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Abstract

In this paper we introduce the notion of group contributions in TU games and propose

a new value which we call the k-lateral value. The Shapley like values implicitly assume

that players are independent in deciding to leave or join a coalition. However, in many

real life situations players are bound by the decisions taken by their peers. This leads

to the idea of group contributions where we consider the marginality of groups upto a

certain size. We show that group contributions can play an important role in determining

players’ shares in the total resource they generate. The proposed value considers both

egalitarianism and marginalism and thus is a member of the class of solidarity values. We

provide two characterizations of our value.
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1 Introduction

Most of the values in TU games revolve around the notion of marginalism or egalitarianism

or both, depending upon the problem domains. In this paper we introduce the idea of group

contributions of players and propose a new value– the k-lateral value– that is attributed to

both marginalism and egalitarianism. We provide two axiomatic characterizations of this

value and compare it to other values of TU games in the literature.
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Perhaps the most widely used allocation rule to share the joint costs or the joint surplus

in smaller coalitions is the Equal division rule. This rule seems prevalent even when there are

obvious di↵erences in the individual contributions by the members in a coalition. Examples

include the profit sharing of law firms where the member lawyers of the firm get equal shares

of the profit irrespective of how they di↵er in their abilities in various dimensions. Another

example is that of sharing the resources in a family. In deciding the family laws, e.g., the

Hindu Undivided Family (HUF) inheritance law, the equality principle is the main underlying

idea. All the siblings in an HUF, which can include up to several generations, have equal

inheritance rights on the property of the family. Their rights do not depend on their individual

contributions in the family wealth. An interesting example discussed in [11] is that of the

sharing of the profits by the salmon fishermen in the Pacific Northwest. There are fishing

groups who share the information on the whereabouts of the hunts within the group. It is

a common knowledge within the group about who is good at finding the schools of Salmon,

but there is no provision of side payments. Many times the coalitions of limited size tend

to be formed amongst homogeneous agents who are similar in some attributes viz., their

abilities (see e.g., [11]). In other words, there is an ordering of the agents based on, say, their

productivity. Coalitions are formed as intervals1 on that ordering. However, when there are

complementarities among the agents, which is inherently the case in characteristic function

form TU games, such orderings cannot be made.

Therefore, in our paper we propose a value for TU games which considers all the pos-

sible coalitions of certain size as equally probable. We focus on the new notion of group

contributions of players within a coalition. Group contributions of players within a coalition

must be considered when players are unable to take independent decisions to join or leave a

coalition alone. There could be no way to identify who is responsible the most and who is the

least among the contributors. Thus it is reasonable to split such group contributions equally

amongst the members of the coalitions and to add it to the payo↵ to each player along with

the shares from her own individual contributions. In some other situations, it so happens

that adding the shares from the group contributions to a player’s payo↵s brings about her

solidarity to her peers and integrity to the organization. Such gestures are important in or-

ganizations having employees of almost similar capacities and e�ciencies. Our value includes

both individual marginal contributions of the players which is standard in all Shapley like

solutions and the equal shares from their group contributions.

The implicit idea of group contributions is, however, not new in the literature of TU

games. Grabisch [12] proposed a model where the players in a coalition interact with each

other to form groups based on the similar interests. Alternatively, in TU games with coalition

structures (see for example [1, 13, 15, 19] etc.) the grand coalition is partitioned into groups

or union structures. The value is then computed in two stages: first, among the groups of the

coalition structure and next, among the coalition members. All such models however, assume

1By an interval we mean a subset of the agents who are consecutive in the ordering.
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that the coalition structure is given endogeneously and therefore the group sizes are also fixed

a priori. In our proposed model, we allow all possible coalition structures where the group

sizes can vary over a range of possible values. Motivated by the original Shapley’s rule of

counting and also the procedure proposed by Owen[19] and Kamijo [16], we allow the players

to enter a room following an order to form the grand coalition and find their contributions in

groups. The size of such groups ranges from 1 to some pre-defined index k.2

Next we count the number of the group contributions so obtained. Our value then divides

these contributions equally among the group members from all possible formations of groups

and all possible orders of entrance. It follows that under the present framework, the Shapley

value considers the contributions of all groups of size 1 and therefore, our value recovers the

Shapley value under the special case k = 1. Consequently the interactions among the players

responsible for generating group contributions of group size 1 can be termed as the individual

interactions. Thus, the Shapley value builds on this notion of individual interactions. A

k � 1 signifies the maximum allowable level of group interactions within a coalition: call it

the k-lateral interaction. We call our value the k-lateral value to highlight this interaction.

It is worth noting that when k = n, the k-lateral value is the average of the Shapley value

and the Equal Division. This is indeed the ↵-Egalitarian Shapley value for ↵ = 1
2 introduced

by Joosten [14] and latter discussed in details by van den Brink et al. [26]. Thus our value

takes the Shapley value on one extreme (k = 1) and the 1
2 -Egalitarian Shapley value (k = n)

on the other extreme.

Recall that the Shapley value is characterized by e�ciency, symmetry, linearity and the

null player property. The di↵erence among the Shapley like values is commonly explained

from the viewpoint of who obtains a zero payo↵, see [16, 25, 21]. In [24], the null player

axiom, where players with zero productivity get zero payo↵ is replaced by the nullifying

player axiom. According to this axiom, players having the property that their inclusion in

a coalition makes the coalition non-productive, get zero payo↵. The nullifying player axiom

leads to the characterization of the Equal division. Similarly in the characterization of the

solidarity value in [18], the null player axiom is replaced by the A-null player axiom where

players show solidarity to the non-productive players in the game by sharing some of their

marginal contributions. Alternative characterizations of the Shapley and solidarity values

that follow similar arguments can be found in [2, 6, 23] etc.

In our characterizations, we consider two types of null players, we call them the k-null

players of type I and type II or simply the k1 and k2-null players. Both these k-null players

contribute nothing in groups on an average and our value awards them zero payo↵s. The

axioms on these two types of k-null players are less extreme than both the null player and

the nullifying player. Consequently, our value is less marginalistic than the Shapley value and

also less egalitarian than the Equal Division.

The rest of the paper proceeds as follows. In Section 2 we present the preliminary concepts

2In section 3 we give a more formal definition.
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pertaining to the development of the paper. Section 3 describes a procedure to compute the

k-lateral value followed by its characterization using some standard axioms in Section 4.

Section 5 details an example and finally Section6 concludes.

2 Preliminaries

Let N ⇢ N be a finite set of players and v : 2N ! R with v(;) = 0 a characteristic function.

A pair (N, v) is a cooperative game with transferable utility, or simply, a TU-game. Subsets

of N are called coalitions. Thus for S 2 2N , v(S) denotes the worth generated by the players

in S under some binding agreement. With some abuse of notations we denote the singleton

sets without braces. Thus we write S[ i for S[{i}, S \ i for S \{i} etc. The size (cardinality)

of coalition S is denoted by the corresponding lower case letter s. Let G(N) denote the class

of all TU games with player set N . G(N) forms a vector space of dimension 2n � 1 under the

standard addition and scalar multiplication of set functions. If no ambiguity about N arises,

we denote the TU game (N, v) simply by v.

The increase or decrease in worth when player i 2 S ✓ N leaves coalition S is called the

marginal contribution of player i in the coalition S which is denoted by mv
i (S) and is given

by

mv
i (S) = v(S)� v(S \ i). (2.1)

The unanimity games uT : 2N ! R , T ✓ N is defined as follows.

uT (S) =

(
1 if T ✓ S

0 otherwise
(2.2)

The class of unanimity games is a basis for the linear space G(N).

