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1 Introduction

In a seminal paper, Abreu and Matsushima (1992a) (henceforth, AM) show that any single-

valued SCR, or social choice function (SCF) is virtually implementable in Nash equilibrium

(pure and mixed), as well as rationalizable strategies. The devised mechanism, known as the

Abreu-Matsushima mechanism (henceforth, AM-mechanism), has several appealing prop-

erties. Firstly, its construction does not rely on any tail-chasing procedures to eliminate

unwanted equilibria, such as integer or modulo games —indeed, it is a finite mechanism.

The finiteness of the mechanism allows one to interpret its strategy spaces in natural terms.

Secondly, the devised mechanism is robust to strategic uncertainty as it induces any so-

cially optimal outcome as the unique rationalizable outcome1. Last but not least, it ensures

continuous virtual implementation of the SCF, in the sense of Oury and Tercieux (2012).

When there are at least three agents, this paper devises a mechanism that virtually im-

plements any SCR in Nash equilibrium strategies. The devised mechanism is an extension

of AM-mechanism satisfying all the features described above. Specifically, the devised mech-

anism is a bounded mechanism. A mechanism is bounded if, for each agent i, whenever a

strategy m′i is not rationalizable, there exists a rationalizable strategy mi which is weakly

better than m′i when others are playing a rationalizable strategy.

In contrast to AM, we are interested in implementing SCRs. For this reason, our construc-

tion may possess multiple Nash equilibria for certain preference profiles. This multiplicity

of equilibria creates strategic uncertainty, and so agents may fail to coordinate on a specific

equilibrium. An attractive feature of our bounded mechanism is that, in addition to im-

plementation in Nash equilibria, it also achieves implementation in rationalizable strategies.

Thus, it is robust to strategic uncertainty. This double implementation is surprising because

implementation in Nash equilibrium strategies does not imply implementation in rationaliz-

able strategies, and vice versa. Moreover, this result allows us to establish that our extension

of AM-mechanism ensures continuous virtual implementation of F when its range is finite.

There are several reasons why focussing only on SCFs can be considered unsatisfactory

(see, for instance, Thomson (1996)). Firstly, multi-valued SCRs typically represent many

social decisions. Prominent examples include the Pareto, the Walrasian, the Condorcet, and

the no-envy correspondences. Secondly and foremost, since F represents the social objectives

that the society or its representative want to achieve, its full implementation is the correct

objective of the society. It would be unacceptable to partially implement F by implementing

a SCF f which systematically picks, for each preference profile θ, a socially optimal outcome

1In the literature on exact implementation robustness to strategic uncertainty has recently been studied
in Bergemann et al. (2011), Kunimoto and Serrano (2018) and Jain (2019). The constructive proofs used in
this literature rely on the integer game construction.
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f(θ) ∈ F (θ). The reason is that the implementation of this subselection f ∈ F may violate

some of the normative properties that led the society or its representatives to choose F . For

instance, it most certainly will be unacceptable when F embodies some minimal concerns

about fairness.

For the sake of concreteness, let us consider the classical divide-and-choose mechanism,

which induces envy-free divisions of a vector of resources over which two agents have equal

rights. The rules of the mechanism are as follows. One agent, called the divider, divides

each resource into two pieces; the other agent, called the chooser, chooses one share for

each type of resources. The divider obtains the remaining shares. Since this procedure

always induces agents to select envy-free allocations of resources, it partially implements the

no-envy correspondence—this correspondence selects, for each preference profile, the set of

allocations at which no agent would like to exchange his or her consumption bundle with

that of another agent. However, the no-envy allocation selected by the mechanism is always

the one that the divider prefers; the chooser would benefit from acting as the divider. Thus

such a partial implementation violates the fundamental fairness objective embodied in the

no-envy correspondence, namely, that of equal treatment of agents (Crawford (1977)).

Another argument made in favor of a partial implementation of F is based on the inter-

pretation that the mechanism designer views the outcomes in F (θ) as equally good (Abreu

and Sen (1991); Mezzetti and Renou (2012)). Under this interpretation of planner’s indif-

ference, a simple way to implement a multi-valued SCR consists of virtually implementing

a SCF which puts an equal probability on each outcome in F (θ), for each profile θ. Under

this view, it is easy to see that we can use the AM-mechanism. A shortcoming of this in-

terpretation is that in some situations we do not know whether the mechanism designer is

indifferent between socially optimal outcomes or not.

The classical interpretation of implementation of F requires that each outcome in F (θ)

must be supported by a distinct equilibrium (Maskin (1999); Abreu and Sen (1991); Bochet

and Maniquet (2010)) and does not assume planner’s indifference. This paper shows that

this classical interpretation is not restrictive when the objective is to implement F virtually.

This is in sharp contrast to the case of “exact” implementation where implementation in the

classical sense is more restrictive than implementation under the assumption of planner’s

indifference (Mezzetti and Renou (2012)).

The AM-mechanism has been the focus of attention in several strands of implementation

theory, such as in robust mechanism design (Bergemann and Morris (2009), Müller (2016)),

in implementation in level-k (Serrano et al. (2018)), and in implementation with verifica-

tion (Matsushima (2018)). Indeed, these papers provide constructive proofs that, directly

or indirectly, rely on the AM-mechanism. We believe that our construction may play an
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important role in these strands of the literature when the objective of society is represented

by a multivalued SCR F .2

We divide the remainder of this paper into four sections. Section 2 sets out the theoretical

framework and outlines the basic model. Section 3 provides the characterization result as

well as a discussion of the implementing mechanism. Section 4 provides the formal proof.

Section 5 discusses continuous implementation. Section 6 concludes.

2 Model

Preliminaries

Let N = {1, 2, . . . , n} be a finite set of agents with n ≥ 3. The finite set of (pure) outcomes

is denoted by X. The set of all lotteries over X is denoted by Y . Agent i’s utility function

is indexed by a parameter θi. We refer to θi as agent i’s type. The set of possible types for

agent i is assumed to be finite, and it is denoted by Θi. Agent i’s preferences over lotteries

is described by a utility function ui : Y × Θi → R, where ui (y, θi) is agent i’s utility of the

lottery y when is of type θi. We assume that each agent i is an expected utility maximizer.

A state or type profile is described by an n-tuple of types θ ∈ Π
i∈N

Θi = Θ. For any type

profile θ ∈ Θ, θ−i denotes the n− 1-tuple (θ1, ..., θi−1, θi+1, ..., θn). The set of admissible type

profiles is denoted by Θ, where Θ = Π
i∈N

Θi is a nonempty subset of Θ. We assume that the

true type profile is common knowledge among the agents. However, the planner does not

know it. This is the case of complete information.

