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Abstract

This paper considers finitely repeated games played by procedurally rational play-
ers, who sample their available alternatives and use realized payoffs as a basis for
strategy selection. The corresponding solution concept is that of (payoff) sampling
equilibrium, which is a distribution over strategies that is self-replicating under the
sampling procedure. Sampling equilibria are rest points of a disequilibrium dynamic
process, and stability with respect to this process can be used as an equilibrium se-
lection criterion. The structure of stable sampling equilibria in symmetric, finitely
repeated games is characterized, and illustrated with applications to cooperation and
coordination over time.
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1 Introduction

Nash equilibrium remains the dominant solution concept in the theory of games, but
gives rise to paradoxical and counter-intuitive predictions in some environments. This is
especially true in games with a long but finite sequence of moves, such as the centipede,
the chain store game, and the finitely repeated prisoner’s dilemma. The usual resolution
of such paradoxes has relied on the introduction of behavioral types who mechanically
choose particular strategies, and whose presence is taken into account by rational players.
In some instances it makes sense for rational players to mimic behavioral types for ex-
tended periods of time, and this can give rise to sharply different predictions than would
arise in the standard complete information setting.

For a different approach to the resolution of such paradoxes, one may turn to alter-
native conceptions of rationality and equilibrium. This paper explores a model of proce-
dural rationality, originally introduced by Osborne and Rubinstein (1998), that is based
on the idea that players sample their available alternatives and use realized payoffs as
a basis for strategy selection. The corresponding solution concept is a distribution over
strategies that is self-replicating under the sampling procedure. This may be interpreted
as the the steady state of a dynamic process in which new entrants to a large population
decide on a strategy by trying out each available alternative, and picking from among
those that yield the highest realized payoff. Stability with respect to this dynamic process
can then be used as an equilibrium selection criterion.

The focus in this paper is on stable sampling equilibria of symmetric finitely repeated
games. The set of strategies in any such game can be partitioned into equivalence classes
based on the following criterion: two strategies belong to the same class if and only if
they give rise to the same sequence of outcomes when self-matched. For example, in the
repeated prisoner’s dilemma, all strategies that are never the first to defect belong to one
class, while those that are never the first to cooperate belong to another. The equivalence
classes obtained in this manner can be (weakly) ordered based on the payoffs generated
in within-class matches. Again using the example of the prisoner’s dilemma, the highest
payoff class is composed of strategies that are never the first to defect, while the lowest
payoff class is composed of those that are never the first to cooperate. Between these
two extremes lie classes of strategies that generate outcomes involving varying levels of
cooperation and defection in within-class matches.

Such a partition of strategies turns out to be useful in characterizing stable sampling
equilibria in repeated games, provided that tie-breaking is regular in the following sense:



when multiple strategies are tied for best under the sampling procedure, each of these
is selected with positive probability. This includes, but is not limited to uniform tie-
breaking. Since ties arise generically in repeated games, the set of sampling equilibria
is sensitive to the manner in which ties are assumed to be broken. A regular sampling
equilibrium is defined as one in which all alternatives that are tied for best under sam-
pling are selected with positive probability. At any such equilibrium, strategies that are
played with positive probability are said to be present, as are classes that contain at least
one present strategy. If all strategies in a class are present, the class is said to be fully
present. A best present class at any sampling equilibrium is one that obtains the highest
payoff in within-class matches among all classes that are present.

It is shown that the best present class at any regular sampling equilibrium must be
fully present. This is then used to show that the sequence of outcomes that arise with
positive probability in a regular sampling equilibrium cannot be Pareto-dominated when
the number of repetitions is sufficiently large. These results have implications for cooper-
ation and coordination over long periods of time. In particular cooperation must arise
with positive probability in the repeated prisoners’ dilemma, and a payoff-dominant
strategy must be played with positive probability in a repeated coordination game. In
repeated common interest games, there exists an efficient sampling equilibrium that is
locally asymptotically stable under the sampling dynamics. And in the two-player case,
this equilibrium is (almost) globally asymptotically stable, despite the possible existence
of many other equilibria. Dynamic stability thus serves as a very powerful refinement
criterion in common interest games.

Since the set of strategies in a repeated game rises very sharply with the number of
repetitions, it often makes sense to restrict attention to strategies that have bounded com-
plexity. Restricting attention to strategies that can be represented by finite automata with
an exogenous bound on the number of states, sharper results can be obtained. In particu-
lar, in the finitely repeated prisoners’ dilemma, when strategies are restricted to those that
can be represented by finite automata with (at most) two states, all such strategies must be
played with positive frequency at any sampling equilibrium. That is, there is a rich ecol-
ogy of mutually reinforcing strategies present, despite the fact that the stage game has
a strictly dominant strategy. This reveals and illustrates the starkly different predictions
that arise when sampling equilibrium replaces subgame perfection as a solution concept
in repeated games.
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2 Related Literature

The concept of (payoff) sampling equilibrium used in this paper dates back to Osborne
and Rubinstein (1998), who called it S(k) equilibrium. The corresponding disequilibrium
dynamics were introduced and used as an equilibrium selection device in Sethi (2000),
where it was shown that strictly dominated strategies can be played with positive prob-
ability at stable sampling equilibria, while dominant strategy equilibria can be unstable.
Mantilla et al. (2019) showed that even efficient dominant strategy equilibria can be un-
stable when the number of players is at least three. Cárdenas et al. (2015) examined ex-
perimental data on common pool resource games, arguing that stable sampling provides
a better fit than competing models, including quantal response equilibrium.

Sandholm et al. (2019a) generalized the sampling dynamics to allow for different test-
ing and tie-breaking rules, and showed that at stable rest points of the centipede game,
play continues with high probability until the last few nodes. Sufficient conditions for
the stability and instability of strict Nash equilibria under these generalized sampling dy-
namics are derived in Sandholm et al. (2019b). An alternative notion of (action) sampling
equilibrium was developed in Osborne and Rubinstein (2003); see Salant and Cherry
(2019) for further exploration of this idea.

The notion of a strict equilibrium class of strategies is closely connected to set-valued
attractors examined in evolutionary game theory, in particular evolutionarily stable sets
(Thomas, 1985; Swinkels, 1992; Balkenborg and Schlag, 2001), sets closed under rational
behavior (Basu and Weibull, 1991) and sets closed under better-replies (Ritzberger and
Weibull, 1995). Such sets have strong stability properties under evolutionary game dy-
namics, but (as shown below) they can be unstable under sampling dynamics.

