eeQ2

p2�3eeQ
�

@
eeQ

1CCA
��������eeQ=1

= sgn (�(4=3)p2 + 1 + r22) ? 0

2. Ensure r22 � 2eeQ� eeQ2 � 0
r22 � 2eeQ� eeQ2 � 0

) eeQ2 + 2eeQ� r22 � 0
) eeQ � �2 +

p
4 + 4r22
2

) eeQ � �1 +p1 + r22
3. Minimize r22�2eeQ�eeQ2

p2�3eeQ s.t. eeQ being feasible and r22 < 2p2=3
@

�
r22�2eeQ�eeQ2

p2�3eeQ
�

@
eeQ / �(2=3)p2

�
1 +

eeQ�+ eeQ2 + r22 = 0
) eeQ� = (2=3)p2 +

p
(4=9)p22 + 4[(2=3)p2 � r22]

2

4. Maximize r22�2eeQ�eeQ2

p2�3eeQ s.t. eeQ being feasible and r22 � 2p2=3
@

�
r22�2eeQ�eeQ2

p2�3eeQ
�

@
eeQ / �(2=3)p2

�
1 +

eeQ�+ eeQ2 + r22 = 0
) eeQ� = (2=3)p2 �

p
(4=9)p22 + 4[(2=3)p2 � r22]

2

Note: If
p
(4=9)p22 + 4[(2=3)p2 � r22] = :, then maximize

eeQ.
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5. Evaluate @
�
r22+2 bQ� bQ2

p2+3 bQ
�
=@ bQ and see when the sign is positive/negative. Both are possible.

sgn

0@@
�
r22+2 bQ� bQ2

p2+3 bQ
�

@ bQ
1A = sgn

��
2� 2 bQ��p2 + 3 bQ�� 3�r22 + 2 bQ� bQ2��

= sgn
�
(2=3)p2

�
1� bQ�� bQ2 � r22�

) sgn

0@@
�
r22+2 bQ� bQ2

p2+3 bQ
�

@ bQ
1A������ bQ=0 = sgn ((2=3)p2 � r22) ? 0

) sgn

0@@
�
r22+2 bQ� bQ2

p2+3 bQ
�

@ bQ
1A������ bQ=1 = sgn (�1� r22) < 0

6. Maximize r22+2 bQ� bQ2

p2+3 bQ s.t. bQ being feasible and r22 < 2p2=3
sgn

0@@
�
r22+2 bQ� bQ2

p2+3 bQ
�

@
eeQ

1A / (2=3)p2

�
1� bQ�� bQ2 � r22 = 0

) eeQ� = �(2=3)p2 +
p
(4=9)p22 + 4[(2=3)p2 � r22]

2

7. Minimize r22+2 bQ� bQ2

p2+3 bQ ) bQ = 0 or maximize bQ. However, if the minimum occurs when bQ = 0, then

r221�2eeQ�eeQ2

p2�3eeQ < r22
p2
and this will be the binding LB.
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�Adding the uni-directional assumption

p�22 =
r22 + 2

�
�32 � �21

�
�
�
�32 � �21

�2
p2 + 3

�
�32 � �21

�
� Yields

LBTIV;u22 = min

8<:r22 + 2 bQ� bQ2
p2 + 3 bQ ;

r22 � 2eeQ� eeQ2
p2 � 3eeQ

9=; � 0

bQ = minn(1� p2)=3; eQo ;
eeQ =

8<: 0 r22 � 2p2=3

min

�
(2=3)p2+

p
(4=9)p22+4[(2=3)p2�r22]

2 ; (�1 +
p
1 + r22); p2=3; eQ� otherwise

;

eQ = ( 3�
p
9�Q AE�

4�
p
16� 4Q=3

�
=2 UE

UBTIV;u22 = min

8<:r22 + 2 bQ� bQ2
p2 + 3 bQ ;

r22 � 2eeQ� eeQ2
p2 � 3eeQ

9=; � 0

bQ =
8<: 0 r22 � 2p2=3

min

�
�(2=3)p2+

p
(4=9)p22+4[(2=3)p2�r22]

2 ; (1� p2)=3; eQ� otherwise
;

eeQ = ( 0 r22 < 2p2=3

min
n
(�1 +

p
1 + r22); p2=3; eQo otherwise

;

eQ = ( 3�
p
9�Q AE�

4�
p
16� 4Q=3

�
=2 UE

� Proof: Same as above.
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A.1.6 p�23

p�23 =

r23 +

Q1;23z }| {�
�1123 + �

12
23 + �

13
23 + �

21
23
�
+ �2223

�
+ �3123 + �

32
23 + �

33
23

�
�

Q2;23z }| {�
�2311 + �

23
12 + �

23
13 + �

23
21
�
+ �2322

�
+ �2331 + �

23
32 + �

23
33

�
p2 +

�
�1121
�
+ �1221

�
+ �1321

�
+ �3121

�
+ �3221

�
+ �3321

�
+ �1122

�
+ �1222

�
+ �1322

�
+ �3122

�
+ �3222

�
+ �3322

�
+ �1123 + �

12
23 + �

13
23 + �

31
23 + �

32
23 + �

33
23

�
| {z }

Q3;2

�
�
�2111
�
+ �2112

�
+ �2113

�
+ �2211

�
+ �2212

�
+ �2213

�
+ �2311 + �

23
12 + �

23
13 + �

21
31
�
+ �2132

�
+ �2133

�
+ �2231

�
+ �2232

�
+ �2233

�
+ �2331 + �

23
32 + �

23
33

�
| {z }

Q4;2

� �k
0l0

kl
�
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Arbitrary, Uniform Errors: Assumptions 2(i), 2(ii)

LB23 =
r23 � eQ
p2

� 0 eQ = � Q AE
Q=3 UE

UB23 =
r23 + eQ
p2 � eeQ � 1 eeQ = � 0 AE

minfp2; Q=3g UE

Uni-Directional Errors: Assumption 3

� Simplifying
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� Yields

LBu23 =
r23 � eQ
p2

� 0 eQ = � Q AE
Q=3 UE

UBu23 = max

8<: r23

p2 � bQ; r23 +
eeQ

p2 +
eeQ
9=; � 1 bQ = minnp2; eQo ; eeQ = minn1� p2; eQo ; eQ = � Q AE

Q=3 UE
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Temporal Independence, Temporal Invariance

� Implies
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1
1 + �

2
3�

1
2 + �

2
3�

1
3 + �

2
3�

2
1 + �

2
3�

2
2 + �

2
3�

2
3 + �

2
3�

3
1 + �

2
3�

3
2 + �

2
3�

3
3

i
| {z }

Q4;2

� Simplifying

Q1;23 =
�
�12 + �

3
2

�
+
�
�13 + �

2
3

� �
1� �12 � �32

�
(TI)