Following AM, we introduce a domain restriction that will play a key role.

Assumption. (AM). For every i ∈ N and θ ∈ Θ, there exist a(i, θ) ∈ Y and a(i, θ) ∈ Y
such that

ui(a(i, θ), θi) > ui(a(i, θ), θi)

uj(a(i, θ), θj) ≥ uj(a(i, θ), θj)

for all j ∈ N \ {i}.

Assumption requires that for each type profile θ and each agent i, there exist two lotteries

that are strictly ranked by agent i, and for which every other agent has the (weakly) opposite

2More recently, there is an effort to reconcile the classical exact implementation literature, which relies on
mechanisms with questionable features, with the AM-mechanism, which emphasizes on virtual implementa-
tion but relies on well-behaved mechanisms. See Chen et al. (2018b) for such an exercise.
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ranking. This assumption is more likely to be satisfied in environments with transferable

private goods that are positively valued by agents. In the implementation literature, this kind

of assumptions is often made in studies relating to well-behaved implementing mechanisms

(Jackson et al. (1994); Kartik et al. (2014)). In this regards, Kunimoto and Serrano (2011)

even argue that Assumption is indispensable.

The goal of the designer is to implement a SCR F , which is a correspondence F : Θ � Y

such that for each type profile θ ∈ Θ, F (θ) is a nonempty subset of Y . The common

interpretation is that F represents the social objectives that the agents or its representatives

want to achieve. A SCF f : Θ→ Y is a single-valued SCR such that f (θ) ∈ Y for all θ ∈ Θ.

The implementation problem arises from the fact that the planner’s goal depends on the

true type profile and he does not know it. To elicit it, the planner designs a (stochastic)

mechanism. A mechanism is a game form Γ = (M1, ...Mn, g), where Mi is agent i’s space

of pure strategies, and g : M → Y is the outcome function, where Π
i∈N

Mi = M . We

denote a pure strategy of agent i by mi ∈ Mi and a profile of pure strategies is denoted by

m = (m1, ...,mn) ∈M . A mechanism Γ with a type profile θ specifies the game (Γ, θ).

We assume that the planner wants to achieve his or her goal in (pure and mixed) Nash

equilibrium. A mixed strategy for agent i is a probability distribution over Mi. Let ∆(Mi)

denote the set of all probability distributions over Mi, where σi denotes a typical mixed

strategy for agent i. We denote by σ a typical mixed strategy profile, where σ = (σ1, ..., σn) ∈
∆(M) = Π

i∈N
∆(Mi). A strategy profile σ is a Nash equilibrium of (Γ, θ) if for all i ∈ N and

all σ′i ∈ ∆(Mi),

ui(g(σi, σ−i), θi) ≥ ui(g(σ′i, σ−i), θi)

We denote by NE(Γ, θ) the set of Nash equilibria of the game (Γ, θ).

Bounded mechanisms

Jackson (1992) argues that some notion of boundedness is required to rule out “tail-chasing”

constructions, which are common in the constructive proofs of the literature on Nash imple-

mentation. To introduce our notion of bounded mechanisms, we need to introduce additional

notation. Given a game (Γ, θ), let Ri(Γ, θ) denote the set of rationalizable strategies for

agent i and R(Γ, θ) = Π
i∈N

Ri(Γ, θ) denote the set of rationalizable strategy profiles. Ri(Γ, θ)

is described as an outcome of an iterative procedure. Each round in this iterative process

eliminates strategies that are never best responses. Below we provide a formal definition.

Fix any agent i ∈ N . Let R0
i (Γ, θ) = Mi and R0

−i(Γ, θ) = ×
j 6=i
Mj. For any k ≥ 1, define
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Rk
i (Γ, θ) as follows:

Rk
i (Γ, θ) =

mi ∈ Rk−1
i (Γ, θ)

∣∣∣∣∣∣∣∣
There exists λ ∈ ∆(Rk−1

−i (Γ, θ)) such that

mi ∈ argmax
m′i∈Mi

∑
m−i∈Rk−1

−i (Γ,θ)

λi(m−i)ui(g(m′i,m−i), θ)

 .

The set of rationalizable strategies for player i is the limit of this iterative process, i.e.,

Ri(Γ, θ) = ∩
k≥1

Rk
i (Γ, θ). In the game (Γ, θ), the set of strategy profiles BΓ(θ) ⊆ M satisfies

the best response property at θ if for every i ∈ N and for every mi ∈ BΓ
i (θ), there exists

a belief λi(mi) ∈ ∆(B−i(θ)) such that mi is a best response to λi(mi). One can see that

BΓ(θ) ⊆ R(Γ, θ), if BΓ(θ) satisfies the best response property at θ.

Definition 1. A mechanism Γ is bounded relative to Θ if for all θ ∈ Θ, all i ∈ N and all

m′i /∈ Ri(Γ, θ), there exists an mi ∈ Ri(Γ, θ) such that for all m−i ∈ R−i(Γ, θ), it holds that

ui(g(mi,m−i), θi) ≥ ui(g(m′i,m−i), θi)

with strict inequality for some m−i ∈ R−i(Γ, θ).

In words, for each strategy m′i of agent i that is not rationalizable, Definition 1 requires that

this agent has a rationalizable strategy that yields her or him at least as high a payoff as

does m′i whatever the other agents’ rationalizable strategies and a higher payoff than does

m′i for some rationalizable strategy profiles of the other agents. Note that this definition

implies that agents who eliminated strategies that are not rationalizable have well-defined

choices. Also, note that mechanisms with finite message spaces are bounded mechanisms

according to our definition.

Virtual implementation

A SCR F is virtually implementable if there exists a “nearby” nonempty correspondence H

that is “exactly” implementable in a solution concept. Formally, let d(x, y) be the Euclidean

distance between any a pair of lotteries. The SCR F : Θ � Y is ε-close to a nonempty

correspondence H : Θ � Y if for every θ ∈ Θ, there exists a bijection ρ : F (θ) 7→ H(θ) such

that d(x, ρ(x)) ≤ ε for all x ∈ F (θ).