The specific restriction of the strategy space considered in this paper relies on the
length of histories on which actions can be made contingent. The use of finite automata
to model repeated game strategies with bounded complexity in this sense dates back to
Rubinstein (1986) and Abreu and Rubinstein (1988), who considered infinitely repeated
games. Evolutionary stability with lexicographic costs of complexity were explored in
Binmore and Samuelson (1992), again in the context of infinitely repeated games.

The classical approach to finitely repeated games (and extensive form games more
generally) relies on backward induction. Only when the stage game has multiple equilib-
ria can interesting and complex patterns of play arise in the finitely repeated game; other-
wise the unique stage game equilibrium is simply played repeatedly (Benoit and Krishna,
1985). As noted above, this gives rise to some counterintuitive and indeed counterfactual
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predictions in many instances. The reputational approach to resolving these paradoxes
has its orgins in Kreps and Wilson (1982), Milgrom and Roberts (1982), and Kreps et al.
(1982), with applications to the centipede game in McKelvey and Palfrey (1992), and bar-
gaining in Abreu and Gul (2000). It is this reputational literature with which the approach
taken here may be contrasted.

3 The Model

3.1 Preliminaries

Consider a symmetric, n-player game G with a finite action set A and payoff function u :
An → R. Here u(ai, a−i) denotes the payoff to a player taking action ai against opponents
who choose a−i ∈ An−1. An action profile a ∈ An is said to be an outcome of G.

Let GT denote the T-fold repetition of G, with strategy set S and payoff function
π : Sn → R. Here a strategy for player i is a sequence of functions { f t

i }T
t=1, where

f t
i determines the action taken by i as a function of the outcomes in periods 1, ..., t − 1.

Any strategy profile generates a sequence of outcomes and hence a sequence of stage
game payoffs. Let ut(si, s−i) denote the payoff in period t to a player adopting strategy si

against opponents adopting s−i ∈ Sn. The repeated game payoff π(si, s−i) is obtained by
averaging the stage game payoffs across all the outcomes generated by the strategies:

π(si, s−i) =
1
T

T

∑
t=1

ut(si, s−i).

Since the stage game is finite and finitely repeated, the set of strategies is also finite,
though in some cases we may further restrict the set of available strategies to those with
limited complexity in a manner discussed below. Let m = |S| denote the (possibly re-
stricted) number of pure strategies that players may use in the repeated game, and let ∆
denote the unit simplex:

∆ =
{

σ ∈ Rm ∣∣ σi ≥ 0, ∑ σi = 1
}

.

Any σ ∈ ∆ may be interpreted as a distribution over pure strategies played in a large
incumbent population. A sampling procedure involves the testing of various strategies
against independent draws from such a population.
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3.2 Payoff Sampling

Suppose that the repeated game is played by procedurally rational players in the sense
of Osborne and Rubinstein (1998). That is, players choose a strategy from among those
that result in the highest realized payoff after sampling each strategy against opponents
drawn from an incumbent population.

Let σ ∈ ∆ denote the frequencies with with the various strategies in S are played in the
incumbent population. A sampling procedure involves m trials, where each trial involves
a play of the repeated game GT against an independently drawn opponent. These trials
result in m realized payoffs for the sampling player, who then chooses a strategy from
among those that yield the highest realized payoff. If several strategies are tied for best
under this criterion, then an exogenously given tie-breaking rule is invoked.

Let wi(σ) denote the probability that strategy si is selected based on the sampling
procedure, given that opponent strategies are independently drawn from the distribution
σ. A sampling equilibrium is defined as a frequency distribution σ∗ such that

wi(σ
∗) = σ∗i

for each i. That is, a sampling equilibrium is a probability distribution over strategies that
is self-replicating in the sense that the likelihood with which a strategy is selected under
the sampling procedure matches that with which it is currently being played.

In repeated games the sampling procedure gives rise to ties with positive probability,
so the set of sampling equilibria is sensitive to the manner in which ties are assumed to be
broken. The results in this paper hold for any tie-breaking rule that places positive selec-
tion probability on each of the tied strategies that result in the highest payoff, including
but not limited to uniform tie-breaking. Such a tie-breaking rule is said to be regular, and
a regular sampling equilibrium is one that is obtained under any regular tie-breaking rule.

3.3 Dynamic Stability

One interpretation of a sampling equilibrium is as the rest point of a dynamic process
under which strategies that are selected under sampling with higher probability than
they are being played in an incumbent state increase in population frequency. Stability
with respect to this dynamic process may then be used as a criteria for selection among
sampling equilibria.

Let σ(t) denote the frequency distribution over strategies in the incumbent population
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at time t. A differential equation system σ̇i = gi(σ) is said to be a sampling dynamic if gi

is strictly increasing for each i, satisfies gi(0) = 0, and the system leaves the unit simplex
invariant. The following linear case is an example:

σ̇i = wi(σ)− σi. (1)

Clearly a rest point of this differential equation system is a sampling equilibrium, al-
though rest points may or may not be stable.

The following stability definitions are standard. A rest point σ∗ ∈ ∆ is said to be:

• (Ljapunov) stable if, for every neighborhood U of σ∗ there exists a neighborhood V
such that σ(t0) ∈ V ⇒ σ(t) ∈ U for all t,

• unstable if it is not stable,

• asymptotically stable if it is stable and there exists a neighborhood U of σ∗such that if
σ(t0) ∈ U, then limt→∞ σ(t) = σ∗.

• globally asymptotically stable if limt→∞ σ(t) = σ∗ for all σ(t0) ∈ ∆, and

• almost globally asymptotically stable if limt→∞ σ(t) = σ∗ for all σ(t0) ∈ int(∆)

The main solution concept used in the analysis to follow is stable sampling equilibrium.
In repeated games, outcome-based partitions prove to be a useful device for this analysis.

3.4 Outcome-Based Partitions

Since G is symmetric, if all players adopt the same strategy they will generate a sequence
of symmetric outcomes, and obtain the same payoff. This may also happen when players
use different strategies. For instance, in the repeated prisoner’s dilemma, any pair of
strategies that are never the first to defect will generate the same sequence of outcomes
when matched with each other than they do when matched with themselves: in this case
a fully cooperative sequence.