=
�
�12 + �

3
2

�
+
�
�13 + �

2
3

� �
1� �12 � �32

�
(TIV)

Q2;23 =
�
�21 + �

2
3

� �
1 + �31 + �

3
2 � �13 � �23

�
+
�
�31 + �

3
2

� �
1� �12 � �32

�
(TI)

=
�
�21 + �

2
3

� �
1 + �31 + �

3
2 � �13 � �23

�
+
�
�31 + �

3
2

� �
1� �12 � �32

�
(TIV)

Q3;2 = 3
�
�12 + �

3
2

�
(TI)

= 3
�
�12 + �

3
2

�
(TIV)

Q4;2 = 3
�
�21 + �

2
3

�
(TI)

= 3
�
�21 + �

2
3

�
(TIV)
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� Under Temporal Independence

p�23 =
r23 +

�
�13 + �

2
3 � �31 � �32

�
+
�
�12 + �

3
2 � �21 � �23

� �
1 + �31 + �

3
2 � �13 � �23

�
p2 + 3 (�12 + �

3
2 � �21 � �23)

�Yields

LBTI23 = min

8<:r23 �
::

Q

p1
;
r23 +

eeQ
p2 + 3

eeQ; r23 �
bQ

p2 � 3 bQ
9=; � 0

eeQ = minn1� r23; (1� p2)=3; eQo ; bQ = minnr23; p2=3; ::Qo ; eQ = � Q=3 AE
Q=9 UE

;
::

Q =

�
Q=3 AE
2Q=9 UE

UBTI23 = max

8<:r23 + eQ
p2

;
r23 +

eeQ
p2 + 3

eeQ; r23 �
bQ

p2 � 3 bQ
9=; � 1

eeQ = minn1� r23; (1� p2)=3; eQo ; bQ = minnr23; p2=3; ::Qo ; eQ = � Q=3 AE
Q=9 UE

;
::

Q =

�
Q=3 AE
2Q=9 UE

�Proof:

1.
::

Q in r23�
::
Q

p2
can be 2Q=9 as �32; �

3
1 = Q=9 under UE.

2. bQ in r23� bQ
p2�3 bQ can be 2Q=9 as �21; �

2
3 = Q=9 under UE.

3. Evaluate @
�
r23+

eeQ
p2+3

eeQ
�
=@
eeQ and see when the sign is positive/negative. Both are possible.

sgn

0BB@@
�
r23+

eeQ
p2+3

eeQ
�

@
eeQ

1CCA = sgn

��
p2 + 3

eeQ�� 3�r23 + eeQ��

= sgn (p2 � 3r23)

4. Evaluate @
�
r23� bQ
p2�3 bQ

�
=@ bQ and see when the sign is positive/negative. Both are possible.

sgn

0@@
�
r23� bQ
p2�3 bQ

�
@ bQ

1A = sgn
�
�
�
p2 � 3 bQ�+ 3�r23 � bQ��

= sgn (3r23 � p2)
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�Adding the uni-directional assumption

p�23 =
r23 �

�
�31 + �

3
2

�
+
�
�32 � �21

� �
1 + �31 + �

3
2

�
p2 + 3 (�32 � �21)

� Yields

LBTI;u23 = min

8<:r23 �
::

Q

p2
;
r23 +

eeQ
p2 + 3

eeQ; r23 �
bQ

p2 � 3 bQ
9=; � 0

eeQ = minn1� r23; (1� p2)=3; eQo ; bQ = minnr23; p2=3; eQo ; eQ = � Q=3 AE
Q=9 UE

;
::

Q =

�
Q=3 AE
2Q=9 UE

UBTI;u23 = max

8<: r23 +
eeQ

p2 + 3
eeQ; r23 �

bQ
p2 � 3 bQ

9=;
eeQ = minn1� r23; (1� p2)=3; eQo ; bQ = minnr23; p2=3; eQo ; eQ = � Q=3 AE

Q=9 UE

� Proof: LB is the same except that
::

Q is no longer feasible in bQ. The UB is not r23=p2 as the derivative of one
of the terms in maxf�g wrt Q must be positive.

sgn

0B@@ r23+
eeQ

p2+3
eeQ

@
eeQ

1CA = sgn

�
p2 + 3

eeQ� 3�r23 + eeQ��
= sgn (p2 � 3r23)

sgn

0@@ r23� bQp2�3 bQ
@ bQ

1A = sgn
�
p2 + 3 bQ� 3�r23 + bQ��

= sgn (3r23 � p2)
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� Under Temporal Invariance

p�23 =
r23 +

�
�12 + �

1
3 � �21 � �31

�
+
�
�12 + �

3
2 � �21 � �23

� �
�31 + �

3
2 � �13 � �23

�
p2 + 3

�
�12 + �

3
2 � �21 � �23

�
�Yields

LBTIV23 = min

8<:r23 � eQ
p2

;
r23 +

eeQ2
p2 + 3

eeQ
9=; � 0

eeQ = min(�(2=3)p2 +p(4=9)p22 + 4r23
2

;
p
1� r23; (1� p2)=3; eQ) ; eQ = ( 3�

p
9�Q AE�

4�
p
16� 4Q=3

�
=2 UE

UBTIV23 = max

8<:r23 + eQ
p2

;
r23 +

eeQ2
p2 � 3eeQ

9=; � 1 eeQ = minnp1� r23; p2=3; eQo ; eQ = ( 3�
p
9�Q AE�

4�
p
16� 4Q=3

�
=2 UE

�Proof:

1. Evaluate @LBTIV23 =@
eeQ and see when the sign is positive/negative.

sgn

 
@LBTIV23

@
eeQ

!
= sgn

�
2
eeQ�p2 + 3eeQ�� 3�r23 + eeQ2��

= sgn

�eeQ�(2=3)p2 + eeQ�� r23�
) sgn

 
@LBTIV23

@
eeQ

!�����eeQ=0 = sgn (�r23) < 0

) eeQ > 0

2. Minimize LBTIV23 s.t. eeQ being feasible
@LBTIV23

@
eeQ / eeQ�(2=3)p2 + eeQ�� r23 = 0

) eeQ� = �(2=3)p2 +
p
(4=9)p22 + 4r23
2

So, derivative starts o¤ negative and then reaches zero at eeQ�. Thus, r23+eeQ2

p2+3
eeQ is minimized at eeQ�.
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�Adding the uni-directional assumption

p�23 =
r23 �

�
�21 + �

3
1

�
+
�
�32 � �21

� �
�31 + �

3
2

�
p2 + 3

�
�32 � �21

�
� Yields

LBTIV;u23 = min

8<:r23 � eQ
p2

;
r23 +

eeQ2
p2 + 3

eeQ
9=; � 0

eeQ = min(�(2=3)p2 +p(4=9)p22 + 4r23
2

;
p
1� r23; (1� p2)=3; eQ) ; eQ = ( 3�

p
9�Q AE�

4�
p
16� 4Q=3

�
=2 UE

UBTIV;u23 =
r23 � eeQ
p2 � 3eeQ � 1

eeQ = ( 0 r23 < p2=3

min
n
r23; p2=3; eQo otherwise

; eQ = ( 3�
p
9�Q AE�

4�
p
16� 4Q=3

�
=2 UE

� Proof: Evaluate @
�
r23�eeQ
p2�3eeQ

�
=@
eeQ and see when the sign is positive/negative.