A value on G(N) is a function that assigns a single payo↵ vector �(v) = (�i(v))i2N 2 Rn

to every game v 2 G(N). Di↵erent values have been proposed in the literature since the

introduction of the Shapley value (see, e.g., [2, 5, 6, 7, 17]). Here we mention briefly about

the Shapley value, the Equal Division and the ↵-egalitarian Shapley value as they are closely

related to our proposed value. Recall Shapley’s interpretation of the Shapley value from

Section 1 (also see [4]) that says that suppose the “grand coalition” N = {1, 2, ..., n} forms

in a way such that the players enter the coalition one by one. This order of entrance can be

expressed by a permutation ⇡ : N ! N of the players. Let the collection of all permutations

on N be denoted by ⇧(N). For every ⇡ 2 ⇧(N), let P (⇡, i) = {j 2 N |⇡(j) < ⇡(i)} be

the set of players that enter before player i in the order ⇡. The Shapley value [22] is the

solution �Sh : G(N) ! Rn that assigns to every player i her expected marginal contribution

in P (⇡, i)[ i, given that every order of entrance ⇡ has equal probability of 1
n! to occur and is

given by,
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�Sh
i (v) =

1

n!

X

⇡2⇧(N)

[v(P (⇡, i) [ i)� v(P (⇡, i))] (2.3)

After simplifications Eq.(2.3) becomes,

�Sh
i (v) =

X

S✓N : i2S

(s� 1)! (n� s)!

n!
[v(S)� v(S \ i)] (2.4)

or

�Sh
i (v) =

X

S✓N

s! (n� s� 1)!

n!
[v(S [ i)� v(S)], 8v 2 G(N). (2.5)

The Equal division rule is a solution �ED : G(N) ! Rn that distributes the worth v(N) of

the grand coalition equally among all players in any games, i.e.,

�ED
i (v) =

v(N)

n
, 8v 2 G(N). (2.6)

For ↵ 2 [0, 1], the ↵-egalitarian Shapley value �↵�ES due to [14] is a convex combination of

�ED and �Sh which has the following form.

�↵�ES
i (v) = ↵�ED

i (v) + (1� ↵)�Sh
i (v), 8v 2 G(N). (2.7)

It follows from Eq.(2.7), that the parameter ↵ in �↵�ES determines the amount of solidarity

that is shown among the players in sharing the wealth.

For the game v 2 G(N), a player i 2 N is called a null player if for every coalition

S ✓ N , we have v(S) = v(S \ i). A player i 2 N is called a nullifying player if v(S) = 0

for all coalitions S such that i 2 S. There has been a number of characterizations of the

Shapley value, the Equal division rule and the ↵-egalitarian Shapley value in the literature

(see, e.g., [7, 8, 9, 10, 29, 30]). Following four axioms are standard to characterize the Shapley

value.

Axiom 1. E�ciency (E↵ ): A value � : G(N) ! Rn is e�cient if for each game v 2 G(N) :

X

i2N
�i(v) = v(N)

Axiom 2. Null Player (NP): A value � : G(N) ! Rn satisfies the null player axiom if for

every game v 2 G(N) it holds that �i(v) = 0 for every null player i 2 N .

Axiom 3. Symmetry (Sym): A value � : G(N) ! Rn satisfies Symmetry if for i, j 2 N such

that v(S [ i) = v(S [ j) for all S ✓ N \ {i, j}, then �i(v) = �j(v).

Axiom 4. Linearity (Lin): A value � : G(N) ! Rn is linear if for all games u,w 2 G(N)

every pair of ↵,� 2 R and every player i 2 N :

�i(↵u+ �w) = ↵�i(u) + ��i(w).
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Replacing the null player axiom NP by the axiom of nullifying player namely, the nullifying

player gets zero payo↵, the Equal division rule can be characterized [24]. The axiom of null

player in a productive environment (NPE ) states that for all v 2 G(N) and i 2 N such that

i is a null player in v and v(N) � 0 then �i(v) � 0. The NPE along with E↵, Sym and Lin

characterize the ↵-egalitarian Shapley value [7].

A value that satisfies E↵, Sym and Lin is called an ESL value [21]. We will use the

following proposition from [21] for characterization of our k-lateral value at a latter stage.

Proposition 1. (Proposition 2 in [21], pp 184) A value �ESL
on G(N) is an ESL value if

and only if there exists a unique collection of real constants B = {bs : s 2 {0, 1, 2, 3, ..., n}}
with b0 = 0 and bn = 1 such that for every v 2 G(N),

�ESL
i (v) =

X

S⇢N\i

s!(n� s� 1)!

n!

⇢
bs+1v(S [ i)� bsv(S)

�
(2.8)

or equivalently,

�ESL
i (v) = �Sh

i (Bv) (2.9)

where (Bv)(S) = bsv(S) for each coalition of size s.

3 The k-lateral value

In this section we introduce our new value for TU Cooperative games : the k-lateral value. As

mentioned in Section 1, our approach resembles with Shapley’s [22] approach where the players

are allowed to enter into a coalition prescribed by a particular order assuming that all possible

orders of entrance have equal probabilities. Motivated by the procedure of counting adopted

originally by Shapley[22], Owen [19] and Kamijo [16], we compute the group contributions of

the players over all orders of entrance into forming the grand coalition, and allow each member

in this group to receive equal shares from their group contributions. Let N = {1, 2, 3, ..., n}
be given. In Shapley’s procedure, the marginal contributions of each player are computed

immediately after she joins the other players who have entered before her. In Owen’s and

Kamijo’s procedure, the players join a coalition one by one following an order but their

contributions are computed from the components of the fixed coalition structure. In our

counting process also, the players are allowed to enter according to the same order ⇡ one by

one but we wait till they form groups of a particular size. Let ; = S0 ⇢ S1 ⇢ S2 ⇢ S3 ⇢
... ⇢ Sm�1 ⇢ Sm = N be one such sequence of coalition formation. Fix a k: 1  k  n, such

that k is the maximum allowable size of these groups i.e., |Sj \ Sj�1|  k for 1  j  m. The

group contribution of Sj \ Sj�1, for 1  j  m is given by v(Sj) � v(Sj�1). Thus the equal

share of each player i 2 Sj \Sj�1 from this group contribution denoted by Av
i (Sj) is given by

Av
i (Sj) =

v(Sj)� v(Sj�1)

|Sj � Sj�1|
, 8i 2 Sj \ Sj�1 (3.1)
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Note that in particular, when |Sj \ Sj�1|  1 then we have m = n and obtain the standard

marginal contributions of the individual players given in Eq.(2.1) i.e., mv
i (Sj) = Av

i (Sj). Now

each sequence of coalitions of the form ; = S0 ⇢ S1 ⇢ S2 ⇢ S3 ⇢ ... ⇢ Sm�1 ⇢ Sm = N

with |Sj \ Sj�1|  k for 1  j  m where the players follow a particular order ⇡ (say) of

entrance gives rise to a sequence of pairwise disjoint groups C⇡ = {C⇡
1 , C

⇡
2 , ..., C

⇡
m} of N

such that Sj = [j
r=1C

⇡
r , 1  j  m (equivalently C⇡

j = Sj \ Sj�1) with maxmr=1 c
⇡
r  k.

Let us call such a C⇡ = {C⇡
1 , C

⇡
2 , ..., C

⇡
m} a partition of N prescribed by ⇡. Conversely,

given a partition C = {C1, C2, ..., Cm} prescribed by an order ⇡, there is always a sequence

; = S0 ⇢ S1 ⇢ S2 ⇢ S3 ⇢ ... ⇢ Sm�1 ⇢ Sm = N with Sj = [j
r=1Cr, 1  j  m.

Define by index(C⇡) = maxmj=1 c
⇡
j the index of a partition C⇡ prescribed by an order ⇡.

Let ⇧(N, k) =

⇢
C⇡ = {C1, C2, ..., Cm} | ⇡ 2 ⇧(N)

�
be the set of all partitions on N

with index(C)  k prescribed by each partition ⇡ 2 ⇧(N). It follows that for each C =

{C1, C2, ..., Cm} 2 ⇧(N, k), there exists

(a) a unique order ⇡C such that if Ci = {i1, i2, ..., ici} for 1  i  m then ⇡C(ij) =
Pi�1

p=1 cp + j for all 1  j  ci.