The set of strategies S can be partitioned into equivalence classes based on this crite-
rion. Specifically, two strategies si and sj are placed in the same class if and only if they
generate the same sequence of outcomes when matched against each other as they do
when matched against themselves. This construction of equivalence classes is an outcome-
based partition of S.
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A unique outcome-based partition exists in any symmetric game. This can be seen
as follows. Consider any set of strategies that generate the same symmetric sequence
of outcomes {a1, a2, ..., aT} when self-matched, and consider the sequence of outcomes
generated when each player uses a strategy from within this set. Clearly the first pe-
riod outcome is precisely a1. The second period outcome must therefore be a2 since each
player faces the same history that she would have if she were self-matched. Proceeding
inductively, we see that all outcomes must be the same as they would be if all strate-
gies were self-matched. And since any pair of strategies that generate identical outcomes
when self-matched are placed in the same class, the outcome-based partition is unique.

When strategies belonging to the same equivalence class are matched with each other,
the sequence of outcomes is indistinguishable from that which would arise if each strat-
egy were self-matched. As a result, it is impossible for any player to deduce from the
sequence of outcomes which strategy from within this set the opponents happen to be
using. It is possible, of course, that each class consists of just a single strategy, though in
repeated games it will generally be true that the set of classes is much smaller than the set
of strategies. Some examples are provided in the sections to follow.

Suppose that the unique outcome-based partition of S results in K equivalence classes,
denoted S1, ..., SK. Associated with each set Sk of strategies is a unique payoff πk that is
obtained by a member of class k when all opponents also use strategies in Sk. We call πk

the within-class payoff for strategies in Sk, and say that a class of strategies Sk is better than
class Sl if πk > πl.

There may, of course, be classes that give rise to the same payoff in within-class
matches but without giving rise to the same sequence of outcomes. For instance, in the
repeated prisoners’ dilemma with an even number of periods, strategies that alternate
between cooperation and defection in within-class matches give rise to the same within-
class payoff, but can belong to different classes depending on whether they cooperate or
defect in the initial period. These strategies cannot be consolidated into a single class.

The concepts of sampling equilibrium, dynamic stability, and outcome-based parti-
tions may be illustrated using a few examples before proceeding to more general results.

4 Examples

Consider the one-shot prisoner’s dilemma, with payoffs (to the row player) given by:
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C D
C b 0
D b + 1 1

(2)

where b > 1. Here the two players each have a unit endowment that has value 1 to
themselves, but value b to the other player. Cooperation C involves giving the endow-
ment to one’s opponent, defection D involves keeping it. The parameter b may then be
interpreted as a benefit-cost ratio.

In the static game there are just two strategies. Let σ1 denote the proportion of the
incumbent population that plays cooperate. Then cooperation is selected under sampling
if and only if the opponent cooperates when cooperation is sampled, and defects when
defection is sampled. The probability of this event is

w1(σ) = σ1(1− σ1) ≤ σ1,

with strict inequality whenever σ1 > 0. Hence, under the sampling dynamics (1),

σ̇1 = w1(σ)− σ1 < 0

whenever σ1 > 0. The only sampling equilibrium involves defection with probability
one, corresponding to the dominant strategy equilibrium of this game, and this sampling
equilibrium is globally asymptotically stable.

More generally, any strict symmetric Nash equilibrium must also be a sampling equi-
librium: when the entire population plays the corresponding strategy this is the only one
that can possibly be selected under the sampling procedure. But such equilibria need not
be stable, even if they involve strictly dominant strategies.

To illustrate, consider the two-player public goods game with payoffs given by

H M L
H 6 3 0
M 7 4 1
L 8 5 2

The dominant strategy equilibrium in which L is played with probability one is clearly
also a sampling equilibrium. However, as noted by Osborne and Rubinstein (1998), there
is a second sampling equilibrium at σ∗ ≈ (0.20, 0.28, 0.52). And as shown in Sethi (2000),
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the former equilibrium is unstable, while the latter is almost globally asymptotically sta-
ble. That is, the concepts of stable sampling equilibrium and Nash equilibrium give
sharply different predictions in this game.

Now consider the repeated prisoners’ dilemma with stage game payoffs as in (2), and
suppose that T = 2. In this case there are eight possible strategies and the outcome-based
partition consists of four classes:

Strategy Behavior Class Within-class Payoff
s1 C in both periods

S1 b
s2 C initially, C if opponent cooperates
s3 C initially, then D

S2 (b + 1)/2
s4 C initially, D if opponent cooperates
s5 D initially, then C

S3 (b + 1)/2
s6 D initially, C if opponent defects
s7 D initially, D if opponent defects

S4 1
s8 D in both periods

Note that although classes S2 and S3 generate the same payoffs in within-class matches,
they give rise to different outcome sequences in within-class matches, and hence cannot
be consolidated. For example, if s4 is matched with s6, the result is cooperation by the
former and defection by the latter in all periods, so the former gets payoff zero and the
latter b + 1. These payoffs are quite different from those that arise when these strategies
are self-matched, and the two strategies must therefore be placed in different classes.

Any regular sampling equilibrium in this game must involve some cooperation. To
see this, consider any distribution σ∗ such that σ∗i > 0 only if si ∈ S4. Then both s7 and s8

are matched within-class with probability 1, and both get payoff 1 when sampled. Under
regular tie breaking, both strategies much be selected with positive probability if σ∗ is a
sampling equilibrium. In particular, we must have σ∗7 > 0.

In this case, the following event has positive probability: when s3 is sampled, the
opponent plays s7, and when all other strategies are sampled, the opponent plays s8.
Conditional on this event, the payoff obtained when s3 is sampled is

π(s3, s7) = (b + 1)/2 > 1,

while the payoffs obtained when all other strategies are sampled does not exceed 1. Hence
s3 is selected with positive probability under the sampling procedure at σ∗. That is, we
have w2(σ

∗) > 0. Since σ∗3 = 0 by hypothesis, σ∗ cannot be a sampling equilibrium.
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This is a special case of a more general phenomenon in repeated games.

