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Abstract

This work analyses a model of sequential learning with predecessor choice. There
are two states of the world and two types of agents. The two types differ in their
initial beliefs about the state of the world, and are identical otherwise. Agents can
choose to observe one of their immediate predecessors, either of their own type or
the opposite type. After choosing a predecessor, agents receive a private signal
and learn the action of their chosen predecessor, as well as the action of their
predecessor’s predecessor, and so on. They then take their own action. We are
primarily interested in the conditions under which agents prefer to observe their
opposite type across generations, leading to assimilation between the two groups.
We find that asymptotically agents will always prefer to observe their own type;
however, early generations may choose to observe their opposite types. We derive
conditions under which this occurs, and characterize decision rules specifying the
action taken by these agents. Using simulations, we demonstrate that such kind of
opposite-observing behaviour cannot continue forever – at some point agents switch
to their own type – and discuss comparative statics for the timing of this switch.

1 Introduction
The way in which individuals are connected to each other plays a vital role in the infor-
mation they receive and the opinions they form. Since agents make important decisions
based on these opinions and information, the structure of ties between them becomes
vital. For example, who people vote for, how much they invest in education, or whether
they adopt a new technology are all influenced by the beliefs and actions of others around
them. Learning from others is complicated because we can often observe only the final
actions of others and not the information it was based on. In addition, one may face cost
constraints and have to choose which agents to interact with. If agents hold different
beliefs or have different preferences over outcomes, what their actions reveal about the
information received by them will vary, and we may find it more useful to observe the ac-
tions of some kind of people over others. If agents form ties in order to gain information,
what will the pattern of ties look like? Will two groups of people find it more useful to
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engage with each other, or will they keep to themselves?

Recent advancements in the technology of communication, especially the rise of social
media, Jackson (2014) notes, “can lead to an increasingly dense network of interactions,
but also could result in more segregated interactions, as it becomes easier to locate and
stay in communication with others who have similar characteristics or interests.” Thus, it
is possible that agents over time have expanded the set of people they interact with, pos-
sibly making this set more diverse. At the same time, it has been noted that (especially
in the virtual world), agents often end up in ‘echo-chambers’ or ‘filter bubbles’ where,
either through preference or as a result of algorithmic recommender systems, they are
much more likely to encounter opinions that are similar to their own, and receive infor-
mation that confirms what they already believe (Halberstam & Knight, 2016; Sunstein
2001, 2009, 2017).

Homophily, the tendency of agents to be connected to people who are similar to them,
has been frequently observed in social networks. The reasons for this observation may be
related to preferences or biases in matching (Currarini, Jackson & Pin, 2009) but could
also result from other factors. As in Kets & Sandroni (2016), agents could face lower
strategic uncertainty when coordinating with people who are similar to them. Similarly,
norms existing in a group may make it easier to select on an equilibrium in games with
multiple equilibria.

When agents limit their interactions to specific groups, it becomes more likely that
we will observe different outcomes over these groups. With the internet and social media
rising in importance as news sources, and with the possibility that agents engage in ‘mo-
tivated reasoning’- for example giving undue weight to their initial positions - homophily
may lead not only to persistent disagreement among agents but also to increased polar-
ization of opinions (Goel, Dandekar & Lee, 2013; Halberstam & Knight, 2016).
In this context, it becomes important to consider the reasons why agents may choose to
interact with those similar to them, and how, in general, agents from different groups
interact with each other in order to gain information, form opinions and take actions.