A mechanism Γ = (M, g) implements the correspondence H in Nash equilibrium (resp.,

in rationalizable strategies), if for each θ ∈ Θ, it holds that: (1) for each x ∈ H(θ), there

exists m ∈ NE(Γ, θ) (resp., m ∈ R(Γ, θ)) such that g(m) = x; and (2) for each σ ∈ NE(Γ, θ)

(resp., σ ∈ R(Γ, θ)),
⋃

m∈ supp(σ)

g(m) ⊆ H(θ) . If such a mechanism exists, we say that H is
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Nash implementable (resp., implementable in rationalizable strategies). Thus:

Definition 2. The SCR F : Θ � Y is virtually implementable in Nash equilibrium (resp.,

implementable in rationalizable strategies) by a bounded mechanism, if for all ε > 0 there

exists a nonempty correspondence H : Θ � Y which is Nash implementable (resp., imple-

mentable in rationalizable strategies) by a bounded mechanism as well as ε-close to F .

The following lemma, due to and Matsushima (1992; p. 999), requires the existence of a

set of lotteries for agent i such that each of his or her type has a distinct maximal element

within the set.

Lemma 1. (Abreu and Matsushima (1992a)). Let Assumption hold. Let i ∈ N . Then,

there exists a function fi : Θi 7→ Y such that for each θi ∈ Θi, it holds that

ui(fi(θi), θi) > ui(fi(θ
′
i), θi)

for each θ′i ∈ Θi \ {θi}.

3 The characterization result

The characterization result is stated below. Its proof can be found in section 4. The devised

mechanism is an extension to SCRs of the AM-mechanism, which virtually implements

any SCF in iteratively undominated strategies when there are at least three agents and

Assumption is satisfied.

Theorem 1. Suppose n ≥ 3. Let Assumption hold. Any SCR F : Θ � Y is virtu-

ally implementable in Nash equilibria, as well as in rationalizable strategies, by a bounded

mechanism.

Proof. See section 4.

We provide below an intuitive discussion of the basic arguments of the proof. In the

devised mechanism, each agent makes (K + 2) simultaneous announcements. A typical

announcement is indexed by k ∈ {−1, 0, 1, . . . , K}, where K is an integer which is yet to be

specified.

Each agent i reports a SCF in the k = −1 announcement, his or her type in the k = 1

announcement, and an entire type profile in each of the remaining announcements. That is,

agent i’s message space is:

Mi = FF ×Θi ×Θ× ...×Θ = M−1
i ×M0

i ×M1
i × ...×MK

i
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where FF = {f : Θ 7→ Y |for every θ ∈ Θ, f(θ) ∈ F (θ)} is a collection of SCFs, each of

which assign, to each type profile θ, an element f(θ) of F (θ). Notice that the set Mi is finite

when FF is finite.

The devised mechanism is an augmentation of the AM-mechanism with a voting scheme

over elements of FF , which happens in stage k = −1. The voting scheme can be described as

follows. Suppose that designer has designated f ∗ ∈ FF as the default SCF to be implemented.

Agents can change f ∗ into f ∈ FF if there is an ‘almost agreement’ on this change, that

is, at least n− 1 agents agree on f . The selected SCF is used to determine the outcome of

the decision rule of the mechanism in each stage k ≥ 1. The augmentation is made without

losing the attractive incentive properties of the AM-mechanism.

Though the constructed mechanism is a simultaneous mechanism, it can be useful to

think of it as a sequential mechanism with K + 2 stages, where agents make simultaneous

announcements in each stage.

Suppose that the default SCF f ∗ is to be virtually implemented by an arbitrarily small

ε > 0. According to the AM-mechanism, a lottery from Y is selected. This lottery is a

probability distribution over the following components:

• (Dictator rule) With probability ε
n
, agent i is selected as a dictator. Based on his or

her announcement at the stage k = 0, his or her best outcome from a predetermined

set of outcomes is selected.

• (Audit rule) With probability ε2

n
, agent i is audited for consistency. To conduct this

audit, the designer considers all announcements made by agents from stage k = 1 to

stage K, and compares them with m0—that is, with the message profile reported by

agents at stage k = 0. Agent i is punished by selecting a(i,m0) if he or she is the first

one to announce a type profile different from m0. Otherwise, he or she is rewarded by

selecting a(i,m0).

• (Decision rule) With probability (1−ε−ε2)
K

, at each stage k ≥ 1, the outcome is deter-

mined as follows:

– If all agents make exactly the same announcement, then f ∗(mk) is the outcome

of the mechanism.

– If all but agent i make exactly the same announcement θ′, then f ∗i (θ′) is the

outcome of the mechanism at this stage.

– In all other cases, an arbitrary outcome y is selected by the mechanism.

An important feature of the AM-mechanism is that if every agent reports his or her true

type θi in his or her k = 0 announcement, and everyone reports the true state θ in each stage

8



k ≥ 1, then f ∗(θ) is implemented with probability (1− ε− ε2), where ε > 0 is an arbitrarily

small parameter chosen by the designer. Another important feature is that truthful reporting

is the uniquely rationalizable strategy for each agent i. This feature is due to the following

two main insights.

First, for each agent i, truthful report of his or her type θi in stage k = 0 is a strictly

dominant strategy. The possibility for each agent to be nominated as a dictator is a key

towards an understanding of this insight.

To see this, suppose that agent i plays any strategy m̂i such that m̂0
i = θ̂i 6= θi. By

changing m̂i into mi such that m0
i = θi and mk

i = m̂k
i for each k ≥ 1, agent i has a utility

gain of ui(fi(θi), θi)−ui(fi(θ̂i), θi) > 0, by Lemma 1, when he or she is chosen as the dictator.

To provide agent i with the incentives to truthfully report in stage k = 0, this utility gain

must be greater than the maximal utility gain from lying. The gain from lying is coming

only from the auditing component of the mechanism. The incentives are assured by choosing

ε appropriately. To see why lying can be profitable, let us consider the case where everyone

else is truthful in all stages. In this case, lying by agent i induces punishments on other

agents in the auditing component, which may be beneficial to him or her.

The second insight is that the audit component of the mechanism, as well as the appro-

priate choice of K, provides agents with the incentives to be truthful in each stage k ≥ 1.

To see this, recall that by the above discussion, everyone is truthful in stage k = 0. Fix

k = 1 and any agent i. Suppose that agent i plays a strategy m̂i such that m̂1
i 6= θ = m0

and that every other agent j plays mj.