5 Results

5.1 Best Present Classes

We say that a strategy si is present at any sampling equilibrium σ∗ if σ∗i > 0. A class Sk

is present if there exists some strategy si ∈ Sk that is present. A class is fully present if all
strategies in the class are present. And a class Sk is the best present class if no better class is
present.

The following result applies to any symmetric repeated game GT, regardless of the
number of repetitions.

Proposition 1. At any regular sampling equilibrium, the best present class is fully present.

The proof of this result relies on the observation that at any sampling equilibrium, all
present strategies can be matched within-class with positive probability when sampled.
In addition, all strategies that are not present, but belong to a class that is present, can also
be matched within-class with positive probability when sampled. If this event occurs,
then all strategies in the best present class will be tied for best, unless some other strategy
that is not present is best. Since only present strategies can be tied for best in a sampling
equilibrium, this means that the best present class must be fully present.

Proposition 1 can be used to narrow down the set of possibilities that can arise in a
sampling equilibrium. We say that a symmetric action profile a′ ∈ An is dominated if
there exists another symmetric action profile a ∈ An such that

u(a) > u(a′).

That is, all players obtain a higher payoff in the stage game if they all play the action
associated with a than if they all play the action associated with a′. This is simply the
usual notion of payoff-dominance, applied to symmetric action profiles. We say that a
class of strategies in the repeated game GT is dominated if the strategies in this class
involve the play of dominated action profiles in each period whenever these strategies
are matched within-class. A class is undominated if it is not dominated. The following
result rules out sampling equilibria in which only dominated classes are present, as long
as the number of repetitions is not too small.
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Proposition 2. At any regular sampling equilibrium, the best present class is undominated if T
is sufficiently large.

The proof of this result is based on the following reasoning. Suppose that the best
present class is Sk is dominated. Then there exists an action aj ∈ A, and a symmetric
action profile a = (aj, ..., aj), such that a dominates all outcomes that arise when a strategy
in Sk is matched within-class. Let sj denote the strategy that plays aj unconditionally in
all periods. Since Sk is fully present from Proposition 1, it must contain a strategy sk that
switches permanently to action aj whenever any opponent plays aj in the initial period.
Now consider what happens when sj is sampled. There is a positive probability that all
opponents will adopt sk, since this strategy is present. If this happens, then sj will face
the outcome a in all periods except the first. If T is large enough, the resulting payoff to
sj will exceed πk. If all present strategies are matched within-class, then sj will obtain a
higher payoff than all present strategies, so must also be present. But then Sk cannot be
the best present class, since sj secures a higher payoff than πk when matched within class.

Proposition 2 implies that in repeated symmetric public goods games a sampling equi-
librium cannot involve the choice of an inefficient contribution level in each period when
the number of repetitions is large. This is true even if the stage game has a strictly dom-
inant strategy, so the repeated game has a unique subgame perfect equilibrium. The
example of the iterated prisoners’ dilemma is an instance of this phenomenon.

In addition, Proposition 2 implies that in any common interest game, the efficient
action profile in the stage game (preferred by all players to all other action profiles) must
be played with positive probability in any regular sampling equilibrium if the number of
periods is sufficiently large. Much more than this can be said of common interest games,
however, as shown below.

5.2 Strict Equilibrium Classes

In one-shot games, any symmetric strict Nash equilibrium must also be a sampling equi-
librium: if the corresponding action is played by all individuals in the population, then no
other action can ever be selected under sampling. However, repeated games cannot have
strict Nash equilibria since some histories are not realized along the equilibrium path,
and strategies that differ only on such histories will secure the same payoffs as equilib-
rium strategies.

The notion of strict equilibrium can be extended to apply to sets of strategies in such a
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manner as to recover the connection between strict equilibria and sampling equilibrium.
A strict equilibrium class of strategies is an element Sk of the outcome based partition that
has the following property: for any si /∈ Sk and any s−i ∈ Sn−1

k , we have

π(si, s−i) < πk.

That is, if all other players choose strategies in Sk, then there is no best reply for a player
that lies outside Sk.

We say that a sampling equilibrium is single-class if only one class is present at the
equilibrium. By Proposition 1, this class must be fully present as long as the equilibrium
is regular. The following result connects strict equilibrium classes to sampling equilibria:

Proposition 3. A single-class regular sampling equilibrium has support Sk if and only if Sk is a
strict equilibrium class.

In fact, if Sk is a strict equilibrium class, then there exists a sampling equilibrium in
which only strategies in this class are played, even if the tie-breaking rule is not regu-
lar. Regular tie-breaking ensures that all strategies in the class are present. And if Sk is
not a strict equilibrium class, then there must exist a strategy outside Sk that has a posi-
tive probability of being best or tied for best when only strategies in Sk are present, so a
single-class regular sampling equilibrium with support Sk is impossible, and Proposition
3 follows.

Proposition 3 is useful in identifying sampling equilibria of repeated coordination
games, such as the following, with payoffs (to the row player) given by

H L
H 2 x
L 0 1

(3)

where x < 1. By Proposition 2, the action H must be played with positive probability in
any sampling equilibrium of the T-fold repetition of this game, provided that the number
of periods is sufficiently large. This is true for any x < 1, and hence true regardless of
whether the payoff-dominant equilibrium is also risk-dominant. But Proposition 3 tells
us much more: any strict equilibrium class of the repeated game must be the support of a
sampling equilibrium. For instance, the class that results in outcomes LH (initially L fol-
lowed by H for all remaining periods) in within-class matches is a strict equilibrium class.
And other sampling equilibria are possible if strategies are restricted to those depending
only on a one-period history. In this case, as shown in Section 6, there are sampling equi-
libria involving alternation between the two stage-game pure strategy equilibria. And if
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x < 0, even the highly inefficient class that involves outcomes HL in within-class matches
is the support of a sampling equilibrium. However, it turns out that the stability refine-
ment proves is very powerful in eliminating most of these sampling equilibria.

5.3 Common Interest Games

A symmetric common interest stage game is one in which there exists a symmetric action
profile a that is preferred to all other action profiles by all players. That is, there exists
a ∈ An such that u(a) > u(a′) for all action profiles a′ 6= a. The coordination game with
payoffs (3) is an example.