sgn

0BB@@
�
r23�eeQ
p2�3eeQ

�
@
eeQ

1CCA = sgn

�
�
�
p2 � 3eeQ�+ 3�r23 � eeQ��

= sgn (3r23 � p2)
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A.1.7 p�31

p�31 =

r31 +

Q1;31z }| {�
�1131 + �

12
31 + �

13
31 + �

21
31 + �

22
31 + �

23
31 + �

32
31
�
+ �3331

�

�
�

Q2;31z }| {�
�3111 + �

31
12 + �

31
13 + �

31
21 + �

31
22 + �

31
23 + �

31
32
�
+ �3133

�

�
p3 +

�
�1131 + �

12
31 + �

13
31 + �

21
31 + �

22
31 + �

23
31 + �

11
32
�
+ �1232

�
+ �1332

�
+ �2132

�
+ �2232

�
+ �2332

�
+ �1133

�
+ �1233

�
+ �1333

�
+ �2133

�
+ �2233

�
+ �2333

�

�
| {z }

Q3;3

�
�
�3111 + �

31
12 + �

31
13 + �

32
11
�
+ �3212

�
+ �3213

�
+ �3311

�
+ �3312

�
+ �3313

�
+ �3121 + �

31
22 + �

31
23 + �

32
21
�
+ �3222

�
+ �3223

�
+ �3321

�
+ �3322

�
+ �3323

�

�
| {z }

Q4;3

� �k
0l0

kl
�
= unique element

Arbitrary, Uniform Errors: Assumptions 2(i), 2(ii)

LB31 =
r31 � eQ
p3

� 0 eQ = � Q AE
Q=3 UE

UB31 =
r31 + eQ
p3 � eeQ � 1 eeQ = � 0 AE

minfp3; Q=3g UE

Uni-Directional Errors: Assumption 3

� Simplifying

p�31 =

r31 +

Qu
1;31z }| {�

�3231
�
+ �3331

�

�
�

Qu
2;31z }| {�

�3111 + �
31
21

�
p3�

�
�3111 + �

32
11
�
+ �3212

�
+ �3311

�
+ �3312

�
+ �3313

�
+ �3121 + �

32
21
�
+ �3222

�
+ �3321

�
+ �3322

�
+ �3323

�

�
| {z }

Qu
4;3

� Yields

LBu31 =
r31 � eeQ
p3 � eeQ � 0 eeQ = minnr31; eQo ; eQ = � Q AE

Q=3 UE

UB31 =
r31 + eQ
p3 � eeQ � 1 eeQ = � 0 AE

minfp3; Q=3g UE
; eQ = � Q AE

Q=3 UE
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Temporal Independence, Temporal Invariance

� Implies

p�31 =
r31 +

Q1;31z }| {h
�
1
3�

1
1 + �

1
3�

2
1 + �

1
3�

3
1 + �

2
3�

1
1 + �

2
3�

2
1 + �

2
3�

3
1 + �

3
3�

2
1 + �

3
3�

3
1

i�
Q2;31z }| {h

�
3
1�

1
1 + �

3
1�

1
2 + �

3
1�

1
3 + �

3
2�

1
1 + �

3
2�

1
2 + �

3
2�

1
3 + �

3
3�

1
2 + �

3
3�

1
3

i
p3 +

h
�
1
3�

1
1 + �

1
3�

2
1 + �

1
3�

3
1 + �

2
3�

1
1 + �

2
3�

2
1 + �

2
3�

3
1 + �

1
3�

1
2 + �

1
3�

2
2 + �

1
3�

3
2 + �

2
3�

1
2 + �

2
3�

2
2 + �

2
3�

3
2 + �

1
3�

1
3 + �

1
3�

2
3 + �

1
3�

3
3 + �

2
3�

1
3 + �

2
3�

2
3 + �

2
3�

3
3

i
| {z }

Q3;3

�
h
�
3
1�

1
1 + �

3
1�

1
2 + �

3
1�

1
3 + �

3
1�

2
1 + �

3
1�

2
2 + �

3
1�

2
3 + �

3
1�

3
1 + �

3
1�

3
2 + �

3
1�

3
3 + �

3
2�

1
1 + �

3
2�

1
2 + �

3
2�

1
3 + �

3
2�

2
1 + �

3
2�

2
2 + �

3
2�

2
3 + �

3
2�

3
1 + �

3
2�

3
2 + �

3
2�

3
3

i
| {z }

Q4;3

� Simplifying

Q1;31 =
�
�13 + �

2
3

�
+
�
�21 + �

3
1

� �
1� �13 � �23

�
(TI)

=
�
�13 + �

2
3

�
+
�
�21 + �

3
1

� �
1� �13 � �23

�
(TIV)

Q2;31 =
�
�31 + �

3
2

� �
1 + �12 + �

1
3 � �21 � �31

�
+
�
�12 + �

1
3

� �
1� �13 � �23

�
(TI)

=
�
�31 + �

3
2

� �
1 + �12 + �

1
3 � �21 � �31

�
+
�
�12 + �

1
3

� �
1� �13 � �23

�
(TIV)

Q3;3 = 3
�
�13 + �

2
3

�
(TI)

= 3
�
�13 + �

2
3

�
(TIV)

Q4;3 = 3
�
�31 + �

3
2

�
(TI)

= 3
�
�31 + �

3
2

�
(TIV)
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� Under Temporal Independence

p�31 =
r31 +

�
�21 + �

3
1 � �12 � �13

�
+
�
�13 + �

2
3 � �31 � �32

� �
1 + �12 + �

1
3 � �21 � �31

�
p3 + 3 (�13 + �

2
3 � �31 � �32)

�Yields

LBTI31 = min

8<:r31 �
::

Q

p3
;
r31 +

eeQ
p3 + 3

eeQ; r31 �
bQ

p3 � 3 bQ
9=; � 0

eeQ = minn1� r31; (1� p3)=3; eQo ; bQ = minnr31; p3=3; ::Qo ; eQ = � Q=3 AE
Q=9 UE

;
::

Q =

�
Q=3 AE
2Q=9 UE

UBTI31 = max

8<:r31 + eQ
p3

;
r31 +

eeQ
p3 + 3

eeQ; r31 �
bQ

p3 � 3 bQ
9=; � 1

eeQ = minn1� r31; (1� p3)=3; eQo ; bQ = minnr31; p3=3; ::Qo ; eQ = � Q=3 AE
Q=9 UE

;
::

Q =

�
Q=3 AE
2Q=9 UE

�Proof:

1.
::

Q in r31�
::
Q

p3
can be 2Q=9 as �12; �

1
3 = Q=9 under UE.