Let us suppose that agent i is not the only agent who makes a k = 1 announcement which

is inconsistent with m0 = θ. By changing m̂i into mi such that m1
i = θ and mk

i = m̂k
i for each

k 6= 1, agent i has a utility gain of ui(a(i, (θi, θ−i)), θi)− ui(a(i, (θi, θ−i)), θi) > 0 when he or

she is audited—by the domain assumption. When some other agent is audited, truthtelling

by agent i does not affect of the outcome of the mechanism. However, truthful report by

agent i may cause him or her a utility loss in the decision component of the mechanism

when stage k = 1 is selected by the designer. This can happen with probability 1−ε−ε2
K

. The

designer can make this loss arbitrarily small by choosing K appropriately.

Let us suppose that agent i is the only agent who makes a k = 1 announcement which

is inconsistent with m0 = θ. By changing m̂i into mi such that m1
i = θ and mk

i = m̂k
i for

each k 6= 1, agent i does not suffer any utility loss when is audited as ui(a(i, (θi, θ−i)), θi)−
ui(a(i, (θi, θ−i)), θi) ≥ 0. When some other agent is audited, truthtelling by agent i can not

harm him or her. The reason is that by truthtelling agent i can only harm other agents in the

auditing phase—agent i may only have a utility gain by the domain assumption. When stage

k = 1 is selected by the designer, given that all agents but agent i are making the same k = 1
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announcement, agent i’s utility is ui(f
∗
i (θ), θi), which, by the domain assumption, is strictly

lower than the utility he or she obtains under truthtelling, that is, ui(f
∗(θ), θi) > ui(f

∗
i (θ), θi).

Since our goal is to implement F , by implementing f ∗ ∈ FF we have only achieved our

goal partially. To implement F , as mentioned earlier, we augment the AM-mechanism with

a voting rule over FF , which happens in stage k = −1.

Recall that in our augmented mechanism, agents can coordinate on any f ∈ FF by

reaching an almost unanimous consensus on f . If they fail to do so, then f ∗ is implemented.

Note that the ‘elected’ SCF is used when stage k ≥ 1 is chosen to determine the outcome of

the decision component of the mechanism.

An attractive feature of the voting game is that any unanimous agreement on a SCF

forms a Nash equilibrium. This feature allows us to create multiple Nash equilibrium in the

augmented mechanism. Indeed, we show that the strategy profile in which every agent i

plays mi = (f, θi, θ, . . . , θ) forms a Nash equilibrium. Moreover, we also show that agent i’s

rationalizable strategies are of the form mi = (·, θi, θ, . . . , θ). Thus, even though agents fail

to coordinate on one Nash equilibrium (that is, one SCF), or even though they are playing

some mixed equilibrium, the realized outcome will be ε-close to an f ∈ FF .

It is worth emphasizing that our mechanism does not rely on any tail chasing construction.

The reason is that the constructed mechanism is bounded with respect to rationalizability.

We show that the iterative deletion of strictly never best reply does not rely on the cardinality

of FF—see Lemma 4.

4 Proof of Theorem 1

Suppose that n ≥ 3 and that Assumption holds. Thus, Lemma 1 holds. Let us define

Γ = (M, g) as follows.

M = ×i∈NMi,

Mi = M−1
i ×M0

i ×M1
i × ...×MK

i ,

where the integer K is yet to be specified, where

M−1
i = FF , M0

i = Θi, Mk
i = Θ for all k ∈ {1, ..., K} ,

and where FF =
{
f : Θ 7→ Y |∀θ ∈ Θ, f (θ) ∈ F (θ)

}
.

Since Lemma (1) holds and since Θi is finite, it follows that there exists a real number
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η > 0 such that for each agent i ∈ N and each of his or her type θi ∈ Θ, it holds that

ui (fi (θi) , θi)− ui (fi (θ′i) , θi) > η for all θ′i ∈ Θi\ {θi} .

Define a function ξ : N ×M 7→ Y by:

ξ (i,m) =

 a (i,m0)
if for some k ∈ {1, ..., K} , mh

j = m0 for all

h = 1, .., k − 1 and all j ∈ N , and mk
i 6= m0;

ā (i,m0) otherwise;

where the lotteries a (i,m0) and ā (i,m0) are those specified by Assumption.

Given Assumption, for every f ∈ FF , there exists a nearby SCF f̂ : Θ 7→ Y and, for each

i ∈ N , a nonempty single-valued funtion f̂i : Θ 7→ Y such that

ui

(
f̂ (θ) , θi

)
> ui

(
f̂i (θ) , θi

)
(1)

for all θ ∈ Θ. To see it, for a small number α > 0, let us define f̂ and f̂i as follows:

f̂ (θ) = (1− nα) f (θ) + α
∑

j∈N ā (j, θ)

and

f̂i (θ) = (1− nα) f (θ) + α
∑

j∈N ā (j, θ) + αa (i, θ) .

By Assumption and by definition of f̂ and f̂i, one can see that (1) holds.

For every k ∈ {1, ..., K}, define a function ρ : Mk ×M−1 7→ Y as follows:

Rule 1: If
∣∣{i ∈ N |m−1

i = f
}∣∣ ≥ n− 1 for some f ∈ FF , then:

(a) If mk
i = θ for all i ∈ N , then ρ

(
mk,m−1

)
= f (θ).

(b) For all i ∈ N , if mk
j = θ for all j ∈ N\ {i} and mk

i 6= θ, then ρ
(
mk,m−1

)
= fi (θ).

(c) Otherwise, ρ
(
mk,m−1

)
= y for some y ∈ Y .

Rule 2: Otherwise, for some f ∗ ∈ FF :

(a) If mk
i = θ for all i ∈ N , then ρ

(
mk,m−1

)
= f ∗ (θ).

(b) For all i ∈ N , if mk
j = θ for all j ∈ N\ {i} and mk

i 6= θ, then ρ
(
mk,m−1

)
= f ∗i (θ).

(c) Otherwise, ρ
(
mk,m−1

)
= y for some y ∈ Y .

11



Following AM, let ε > 0 be an arbitrary small number such that (1− ε− ε2) > 0. The

outcome function g : M 7→ Y is defined by

g (m) =
ε

n

∑
i∈Nfi

(
m0
i

)
+
ε2

n

∑
i∈Nξ (i,m) +

(1− ε− ε2)

K

∑K
k=1ρ

(
mk,m−1

)
, (2)

for all m ∈M .

For each θi ∈ Θi, let

Ei (θi) = max
m∈M

(∑
j∈N |ui (ξ (j,m) , θi)|

)
.

In what follows, we will choose a small enough ε > 0 such that

η > 2εEi (θi) (3)

for all i ∈ N and all θi ∈ Θi.