If G is a common interest game, then GT is itself a common interest game, in the sense
that there exists a class of strategies in the outcome-based partition that is preferred by all
players to any strategy profile outside the class. That is, there exists a class Sk such that
π(s) < πk for all strategy profiles s /∈ Sn

k . In this case Sk is a strict equilibrium class, and
is the support of a regular sampling equilibrium. However, there may exist other strict
equilibrium classes and sampling equilibria as we have seen.

In common interest games the efficient sampling equilibrium has strong stability prop-
erties, and in two player games the only stable sampling equilibrium involve the repeated
play of the efficient action profile:

Proposition 4. If G is a common interest game, then there exists an efficient regular sampling
equilibrium of GT that is locally asymptotically stable under the dynamics (1); if G is a two-player
game then this equilibrium is almost globally asymptotically stable.

The following example illustrates both why the number of players matters, and the
crucial role played by repetition. Let G be a three player common interest game with
payoffs given by

H
H L

H (7, 7, 7) (0, 6, 0)
L (6, 0, 0) (5, 5, 0)

L
H L

H (0, 0, 6) (0, 5, 5)
L (5, 0, 5) (4, 4, 4)

where player one chooses rows, player 2 columns, and player 3 matrices. In the absence
of repetition there are just two strategies to be sampled. Note that H will be selected
under the sampling procedure if and only if both opponents also choose H when H is
sampled (otherwise the realized payoff will be zero when H is sampled, and at least 4
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when L is sampled). If the population share of those choosing H is η > 0, the likelihood
that H is selected under sampling will be η2 < η. This share will decline under the
sampling dynamics from all initial conditions, so the sampling equilibrium in which only
L is chosen is globally asymptotically stable.

Now consider the repeated game with T = 2, and suppose that players can only con-
dition second period actions on the number of opponents choosing H or L in the first
period, and not their specific identities. According to Proposition 4, there is an efficient
sampling equilibrium that is locally asymptotically stable. Note that the class of strategies
that are never the first to play L has three elements: the strategy that plays H uncondi-
tionally, the one that switches to L if one opponent initially plays L, and the strategy that
switches if both opponents play L. A strategy in this class will be selected under sampling
if and only if at least one of these three strategies is matched within-class when sampled.
The probability of this event E is

Pr(E) = 1− (1− η2)3.

It is easily verified that this exceeds η when η is close to 1. That is, there is a neighborhood
of the sampling equilibrium in which only strategies in the efficient class are played, such
that the aggregate frequency of these strategies is monotonically increasing. This efficient
sampling equilibrium is therefore locally asymptotically stable.

In this example it is also true that there is an inefficient sampling equilibrium in which
only L is chosen, and this too is locally asymptotically stable. According to Proposition 4,
this cannot happen in two player games. Efficient equilibria of two-player common inter-
est games have stronger stability properties because one does not need to simultaneously
encounter multiple within-class opponents when sampling an efficient strategy.

To this point the set of available strategies has not been restricted in any way, but
these sets can be large even with just a few repetitions, and it is worth considering natural
truncations of these sets if sampling is to be a practicable procedure. Doing so also leads
to some new insights and results.

6 Bounded Complexity

Since we are considering finite repetitions, the strategies in S can be represented by finite
automata. That is, any strategy in the repeated game may be represented by a tuple
{Q, q0, λ, µ}, where Q is a finite set of states, q0 is the initial state, λ : Q→ A is an output
function that determines which action is taken in state q ∈ Q, and µ : Q × A → Q is
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a transition function that determines the successor state, given any incumbent state and
opponent action.

One approach to modeling bounded complexity is to restrict the length of the history
on which a current action can be made contingent. This is equivalent to restricting the
set of strategies S to contain only those that can be represented using automata with a
limited number of states. When the stage game involves two actions and two players,
a natural restriction is to consider automata with at most two states (thus allowing for
conditioning on a one period history). This allows for a more detailed analysis of stable
sampling equilibria in repeated games involving cooperation and coordination.

6.1 Cooperation

Consider strategies for the repeated prisoners’ dilemma with payoffs (2) that can be im-
plemented by (at most) two state finite automata. Any such strategy may be represented
by a binary number with five bits, where the first identifies the initial state, the second and
third respectively identify the successor states when the automaton is in the cooperative
state and the opponent cooperates or defects, and the fourth and fifth bits respectively
identify the successor states when the automaton is in the defecting state and the oppo-
nent cooperates or defects.

Letting 0 stand for cooperation and 1 for defection, the number 00101 corresponds
to the tit-for-tat strategy, which cooperates initially, and regardless of its current state,
transitions to the defect state if and only if the opponent defects, and to the cooperate
state if and only if the opponent cooperates. Similarly, for any values of x and y, the
strategy 000xy cooperates always, never leaving the initial cooperate state.

There are exactly 26 behaviorally distinct strategies of this kind; see Binmore and
Samuelson (1992) for a complete enumeration. Of the 32 possible five-bit numbers, four
correspond to a strategy that always cooperates, and four to a strategy that always de-
fects, so six of the 32 possible five-bit numbers may be dropped without loss of generality.
These can be partitioned into six equivalence classes depending on the payoffs they ob-
tain in within-class matches. Let S1, ..., S6 denote these equivalence classes, in decreasing
order of self-matched payoff. The following table enumerates the six equivalence classes,
showing the binary representations, as well as the outcomes and payoffs that arise in
within-class matches (assuming an even number of repetitions).
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Class Representation In-Class Outcomes In-Class Payoff
S1 00xyz C b
S2 10xy0 DC (1 + (T − 1)b)/T
S3 01xy0 CD (b + 1)/2
S4 11xy0 DC (b + 1)/2
S5 01xy1 CD (b + (T − 1))/T
S6 1xyz1 D 1

There are four strategies representable by two-state automata in each class, as well as the
two one-state strategies that unconditionally cooperate and unconditionally defect, for a
total of 26. Within-class payoffs range from b to 1.

As we know from Proposition 2, any regular sampling equilibrium in the prisoners’
dilemma involves some cooperation: the best present class cannot be the one that de-
fects in all periods when matched within class. This still leaves open a broad range of
possibilities. A sharper characterization can be obtained if we let the strategy set S con-
tain only those strategies that can be represented by finite automata with at most two
states, which we call the repeated prisoners’ dilemma with bounded complexity. In this
game, provided that the number of repetitions exceeds the benefit-cost ratio, all permitted
strategies must be played with positive frequency in any sampling equilibrium:

Proposition 5. If T > b and σ∗ is a regular sampling equilibrium of the repeated prisoners’
dilemma with bounded complexity, then σ∗i > 0 for all si ∈ S.