2. bQ in r31� bQ
p3�3 bQ can be 2Q=9 as �31; �

3
2 = Q=9 under UE.

3. Evaluate @
�
r31+

eeQ
p3+3

eeQ
�
=@
eeQ and see when the sign is positive/negative. Both are possible.

sgn

0BB@@
�
r31+

eeQ
p3+3

eeQ
�

@
eeQ

1CCA = sgn

��
p3 + 3

eeQ�� 3�r31 + eeQ��

= sgn (p3 � 3r31)

4. Evaluate @
�
r31� bQ
p3�3 bQ

�
=@ bQ and see when the sign is positive/negative. Both are possible.

sgn

0@@
�
r31� bQ
p3�3 bQ

�
@ bQ

1A = sgn
�
�
�
p3 � 3 bQ�+ 3�r31 � bQ��

= sgn (3r31 � p3)

�Adding the uni-directional assumption

p�31 =
r31 +

�
�21 + �

3
1

�
�
�
�31 + �

3
2

� �
1� �21 � �31

�
p3 � 3 (�31 + �32)

� Yields

LBTI31 =
r31 � eeQ
p3 � 3eeQ � 0 eeQ = ( 0 r31 � p3=3

min
n
r31; p3=3;

::

Q
o

otherwise
;
::

Q =

�
Q=3 AE
2Q=9 UE

UBTI31 = max

8<:r31 + eQ
p3

;
r31 � eeQ
p3 � 3eeQ

9=; � 1

eeQ = minnr31; p3=3; ::Qo ; eQ = � Q=3 AE
Q=9 UE

;
::

Q =

�
Q=3 AE
2Q=9 UE

� Proof: Same as above.
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� Under Temporal Invariance

p�31 =
r31 +

�
�21 + �

2
3 � �12 � �32

�
+
�
�13 + �

2
3 � �31 � �32

� �
�12 + �

1
3 � �21 � �31

�
p3 + 3

�
�13 + �

2
3 � �31 � �32

�
�Yields

LBTIV31 = min

8<:r31 � eQ
p3

;
r31 +

eeQ2
p3 + 3

eeQ
9=; � 0

eeQ = min(�(2=3)p3 +p(4=9)p23 + 4r31
2

;
p
1� r31; (1� p3)=3; eQ) ; eQ = ( 3�

p
9�Q AE�

4�
p
16� 4Q=3

�
=2 UE

UBTIV31 = max

8<:r31 + eQ
p3

;
r31 +

eeQ2
p3 � 3eeQ

9=; � 1 eeQ = minnp1� r31; p3=3; eQo ; eQ = ( 3�
p
9�Q AE�

4�
p
16� 4Q=3

�
=2 UE

�Proof:

1. Evaluate @LBTIV31 =@
eeQ and see when the sign is positive/negative.

sgn

 
@LBTIV31

@
eeQ

!
= sgn

�
2
eeQ�p3 + 3eeQ�� 3�r31 + eeQ2��

= sgn

�eeQ�(2=3) p3 + eeQ�� r31�
) sgn

 
@LBTIV31

@
eeQ

!�����eeQ=0 = sgn (�r31) < 0

) eeQ > 0

2. Minimize LBTIV31 s.t. eeQ being feasible
@LBTIV31

@
eeQ / eeQ�(2=3) p3 + eeQ�� r31 = 0

) eeQ� = �(2=3)p3 +
p
(4=9)p23 + 4r31
2

So, derivative starts o¤ negative and then reaches zero at eeQ�. Thus, r31+eeQ2

p3+3
eeQ is minimized at eeQ�.
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�Adding the uni-directional assumption

p�31 =
r31 +

�
�21 � �32

�
+
�
�31 + �

3
2

� �
�21 + �

3
1

�
p3 � 3

�
�31 + �

3
2

�
� Yields

LBTIV;u31 =
r31 � eeQ
p3 � 3eeQ � 0

eeQ = ( 0 r31 � p3=3
min

n
r31; p3=3; eQo otherwise

; eQ = ( 3�
p
9�Q AE�

4�
p
16� 4Q=3

�
=2 UE

UBTIV;u31 = max

8<:r31 + eQ
p3

;
r31 +

eeQ2
p3 � 3eeQ

9=; � 1 eeQ = minnp1� r31; p3=3; eQo ; eQ = ( 3�
p
9�Q AE�

4�
p
16� 4Q=3

�
=2 UE

� Proof: Evaluate @
�
LBTIV;u31

�
=@
eeQ and see when the sign is positive/negative.

sgn

 
@LBTIV;u31

@
eeQ

!
= sgn

�
�
�
p3 � 3eeQ�+ 3�r31 � eeQ��

= sgn (3r31 � p3)
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A.1.8 p�32

p�32 =

r32 +

Q1;32z }| {�
�1132 + �

12
32 + �

13
32 + �

21
32 + �

22
32 + �

23
32 + �

31
32
�
+ �3332

�

�
�

Q2;32z }| {�
�3211 + �

32
12 + �

32
13 + �

32
21 + �

32
22 + �

32
23 + �

32
31
�
+ �3233

�

�
p3 +

�
�1131
�
+ �1231

�
+ �1331

�
+ �2131

�
+ �2231

�
+ �2331

�
+ �1132

�
+ �1232

�
+ �1332

�
+ �2132

�
+ �2232

�
+ �2332

�
+ �1133 + �

12
33 + �

13
33 + �

21
33 + �

22
33 + �

23
33

�
| {z }

Q3;3

�
�
�3111
�
+ �3112

�
+ �3113

�
+ �3211

�
+ �3212

�
+ �3213

�
+ �3311 + �

33
12 + �

33
13 + �

31
21
�
+ �3122

�
+ �3123

�
+ �3221

�
+ �3222

�
+ �3223

�
+ �3321 + �

33
22 + �

33
23

�
| {z }

Q4;3

� �k
0l0

kl
�
= unique element

Arbitrary, Uniform Errors: Assumptions 2(i), 2(ii)