For each i ∈ N and each θ ∈ Θ, define

Bi (θ) = ui (ā (i, θ) , θi)− ui (a (i, θ) , θi)

and

Di (θ) = max
(mk,m−1)∈Mk×M−1

[
ui
(
ρ
(
mk,m−1

)
, θi
)
− ui

(
ρ
((
mk
−i, m̄

k
i

)
,m−1

)
, θi
)]

,

where m̄k
i = θ.

By Assumption, it holds that Bi (θ) > 0 for all i ∈ N and all θ ∈ Θ. Therefore, there

exists an integer K > 0 such that for all i ∈ N and all θ ∈ Θ, it holds that

K
ε2

n
Bi (θ) >

(
1− ε− ε2

)
Di (θ) . (4)

Fix any SCR F . We show that F is virtually Nash implementable and that Γ is a bounded

mechanism.

To this end, we prove the following lemmata for any θ ∈ Θ.

Lemma 2. For all f ∈ FF and all m ∈ M , if mi = (f, θi, θ, ..., θ) for all i ∈ N , then

m ∈ NE (Γ, θ).

Proof. Take any m ∈ M and suppose that for some f ∈ FF , mi = (f, θi, θ, ..., θ) for all

i ∈ N . We will show that the strategy profile m forms a pure strategy Nash equilibrium. Let

m = (mi,m−i) and m′ = (m′i,m−i). Notice that by construction in each stage k ∈ {1, . . . , K}
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Rule 1-a will be used and hence the SCF f will be used under both m and m′. In other

words any unilateral deviation from m does not change the choice of social choice function

in any stage k.

ui (g (m) , θi)− ui (g (m′) , θi) =
ε

n

[
ui (fi (θi) , θi)− ui

(
fi
(
m′1i
)
, θi
)]

+
ε2

n

∑
i∈N [ui (ξ (i,m) , θi)− ui (ξ (i,m′) , θi)]

+
(1− ε− ε2)

K

∑
k∈K [ui (f (θ) , θi)− ui (f (i, θ) , θi)]

≥ η − 2εEi (θi) +
(1− ε− ε2)

K

∑
k∈K [ui (f (θ) , θi)− ui (f (i, θ) , θi)]

≥ (1− ε− ε2)

K

∑
k∈K [ui (f (θ) , θi)− ui (f (i, θ) , θi)] (by 3)

≥ 0 (by 1)

Thus we have shown that there is no profitable unilateral deviation from the strategy

profile m for agent i. Since the choice of agent, i is arbitrary, there is no unilateral profitable

deviation for any of the agent involved, and so m ∈ NE (Γ, θ), as we claimed to prove.

Lemma 3. For all m ∈ M , m ∈ R (Γ, θ) if and only if for all i ∈ N , m0
i = θi and mk

i = θ

for all k = 1, ..., K.

Proof. The proof of this statement is based on the proof of Abreu and Matsushima (1992a).

We report it for the sake of completeness. Suppose that m ∈ R (Γ, θ). Let us first show that

for all i ∈ N , m0
i = θi. Assume, to the contrary, that m0

i 6= θi for some i ∈ N . Let m̄i ∈ Mi

be such that m̄0
i = θi 6= m0

i , m̄
−1
i = m−1

i and m̄k
i = mk

i for each k = 1, ..., K. Let us show

that mi is strictly dominated by m̄i - that is, ui (g (m̄i,m−i) , θi) > ui (g (mi,m−i) , θi) for all

m−i ∈ M−i. Fix any m−i ∈ M−i. To save space, let (m̄i,m−i) = m̄ and (mi,m−i) = m.

Note that, by construction, m and m̄ fall into the same rule. By definition of g given in (2),

Lemma 1 and the fact that m̄−1
i = m−1

i , it follows that

ui (g (m̄) , θi)− ui (g (m) , θi) =
ε

n
[ui (fi (m̄i) , θi)− ui (fi (mi) , θi)]

+
ε2

n

∑
i∈N [ui (ξ (i, m̄) , θi)− ui (ξ (i,m) , θi)]

> η − 2εEi (θi)

> 0 (by 3),

Since the choice of m−i ∈ M−i is arbitrary, it follows that mi is strictly dominated by
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m̄i, which contradicts the initial supposition that mi ∈ Ri (Γ, θ).

Let P (h) be the statement “if m ∈ Rh (Γ, θ), then for all i ∈ N ,

m0
i = θi and m`

i = θ for each ` = 1, ..., h”.

We have already shown that P (0) holds, that is, m0
i = θi for each i ∈ N . Assume that the

statement P (h− 1) holds for each i ∈ N , where 0 ≤ h < K. Then, for each i ∈ N ,

m0
i = θi and m`

i = θ for each ` = 1, ..., h− 1”.

We show that P (h) holds, that is, mh
i = θ for each i ∈ N . Assume, to the contrary, that

mh
i 6= θ for some i ∈ N . Let m̄i ∈ Mi be such that m̄q

i = mq
i for each q = 0, ..., h − 1,

m̄−1
i = m−1

i and m̄h
i = θ 6= mh

i .

Take any m−i ∈ Rh
−i (Γ, θ). To save space, let (m̄i,m−i) = m̄ and (mi,m−i) = m. Note

that, by construction, m and m̄ fall into the same rule. We proceed according to the following

two cases.

Case 1 : There exists an agent j 6= i such that mh
j 6= m0

By definition of g given in (2), Assumption and by the fact that m̄−1
i = m−1

i , it follows

that

ui (g (m̄) , θi)− ui (g (m) , θi) =
ε2

n

[
ui
(
ā
(
i, m̄0

)
, θi
)
− ui

(
a
(
i,m0

)
, θi
)]

+
(1− ε− ε2)

K

[
ui
(
ρ
(
m̄h,m−1

)
, θi
)
− ui

(
ρ
(
mh,m−1

)
, θi
)]

=
ε2

n
Bi (θ)−

(1− ε− ε2)

K

[
ui
(
ρ
(
mh,m−1

)
, θi
)
− ui

(
ρ
(
m̄h,m−1

)
, θi
)]

≥ ε2

n
Bi (θ)−

(1− ε− ε2)

K
Di (θ)

> 0 (by 4).

Since the choice of m−i ∈ Rh
−i (Γ, θ) is arbitrary, this contradicts our initial supposition

that mi ∈ Ri (Γ, θ).