(b) a unique sequence c = {c1, c2, ..., cm} of positive integers containing at most n terms

such that
Pm

p=1 cp = n. Thus the members of the sequence c represents the cardinalities

of the groups of players within N .

Conversely for a permutation ⇡ on N and a sequence {c1, c2, ..., cm} of positive numbers

which sums upto n determines a unique partition C = {C1, C2, ..., Cm} on N such that

Ci = {⇡�1(
Pi�1

q=1 cq + 1), ...,⇡�1(
Pi�1

q=1 cq + ci)} for 1  i  m.

Let B(n, k) be the set of all finite sequences {c1, c2, ..., cm} of positive integers with
Pm

i=1 ci = n and 1  ci  k for 1  i  m. It is obvious that 1  m  n. Clearly there is

a bijection ⇧(N, k) $ ⇧(N) ⇥ B(n, k) such that C $ (⇡C , c). Let ↵(n, k) = |B(n, k)|. Thus

↵(n, k) denotes the number of partitions with index(C)  k that can form with n players.

This idea can be easily extended to any arbitrary coalition S ✓ N and we can define ↵(s, k)

exactly in the same manner. Now, observe that |⇧(N, k)| = |⇧(N)|↵(n, k) = n!↵(n, k). For

each C 2 ⇧(N, k) and i 2 N , there exists some p with 1  p  m such that i 2 Cp. Define

the following set.

P (C, i) = {j 2 N : ⇡C(j) < min
r2Cp

⇡C(r)}.

Following Eq.(3.1), the equal share of player i from her group contribution in P (C, i) [ Cp

when she is in Cp 2 C 2 ⇧(N, k) is given by,

Av
i (P (C, i) [ Cp) =

1

cp

⇢
v(P (C, i) [ Cp)� v(P (C, i))

�
(3.2)

We call Av
i (P (C, i) [ Cp) the group contribution of i from Cp with respect to C to make it

short. Now we define the k-lateral value as follows.
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Definition 1. The k-lateral value �k : G(N) ! Rn is a value that assigns to every player

i 2 N her average group contributions from each member Cp with respect to all the partitions

C 2 ⇧(N, k), following all possible orders of entrance with the assumption that occurrence of

each order of entrance has equal probability
1

|⇧(N, k)| . Formally we have,

�k
i (v) =

1

n!↵(n, k)

X

C2⇧(N,k)
Cp2C:i2Cp

Av
i (P (C, i) [ Cp) (3.3)

Remark 1. Note that the contributions of the groups within a coalition described in Eq.(3.3)

include the individual contributions of the player given by Eq.(2.1). This addresses the

marginal prospects of �k(v). Adding equal shares from the group contributions to the final

payo↵ of a player prescribed by �k gives an egalitarian flavour to the solution. Thus �k

brings a kind of solidarity into the model.

For our convenience, we take ↵(0, k) = 1. Following standard derivations of ↵(s, k) for

di↵erent combinations of the parameters s and k are important for the rest of the paper. The

proofs of these results have been relegated to the appendix.

Proposition 2. For S ✓ N , the quantity ↵(s, k) satisfies the following.

(a) For s � k � 1,

↵(s, k) =
sX

r=1

n�s�1
r�1

�
+
P[ s�r

k ]
i=1 (�1)i

�r
i

��s�ik�1
r�1

�o
(3.4)

(b) For k = 1 and all s � 1, ↵(s, k) = 1.

(c) For s  k, ↵(s, k) = 2s�1.

(d) For s > k, we have
kX

t=1

↵(s� t, k) = ↵(s, k) (3.5)

(e) For s  k,
Ps

t=1 ↵(s� t, k) = ↵(s, k).

Example 1. Let us take an example to illustrate the computational procedure of the k-lateral

value described above. Take N = {1, 2, 3, 4} and k = 2. In view of Proposition 2, we have

↵(4, 2) = 5. Therefore there will be 5 di↵erent sequences of positive integers 1 and 2 (since

k = 2 here) for each order. They are : c1 = {1, 1, 1, 1}, c2 = {1, 2, 1}, c3 = {1, 1, 2}, c4 =

{2, 1, 1} and c5 = {2, 2}. There will be n! = 4! = 24 orders in which the players enter the room

and form groups within coalitions. Consider in particular, the order given by ⇡1 = {1, 2, 3, 4}.
Then the pair (⇡1, c1) uniquely determines the partition C1

⇡1
= {{1}, {2}, {3}, {4}}. Similarly

we get the other partitions with respect to the pairs (⇡1,c2), (⇡1,c3), (⇡1,c4) and (⇡1,c5)

as C2
⇡1

= {{1}, {2, 3}, {4}}, C3
⇡1

= {{1}, {2}, {3, 4}}, C4
⇡1

= {{1, 2}, {3}, {4}} and C4
⇡1

=
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{{1, 2}, {3, 4}} respectively. In Table 1, we identify the worths of the coalitions required for

computing the group contributions with regard to each of the four partitions prescribed by

order ⇡1.

⇡1

Sj/Ci ; {1} {2}{3}{4} {1, 2} {1, 3}{1, 4}{2, 3}{2, 4}{3, 4} {1, 2, 3} {1, 2, 4}{1, 3, 4}{2, 3, 4} N

C1
⇡1

v(;)v(1) ⇥ ⇥ ⇥ v(1, 2) ⇥ ⇥ ⇥ ⇥ ⇥ v(1, 2, 3) ⇥ ⇥ ⇥ v(N)

C2
⇡1

v(;)v(1) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ v(1, 2, 3) ⇥ ⇥ ⇥ v(N)

C3
⇡1

v(;)v(1) ⇥ ⇥ ⇥ v(1, 2) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ v(N)

C4
⇡1

v(;) ⇥ ⇥ ⇥ ⇥ v(1, 2) ⇥ ⇥ ⇥ ⇥ ⇥ v(1, 2, 3) ⇥ ⇥ ⇥ v(N)

C5
⇡1

v(;) ⇥ ⇥ ⇥ ⇥ v(1, 2) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ v(N)

Table 1: Coalitional worths required for the group contributions according to ⇡1

Table 2 refers to the shares from each of the group contributions made by the players

prescribed by the partition ⇡1. Shares due to other orders can be obtained in a similar way.

⇡1

1 2 3 4

C1
⇡1

v(1)� v(;) v(1, 2)� v(1) v(1, 2, 3)� v(1, 2) v(1, 2, 3, 4)� v(1, 2, 3)

C2
⇡1

v(1)� v(;) 1
2 [v(1, 2, 3)� v(1)] 1

2 [v(1, 2, 3)� v(1)] v(1, 2, 3, 4)� v(1, 2, 3)

C3
⇡1

v(1)� v(;) v(1, 2)� v(1) 1
2 [v(1, 2, 3, 4)� v(1, 2)] 1

2 [v(1, 2, 3, 4)� v(1, 2)]

C4
⇡1

1
2 [v(1, 2)� v(;)] 1

2 [v(1, 2)� v(;)] v(1, 2, 3)� v(1, 2) v(1, 2, 3, 4)� v(1, 2, 3)

C4
⇡1

1
2 [v(1, 2, 3, 4)� v(3, 4)] 1

2 [v(1, 2, 3, 4)� v(3, 4)] 1
2 [v(1, 2, 3, 4)� v(1, 2)] 1

2 [v(1, 2, 3, 4)� v(1, 2)]

Table 2: Share of group contributions from Ci
⇡1
, i 2 N .

Recall that in the computation of the Shapley value, each order ⇡ gives one set of marginal

contributions of the players when they form the grand coalition according to ⇡. Here we have

5 (= ↵(n, k)) sets of alternative group contributions.

After using standard rules of combinatorics and Proposition 2, an equivalent expression

of Eq.(3.3) is obtained as follows.