This works builds on the specific model of sequential learning in Bikhchandani, Hirsh-
leifer & Welch (1992). We assume that agents, instead of being identical, belong to two
groups who have different prior beliefs. These prior beliefs prescribe different optimal
actions. We introduce an ‘uninformative’ signal on which agents act according to their
prior beliefs, representing the possibility of not receiving any new information, and thus
being an intuitive addition. As in Bikhchandani, Hirshleifer & Welch (1992), agents of
both types sequentially choose their actions based on their private information and the
actions of agents before them. However, we admit endogeneity of information acquisition
as well as costly information in a simplistic way, by assuming that (i) agents may choose
which type of predecessor they wish to form a link with, and (ii) they can only observe
one of their immediate predecessors, who then also reveals information about previous
generations.
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Consider a motivating example. Suppose people belong to one of two different castes
and that one person from each caste is nominated to be a leader. The rest of the agents
must choose which candidate to support. All agents would like to support the better
candidate, regardless of his caste. However, to begin with, agents expect the person
from their own caste to be better, and would thus support him in the absence of any
other information. Any new information they receive is rationally incorporated in their
decision-making. Suppose agents sequentially choose which candidate to support. An
agent may approach individuals who came before her to find out their decision, but sup-
pose she only has the time to approach one person. This person also passes on information
about the actions of previous generations. In addition, the agent receives a private signal
which may favour one of the candidates, but could also offer no new information. Which
type of person should an individual approach for information? Will an agent find it more
useful to observe the action of someone from her own caste or the other caste? Can we
have a situation where these two groups always prefer to observe each other?

Formally, our model considers two states of the world and two types of agents, who
have different prior beliefs but are identical otherwise. The type of each agent is common
knowledge. Agents have to choose one of two actions, each being optimal in one given
state. There are countably infinite generations of agents who arrive sequentially, with one
agent of each type in a given period. Agents can choose to observe one of their immediate
predecessors, either of their own type or the opposite type. After choosing a predecessor,
agents observe the action of their chosen predecessor. They also observe the action of
their predecessor’s chosen predecessor, and so on, up to the first generation. In addition,
agents receive a private signal, which may suggest one of the two states as being more
likely, but could also be uninformative. Agents then choose their own actions. Depending
on the true state, they receive their payoffs.

The questions we ask are the following: how do agents form links in this setting?
Would an agent rather have her immediate predecessor be similar to her, or dissimilar?
What will this choice depend on, and how will it vary across generations? Can it be pos-
sible that agents always wish to observe dissimilar individuals? Under what conditions
do agents form cross-group links for longer periods of time?

The answers to these questions are important for a number of reasons. One, how
people form links with each other is interesting in itself from a network formation per-
spective. Two, it is possible that the sequence of these (individual) predecessor choices
is not optimal from the point of view of information aggregation. This may invite the
possibility of a social planner choosing to mandate that people of these different types
interact with each other in a certain way. Finally, the predecessors that agents choose
will determine their likelihood of taking different actions, and thus determine the kind of
learning outcomes we are likely to see.

Our results are as follows. We find that, with two signals, each suggesting one of
the states as being more likely, agents are indifferent between observing predecessors of
their own type and the opposite type. When the uninformative signal is introduced,
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this indifference no longer necessarily holds. We find that asymptotically, agents always
prefer to observe their same type, but early generations may prefer to observe the opposite
type. We derive conditions under which this occurs. The preference for opposite type is
driven by the possibility of receiving an inconsistent signal. When an agent receives her
inconsistent signal, she prefers to observe the opposite type. This is because, if they take
the agent’s default action, their action will reveal more precise information about their
signal. This is the case the agent is most concerned with, that she will be unable to take
her default action because the information received from her predecessor was is ’muddy’.
(The very fact that Type X is more likely than type Y to take action A, makes the
observation of action A by type X less revealing of the signal received by him.) We next
characterise decision rules specifying the action taken by agents for case where opposite
types are observed initially. Interestingly, unless the agent is on his prior, the last two
actions he observes are sufficient to predict his optimal action at a given signal. Under
parameter restrictions on the prior beliefs, we find that predecessor choice depends on the
conditional probabilities of private signals and varies for each generation. Finally, using
simulations of the model we confirm that some generation eventually switches in the case
where we start with opposite-observing behaviour, and discuss comparative statics for
the timing of this switch.
This work attempts to demonstrate, in the context of social learning, that even unbiased
agents may choose to interact with others similar to them, in this case because doing so
provides an informational advantage.