Figure 1 shows the distribution of strategies at a computed stable sampling equi-
librium, ordered on the horizontal axis based on their binary representations. While
all strategies are played with positive frequency at any sampling equilibrium of this
game, there are significant differences in the frequencies with which they are played,
both across and within equivalence classes. The following table enumerates the eight
strategies played with highest frequency at the stable sampling equilibrium shown in the
figure:
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Figure 1: A stable sampling equilibrium in the repeated prisoner’s dilemma, with strategies num-
bered in order of binary representation.

Frequency Representation Class In-class Outcomes In-class Payoffs
0.206 11111 S6 D 1
0.104 01111 S5 CD (b + (T − 1))/T
0.101 11110 S4 DC (b + 1)/2
0.100 00111 S1 C b
0.094 11010 S4 DC (b + 1)/2
0.069 10110 S2 DC (1 + (T − 1)b)/T
0.056 10010 S2 DC (1 + (T − 1)b)/T
0.048 01110 S3 CD (b + 1)/2

Members of all classes are present, with the strategy of unconditional defection having
the highest frequency, being used about one-fifth of the time. The second most frequent
strategy is very similar, and switches to unconditional defection after a single period of
cooperation, regardless of the initial opponent action. This is followed by a strategy that
starts with defection and then alternates between the two actions in within-class matches,
but stays in the defecting state if the opponent cooperates unconditionally. This strategy
can exploit unconditional cooperation without sacrificing too much when encountering
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itself. Next is the grim trigger, which does extremely well in within-class matches. And
so on.

The structure of stable sampling equilibrium in this game illustrates the sharp differ-
ences that arise in comparison with standard approaches. The key criterion for survival
here is the ability to do better than other strategies when sampled, and this depends
in complex ways on the frequencies with which these other strategies are encountered.
Some strategies survive by doing well in within-class matches, while others thrive by
doing well when matched with strategies in other classes. The result is an ecology of
strategies that sustains itself and maintains considerable behavioral heterogeneity. This
is not what one finds in either the standard complete information analysis or in the repu-
tational approach.

6.2 Coordination

If the set of repeated game strategies is restricted to contain only those contingent on a
one-period history, then the total number of strategies S depends only on the number
of players and actions in the stage game, and not on the payoffs. Hence there are 26
behaviorally distinct strategies and six equivalence classes in the outcome-based parti-
tion in any 2× 2 game, including the repeated coordination game with payoffs as in (3).
Within-class payoffs range from 2 to 1, as shown in the following table:

Class Within-Class Outcomes Within-Class-Payoff
S1 H 2
S2 LH (1 + 2(T − 1))/T
S3 HL 3/2
S4 LH 3/2
S5 HL (T + 1)/T
S6 L 1

There are five strategies that are never the first to play L, and these are in class S1. Class
S2 is composed of four strategies that initially choose L, and then choose H for all other
periods when matched within-class.

We have already seen that there are at least two single-class sampling equilibria in
this game, corresponding respectively to the strict equilibrium classes S1 and S2. We also
know from Proposition 2 that there can be no sampling equilibrium in which only the
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dominated action is played, which rules out a single-class equilibrium involving S6 when
T is sufficiently large. It turns out that the repeated coordination game has at least four
and possibly five single-class equilibria:

Proposition 6. The repeated coordination game with bounded complexity has four single-class
sampling equilibria, corresponding respectively to the classes S1, ..., S4. In addition, if x < 0,
there is also a sampling equilibrium in which S5 is the only present class.

Despite the multiplicity of sampling equilibria in this repeated coordination game,
we know from Proposition 4 that all the inefficient equilibria are dynamically unstable.
This illustrates the power of the stability refinement in this game, and more generally in
repeated common interest games with many strict equilibrium classes.

7 Discussion

The concept of (payoff) sampling equilibrium, augmented with a dynamic stability refine-
ment, provides a sharp contrast with Nash equilibrium and other solution concepts. As
has been shown in previous work, strictly dominant strategies can be played with positive
probability at unique stable sampling equilibria of one-shot games, and stable sampling
equilibria in extensive form games can be far less counterintuitive and paradoxical than
subgame perfect equilibria.

This paper has considered symmetric finitely repeated games, for which quite general
results can be obtained using the device of outcome-based partitions. Stable sampling
equilibrium can give rise to significant levels of cooperation in such environments, al-
though considerable heterogeneity in strategies persists in the iterated prisoners’ dilemma.
In repeated coordination games one finds both behavioral homogeneity and a tendency
to efficiency.

A natural direction for future research would be to consider asymmetric games, with
strategies defined in a manner that is contingent on player position. That is, a strategy
would encode multiple contingent plans of actions depending on the player position
to which an individual is assigned. In this case it is meaningful to consider outcomes
that arise when strategies are self-matched, and one could proceed to explore the conse-
quences of outcome-based partitions. Contrasting the results with more standard equi-
librium approaches, especially in light of experimental and empirical regularities, would
seem to be a fruitful exercise.
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Appendix

Proof of Proposition 1. Let σ∗ denote a regular sampling equilibrium at which Sk is the best
present class. Let P denote the set of strategies present at σ∗:

P = {si | σ∗i > 0}.

Suppose, by way of contradiction, that Sk is not fully present. Then there exist si ∈ Sk

and sj ∈ Sk such that si /∈ P and sj ∈ P. Suppose that each strategy in si ∪ P is matched
within-class when sampled. This event has positive probability, since si can be matched
with sj and all strategies in P can be self-matched. Since Sk is the best present class, the
resulting payoff to si will be at least as great as that to any strategy in P conditional on this
event. Hence, either si will be tied for the best realized payoff among sampled strategies,
or there will be some other strategy sl /∈ P that is (at least) tied for the best realized payoff
among sampled strategies. Under regular tie-breaking, either wi(σ

∗) > 0 or wl(σ
∗) > 0.