LB32 =
r32 � eQ
p3

� 0 eQ = � Q AE
Q=3 UE

UB32 =
r32 + eQ
p3 � eeQ � 1 eeQ = � 0 AE

minfp3; Q=3g UE

Uni-Directional Errors: Assumption 3

� Simplifying

p�32 =

r32 +

Qu
1;32z }| {�
�3332
�

�
�

Qu
2;32z }| {�

�3211 + �
32
12 + �

32
21 + �

32
22 + �

32
31
�

�
p3�

�
�3111 + �

32
11
�
+ �3212

�
+ �3311

�
+ �3312

�
+ �3313

�
+ �3121 + �

32
21
�
+ �3222

�
+ �3321

�
+ �3322

�
+ �3323

�

�
| {z }

Qu
4;3

� Yields

LBu32 =
r32 � eQ
p3

� 0 eQ = � Q AE
Q=3 UE

UBu32 =
r32 + eQ
p3 � eeQ � 1 eeQ = � 0 AE

minfp3; Q=3g UE
; eQ = � Q AE

Q=3 UE
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Temporal Independence, Temporal Invariance

� Implies

p�32 =
r32 +

Q1;32z }| {h
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1
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2
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2
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3
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2
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3
2�

3
1 + �

3
2�

3
2 + �

3
2�

3
3

i
| {z }

Q4;3

� Simplifying

Q1;32 =
�
�13 + �

2
3

�
+
�
�12 + �

3
2

� �
1� �13 � �23

�
(TI)

=
�
�13 + �

2
3

�
+
�
�22 + �

3
2

� �
1� �13 � �23

�
(TIV)

Q2;32 =
�
�31 + �

3
2

� �
1 + �21 + �

2
3 � �12 � �32

�
+
�
�21 + �

2
3

� �
1� �13 � �23

�
(TI)

=
�
�31 + �

3
2

� �
1 + �21 + �

2
3 � �12 � �32

�
+
�
�21 + �

2
3

� �
1� �13 � �23

�
(TIV)

Q3;3 = 3
�
�13 + �

2
3

�
(TI)

= 3
�
�13 + �

2
3

�
(TIV)

Q4;3 = 3
�
�31 + �

3
2

�
(TI)

= 3
�
�31 + �

3
2

�
(TIV)
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� Under Temporal Independence

p�32 =
r32 +

�
�12 + �

3
2 � �21 � �23

�
+
�
�13 + �

2
3 � �31 � �32

� �
1 + �21 + �

2
3 � �12 � �32

�
p3 + 3 (�13 + �

2
3 � �31 � �32)

�Yields

LBTI32 = min

8<:r32 �
::

Q

p3
;
r32 +

eeQ
p3 + 3

eeQ; r32 �
bQ

p3 � 3 bQ
9=; � 0

eeQ = minn1� r32; (1� p3)=3; eQo ; bQ = minnr32; p3=3; ::Qo ; eQ = � Q=3 AE
Q=9 UE

;
::

Q =

�
Q=3 AE
2Q=9 UE

UBTI32 = max

8<:r32 + eQ
p3

;
r32 +

eeQ
p3 + 3

eeQ; r32 �
bQ

p3 � 3 bQ
9=; � 1

eeQ = minn1� r32; (1� p3)=3; eQo ; bQ = minnr32; p3=3; ::Qo ; eQ = � Q=3 AE
Q=9 UE

;
::

Q =

�
Q=3 AE
2Q=9 UE

�Proof:

1.
::

Q in r32�
::
Q

p3
can be 2Q=9 as �21; �

2
3 = Q=9 under UE.

2. bQ in r32� bQ
p3�3 bQ can be 2Q=9 as �31; �

3
2 = Q=9 under UE.

3. Evaluate @
�
r32+

eeQ
p3+3

eeQ
�
=@
eeQ and see when the sign is positive/negative. Both are possible.

sgn

0BB@@
�
r32+

eeQ
p3+3

eeQ
�

@
eeQ

1CCA = sgn

��
p3 + 3

eeQ�� 3�r32 + eeQ��

= sgn (p3 � 3r2)

4. Evaluate @
�
r32� bQ
p3�3 bQ

�
=@ bQ and see when the sign is positive/negative. Both are possible.

sgn

0@@
�
r32� bQ
p3�3 bQ

�
@ bQ

1A = sgn
�
�
�
p3 � 3 bQ�+ 3�r32 � bQ��

= sgn (3r32 � p3)

�Adding the uni-directional assumption

p�32 =
r32 +

�
�32 � �21

�
�
�
�31 + �

3
2

� �
1 + �21 � �32

�
p3 � 3 (�31 + �32)

� Yields

LBTI;u32 = min

8<:r32 � eQ
p3

;
r32 � eeQ
p3 � 3eeQ

9=; � 0

eeQ < minnr32; p3=3; ::Qo ; eQ = � Q=3 AE
Q=9 UE

;
::

Q =

�
Q=3 AE
2Q=9 UE

UBTI;u32 = max

8<:r32 + eQ
p3

;
r32 � eeQ
p3 � 3eeQ

9=; � 1

eeQ < minnr32; p3=3; ::Qo ; eQ = � Q=3 AE
Q=9 UE

;
::

Q =

�
Q=3 AE
2Q=9 UE

� Proof: Same as above.
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� Under Temporal Invariance

p�32 =
r32 +

�
�12 + �

1
3 � �21 � �31

�
+
�
�13 + �

2
3 � �31 � �32

� �
�21 + �

2
3 � �12 � �32

�
p3 + 3

�
�13 + �

2
3 � �31 � �32

�
�Yields

LBTIV32 = min

8<:r32 � eQ
p3

;
r32 +

eeQ2
p3 + 3

eeQ
9=; � 0

eeQ = min(�(2=3)p3 +p(4=9)p23 + 4r32
2

;
p
1� r32; (1� p3)=3; eQ) ; eQ = ( 3�

p
9�Q AE�

4�
p
16� 4Q=3

�
=2 UE

UBTIV32 = max

8<:r32 + eQ
p3

;
r32 +

eeQ2
p3 � 3eeQ

9=; � 1 eeQ = minnp1� r32; p3=3; eQo ; eQ = ( 3�
p
9�Q AE�

4�
p
16� 4Q=3

�
=2 UE

�Proof:

1. Evaluate @LBTIV32 =@
eeQ and see when the sign is positive/negative.

sgn

 
@LBTIV32

@
eeQ

!
= sgn

�
2
eeQ�p3 + 3eeQ�� 3�r32 + eeQ2��

= sgn

�eeQ�(2=3) p3 + eeQ�� r32�
) sgn

 
@LBTIV32

@
eeQ

!�����eeQ=0 = sgn (�r32) < 0

) eeQ > 0

2. Minimize LBTIV32 s.t. eeQ being feasible
@LBTIV32

@
eeQ / eeQ�(2=3) p3 + eeQ�� r32 = 0

) eeQ� = �(2=3)p3 +
p
(4=9)p23 + 4r32
2

So, derivative starts o¤ negative and then reaches zero at eeQ�. Thus, r32+eeQ2

p3+3
eeQ is minimized at eeQ�.