Case 2 : For all j 6= i, m`
j = m0

We distinguish whether ξ (i, m̄) = ξ (i,m) or not. Suppose that ξ (i, m̄) = ξ (i,m). It

simplifies the argument, and causes no loss of generality, to assume that m−1
j = f for all
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j 6= i. Then, m and m̄ fall into Rule 1. Then, by definition of g given in (2), it follows that

ui (g (m̄) , θi)− ui (g (m) , θi) =
(1− ε− ε2)

K

[
ui
(
ρ
(
m̄h,m−1

)
, θi
)
− ui

(
ρ
(
mh,m−1

)
, θi
)]

=
(1− ε− ε2)

K
[ui (f (θ) , θi)− ui (f (i, θ) , θi)]

> 0 (by 1).

Otherwise, suppose that ξ (i, m̄) 6= ξ (i,m). Then, by applying the same reasoning used in

Case 1, one can see that ui (g (m̄) , θi)− ui (g (m) , θi) > 0. In either case, since the choice of

m−i ∈ Rh
−i (Γ, θ) is arbitrary, this contradicts our initial supposition that mi ∈ Ri (Γ, θ).

By the principle of mathematical induction, it follows that if m ∈ R (Γ, θ) = RK (Γ, θ),

then for all i ∈ N , m0
i = θi and m`

i = θ for each ` = 1, ..., K, as we aimed to achieve.

Finally, suppose that for all i ∈ N , mi is such that m0
i = θi and mk

i = θ for all k = 1, ..., K.

We show that m ∈ R (Γ, θ). To this end, we need to show that mi ∈ Ri(Γ, θ) for each i. Fix

any i. Suppose that m−1
i = f for some f in M−1

i .

For each j ∈ N\ {i}, let m′j = (f, θj, θ, ..., θ) ∈ Mj. Lemma 2 implies that
(
mi,m

′
−i
)
∈

NE (Γ, θ). It follows that mi ∈ Ri (Γ, θ). Since the choice of agent i is arbitrary, it follows

that m ∈ R (Γ, θ), as we wanted to prove.

From the above lemmata, it follows that agent i ∈ N ’s set of rationalizable strategies of

(Γ, θ) is given by

Ri (Γ, θ) =
{
mi ∈Mi|m0

i = θi and mk
i = θ for all k = 1, ..., K

}
. (5)

We now show that Γ satisfies Definition 1.

Lemma 4. Γ is a bounded mechanism.

Proof. Let us show that Γ satisfies Definition 1. Suppose that mi /∈ Ri(Γ, θ) for some i ∈ N .

We show that m′i = (m−1
i , θi, θ, θ, . . . , θ) ∈ Ri(Γ, θ) dominates mi for every m−i ∈ R−i(Γ, θ),

that is,

ui(g(m′i,m−i), θi) ≥ ui(g(mi,m−i), θi)

with strict inequality for some m−i ∈ R−i(Γ, θ).
Since mi /∈ Ri(Γ, θ), it follow from (5) that m0

i 6= θi or mh
i 6= θ for some h ∈ {1, . . . , K}.

We proceed according to whether m0
i 6= θi or not. We only prove the case m0

i 6= θi given the

other case can be proved similarly.
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Let n0
i ∈ Mi be such that n0,−1

i = m−1
i , n0,0

i = θi 6= m−1
i and n0,k

i = mk
i for all k ∈

{1, ..., K}. By the same arguments of the proof of Lemma 3, it follows that

ui
(
g
(
n0
i ,m−i

)
, θi
)
> ui (g (mi,m−i) , θi)

for all m−i ∈ R−i (Γ, θ). If n0
i ∈ Ri (Γ, θ), then Definition 1 is satisfied. Otherwise, let h1 be

the lowest integer in {1, ..., K} such that n0,0
i = θi, n

0,k
i = θ for all 1 ≤ k < h1, and n0,h1

i 6= θ.

Note that h1 exists by (5).

Let n1
i ∈ Mi be such that n1,h1

i = θ and n1,k
i = n0,k

i for all k ∈ {−1, 0, ..., K} such that

k 6= h1. By the same arguments of the proof of Lemma 3, it follows that

ui
(
g
(
n1
i ,m−i

)
, θi
)
> ui

(
g
(
n0
i ,m−i

)
, θi
)

for all m−i ∈ R−i (Γ, θ). If n1
i ∈ Ri (Γ, θ), then Definition 1 is satisfied. Otherwise, let h2 be

the lowest integer in {h1 + 1, ..., K} such that n1,0
i = θi, n

1,k
i = n0,k = θ for all 1 ≤ k < h2,

and n1,h2

i 6= θ. Note that h2 exists by (5). By repeating the same reasoning, we have that

there exists n2
i ∈Mi such that

ui
(
g
(
n2
i ,m−i

)
, θi
)
> ui

(
g
(
n1
i ,m−i

)
, θi
)

for all m−i ∈ R−i (Γ, θ). And so on. After a finite number J ≤ K of iterations, a sequence

of messages n0
i , ..., n

J
i ∈ Mi can be derived, where nJi is such that nJ,0i = θi, n

J,k
i = θ for all

k ∈ {1, ..., K} and nJ,−1
i = m−1

i , such that

ui
(
g
(
nJi ,m−i

)
, θi
)
> ... > ui

(
g
(
n0
i ,m−i

)
, θi
)
> ui (g (mi,m−i) , θi)

for all m−i ∈ R−i (Γ, θ). It follows that

ui
(
g
(
nJi ,m−i

)
, θi
)
> ui (g (mi,m−i) , θi)

for all m−i ∈ R−i (Γ, θ), and so Definition 1 is satisfied.

To complete the proof, let us show that Γ virtually implements F in Nash equilibria and

rationalizable strategies. To this end, we first need to define a correspondence H : Θ � Y

that is ε-close to F .

For each x ∈ F (θ), define γ(x) as follows:
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γ(x) =
ε

n

∑
i∈N

fi(θi) +
ε2

n

∑
i∈N

a(i, θ) +
1− ε− ε2

K
x

Note that, by definition, it holds that d(x, γ(x)) ≤ ε. Moreover, let us define the corre-

spondence H (θ) by H (θ) = {γ (x) |x ∈ F (θ)}. One can easily check that γ is a bijection

from F (θ) to H (θ). It follows that H is ε-close to F . We need the following useful result.

Lemma 5. For all m ∈ R (Γ, θ), g(m) = γ(x) for some γ(x) ∈ H(θ).