�k
i (v) =

X

S✓N :i2S

X

T✓S : i2T
1tk

(t� 1)!(n� s)!(s� t)!↵(s� t, k)↵(n� s, k)

n!↵(n, k)
{v(S)� v(S \ T )}

(3.6)

Remark 2. Note that using the standard rules mentioned in Proposition 2 and following the

counting procedure described above we observe the following.

Given T ✓ N such that t  k, the probability of forming a coalition S such that T ✓ S is

given by
(n� s)!(s� t)!t!↵(n� s, k)↵(s� t, k)

n!↵(n, k)
. The average group contribution of player i

from T is therefore given by v(S)�v(S\T )
t . Now the expectation Ei(v) of the average group

contributions of i 2 N over all the coalitions S and all T ✓ S such that i 2 T , 1  t  k is

9



given by

Ei(v) =
X

S✓N :i2S

X

T✓S : i2T
1tk

(n� s)!(s� t)!(t)!↵(n� s, k)↵(s� t, k)

n!↵(n, k)

⇢
v(S)� v(S \ T )

t

�

=
X

S✓N :i2S

X

T✓S : i2T
1tk

(n� s)!(s� t)!(t� 1)!↵(n� s, k)↵(s� t, k)

n!↵(n, k)

⇢
v(S)� v(S \ T )

�
,

It follows from Eq.(3.6) that Ei(v) = �k
i (v). Thus �

k is the expectation of the average group

contributions of player i due to game v.

4 Characterization

In this section, we follow the standard Shapley procedure to characterize our k-lateral value.

First we show that the value satisfies E↵, Sym and Lin. We define two types of null players and

accordingly define two alternative axioms on these null players, namely (kNP1 and kNP2).

They replace the standard null player axiom NP of the Shapley value. We show that our

value satisfies both these two null player axioms. For the converse part, i.e., to show that a

value that satisfies E↵, Sym, Lin and kNP1 or kNP2 must be the k-lateral value, we adopt

the following procedure. Due to Lin it is su�cient to define a basis for the class of games.

Due to Symmetry, the k-lateral value gives equal shares to the members of the coalition on

which the basis is defined and all the other players outside this coalition get zero payo↵s

following either of kNP1 or kNP2. It is then not hard to show that the k-lateral value is the

unique value satisfying the aforementioned axioms.

Proposition 3. The k-lateral value �k
with k � 1 satisfies E↵, Sym and Lin.

Proof. We have from Eq.(3.6) the following.

�k
i (v) =

X

S✓N :i2S

X

T✓S : i2T
1tk

(t� 1)!)(n� s)!(s� t)!↵(s� t, k)↵(n� s, k)

n!↵(n, k)

⇢
v(S)� v(S \ T )

�

(4.1)

Rewrite Eq. (4.1) as follows.

�k
i (v) =

X

S✓N :i2N\S

X

T✓N\S : i2T
1tk

(t� 1)!)(n� s� t)!(s)!↵(s+ t, k)↵(n� s� t, k)

n!↵(n, k)
{v(S[T )�v(S)}

Therefore,

10



nX

i=1

�k
i (v) =

X

S✓N

X

i2S

X

T✓S : i2T
1tk

(t� 1)!(n� s)!(s� t)!↵(s� t, k)↵(n� s, k)

n!↵(n, k)
{v(S)� v(S \ T )

�
X

S✓N

X

i2N\S

X

T✓N\S : i2T
1tk

(t� 1)!)(n� s� t)!(s)!↵(s, k)↵(n� s� t, k)

n!↵(n, k)
{v(S [ T )� v(S)}

(4.2)

The coe�cient of v(N) in Eq. (4.2) is

X

i2N

X

1tk

(t� 1)!(n� n)!(n� t)!↵(n� t, k)

n!↵(n, k)

✓
n� 1

t� 1

◆
=
X

i2N

1

n!↵(n, k)

X

1tk

↵(n� t, k)

=
X

i2N

1

n!↵(n, k)
↵(n, k) = 1

Suppose that S ( N . Then the coe�cient of v(S) in Eq.(4.2) is given by,

X

i2S

X

T✓S : i2T
1tk

(t� 1)!(n� s)!(s� t)!↵(s� t, k)↵(n� s, k)

n!↵(n, k)

✓
s� 1

t� 1

◆

�
X

i2N\S

X

T✓N\S : i2T
1tk

(t� 1)!)(n� s� t)!(s)!↵(s, k)↵(n� s� t, k)

n!↵(n, k)

✓
n� s� 1

t� 1

◆

=
X

i2S

X

1tmin{k,s}

(n� s)!(s� 1)!↵(s� t, k)↵(n� s, k)

n!↵(n, k)

�
X

i2N\S

X

1tmin{k,n�s}

(n� s� 1)!(s)!↵(s, k)↵(n� s� t, k)

n!↵(n, k)

=
X

i2S

(n� s)!(s� 1)!↵(n� s, k)

n!↵(n, k)

X

1tmin{k,s}

↵(s� t, k)

�
X

i2N\S

(n� s� 1)!(s)!↵(s, k)

n!↵(n, k)

X

1tmin{k,n�s}

↵(n� s� t, k)

=
X

i2S

(n� s)!(s� 1)!↵(n� s, k)

n!↵(n, k)
↵(s, k)�

X

i2N\S

(n� s� 1)!(s)!↵(s, k)

n!↵(n, k)
↵(n� s, k)

= s
(n� s)!(s� 1)!↵(n� s, k)

n!↵(n, k)
↵(s, k)� (n� s)

(n� s� 1)!(s)!↵(s, k)

n!↵(n, k)
↵(n� s, k)

=
(n� s)!(s)!↵(n� s, k)

n!↵(n, k)
↵(s, k)� (n� s)

(n� s)!(s)!↵(s, k)

n!↵(n, k)
↵(n� s, k)

= 0

It follows that
Pn

i=1�
k
i (v) = v(N).

11



The proof for showing that the k-lateral value is Lin and Sym goes exactly in the same

way as that in the standard Shapley value characterization [22] and therefore it is omitted.

In view of Proposition 3, �k is an ESL value. Therefore by Proposition 1, there exists a

unique collection of real constants B = {bs : s 2 {0, 1, 2, 3, ..., n}} with b0 = 0 and bn = 1

such that for every v 2 G(N),

�k
i (v) =

X

S⇢N\i

s!(n� s� 1)!

n!

⇢
bs+1v(S [ i)� bsv(S)

�
(4.3)

Proposition 4. The k-lateral value �k
with k � 1 is in the form Eq.(4.3) with the sequence

of non negative real numbers B = {bs : s 2 0, 1, 2, ..., n} where bs =
↵(n� s, k)↵(s, k)

↵(n, k)
for

s � 1 and b0 = 0.