�Adding the uni-directional assumption

p�32 =
r32 �

�
�21 + �

3
1

�
�
�
�31 + �

3
2

� �
�21 � �32

�
p3 � 3

�
�31 + �

3
2

�
� Yields

LBTIV;u32 =
r32 � eQ
p3

eQ = ( 3�
p
9�Q AE�

4�
p
16� 4Q=3

�
=2 UE

UBTIV;u32 =
r32 +

eeQ2
p3 � 3eeQ � 1 eeQ = minnp1� r32; p3=3; eQo ; eQ = ( 3�

p
9�Q AE�

4�
p
16� 4Q=3

�
=2 UE

� Proof: Same as above.
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A.1.9 p�33

p�33 =

r33 +

Q1;33z }| {�
�1133 + �

12
33 + �

13
33 + �

21
33 + �

22
33 + �

23
33 + �

31
33
�
+ �3233

�

�
�

Q2;33z }| {�
�3311 + �

33
12 + �

33
13 + �

33
21 + �

33
22 + �

33
23 + �

33
31
�
+ �3332

�

�
p3 +

�
�1131
�
+ �1231

�
+ �1331

�
+ �2131

�
+ �2231

�
+ �2331

�
+ �1132

�
+ �1232

�
+ �1332

�
+ �2132

�
+ �2232

�
+ �2332

�
+ �1133 + �

12
33 + �

13
33 + �

21
33 + �

22
33 + �

23
33

�
| {z }

Q3;3

�
�
�3111
�
+ �3112

�
+ �3113

�
+ �3211

�
+ �3212

�
+ �3213

�
+ �3311 + �

33
12 + �

33
13 + �

31
21
�
+ �3122

�
+ �3123

�
+ �3221

�
+ �3222

�
+ �3223

�
+ �3321 + �

33
22 + �

33
23

�
| {z }

Q4;3

� �k
0l0

kl
�
= unique element

Arbitrary, Uniform Errors: Assumptions 2(i), 2(ii)

LB33 =
r33 � eQ
p3

� 0 eQ = � Q AE
Q=3 UE

UB33 =
r33 + eQ
p3 � eeQ � 1 eeQ = � 0 AE

minfp3; Q=3g UE

Uni-Directional Errors: Assumption 3

� Simplifying

p�33 =

r33 �

Qu
2;33z }| {�

�3311 + �
33
12 + �

33
13 + �

33
21 + �

33
22 + �

33
23 + �

33
31
�
+ �3332

�

�
p3�

�
�3111
�
+ �3211

�
+ �3212

�
+ �3311 + �

33
12 + �

33
13 + �

31
21
�
+ �3221

�
+ �3222

�
+ �3321 + �

33
22 + �

33
23

�
| {z }

Qu
4;3

� Yields

LBu33 =
r33 � eQ
p3

� 0 eQ = � Q AE
Q=3 UE

UBu33 =
r33

p3 � eeQ � 1 eeQ = minfp3; eQg, eQ = � Q AE
Q=3 UE
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Temporal Independence, Temporal Invariance

� Implies

p�33 =
r33 +

Q1;33z }| {h
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�
h
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1
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1
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1
3 + �
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2
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2
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3
2�

2
3 + �

3
2�

3
1 + �

3
2�

3
2 + �

3
2�

3
3

i
| {z }

Q4;3

� Simplifying

Q1;33 =
�
�13 + �

2
3

�
+
�
�13 + �

2
3

� �
1� �13 � �23

�
(TI)

= 2
�
�13 + �

2
3

�
�
�
�13 + �

2
3

�2
(TIV)

Q2;33 =
�
�31 + �

3
2

� �
1 + �31 + �

3
2 � �13 � �23

�
+
�
�31 + �

3
2

� �
1� �13 � �23

�
(TI)

= 2
�
�31 + �

3
2

� �
1� �13 � �23

�
+
�
�31 + �

3
2

�2
(TIV)

Q3;3 = 3
�
�13 + �

2
3

�
(TI)

= 3
�
�13 + �

2
3

�
(TIV)

Q4;3 = 3
�
�31 + �

3
2

�
(TI)

= 3
�
�31 + �

3
2

�
(TIV)
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� Under Temporal Independence

p�33 =
r33 +

�
�13 + �

2
3 � �31 � �32

�
+
�
�13 + �

2
3 � �31 � �32

� �
1 + �31 + �

3
2 � �13 � �23

�
p2 + 3 (�13 + �

2
3 � �31 � �32)

�Yields

LBTI33 = min

8<:r33 �
::

Q

p3
;
r33 +

eeQ
p3 + 3

eeQ; r33 �
bQ

p3 � 3 bQ
9=; � 0

eeQ = minn1� r33; (1� p3)=3; eQo ; bQ = minnr33; p3=3; ::Qo ; eQ = � Q=3 AE
Q=9 UE

;
::

Q =

�
Q=3 AE
2Q=9 UE

UBTI33 = max

8<:r33 + eQ
p3

;
r33 +

eeQ
p3 + 3

eeQ; r33 �
bQ

p3 � 3 bQ
9=; � 1

eeQ = minn1� r33; (1� p3)=3; eQo ; bQ = minnr33; p3=3; ::Qo ; eQ = � Q=3 AE
Q=9 UE

;
::

Q =

�
Q=3 AE
2Q=9 UE

�Proof:

1.
::

Q in r33�
::
Q

p3
can be 2Q=9 as �31; �

3
2 = Q=9 under UE.

2. bQ in r33� bQ
p3�3 bQ can be 2Q=9 as �21; �

3
2 = Q=9 under UE.