Proof. Take any m ∈ R (Γ, θ). Then, mi = (·, θi, θ, ..., θ) for all i ∈ N , by Lemma 3. This

means that in each stage k ∈ {1, . . . , K} under m either Rule 1-a or Rule 2-a applies .

Suppose Rule 1-a applies in each stage k ∈ {1, . . . , K} , that SCF f is selected and F (θ) = x

then g(m) = γ(x) where γ(x) ∈ H(θ) since x ∈ F (θ). Suppose Rule 2-a applies in each

stage k ∈ {1, . . . , K} , that SCF f ∗ is selected and f ∗(t) = x∗ then g(m) = γ(x∗) where

γ(x∗) ∈ H(θ) since x∗ ∈ F (θ).

Next, we show that Γ implement H in Nash equilibria and rationalizable strategies.

In particular, we show that (1) for each γ(x) ∈ H(θ), there exists m ∈ NE(Γ, θ) (resp.,

m ∈ R(Γ, θ)) such that g(m) = γ(x); and (2) for each σ ∈ NE(Γ, θ) (resp., σ ∈ R(Γ, θ)), if

m′ ∈ supp(σ), then g(m′) = γ(x) for some γ(x) ∈ H(θ).

To show part (1), let us consider the strategy profile m such that mi = (f, θi, θ, . . . , θ) for

each i such that F (θ) = x. Note that g(m) = γ(x), by definition of the mechanism. Since

Lemma 2 holds, m ∈ NE(Γ, θ), and so m ∈ R(Γ, θ). Since the choice of γ(x) is arbitrary, it

follows that part (1) is satisfied.

To show part (2), by Lemma 5 we know that for every m′ ∈ R(Γ, θ), it holds that

g(m′) = γ(x) for some γ(x) ∈ H(θ). Then, H is implementable in rationalizable strategies.

Let us show that part (2) holds for implementation in Nash equilibria. Take any σ ∈
NE(Γ, θ) and any m′ ∈ supp(σ). By definition of R (Γ, θ), it follows that supp (σ) ⊆ R (Γ, θ),

and so m′ ∈ R(Γ, θ). Lemma 5 implies that g(m′) = γ(x) for some γ(x) ∈ H(θ). Since the

choice of σ ∈ NE(Γ, θ) and m′ ∈ supp(σ) are arbitrary, it follows that part (2) is satisfied.

This completes the proof.

5 Continuous implementation

In this section, we show that the constructed mechanism continuously virtually implements

F in the spirit of Oury and Tercieux (2012). To this end, we introduce the model of Oury

and Tercieux (2012).
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Let
∏
i∈N

Ti be a countable type space with generic element t = (t1, ..., tn) ∈ T . A model T

is a pair (T, κ) where for each i ∈ N and ti ∈ Ti, κ(ti) is the associated beliefs of agent i of

type ti on the state and the respective types of agents other than i. Formally, for each i ∈ N
and ti ∈ Ti, κ(ti) ∈ ∆(Θ×T−i). Given any measurable subset A ⊂ ∆(Θ×T−i), we associate

a probability measure κ[A]. We assume that κ(·) is continuous. Given a mechanism Γ and

a model T , let U(Γ, T ) be the induced game of incomplete information. For each i ∈ N , a

(mixed) strategy for agent i is denoted σi : Ti → ∆(Mi). The probability that σi assigns to

message mi when agent i is of type ti is denoted σi(mi|ti). Let σ denote a strategy profile.

Given some belief πi ∈ ∆(Θ×M−i) for agent i, his set of best responses is denoted by

BRi(πi) = argmax
mi∈Mi

∑
(θ,m−i)∈(Θ×M−i)

πi(θ,m−i)ui(g(m), θ)

A strategy profile σ is a Bayes Nash equilibrium (BNE, henceforth) of U(Γ, T ) if for each

i ∈ N and each ti ∈ Ti,

mi ∈ supp(σi(ti))⇒ mi ∈ BRi(πi(·|ti, σ−i), (6)

where π(·|ti,m−i) ∈ ∆(Θ×M−i) denotes the joint distribution of states and messages given

agent i’s type and the strategy of agents other than i.

Because we are interested in types which are close to those in the original model, we

introduce the notion of nested models. Let T be our initial model, which is a model of

complete information, i.e., Ti = {tθi : θ ∈ Θ} and κtθi [(θ, t
θ
−1)] for each θ ∈ Θ. For any

T̂ = (T̂ , κ̂), we write T̂ ⊃ T if T ⊂ T̂ and for each i ∈ N and ti ∈ T̂i, and any measurable

E ⊂ Θ × T−i, κ(ti)[E] = κ̂(ti)[(Θ × T̂−i) ∩ E]. Given a strategy profile σ in U(Γ, T̂ ), we

write σT for the strategy profile restricted to T .

Given a type ti in a model (T, κ), we can compute the hierarchies of beliefs for agent i.

First, his first-order belief h1
i (ti) (i.e., his belief about Θ) is given by the marginal distribution

of the beliefs κ on Θ, h1
i (ti) = margΘ κ(ti). Likewise, we can compute agent i’s second order

beliefs at ti (i.e., his belief about the state and about the first-order beliefs) by setting

h2
i (ti)[E] = κ(ti)[{(θ, t−i) : (θ, (hj(tj))j∈N) ∈ E}], ∀E ⊂ Θ× (∆(Θ))n

For each agent i and each type ti, we can compute the entire hierarchy of beliefs (h1
i (ti), ..., h

`
i(ti), ....)

by proceeding in this way. Note that h1
i (ti) ∈ ∆(Θ), h2

i (ti) ∈ ∆(Θ×∆(Θ)n), and so on.

Following Chen et al. (2018a), let Z0 = Θ and for each k ≥ 1 : Zk = zk−1 ×∆[(Zk−1]n.