But neither si nor sl are in P, so σ∗i = σ∗l = 0. Hence either wi(σ
∗) 6= σ∗i or wl(σ

∗) 6= σ∗l ,
so σ∗ cannot be a regular sampling equilibrium.

Proof of Proposition 2. Let σ∗ denote a regular sampling equilibrium at which Sk is the best
present class, and suppose that Sk is dominated. Let {at}T

t=1 denote the (symmetric) se-
quence of outcomes generated by strategies in Sk when matched within-class. Since Sk is
dominated, there exists an action ai ∈ A such that

u(ai, ..., ai) > u(at) (4)

for all t. There exists as strategy sj in Sk that generates the outcomes {at} when matched
within-class, but chooses action ai in all periods after the first when matched with a strat-
egy that plays ai unconditionally. Since Sk is fully present from Proposition 1, this strategy
is present. Now consider the following positive probability event: all present strategies
are matched within-class when sampled, and the strategy that plays ai unconditionally
is matched with sj when sampled. If T is sufficiently large, then from (4), the strategy
that plays ai unconditionally will obtain a higher payoff under this event that any present
strategy. Hence it must also be present. But this strategy belongs to a better class than Sk,
which contradicts that hypothesis that Sk is the best present class at σ∗.

Proof of Proposition 3. Suppose Sk is a strict equilibrium class. Then π(si, s−i) < πk for
all si /∈ Sk and s−i ∈ Sn−1

k . At any population state σ whose support is a subset of Sk,
only strategies in Sk can be selected under sampling. Furthermore, all strategies in Sk get
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the same payoff against σ, so all must be selected with positive probability under regular
tie-breaking. Hence there exists a single-class sampling equilibrium with support Sk.

To prove the converse, suppose that there exists a single-class sampling equilibrium
σ∗ with support Sk. If Sk is not a strict equilibrium class, then there exists si /∈ Sk and s−i ∈
Sn−1

k such that π(si, s−i) ≥ πk. Consider the following positive probability event: when
si is sampled the opponents play s−i, resulting in a payoff of at least πk. Not that since
all present strategies belong to Sk, they must be matched within-class when sampled, and
thus obtain payoff πk. Hence si has a positive probability of selection, contradicting the
hypothesis that it is played with zero probability at the sampling equilibrium σ∗.

Proof of Proposition 4. Let σ∗ denote the efficient regular sampling equilibrium of a re-
peated common interest game GT, S1 the highest payoff class that is its support, and
m1 = |S1| the number of strategies present at this equilibrium. Consider any state σ ∈
int(∆). Let

η = ∑
si∈S1

σi

denote the frequency with with strategies in S1 are played at σ. Since σ ∈ int(∆), we have
η > 0. Any given strategy si ∈ S1 is matched within class with probability ηn−1, and
matched outside class with probability 1− ηn−1. The probability that all m1 strategies in
S1 are matched outside class is therefore (1− ηn−1)m1 . Let E denote the following event:
when all strategies are sampled against σ, at least one strategy si ∈ S1 is matched within-
class. The likelihood of this event is

Pr(E) = 1− (1− ηn−1)m1 . (5)

First consider the case n = 2. Since m1 > 2, we have

Pr(E |n = 2) = 1− (1− η)m1 > 1− (1− η)2 = 2η − η2 > η

for all η ∈ (0, 1). If E occurs, then at least one strategy in S1 yields the highest attainable
payoff, since G is a common interest game. In this case no strategy sj /∈ S1 can be selected
under sampling. Hence

∑
si∈S1

wi(σ) > η = ∑
si∈S1

σi.

Under the sampling dynamics (1), we therefore have

∑
si∈S1

σ̇i = ∑
si∈S1

(wi(σ)− σi) > 0.

The above reasoning holds not only for σ ∈ int(∆), but for all σ such that η > 0. That
is, along any trajectory that is initially at σ(0) ∈ int(∆), we have η increasing for all
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σ(t), regardless of whether such trajectories remain in the interior of ∆, as long as η < 1
continues to hold. Hence limt→∞ η = 1 and GT has an almost globally stable sampling
equilibrium in which all present strategies are members of S1.

Now consider the case of n ≥ 3, and note that m1 > n (the number of strategies in this
class must exceed the number of players). Using (5), define

φ(η) = Pr(E)− η = 1− (1− ηn−1)m1 − η

so that
φ′(η) = m1(n− 1)(1− ηn−1)m1−1ηn−2 − 1.

Note that φ(1) = 0 and φ′(1) = −1. Since φ is continuous, we therefore have φ(η) >

0 for η sufficiently close to 1. As in the two player case, if E occurs, then at least one
strategy in S1 yields the highest attainable payoff and no strategy sj /∈ S1 can be selected
under sampling. That is, there exists a neighborhood of the efficient sampling equilibrium
within which

∑
si∈S1

wi(σ) > η = ∑
si∈S1

σi

whenever η 6= 1. Hence

∑
si∈S1

σ̇i = ∑
si∈S1

(wi(σ)− σi) > 0

in this neighborhood, and the efficient sampling equilibrium is locally asymptotically
stable under the dynamics (1).

Proof of Proposition 5. Let σ∗ denote a regular sampling equilibrium of the repeated pris-
oners’ dilemma with bounded complexity, and suppose that T > b. The proof is com-
pleted in four steps, with each claim following from the previous ones. Specifically, at σ∗,
(1) unconditional defection is present, (2) the class S6 is fully present, (3) unconditional
cooperation is present, and (4) all strategies are present.

1. Unconditional defection is present at σ∗. To see why, let Sk denote the best present
class at σ∗. If this class is S6, then S6 must be fully present from Proposition 1,
and since unconditional defection is a member of S6, it must also be present. Now
suppose that S6 is not the best present class at σ∗, so k ≤ 5. Note that each class
Sk with k ≤ 5 contains a strategy that cooperates in all periods, except possibly
the first, when matched with unconditional defection. In class S1 such a strategy is
unconditional cooperation. In classes S2–S5 respectively, such strategies are shown
in Figure 2. In the figure, the node on the left in each case is the initial state, and the
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Figure 2: Strategies that cooperate for all or almost all periods when matched with unconditional
defection, in classes S2–S5 respectively.

arrows and associated actions describe the conditions for transitions between states.
Regardless of which class is the best present, therefore, there must exist at least one
strategy that is present and that generates a payoff to unconditional defection that
is at least

1 + (T − 1)(b + 1)
T

> b

given T > b. If all present strategies are matched within-class when sampled, the
highest attainable payoff is b. If unconditional defection is matched with the most
favorable present strategy, then it obtains a payoff greater than b, and hence greater
than that of any present strategy, unless it is itself present. Hence unconditional
defection must be present at σ∗.