3. Evaluate @
�
r33+

eeQ
p3+3

eeQ
�
=@
eeQ and see when the sign is positive/negative. Both are possible.

sgn

0BB@@
�
r33+

eeQ
p3+3

eeQ
�

@
eeQ

1CCA = sgn

��
p3 + 3

eeQ�� 3�r33 + eeQ��

= sgn (p3 � 3r33)

4. Evaluate @
�
r33� bQ
p3�3 bQ

�
=@ bQ and see when the sign is positive/negative. Both are possible.

sgn

0@@
�
r33� bQ
p3�3 bQ

�
@ bQ

1A = sgn
�
�
�
p3 � 3 bQ�+ 3�r33 � bQ��

= sgn (3r33 � p3)

�Adding the uni-directional assumption

p�33 =
r33 �

�
�31 + �

3
2

�
�
�
�31 + �

3
2

� �
1 + �31 + �

3
2

�
p2 � 3 (�31 + �32)

� Yields

LBTI;u33 = min

8<:r33 �
::

Q

p3
;
r33 � eeQ
p3 � 3eeQ

9=; � 0 eeQ = minnr33; p3=3; ::Qo ; ::

Q =

�
Q=3 AE
2Q=9 UE

UBTI;u33 =
r33 � eeQ
p3 � 3eeQ � 1 eeQ = ( 0 r33 < p3=3

min
n
r33; p3=3;

::

Q
o

otherwise
;
::

Q =

�
Q=3 AE
2Q=9 UE

� Proof: Same as above.
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� Under Temporal Invariance

p�33 =
r33 + 2

�
�13 + �

2
3 � �31 � �32

�
�
�
�13 + �

2
3 � �31 � �32

�2
p2 + 3

�
�13 + �

2
3 � �31 � �32

�
�Yields

LBTIV33 = min

8<:r33 + 2 bQ� bQ2
p3 + 3 bQ ;

r33 � 2eeQ� eeQ2
p3 � 3eeQ

9=; � 0

bQ = minn(1� p3)=3; eQo ;
eeQ =

8<: 0 r33 � 2p3=3

min

�
(2=3)p3+

p
(4=9)p23+4[(2=3)p3�r33]

2 ; (�1 +
p
1 + r33); p3=3; eQ� otherwise

;

eQ = ( 3�
p
9�Q AE�

4�
p
16� 4Q=3

�
=2 UE

UBTIV33 = min

8<:r33 + 2 bQ� bQ2
p3 + 3 bQ ;

r33 � 2eeQ� eeQ2
p3 � 3eeQ

9=; � 0

bQ =
8<: 0 r33 � 2p3=3

min

�
�(2=3)p3+

p
(4=9)p23+4[(2=3)p3�r33]

2 ; (1� p3)=3; eQ� otherwise
;

eeQ =
8<: 0 r33 < 2p3=3

min

�
(2=3)p3�

p
(4=9)p23+4[(2=3)p3�r33]

2 ; (�1 +
p
1 + r33); p3=3; eQ� otherwise

;

eQ = ( 3�
p
9�Q AE�

4�
p
16� 4Q=3

�
=2 UE
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�Proof:

1. Evaluate @
�
r33�2eeQ�eeQ2

p3�3eeQ
�
=@
eeQ and see when the sign is positive/negative. Both are possible.

sgn

0BB@@
�
r33�2eeQ�eeQ2

p3�3eeQ
�

@
eeQ

1CCA = sgn

��
�2� 2eeQ��p3 � 3eeQ�+ 3�r33 � 2eeQ� eeQ2��

= sgn

�
�(2=3)p3

�
1 +

eeQ�+ eeQ2 + r33�

) sgn

0BB@@
�
r33�2eeQ�eeQ2

p3�3eeQ
�

@
eeQ

1CCA
��������eeQ=0

= sgn (�(2=3)p3 + r33) ? 0

) sgn

0BB@@
�
r33�2eeQ�eeQ2

p3�3eeQ
�

@
eeQ

1CCA
��������eeQ=1

= sgn (�(4=3)p3 + 1 + r33) ? 0

2. Ensure r33 � 2eeQ� eeQ2 � 0
r33 � 2eeQ� eeQ2 � 0

) eeQ2 + 2eeQ� r33 � 0
) eeQ � �2 +

p
4 + 4r33
2

) eeQ � �1 +p1 + r33
3. Minimize r33�2eeQ�eeQ2

p3�3eeQ s.t. eeQ being feasible and r33 < 2p3=3
@

�
r33�2eeQ�eeQ2

p3�3eeQ
�

@
eeQ / �(2=3)p3

�
1 +

eeQ�+ eeQ2 + r33 = 0
) eeQ� = (2=3)p3 +

p
(4=9)p23 + 4[(2=3)p3 � r33]

2

4. Maximize r33�2eeQ�eeQ2

p3�3eeQ s.t. eeQ being feasible and r33 > 2p3=3
@

�
r33�2eeQ�eeQ2

p3�3eeQ
�

@
eeQ / �(2=3)p3

�
1 +

eeQ�+ eeQ2 + r33 = 0
) eeQ� = (2=3)p3 �

p
(4=9)p23 + 4[(2=3)p3 � r33]

2

Note: If
p
(4=9)p23 + 4[(2=3)p3 � r33] = :, then maximize

eeQ.
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5. Evaluate @
�
r33+2 bQ� bQ2

p3+3 bQ
�
=@ bQ and see when the sign is positive/negative. Both are possible.

sgn

0@@
�
r33+2 bQ� bQ2

p3+3 bQ
�

@ bQ
1A = sgn

��
2� 2 bQ��p3 + 3 bQ�� 3�r33 + 2 bQ� bQ2��

= sgn
�
(2=3)p3

�
1� bQ�� bQ2 � r33�

) sgn

0@@
�
r33+2 bQ� bQ2

p3+3 bQ
�

@ bQ
1A������ bQ=0 = sgn ((2=3)p3 � r33) ? 0

) sgn

0@@
�
r33+2 bQ� bQ2

p3+3 bQ
�

@ bQ
1A������ bQ=1 = sgn (�1� r33) < 0

6. Maximize r33+2 bQ� bQ2

p3+3 bQ s.t. bQ being feasible and r33 < 2p3=3
@
�
r33+2 bQ� bQ2

p3+3 bQ
�

@ bQ / (2=3)p3

�
1� bQ�� bQ2 � r33 = 0

) bQ� = �(2=3)p3 +
p
(4=9)p23 + 4[(2=3)p3 � r33]

2

7. Minimize r33+2
bQ� bQ2

p3+3 bQ ) bQ = 0 or maximize bQ. However, if the minimum occurs when bQ = 0, then r33�2eeQ�eeQ2

p3�3eeQ <
r33
p3
and this will be the binding LB.
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�Adding the uni-directional assumption

p�33 =
r33 � 2

�
�31 + �

3
2

�
�
�
�31 + �

3
2

�2
p2 � 3

�
�31 + �

3
2

�
� Yields

LBTIV33 =
r33 � 2eeQ� eeQ2
p3 � 3eeQ � 0

eeQ =
8<: 0 r33 � 2p3=3

min

�
(2=3)p3+

p
(4=9)p23+4[(2=3)p3�r33]