Note that for each i, ti ∈ Ti, and each k ≥ 1, hki (ti) ∈ ∆(Zk−1). Let d0 be the discrete metric
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on Θ and d1 be the Prokhorov distance on the first-order beliefs (∆(Θ)).3

For any integer k ≥ 2, let us endow the set ∆(Zk−1) with the Prokhorov distance dk,

where Zk−1 is endowed with the sup-metric induced by d0, d1, ..., dk−1. The set of all beliefs

hierarchies for which it is common knowledge that the beliefs are coherent is the universal

type space T ∗ = T
i∈N
∗

i
introduced by Mertens and Zamir (1985), where for each i ∈ N ,

T ∗i ⊂ ×∞k=0 ∆Xk is the set of agent i’s hierarchies of beliefs in this space. Note that

hi(ti) ∈ T ∗i if there exists some type t′i in some model such that ti and t′i have the same

hierarchies of beliefs. Each T ∗i is endowed with the product topology. For a given i ∈ N ,

we say that two types ti and t̃i are close if there exists a sufficiently large ` such that for

all k ≤ ` the kth order beliefs hk(ti) and hk(t̃i) are close in the topology of convergence of

measures. In other words, pick a sequence of types {ti[n]}∞n=0. We say that it converges to

a type ti if for each `, h`i(ti[n])→ h`i(ti), i.e.,

dPi (ti[n], ti) ≡
∞∑
k=1

2−kdki (h
k
i (ti[n]), hki (ti))→ 0

In the sequel, we simply write ti[n] →P ti for convergence of the sequence {ti[n]}∞n=0 to ti,

and t[n]→P t if ti[n]→P ti for each i ∈ N .

In this section, we study the following notion of continuous implementation.

Definition 3. A SCR F is continuously implementable by a mechanism Γ if for every model

T such that T ⊆ T , there exists a Bayes nash equilibrium σ of U(Γ, T ) such that:

1. σT is a Nash equilibrium in U(Γ, T )

2. for any t ∈ T and any sequence t[n] 7→p t, where t[n] is a sequence in T , there exists n

such that for all n ≥ n, it holds that
⋃

m∈supp(σ(t[n])

g ◦m ⊆ F (t).

The next result shows that F is continuously implementable when it is implementable in

rationalizable strategies by a finite mechanism.

Lemma 6. If F is implementable in rationalizable strategies by a finite mechanism, then F

is continuously implementable by a finite mechanism.

3The Prokhorov distance is a metric on the collection of probability measures on a given metric space.
Formally, for any two z, z′ ∈ ∆(Z) for some metric space (Z, ρ), the Prokhorov distance is given by

inf{γ > 0 : z′(E) ≤ z(Eγ) + γ for every borel setE ⊆ ∆(Z)},

where Eγ = {x ∈ Z : inf
y∈E

ρ(x, y) < γ}. Alternatively, Eγ = ∪
e∈E

Bγ(e) where Bγ(e) is the open ball of radius

γ and centered at e ∈ E.
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Proof. Suppose F is implementable in rationalizable strategies by a finite mechanism Γ. Let

T ⊂ T . Since Γ is a finite mechanism and T is countable, there exists a BNE σ of U(Γ, T ).

First, we show that σT is a BNE of U(Γ, T ). To see this, note that ∀ti ∈ T , κ(ti) takes

its support on Θ× T−i. Therefore, for all ti ∈ T , it follows that:

mi ∈ supp(σi(ti))⇒ mi ∈ BRi(πi(·|ti, σ−i|Γ), (7)

and so σT is a BNE in U(Γ, T ). This establishes part (1) of Definition 3.

As far as part (2) is concerned, take any sequence t[n] ∈ T such that t[n] 7→p t. By the

definition of BNE and by the definition of interim correlated rationalizability, provided in

Dekel et al. (2007), we know that for all t[n] ∈ T ,

supp(σ(t[n])) ⊆ R(t[n]|Γ, T ) (8)

where R(t[n]|Γ, T ) denotes the set of interim correlated rationalizable strategies of type t[n]

in the game U(Γ, T ). By Lemma 1 of Dekel et al. (2006), we know that for there exists n

such that for all n ≥ n, it holds that

R(t[n]|M, T ) ⊆ R(t|Γ, T ). (9)

By (8) and (9), it follows that there exists n such that for all n ≥ n,

supp(σ(t[n])) ⊆ R(t|Γ, T ). (10)

Fix any n ≥ n and any m ∈ supp(σ(t[n])). By (10), it follows that m ∈ R(t|Γ, T ). Since Γ

implements F in rationalizable strategies, g(m) ∈ F (t), as we sought.

In a recent paper, Weinstein and Yildiz (2017) extend the finite game result of Dekel

et al. (2006) to infinite games. By using this result, the above lemma can be extended to

mechanisms with compact strategy spaces.

The above lemma implies that F is virtually continuously implementable when it is

virtually implementable in rationalizable strategies by a finite mechanism.

Lemma 7. If F is virtually implementable in rationalizable strategies by a finite mechanism,

then it is virtually continuously implementable by a finite mechanism.

From Theorem 1 and Lemma 7, one can easily see that our augmentation of the AM-

mechanism virtually continuously implements any SCR F when FF is finite.

Theorem 2. Let n ≥ 3. Any F is virtually continuously implementable when FF is finite.
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Using the arguments of Weinstein and Yildiz (2017), the above theorem can be extended

to the case when F (θ) is compact for every θ ∈ Θ.

Though Theorem 2 important, it is not entirely satisfactory. The reason is that our notion

of continuous implementation does not require that every equilibrium in the true model is

robust to the higher order uncertainty. To achieve implementation according to this stronger

notion, one has to ensure that the perturbed model has multiple BNEs—at least one for each

outcome in the range of F . We leave this challenging task for future research.

6 Concluding remarks

When there are at least three agents, this paper devises a bounded mechanism that virtu-

ally implements any SCR in Nash and rationalizable strategies. The devised mechanism is

robust to strategic uncertainty and does not rely on any tail-chasing procedures to elimi-

nate unwanted equilibria. Finally, its strategy spaces are easy to interpret in natural terms.

The devised mechanism can be viewed as a natural extension of the AM-mechanism as it

embeds the AM-mechanism in a voting scheme, in which an almost unanimous decision on

f ∈ FF must be taken by agents in order to virtually implement f ; when there is a larger

disagreement, a default SCF is virtually implemented.

The main result we obtain should be considered as providing a theoretical benchmark for

SCRs. Indeed, we obtain our result under a stringent informational assumption of complete

information (among agents). This assumption may not be satisfied in certain situations.

Abreu and Matsushima (1992b) have generalized the mechanism constructed in Abreu and

Matsushima (1992b) to Bayesian environments. They show that any SCF f which can be

virtually Nash implemented in these environments must satisfy a measurability condition,

a.k.a. AM-measurability. To characterize the class of social choice sets which are virtually

implementable in both Bayesian Nash and interim correlated rationalizable strategies, we

believe that a construction like the one presented in this paper would be useful. We believe

that such a construction will hinge on the identification of the appropriate variant of the

AM-measurability condition. We leave this subject for future research.
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