Proof. Rearranging the terms in Eq.(3.6) we obtain

�k
i (v) =

X

S✓N :i2S

X

T✓S : i2T
1tk

(n� s)!(s� t)!(t� 1)!↵(n� s, k)↵(s� t, k)

n!↵(n, k)

⇢
v(S)� v(S \ T )

�

=
X

S✓N :i2S

X

1tmin{k,s}

✓
s� 1

t� 1

◆
(n� s)!(s� t)!(t� 1)!↵(n� s, k)↵(s� t, k)

n!↵(n, k)
v(S)

�
X

S✓N :i2S

X

T✓S : i2T
1tk

(n� s)!(s� t)!(t� 1)!↵(n� s, k)↵(s� t, k)

n!↵(n, k)
v(S \ T ) (4.4)

Let P = T \ i, Q = (S \ T )[ i. Then i 2 Q, Q \ i = S \ T . Therefore T ⇢ (N \Q)[ i =)
T \ i ⇢ N \Q =) P ⇢ N \Q. Again

T = P [ i

S = Q [ T [ i = Q [ T = Q [ P [ i = Q [ P

Q \ P = {(S \ T ) [ i} \ (T \ i) = ;

N \ S = N \ (Q [ P )

Therefore p = t � 1, s = q + p, n � s = n � q � p, s � t = q � 1. We have from Eq.(4.4) and

12



Proposition 2(d) and (e),

�k
i (v) =

X

S✓N :i2S

X

1tmin{k,s}

(n� s)!(s� 1)!↵(n� s, k)↵(s� t, k)

n!↵(n, k)
v(S)

�
X

Q✓N :i2Q

X

P✓N\Q
0pmin{k�1,n�s}

(n� q � p)!(q � 1)!p!↵(n� q � p, k)↵(q � 1, k)

n!↵(n, k)
v(Q \ i)

=
X

S✓N :i2S

(n� s)!(s� 1)!↵(n� s, k)

n!↵(n, k)

X

1tmin{k,s}

↵(s� t, k)v(S)

�
X

Q✓N :i2Q

X

0pmin{k�1,n�q}

✓
n� q

p

◆
(n� q � p)!(q � 1)!p!↵(n� q � p, k)↵(q � 1, k)

n!↵(n, k)
v(Q \ i)

=
X

S✓N :i2S

(n� s)!(s� 1)!↵(n� s, k)↵(s, k)

n!↵(n, k)
v(S)

�
X

Q✓N :i2Q

X

0pmin{k�1,n�q}

(n� q)!(q � 1)!↵(n� q � p, k)↵(q � 1, k)

n!↵(n, k)
v(Q \ i)

=
X

S✓N :i2S

(n� s)!(s� 1)!↵(n� s, k)↵(s, k)

n!↵(n, k)
v(S)

�
X

Q✓N :i2Q

(n� q)!(q � 1)!↵(q � 1, k)

n!↵(n, k)

X

1p+1min{k,n�q+1}

↵(n� q � p, k)v(Q \ i)

=
X

S✓N :i2S

(n� s)!(s� 1)!↵(n� s, k)↵(s, k)

n!↵(n, k)
v(S)

�
X

Q✓N :i2Q

(n� q)!(q � 1)!↵(q � 1, k)↵(n� q + 1, k)

n!↵(n, k)
v(Q \ i)

=
X

S✓N :i2S

(n� s)!(s� 1)!

n!

⇢
↵(n� s, k)↵(s, k)

↵(n, k)
v(S)� ↵(n� s+ 1, k)↵(s� 1, k)

↵(n, k)
v(S \ i)

�

(4.5)

Let bs =
↵(n�s,k)↵(s,k)

↵(n,k) for s � 1 and b0 = 0. Then B = {bs : s 2 0, 1, 2, ..., n} is a real sequence

of non negative real numbers with b0 = 0, bn = 1 and the result follows.

Remark 3. Eq.(4.5) provides an alternative representation of �k. For k = n, ↵(s, n) = 2s�1

where 1  s  n and ↵(0, n) = 1. Let bs =
↵(n� s, k)↵(s, k)

↵(n, k)
for 1  s  n. Therefore
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bs =
1

2
for k = n, 1  s < n and bn = 1. Take b0 = 0. Then the n-lateral value becomes,

�n
i (v) =

X

S✓N :i2S

(n� s)!(s� 1)!

n!

⇢
bsv(S)� bs�1v(S \ i)

�

=
X

S(N :i2S

(n� s)!(s� 1)!

n!

⇢
1

2
v(S)� 1

2
v(S \ i)

�
+

⇢
v(N)

n
� v(N \ i)

2n

�

=
X

S(N :i2S

(n� s)!(s� 1)!

n!

⇢
1

2
v(S)� 1

2
v(S \ i)

�
+

⇢
v(N)

2n
� v(N \ i)

2n

�
+

v(N)

2n

=
1

2

X

S✓N :i2S

(n� s)!(s� 1)!

n!

⇢
v(S)� v(S \ i)

�
+

v(N)

2n

=
1

2

⇢
�Sh
i (v) + �ED

i (v)

�

Therefore �n =
1

2
{�Sh +�ED}. It follows that when k = n, the value �n divides the half of

the worth of the grand coalition v(N) equally among the players and the other half is divided

among the players as par the Shapley value. This is indeed the ↵-egalitarian Shapley value

first proposed by Joosten [14] and latter discussed in details by van den Brink et al., [26],

with ↵ = 1
2 .

Remark 4. In view of Remark 3, we explore now, for any k 2 {1, 2, ..., n} if there exists a

constant ↵k 2 [0, 1] such that ↵k�Sh+(1�↵k)�ED = �k. Note that for S ( N , �ED(bS) = 0.

Therefore ↵k�Sh
i (bS) = �k

i (bS) for all i 2 N and S ( N . For any non empty subset S ( N

we have,

�Sh
i (bS) =

8
><

>:

(s� 1)!(n� s)!

n!
if i 2 S

�s!(n� s� 1)!

n!
otherwise

and

�k
i (bS) =

8
>><

>>:

(s� 1)!(n� s)!↵(s, k)↵(n� s, k)

n!↵(n, k)
if i 2 S

�s!(n� s� 1)!↵(s, k)↵(n� s)

n!↵(n, k)
otherwise

It follows that ↵k =
↵(s, k)↵(n� s)

↵(n, k)
which depends on the size s of coalition S for n > 3.

Therefore ↵k cannot be a constant for n > 3. It follows that �k is not a convex combination

of the Shapley value and the Equal division rule for 1 < k < n and n > 3.

4.1 Two types of null-players

Recall that in our counting process, we allowed the players to enter one by one following a

particular order but waited till a group of size no more than k had formed. We computed the

14



contribution of this group which is then divided equally among the players. In this way we

allowed the players to finally form the grand coalition. Based on the counting of the groups

formed henceforth, we define two types of null players and their respective null player axioms

as follows.

The k-null-player of Type-I

Let S be a coalition with i 2 S. Consider the partition, C = {C1, C2, ..., Cp�1, Cp, Cp+1, ..., Cm}
of N with index(C)  k such that S = [p

j=1Cj . It follows that there is an order ⇡C of N such

that the players in C enter according to ⇡C . Consider the subset CS = {C1, C2, ..., Cp�1, Cp}
of C. CS is a partition of S prescribed by ⇡C . The number of such partitions of S prescribed

by any order is ↵(s, k). The total number of partitions of N prescribed by any order in which

S is the union of first p members, 1  p  s is therefore given by ↵(s, k)↵(n � s, k). Then

following Eq.(3.2), the total group contribution of all the players in the group Cp when player

i enters S = [p
j=1Cj in the last i.e., ⇡C(s) = i with respect to C is given by cpAv

i (P (C, i)[Cp).

Now define the k-lateral group contribution M (S,k)
i (v) of player i from the coalition S, by

the average of the total group contributions of all the players in the group Cp when player i

enters S = [p
j=1Cj in the last i.e., ⇡C(s) = i with respect to all C 2 ⇧(N, k).

Formally we have,

M (S,k)
i (v) =

1

(s� 1)!↵(s, k)↵(n� s, k)

X

C2⇧(N,k):
S=[p

q=1Cq ,⇡C(s)=i

cpA
v
i (P (C, i) [ Cp)

=
X

T⇢S:i2T
1tk

(s� t)!↵(s� t, k)(t� 1)!

(s� 1)!↵(s, k)

⇢
v(S)� v(S \ T )

�

Definition 2. Given v 2 G(N), a player i 2 N is called a k-null player of type I or a k1-null

player in short, if her k-lateral group contributions M (S,k)
i (v) = 0 for all coalitions S such

that i 2 S.

Observe that when k = 1, the 11-null player is the standard null player characterizing the

Shapley value. Further we note that the k1-null player and her group members with respect

to each partition, on an average makes no contribution to the corresponding coalition. Thus

the k1-null player not only contributes nothing of her own on an average but also she forces

her group members to keep their average contributions zero. Therefore, it is justified to award

her zero payo↵ under the k-lateral value. In the following, We have the k1-null player axiom

or the kNP1 in short.