2 Literature Review
An extensive literature, starting with Bikhchandani, Hirshleifer & Welch (1992) and
Banerjee (1992), covers models of observational learning where agents move sequentially.
In such models, agents use private signals and the actions of others to learn about some
underlying state of the world, in order to choose their own action. Learning generally
occurs through the Bayesian updation of agents’ beliefs about the state of the world.
There are several interesting questions that have been asked in this setting. For example,
with enough number of people arriving down the line, will agents eventually figure out
the true state of the world, i.e. will ‘asymptotic learning’ occur? A related question
concerns convergence. Do agents eventually act in the same way or end up with the same
beliefs?

In Bikhchandani, Hirshleifer & Welch (1992) and Banerjee (1992), with discrete sig-
nals and agents observing actions of all agents before them, asymptotic learning fails.
Bikhchandani, Hirshleifer & Welch (1992) define the concept of an information cascade,
a situation where agents rationally choose to ignore their own private signal and follow
the action taken by their predecessors. With homogeneous agents, one agent ignoring her
signal would trigger everybody after her to do the same, and further signal information
would not be incorporated in decision-making. Bikhchandani, Hirshleifer & Welch (1992)
show that the probability of being in a cascade approaches 1 as the number of individu-
als becomes very large. Banerjee (1992), independently studying a similar model, finds
that agents may exhibit ‘herd behaviour’ and (rationally) take the same action as people
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before them, thereby inflicting a negative externality on later individuals who don’t learn
anything from their actions.

Generalising the above models, Smith and Sørensen (2000) show that in sequential
learning models with discrete signals, learning will always fail, because there will exist
action histories that no signal is strong enough to overcome. However, when signals are
continuous and private beliefs are “unbounded”1, they show that asymptotic learning
goes through, with belief convergence implying action convergence when agents are iden-
tical.

The possibility of information cascades arises in our model for similar reasons as in
Bikhchandani, Hirshleifer & Welch (1992). This may be understood in the context of
Smith and Sørensen (2000) by noting that, since we have assumed discrete signals, pri-
vate beliefs will be bounded. Thus, asymptotic learning will fail. We note the following.
One, there may be situations where discrete signals are a more realistic assumption than
continuous signals. For example, bond ratings or the educational institution attended by
a prospective job candidate are discrete signals. Two, as noted by Acemoglu and Ozdaglar
(2011) “useful models of learning should not always predict consensus, and certainly not
the weeding out of incorrect beliefs. Instead, these should merely be possible outcomes
among others”.

Instead of assuming that agents observe all previous actions, more recent papers have
applied social learning models to networks, assuming more realistically that agents only
observe the actions of some subset of their previous generations (their ‘neighbourhood’).
Acemoglu, Dahleh, Lobel, and Ozdaglar (2011), for example, characterize the condi-
tions required for asymptotic learning on social networks under Bayesian learning. They
find that in addition to unbounded private beliefs, the network structure must have the
property of ‘expanding observations’, meaning roughly that there should be a minimum
amount of new information arriving in the network. There has also been a development
of literature on “non-Bayesian” social learning. Learning in these papers is generally
communication-based, with individuals repeatedly exchanging their beliefs or opinions
with each other and updating them in the process. The most commonly used rule is
based on linear updation which, following DeGroot (1974), assumes that an agent’s final
belief in a given period is a weighted average of her neighbours’ beliefs in the previous
period and her own belief in the previous period updated after observing a private signal
in this period. While these updation methods are most often employed in situations
where Bayesian calculations would be too complex (e.g. when neighbourhoods are gen-
erated randomly), they are also consistent with the findings of experimental evidence.
Anderson and Holt (1997), for example, find a considerable fraction of subjects deviating
from Bayesian preferences, especially when rules of thumb (such as counting signals) are
available.

Papers such as Bikhchandani, Hirshleifer & Welch (1992) which assume identical
1Private beliefs are ‘unbounded’ if they have full support in [0,1]. This corresponds to signals having

no ‘maximum informativeness’.
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agents attempt to explain conformity or other such properties within groups, rather than
within society at large. The heterogeneity among agents has often been considered ex-
plicitly, for example in Smith and Sørensen (2000), who work with multiple (private)
types of rational agents having different preferences, as well as “crazy” individuals who
have a strict preference for one action. They find that, among other possibilities, these
groups may end up in different type-specific cascades. Confounded learning may also
arise, where agents take different actions with the same (positive) probability in all states.