2 ; (�1 +
p
1 + r33); p3=3; eQ� otherwise

;

eQ = ( 3�
p
9�Q AE�

4�
p
16� 4Q=3

�
=2 UE

UBTIV33 =
r33 � 2eeQ� eeQ2
p3 � 3eeQ � 0

eeQ =
8<: 0 r33 < 2p3=3

min

�
(2=3)p3�

p
(4=9)p23+4[(2=3)p3�r33]

2 ; (�1 +
p
1 + r33); p3=3; eQ� otherwise

;

eQ = ( 3�
p
9�Q AE�

4�
p
16� 4Q=3

�
=2 UE

� Proof: Same as above.
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A.2 Tightening the Bounds

A.2.1 Shape Restrictions

p�11; p
�
22; p

�
33

LBSkk = max

(
sup
k0 6=k

LBkk0 ; sup
k0 6=k

LBk0k

)
UBSkk = UBkk

p�12; p
�
13; p

�
23

LBSkk = LBkk

UBSkk = min fUB11; UB12; UB22g

p�21; p
�
31; p

�
32

LBSkk = LBkk

UBSkk = min fUB11; UB21; UB22g

A.2.2 Level Set Restrictions

p�kl(x) =
rkl(x) +Q1;kl(x)�Q2;kl(x)
pk(x) +Q3;k(x)�Q4;k(x)

� Let Q(x) be probability of misclassi�cation conditional on X = x. ThenX
x
pxQ(x) � Q

� Implies
Q(x) =

�
Q=px No Independence
Q Independence

� Bounds

�Bounds on p�kl(x) are identical to baseline with Q replaced by Q(x)

�After bounding P �01(x), impose shape if desired

�Derive bounds on P �01
� Impose shape if desired
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A.2.3 Monotonicity Restrictions

p�kl(u) =
rkl(u) +Q1;kl(u)�Q2;kl(u)
pk(u) +Q3;k(u)�Q4;k(u)

� Let Q(u) be probability of misclassi�cation conditional on U = u. ThenX
u
puQ(u) � Q

� Implies
Q(u) =

�
Q=pu No Independence
Q Independence

� Bounds

�Bounds on p�kl(u) are identical to baseline with Q replaced by Q(u)

�After bounding P �01(u), impose shape if desired

�Derive bounds on P �01
� Impose shape if desired

� Adding level set restrictions
p�kl(x; u) =

rkl(x; u) +Q1;kl(x; u)�Q2;kl(x; u)
pk(x; u) +Q3;k(x; u)�Q4;k(x; u)

� Let Q(x; u) be probability of misclassi�cation conditional on X = x; U = u. ThenX
x
pxuQ(x; u) � Q(u)

� Implies
Q(x; u) =

�
Q= (pxupu) No Independence
Q Independence

where pxu = Pr(X = xjU = u)

� Bounds

�Bounds on p�kl(x; u) are identical to baseline with Q replaced by Q(x; u)

�After bounding P �01(x; u), impose shape if desired

�Derive bounds on P �01(u)

� Impose shape if desired

�Derive bounds on P �01
� Impose shape if desired
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B Supplemental Tables



Id State/Union Territories

Rural Urban Rural Urban

1 Jammu & Kashmir 522 603 891 988

2 Himachal Pradesh 520 606 913 1,064

3 Punjab 544 643 1,054 1,155

4 Chandigarh 643 643 1,155 1,155

5 Uttarkhand/Uttaranchal 486 602 880 1,082

6 Haryana 529 626 1,015 1,169

7 Delhi 541 642 1,145 1,134

8 Rajasthan 478 568 905 1,002

9 Uttar Pradesh 435 532 768 941

10 Bihar 433 526 778 923

11 Sikkim 532 742 930 1,226

12 Arunachal Pradesh 547 618 930 1,060

13 Nagaland 687 783 1,270 1,302

14 Manipur 578 641 1,118 1,170

15 Mizoram 639 700 1,066 1,155

16 Tripura 450 556 798 920

17 Meghalaya 503 746 888 1,154

18 Assam 478 600 828 1,008

19 West Bengal 445 573 783 981

20 Jharkhand 405 531 748 974

21 Orissa 408 497 695 861

22 Chhattisgarh 399 514 738 849

23 Madhya Pradesh 408 532 771 897

24 Gujarat 502 659 932 1,152

25 Daman & Diu 609 671 1,090 1,134

26 Dadra & Nagar Haveli 485 632 967 1,126

27 Maharashtra 485 632 967 1,126

28 Andhra Pradesh 433 563 860 1,009

29 Karnataka 418 588 902 1,089

30 Goa 609 671 1,090 1,134

32 Kerala 537 585 1,018 987

33 Tamil Nadu 442 560 880 937
34 Puducherry 385 506 1,301 1,309

2005 2012

Source: Planning Commission (Available at http://niti.gov.in/state-statistics)

Table B1. State specific Poverty Lines (Tendulkar Committee estimates): 

Monthly Per Capita Expenditure (Rs.)



C Supplemental Figures



   

   

   
Figure C1. Transition Matrices Bounds (Arbitrary & Uniform Misclassification (with & without Shape)): Sensitivity to Q 
Notes: Sample based on IHDS panel data. Point estimates for bounds obtained using 100 subsamples of size N/2 for bias correction. See text for further details. 
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Figure C2. Transition Matrices Bounds (Arbitrary & Uniform Misclassification (with Independence, Level set & Monotonicity)): Sensitivity to Q 
Notes: Sample based on IHDS panel data. Point estimates for bounds obtained using 100 subsamples of size N/2 for bias correction. See text for further details. 
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Figure C3. Transition Matrices Bounds (Arbitrary and Temporally Independent/Invariant Misclassification (with Shape & Unidirectional)): Sensitivity to Q 
Notes: Sample based on IHDS panel data. Point estimates for bounds obtained using 100 subsamples of size N/2 for bias correction. See text for further details. 
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Figure C4. Transition Matrices Bounds (Arbitrary and Temporally Independent Misclassification (with Level set and Monotonicity)): Sensitivity to Q 
Notes: Sample based on IHDS panel data. Point estimates for bounds obtained using 100 subsamples of size N/2 for bias correction. See text for further details. 
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Figure C5. Transition Matrices Bounds (Arbitrary and Temporally Invariant Misclassification (with Level set and Monotonicity)): Sensitivity to Q 
Notes: Sample based on IHDS panel data. Point estimates for bounds obtained using 100 subsamples of size N/2 for bias correction. See text for further details. 
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