Axiom 5. k1-Null Player (kNP1): For v 2 G(N) and for any k1-null player i 2 N of v,

�k
i (v) = 0.
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Proposition 5. The k-lateral value �k
, k � 1 satisfies kNP1.

Proof. The proof is immediate from Eq.(3.6).

The k-null player of Type-II

Recall that every sequence of positive integers c = {c1, ..., cp} with 1  p  s and 0 < cp  k

and the order ⇡ determine a partition C⇡
S = {C⇡

1 , ..., C
⇡
p } so that S = [p

j=1C
⇡
j . Then ↵(s, k)

is the number of such partitions of S according to the particular order ⇡. The total number

of partitions of N prescribed by ⇡ in which S is the union of first p members, 1  p  s is

therefore given by ↵(s, k)↵(n� s, k). Thus the probability that S is chosen from N with this

property prescribed by a particular order ⇡ is given by ↵(s,k)↵(n�s,k)
↵(n,k) . Let a random variable

take the value v(S) > 0 when S is formed such that for some p with 1  p  s, S is the union

of first p members of the partitions of index  k, prescribed by ⇡ and v(S) = 0 otherwise.

Then the expectation that the random variable takes v(S) when S is chosen from N according

to the above rule is given by ↵(s,k)↵(n�s,k)
↵(n,k) v(S). Let us call it the expected k-lateral worth of

S. Now fix an i from N . Find those S’s of N in which ⇡(s) = i, i.e., i is the last member to

enter in S. Then the expected k-lateral worth of S \ i is found to be ↵(s�1,k)↵(n�s+1,k)
↵(n,k) v(S \ i).

Based on this formulation, we now define the k-null player of type II or in short the k2-null

player and the corresponding k2-null player axiom or kNP2 in short.

Definition 3. Given v 2 G(N), a player i 2 N is said to be a k-null player of type II or a

k2-null player in short of v if for all coalitions S such that i 2 S, the expected k-lateral worths

of S and S \ i are identical. Thus formally, i 2 N is a k2-null player if for each S ✓ N ,

↵(s, k)↵(n� s, k)

↵(n, k)
v(S) =

↵(s� 1, k)↵(n� s+ 1, k)

↵(n, k)
v(S \ i) (4.6)

It follows from Eq.(4.6) that for k = 1, the 12-null player becomes the null player. When

k > 1, the k-null player contributes nothing to the coalitions on an average when both her

individual (groups of size 1) and group contributions are measured. Therefore, it is justified to

award the k2-null player zero payo↵ under the k-lateral value. We have the following k2-null

player axiom or the kNP2 in short.

Axiom 6. k2-Null Player (kNP2): For v 2 G(N) and for any k2-null player i 2 N of v,

�k
i (v) = 0.

Proposition 6. The k-lateral value �k
, k � 1 satisfies kNP2.

Proof. Immediately follows from the definition.
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Remark 5. Define a new game v̄ on N as follows: v̄ = ↵(s,k)↵(n�s,k)
↵(n,k) v(S) for all S ✓ N . Call

it the associate game of v with respect to group contributions. Then we have �k
i (v) = �Sh

i (v̄)

for all i 2 N . Therefore the k-lateral value over the game v is the Shapley value over its

associate game v̄. Furthermore, player i is a k2-null player of game v if and only if i is a null

player of v̄.

Remark 6. It is interesting to note that the two types of null players defined above are neither

equivalent nor they imply each other. Take for example, a game v on N = {1, 2, 3} as follows.

v({1}) = 0, v({2}) = v({3}) = 2, v({1, 2}) = v({1, 3}) = 1, v({2, 3}) = 2 and v({1, 2, 3}) = 2.

Here player 1 is a 21-null player of v but not a 22-null player of v. Consider another game w on

N = {1, 2, 3} as follows. w(1) = 0, w(2) = w(3) = w({1, 2}) = w({1, 3}) = 1, w({2, 3}) = 3

and w({1, 2, 3}) = 4. Here, player 1 is a 22-null player of w but not a 21-null player of w.

The Characterization Theorem

In this section, we prove a couple of characterization theorems for the k-lateral value using

the axioms E↵, Lin, Sym and either of kNP1 or kNP2. In view of propositions 3 and 5,

the characterization only requires to show that if a value satisfies E↵, Lin, Sym and either

of kNP1 or kNP2 it must be given by Eq.(3.3) or equivalently Eq.(3.6). Both the proofs

are constructive and we start with the introduction of a couple of new bases for the class

G(N) of games. Every v 2 G(N) is then expressed as a linear combination of these bases.

Therefore, following Lin it will su�ce to obtain the expression of the k-lateral value for these

bases. Let us start with the axioms E↵, Lin, Sym or ESL in short and the axiom kNP1. To

complete the proofs following propositions are needed. For a non empty coalition T ✓ N ,

define DT : 2N ! R such that

DT (S) =

8
><

>:

f(s, t), if T ( S

1, if T = S

0, otherwise

(4.7)

where the value f(s, t) of the function f : N ⇥ N ! R be so obtained that each i /2 T is a

k1-null player. Thus under this assumption, we must have M (S,k)
i (DT ) = 0 for all S ✓ N ,

i 2 S and for each non empty coalition i /2 T ✓ N . Therefore,
X

M✓S : i2M
1mk

(m� 1)!(s�m)!↵(s�m, k)

(s� 1)!↵(s, k)
{DT (S)�DT (S \M)} = 0 (4.8)

Eq.(4.8) implies,

X

M✓S : i2M
1mk

(m� 1)!(s�m)!↵(s�m, k)

(s� 1)!↵(s, k)
{DT (S)}

=
X

M✓S : i2M
1mk

(m� 1)!(s�m)!↵(s�m, k)

(s� 1)!↵(s, k)
{DT (S \M)}
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It follows that,

X

1mk

(m� 1)!(s�m)!↵(s�m, k)

(s� 1)!↵(s, k)

✓
s� 1

m� 1

◆
DT (S)

=
X

M✓S : i2M
1mk

(m� 1)!(s�m)!↵(s�m, k)

(s� 1)!↵(s, k)
DT (S \M)

Thus we have,

DT (S) =
X

M✓S : i2M
1mk

(m� 1)!(s�m)!↵(s�m, k)

(s� 1)!↵(s, k)
DT (S \M)

f(s, t) =
X

M✓S\T : i2M
1mk

(m� 1)!(s�m)!↵(s�m, k)

(s� 1)!↵(s, k)
DT (S \M)

=
X

1mmin{k,s�t}

(m� 1)!(s�m)!↵(s�m, k)

(s� 1)!↵(s, k)

✓
s� t� 1

m� 1

◆
f(s�m, t)

=
X

1mmin{k,s�t}

↵(s�m, k)

↵(s, k)

�s�t�1
m�1

�
f(s�m, t)
� s�1
m�1

�

Using the above recursive relation of f(s, t) with f(s, s) = 1 for all 1  s  n, we can find

all the values of f(s, t). It is easy to show that DT so defined is a TU game. The proofs of

Propositions 7 and 8 presented in the following are kept in the Appendix.

Proposition 7. The set of games {DT : T ✓ N,T 6= ;} is a basis for G(N) and every player

i 62 T is a k1-null player.

Proposition 8. For an ESL value � having kNP1 and T ⇢ N , �(DT ) is uniquely determined

by

�i(DT ) =

8
<

:

f(n, t)

t
, if i 2 T

0, otherwise

(4.9)

Theorem 1. The k-lateral value �k
is the unique value that satisfies E↵, Lin, Sym and

kNP1.