Heterogeneity among individuals may be modelled in different ways. Sethi and Yildiz
(2016), for example, in the context of agents’ choice to observe others over repeated in-
teractions, consider heterogeneity by assuming that agents have differing prior beliefs,
which are unobserved, and which they explain as arising due to some subjective ‘perspec-
tives’ of these individuals. Banerjee and Somanathan (2001), on the other hand, assume
observable heterogeneous priors, with the goal of understanding information aggregation
when agents share opinions strategically.
Sethi and Yildiz (2016) discuss the trade-off between observing agents who are better
informed (receive more precise signals) versus agents who are better understood (per-
spectives are better known) and find that a wide variety of observation patterns may
arise, including the possibility of the population being partitioned into different groups,
with individuals observing only those belonging to their own group. In a recent paper,
Sethi & Yildiz (2019) extend the framework used in Sethi & Yildiz (2016) to address
questions about homophily in their model. Agents face the same trade-off as before,
however, agents here belong to one of two groups, with prior beliefs being correlated
within a group, and no information being available, to begin with, on the prior beliefs of
agents outside one’s group. it is interesting to consider, in particular, the results of Sethi
and Yildiz (2019) for the case where priors are perfectly correlated within a group and
uncertainty about the other group is low. This is the closest case to our model. They
find that cultures merge in the long run– agents learn all perspectives, and choose the
best-informed individual as their target regardless of group membership. In contrast,
our model predicts segregation in the long run, with agents preferring to observe their
own type. Of course, these results are not directly comparable - in the current work, for
example, no agent is a priori better informed than any other agent, and prior beliefs of
the other group are perfectly known. Under the case where uncertainty about the other
group is high, Sethi & Yildiz (2019) find that agents exhibit in-breeding homophily. For
moderately high and low levels of correlation, heterogeneity in behaviour is observed.
Banerjee and Somanathan (2001), in the context of information aggregation under strate-
gic opinion sharing, find that communication between those with extreme and opposed
views is only possible if there is no possibility of false reporting, or if the group is relatively
homogeneous. Their results suggest that there may be advantages in communication if
the agents interacting are not too dissimilar.

Heterogeneity may alternatively be modelled as a differences in preferences. Lobel
and Sadler (2016) consider a sequential learning model where, even though all agents
match actions to states in an identical way, the weights assigned to the errors in the two
states are different across individuals. They introduce homophily by assuming that the
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structure of links in the network is correlated with individual preferences.

The point of interest in studying heterogeneous agents is to understand the differences
in the amount or quality of information derived from similar versus dissimilar people, as
well the implication for information aggregation. The extent of heterogeneity will be an
important factor in this context. Bikchandani, Hershliefer and Welch (1998) note that
even if individual preferences are not completely opposing, the presence of uncertainty
about predecessors could slow the rate of learning. In a slightly contrasting result, Golub
and Jackson (2012) find that with communication based-learning and average-based up-
dating, the speed of learning is slower when there is homophily in the social network.

Lobel and Sadler (2016) note that while the actions of dissimilar others are less infor-
mative, this leads individuals to pay more attention to their own signal, which may be
desirable for information aggregation. They find that in sparse networks, heterogeneity
introduces additional noise and may act as a barrier to information aggregation. The
presence of homophily is then desirable because it ‘rescues’ the improvement principle2.
By contrast, in dense networks, even though hetereogeneous preferences lead to less in-
formative actions, the independence among these (and the fact that there are many of
them) may be useful for learning.

We consider heterogeneous agents in this work by assuming that the two types of
agents differ in their prior beliefs but have identical preferences. As discussed by Baner-
jee and Somanathan (2001), heterogenous prior beliefs with identical preferences can
often be alternatively considered as identical priors with heterogeneous preferences. This
holds true in our case. We assume that the types of individuals are observable. When
types are unobservable, the problem of interest concerns the way in which individuals
derive information from others, being unsure about their type. By assuming observed
types, we instead ask the following question: when individuals are completely aware of
which agents are similar to them and which are dissimilar, who would they choose to get
information from?