2. The class S6 is fully present at σ∗. To see why, suppose that si ∈ S6 is not present.
Since unconditional defection is present, there is a positive probability that all present
strategies are matched with unconditional defection when sampled. This results in
payoff at most 1, which is also the payoff obtained by si when sampled against un-
conditional defection. So si has a positive probability of being at least tied for best
when sampled, and must therefore be present.

3. Unconditional cooperation is present at σ∗. Let sj denote the strategy of uncondi-
tional cooperation. Since S6 is fully present, there exists a strategy that cooperates
in almost all periods when matched with sj; see Figure 3 for an illustration. If this
strategy is encountered when sj is sampled, the payoff to sj is (T − 1)b/T, which
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Figure 3: A strategy in S6 that cooperates in almost all periods when matched with unconditional
cooperation.

exceeds 1 when T ≥ 2. All present strategies get at most 1 when sampled against
unconditional defection, which also happens with positive probability since S6 is
fully present. Hence there is a positive probability that sj is best under sampling,
and must therefore be present at σ∗.

4. All strategies are present at σ∗. Suppose some strategy sl is not present, but is
matched with unconditional cooperation when sampled, getting at least b, while
all others are matched with unconditional defection when sampled, getting at most
1. In this case sl must be selected with positive probability at σ∗, contradicting the
hypothesis that it is not present.

Proof of Proposition 6. Given Proposition 3, to show that a single-class equilibrium with
support Sk is present, we need only show that Sk is a strict equilibrium class.

First consider class S1 with within-class outcomes H and payoff π1 = 2. This is clearly
a strict equilibrium class, so there exists a sampling equilibrium with support S1.

Next consider S2, with within class outcomes LH and payoff π2 = (1 + 2(T − 1))/T.
For any strategy si /∈ S2 and sj ∈ S2 there must be some period t in which the outcome
deviates from the symmetric play of LH for the first time. In this period the outcome is
asymmetric, so ut(si, sj) < 1 ≤ ut(sj, sj). In all periods after t the payoff to si is at most 2,
while in periods before t the payoff is equal to that which sj obtains when matched within
class. Hence π(si, sj) < π2. Since this holds for all si /∈ S2, S2 is a strict equilibrium class,
and there exists a sampling equilibrium with support S2.

Next consider S3, with within-class outcomes HL. Suppose that a strategy si /∈ S3 is
matched with some strategy sj ∈ S3. Note that since sj ∈ S3, this strategy will choose ac-
tion L following outcome (H, H). Hence the outcome (H, H) can only arise in at most half
the periods (if T is even) or at most (T + 1)/2 periods (if T is odd). In remaining periods
the highest payoff is obtained by coordination on L. This is precisely the sequence of out-
comes that arises when sj is matched within-class. Since si /∈ S3, the resulting outcomes
must result in a strictly lower payoff to si than is obtained when sj is matched within-
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class. That is, S3 is a strict equilibrium class, and there exists a sampling equilibrium with
support S3.

The case of S4, with within-class outcomes LH, is virtually identical. Suppose that
a strategy si /∈ S4 is matched with some strategy sj ∈ S4. Since sj ∈ S4, this strategy
will choose action L following outcome (H, H). Hence the outcome (H, H) can only arise
in at most half the periods (if T is even) or at most (T − 1)/2 periods (if T is odd). In
remaining periods the highest payoff is obtained by coordination on L. This is precisely
the sequence of outcomes that arises when sj is matched within-class. Since si /∈ S4, the
resulting outcomes must result in a strictly lower payoff to si than is obtained when sj is
matched within-class. That is, S4 is a strict equilibrium class, and there exists a sampling
equilibrium with support S4.

Finally consider S5, with within class outcomes HL and payoff π5 = (T + 1)/T > 1.
Suppose x < 0. To show that S5 is a strict equilibrium class, it suffices to show that
π(si, sj) < π5 whenever si /∈ S5 and sj ∈ S5. Suppose first that si involves the play of H
initially, generating outcome (H, H). This outcome must occur again if π(si, sj) ≥ π5 is to
hold; otherwise all remaining periods involve either miscoordination or coordination on
L, with miscoordination in at least one period, since si /∈ S5. There are just four possible
outcome paths that result in a return to (H, H), given that sj ∈ S5, and these are as follows:

(H, H) → (H, L) → (H, H)

(H, H) → (H, L) → (L, H) → (H, H)

(H, H) → (L, L) → (H, L) → (H, H)

(H, H) → (L, L) → (H, L) → (L, H) → (H, H)

These are the only possibilities because sj plays L after either symmetric outcome, and
all other feasible paths never return to (H, H). It is easily verified that in all four cases,
π(si, sj) < π5. The case where si initially plays L can be dealt with similarly. In either
case, S5 is a strict equilibrium class, and there exists a sampling equilibrium with support
S5.

If x > 0, however, S5 is not a strict equilibrium class, and there exists no sampling
equilibrium with support S5 as long as T is sufficiently large. To see this, note that there
exists a strategy sj ∈ S5 that chooses H initially and after any asymmetric outcome, and
chooses L after any symmetric outcome; see Figure 4 for an illustration. Consider strategy
si matched with sj, where si chooses H unconditionally. The resulting sequence of stage
game payoffs to si is {2, x, 2, x, ...}. Suppose x ≥ 0 and T is odd. Then

π(si, sj) =
2 + (x + 2)(T − 1)/2

T
≥ T + 1

T
= π5.
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Figure 4: A strategy that plays H initially and after asymmetric outcomes, and plays L otherwise.

Hence there cannot be a sampling equilibrium with S5 as the best present class as long as
x ≥ 0, and T is odd and at least equal to 3. If T is even, then

π(si, sj) =
2 + x

2
≥ T + 1

T
= π5

as long as T > T = 2/x. As long as x > 0 there exists such a T, and hence S5 is not a strict
equilibrium class when T is sufficiently large.
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