Proof. Since {DT : T ⇢ N,T 6= ;} is a basis for G(N) therefore any game v 2 G(N) can

be expressed uniquely as v =
P

T⇢N :T 6=; �
v
TDT where �vT 2 R : T ✓ N . Since �k is linear

therefore �k
i (v) =

P
T⇢N :T 6=; �

v
T�

k
i (DT ). By Proposition (8), �k

i (DT ) is uniquely determined

by Eq.(7.3). This completes the proof.
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For the second characterization, we define the k-unanimity game denoted by WT : 2N ! R

for each non empty coalition T ✓ N in explicit form as follows.

WT (S) =

8
<

:

↵(n� t, k)↵(t, k)

↵(n� s, k)↵(s, k)
, if T ✓ S

0, otherwise
(4.10)

Note that WT is identical with the unanimity game for k = 1. For T = S, WT (T ) = 1.

Remark 7. For T 6= ;, the game WT possesses the following properties.

(a) WT (T ) = 1 for T ⇢ N .

(b) WT (S) = 0 for T 6⇢ S.

(c) WT (S) =
↵(n� s+ 1, k)↵(s� 1, k)

↵(n� s, k)↵(s, k)
WT (S \ i) for T ⇢ S \ i.

Proposition 9. For an ESL value � having kNP2 and T ⇢ N , �(WT ) is uniquely determined

by

�i(WT ) =

8
<

:

↵(n� t, k)↵(t, k)

t↵(n, k)
, if i 2 T

0, otherwise

(4.11)

The proof of Proposition 9 is kept in the Appendix.

Theorem 2. The k-lateral value �k
is the unique value that satisfies E↵, Lin, Sym and

kNP2.

Proof. Consider the set {WT |T ✓ N,T 6= ;}. By similar procedure as in Prop. 7, the set

{WT |T ✓ N,T 6= ;} forms a basis of G(N). Any game v 2 G(N) can be expressed uniquely

as v =
P

T⇢N :T 6=; �
v
TWT where �vT =

P
S⇢T :S 6=;(�1)t�s↵(n� s, k)↵(s, k)

↵(n� t, k)↵(t, k)
v(S). Using the

expression of �vT we derive the following.

X

T⇢N :T 6=;

�vTWT (S) =
X

T⇢S:T 6=;

�vT
↵(n� t, k)↵(t, k)

↵(n� s, k)↵(s, k)

=
X

T⇢S:T 6=;

↵(n� t, k)↵(t, k)

↵(n� s, k)↵(s, k)

X

R⇢T :R 6=;

(�1)t�r↵(n� r, k)↵(r, k)

↵(n� t, k)↵(t, k)
v(R)

=
X

T⇢S:T 6=;

X

R⇢T :R 6=;

(�1)t�r ↵(n� r, k)↵(r, k)

↵(n� s, k)↵(s, k)
v(R)

=
X

R⇢S:R 6=;

X

T⇢S:R⇢T

(�1)t�r ↵(n� r, k)↵(r, k)

↵(n� s, k)↵(s, k)
v(R)

=
X

R⇢S:R 6=;

⇢ X

T⇢S:R⇢T

(�1)t�r

�
↵(n� r, k)↵(r, k)

↵(n� s, k)↵(s, k)
v(R)

= v(S) +
X

R⇢S:R 6=;

⇢ sX

t=r:s 6=r

(�1)t�r

✓
s� r

t� r

◆�
↵(n� r, k)↵(r, k)

↵(n� s, k)↵(s, k)
v(R)
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Since
Ps

t=r:s 6=r(�1)t�r
�s�r
t�r

�
= 0 therefore

P
T⇢N :T 6=; �

v
TWT (S) = v(S).

Since �k is linear therefore �k
i (v) =

P
T⇢N :T 6=; �

v
T�

k
i (WT ). By Proposition (9), �k

i (WT )

is uniquely determined by Eq.(4.11). Therefore �k
i (v) is unique and determined by

�k
i (v) =

X

T⇢N :i2T
�vT

↵(n� t, k)↵(t, k)

t↵(n, k)

Remark 8. Note that in the proof of Theorem 1, the basis DT is obtained recursively while in

Theorem 2, the basis WT is expressed in a closed form to illustrate the procedure of obtaining

the k-lateral value in an explicit way, however to show only the existence and uniqueness,

such explicit forms are seemingly redundant.

4.2 Logical Independence

Logical independence of the axioms of Theorem 1 can be illustrated by the following examples.

(a) The value �k : G(N) ! RN given by

�k
i (v) =

1

2|N |�1

X

S✓N
: i2S

X

T✓S: i2T
1tk,

(s� t)!(t� 1)!↵(s� t, k)

(s� 1)!↵(s, k)

⇢
v(S)� v(S \ T )

�

for all i 2 N satisfies kNP1, Lin and Sym but does not satisfy E↵.

(b) The value �k : G(N) ! RN given by

�ki (v) =
1

2|N |�1

X

S✓N
: i2S

⇢
↵(n� s, k)↵(s, k)

↵(n, k)
v(S)� ↵(n� s+ 1, k)↵(s� 1, k)

↵(n, k)
v(S \ i)

�

for all i 2 N satisfies kNP2, Lin and Sym but does not satisfy E↵.

(c) The equal division rule �ED satisfies E↵, Sym and Lin but it does neither satisfy kNP1

nor kNP2.

(d) The value �̄k : G(N) ! RN given by �̄k
i (v) =

�k
i (v)P

j2N �k
j (v)

v(N)

✓
or �̄k

i (v) =
�ki (v)P
j2N �kj (v)

v(N)

◆

for all i 2 N satisfies kNP1 (or kNP2), E↵ and Sym but does not satisfy Lin if
P

j2N �k
j (v) 6= 0

�
or

P
j2N �kj (v) 6= 0

�
.
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(e) Consider the basis {DT : T ✓ N,T 6= ;} of the games defined by the Eq. (7.3) for the

class G(N). Suppose that i = minj2T j. Let � be a value such that �i(DT ) = DT (N)

and �j(DT ) = 0 for j 2 N, j 6= i. Extend � linearly for all games in G(N). � satisfies

kNP1, Lin and E↵ but does not satisfy Sym.

(f) Consider the basis {WT : T ✓ N,T 6= ;} of the games defined by the Eq. (4.10) for the

class G(N). Suppose that i = minj2T j. Let � be a value such that �i(WT ) = WT (N)

and �j(WT ) = 0 for j 2 N, j 6= i. Extend � linearly for all games in G(N). � satisfies

kNP2, Lin and E↵ but does not satisfy Sym.

5 Examples

Let us take a numerical example to highlight the k-lateral interactions in a TU game and

how they influence the k-lateral value for di↵erent choices of k. Take N = {1, 2, 3, 4} and

v 2 G(N) as follows. v(S) = 0 if {1, 2} 6✓ S, v(1, 2) = 2, v(1, 2, 3) = 4, v(1, 2, 4) = 6 and

v(1, 2, 3, 4) = 8. The k-lateral value �k(v) for di↵erent choices of k including the Shapley

value where k = 1 are given below.

�1(v) = (3.0, 3.0, 0.6, 1.4) = �Sh(v)

�2(v) = (2.6, 2.6, 1.2, 1.6)

�3(v) = (2.57, 2.57, 1.24, 1.62)

�4(v) = (2.5, 2.5, 1.33, 1.67)

Observe that this is a special example where all the players are individually non-productive.

Also neither player 1 nor 2 alone can have a non-zero contribution to a coalition. They are

productive only when they are together in a coalition. Thus in this stylized example, we want

to see how and why the marginal productivities of player 1 and 2 can be compensated by

solidarity towards 3 and 4. The Shapley value considers the individual and unilateral contri-

butions of 1 and 2, even though they are dependent on each other in generating the worth of

the grand coalition. Such dependence among players in deciding to join or leave a coalition is

not explicitly seen in Shapley formulations. Thus under the Shapley value their productivity

is the highest. However, when we consider players’ group contributions, with an increase of

the size of the groups, sharing is more egalitarian. Therefore, more solidarity for player 3 and

4 is ensured as the group contributions are shared equally among all the players.
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6 Conclusion

This paper proposes a new value for TU games – the k-lateral value – that considers group

contributions of players within a coalition. All the Shapley like marginalistic values implicitly

assume that players individually and independently decide to join or leave a coalition of their

own. However, there are instances where players within a coalition are influenced by each

other on making such decisions and finally they make collective decisions. Since a marginalistic

value awards payo↵s to the players based on their own contributions, their reliance on the

others in generating the worth should be given due consideration. This led us to define

the notion of group contributions. Our value computes the average of all such individual

and group contributions of the players. By an example we have explained the di↵erence

between the Shapley value and the k-lateral values for di↵erent levels of interactions. The

characterization of the new value is done using standard axioms of E�ciency, Symmetry, and

Linearity along with two new axioms: the k-null player axioms of type I and type II. Similar

formulations can be put forward to other Shapley like values which we keep for our future

studies.
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7 Appendix

Proof of Proposition 2.

(a) By definition of B(n, k),

B(s, k) = {(x1, x2, ..., xr) : x1 + x2 + ...+ xr = s, 1  xi  k, 1  i  r  s}

Therefore

↵(s, k) =
sX

r=1

|{(x1, x2, ..., xr) : x1 + x2 + ...+ xr = s, 1  xi  k, 1  i  r}| (7.1)
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The number of positive integer solutions of x1+x2+ ...+xr = s is
�s�1
r�1

�
. Suppose that

i be the least number of variables with xj > k. In this case, the number of positive

solutions of x1 + x2 + ...+ xr = s is
�r
i

��s�ik�1
r�1

�
.

Therefore the number of solutions of x1 + x2 + ...+ xr = s with 1  xi  k, 1  i  r is

✓
s� 1

r � 1

◆
+

[ s�r
k ]X

i=1

(�1)i
✓
r

i

◆✓
s� ik � 1

r � 1

◆

Thus

↵(s, k) =
sX

r=1

n�s�1
r�1

�
+
P[ s�r

k ]
i=1 (�1)i

�r
i

��s�ik�1
r�1

�o

(b) For k = 1 and r = s, the only solution of x1 + x2 + ... + xr = s is (1, 1, 1, ..., 1). For

r < s, there is no solution in x1 + x2 + ...+ xr = s with k = 1. The result follows.

(c) By (a),

↵(s, k) =
sX

r=1

{(x1, x2, ..., xr) : x1 + x2 + ...+ xr = s, 1  xi  k, 1  i  r}

Since x1 + x2 + ...+ xr = s therefore each xi  s for all 1  r  s.

Since s  k, therefore for all i 2 {1, 2, ..., s} we must have xi  k .

It follows that,

↵(s, k) =
sX

r=1

n
(x1, x2, ..., xr) : x1 + x2 + ...+ xr = s, 1  xi  k, 1  i  r

o

=
sX

r=1

n
(x1, x2, ..., xr) : x1 + x2 + ...+ xr = s, 1  i  r

o

=
sX

r=1

✓
s� 1

r � 1

◆

= 2s�1

(d) Following Eq.(7.1) we have,

↵(s, k) =
sX

r=1

{(x1, x2, ..., xr) : x1 + x2 + ...+ xr = s, 1  xi  k, 1  i  r}.

Therefore,

kX

t=1

↵(s�t, k) =
kX

i=1

s�iX

r=1

[(x1, x2, ..., xr) : x1 + x2 + ...+ xr = s� i, 1  xi  k, 1  i  r]

(7.2)
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Since s > k, we must have r � 2. Then

↵(s, k) =
sX

r=2

n
(x1, x2, ..., xr) : x1 + x2 + ...+ xr = s, 1  xi  k, 1  i  r

o

=
sX

r=2

n
(x1, x2, ..., xr) : x1 + x2 + ...+ xr�1 = s� xr, 1  xi  k, 1  i  r

o

=
sX

r=2

kX

xr=1

n
(x1, x2, ..., xr�1) : x1 + x2 + ...+ xr = s� xr, 1  xi  k, 1  i  r

o

=
s�1X

r=1

kX

t=1

n
(x1, x2, ..., xr) : x1 + x2 + ...+ xr = s� t, 1  xi  k, 1  i  r

o

=
kX

t=1

s�tX

r=1

n
(x1, x2, ..., xr) : x1 + x2 + ...+ xr = s� t, 1  xi  k, 1  i  r

o

Note that, if r > s then the equation x1 + x2 + ...+ xr = s has no solution. Therefore,

↵(s, k) =
kX

t=1

s�tX

r=1

n
(x1, x2, ..., xr) : x1 + x2 + ...+ xr = s� i, 1  xi  k, 1  i  r

o

=
kX

t=1

↵(s� t, k)

(e) Observe that ↵(0, k) = 1 when k > 0 and for 1  s  k, ↵(s, k) = 2s�1. Therefore,

X

1ts

↵(s� t, k) =
X

1ts�1

2s�t�1 + ↵(0, k)

=
X

0ts�2

2t + 1

= 2s�1 � 1 + 1

= 2s�1

= ↵(s, k)

Proof of Proposition 7

By definition of DT , each i 2 N \ T is a k1-null player in the games DT as the recursive

relation is designed to achieve this objective.

Finally, we show that the set of games {DT } for all T ⇢ N , T 6= ; form a basis of G(N). Let

d = 2n � 1. Since the class of unanimity games {uS |S ✓ N,S 6= ;} makes a basis for the

vector space G(N), therefore the dimension of G(N) is d. Let S1, S2, ..., Sd be a fixed sequence
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containing all non empty subsets of N such that n = s1  s2  ...  sd = 1. Let A = [aij ]

be the d⇥ d matrix defined by aij = DSi(Sj), i, j = 1, 2, 3, ..., d. Then aii = DSi(Si) = 1. For

i > j, si � sj . Then either si = sj or si > sj . Suppose that si = sj . Since Si 6= Sj therefore

Si 6✓ Sj . Let si > sj . Then Si 6✓ Sj . It follows that aij = 0 for i > j. Thus A = [aij ]

is an upper triangular matrix with diagonal entries 1 meaning det(A) = 1. Therefore, the

set {DSi : i = 1, 2, ..., d} is comprised of d independent vectors in G(N). Since any linearly

independent set containing d vectors form a basis of G(N) therefore {DSi |i = 1, 2, 3, ..., d}
forms a basis of G(N).

Proof of Proposition 8

By E↵, we have
P

i2N �i(DT ) = DT (N) = f(n, t).

By Proposition 7, i 2 N \ T is a k1-null player in the game DT . Since � satisfies kNP1

therefore �i(DT ) = 0 for i 2 N \ T . Further, any two players i, j 2 T are symmetric which

implies �i(DT ) = �j(DT ). Thus we have,

�i(DT ) =

8
<

:

f(n, t)

t
, if i 2 T

0, otherwise
(7.3)

This completes the proof.

Proof of Proposition 9

By E↵, we have
P

i2N �i(WT ) = WT (N) =
↵(n� t, k)↵(t, k)

↵(n, k)
.

For i 2 N \ T , if S ⇢ N \ i then T ⇢ S =) T ⇢ S \ i. If T 6⇢ S, i 62 T then T 6⇢ S \ i.

Therefore WT (S) = WT (S \ i) = 0 for T 6⇢ S, i 62 T . For T ⇢ S, i 62 T , by Remark [7], we have

WT (S) =
↵(n� s+ 1, k)↵(s� 1, k)

↵(n� s, k)↵(s, k)
WT (S \ i). Therefore i 2 N \ T is a k-null player of type

II in the k-unanimity game WT . Since � satisfies kNP2 therefore �i(WT ) = 0 for i 2 N \ T .
Any two players i, j 2 T are symmetric therefore �i(WT ) = �j(WT ) for all i, j 2 T . Thus

�i(WT ) =

8
<

:

↵(n� t, k)↵(t, k)

t↵(n, k)
, if i 2 T

0, otherwise
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