While the literature on social learning has largely considered observation links to be
either given or randomly generated, recent work has looked at endogenous observation
of predecessors (Ali, 2018; Kultti and Miettinen, 2006,2007; Song, 2016) by introducing
a cost of information. The focus of these papers, however, has been on the impact on
learning, in particular the conditions under which complete learning can be attained. The
choices of agents themselves, especially with regard to types, has not received attention.
Agents in Kultti and Miettinen (2006, 2007) and Song (2016) are identical; while agents
in Ali (2018) are heterogeneous with respect to the cost of acquiring information, inter-
action between similar versus dissimilar agents has not been discussed (and may not be
interesting in this case). The focus of Lobel & Sadler (2016) too, while they specifically
consider agents with differing preferences, is on assessing the impact of homophily on

2The improvement principle provides insight into asymptotic learning and is based on the idea that
an agent can always do better than his neighbours. By imitating a neighbour, the agent guarantees
himself their expected payoff, which can be improved upon using his private information. This principle
may break down in the presence of heterogeneous preferences (Golub and Sadler, 2017).
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learning, which they begin by assuming. An important distinction of this work lies in
the fact that we are interested here in how agents will form links in the context of social
learning, when there is some notion of cost of information involved, as well as heterogene-
ity among agents. Since agents don’t have any inherent behavioural preference for similar
or opposite types, they will choose to form links with others based on the informativeness
of their actions. Understanding this process and its implications is the purpose of this
work.

3 The Model
There are two states of the world, denoted by θ ∈ {0, 1} and two types of agents, denoted
by t ∈ {X, Y }. The state θ is unknown, and types X and Y differ in their prior beliefs
about the true state of the world. The prior belief of type t is denoted by qt and represents
the probability assigned to the state θ = 1 by t. We assume that qY = 1−qX

3 with qX > 1
2 .

Countably infinite generations (N) of agents arrive sequentially, one of each type in a
given period. Agents are indexed by nt, where n stands for generation and t for type.

An agent nt has to take one of two actions, a ∈ {A,R}, where A corresponds to
‘accept’ and R to ‘reject’. Let ant denote the action taken by agent nt. Based on this
action and the underlying state, agent nt receive the payoff U(ant | θ). We assume that
each action is optimal in exactly one state, with A being the preferred action when θ = 1
and R being preferred otherwise:

U(R | θ = 0) = U(R | θ = 1) = 0
U(A | θ = 0) = −1
U(A | θ = 1) = 1

Note that U(A | θ) and U(R | θ) are independent of the identity of the agent taking these
actions, and that the penalty of taking the wrong action is identical across states.

Agents have two sources of information- (i) they receive a private signal, (ii) they
observe the actions of some subset of the agents that came before them.

Private signals: Private signals are denoted by s ∈ S with S = {sL, sN , sH}. An agent
may receive one of three possible signals - a low signal (sL) suggests that the “low” state
i.e. θ = 0 is more likely to be the true state, a “no information” signal (sN), referred to
as the uninformative signal, suggests that both states are equally likely, and a high signal
(sH), suggests that θ = 1 is more likely. We therefore call sL (sH) the “correct” signal in
state θ = 0 (θ = 1) and the “incorrect” signal in state θ = 1 (θ = 0). Signals have the
following conditional probability distribution :

3While this is a strong assumption, it is useful in simplifying the analysis. It may
be noted that the results of Theorem 1 will be robust to qY not being exactly equal to
1 − qX as long as qY satisfies the ‘mirror image’ constraint of Assumption 1 i.e. qY >

max
{

p2(1− p2)
p1(1− p1) + p2(1− p2) ,

p1(1− p1)2

p1(1− p1)2 + p2(1− p2)2

}
.
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θ = 0 θ = 1
sL p1 p2

sN p3 p3

sH p2 p1

with p1 + p2 + p3 = 1. For a given θ, p1 denotes the probability of receiving the correct
signal, p2 denotes the probability of receiving the incorrect signal and p3 denotes the
probability of receiving the uninformative signal4.

We assume that p1 > p2 so that signals are informative by the monotone likelihood ratio
property. Additionally, we have the following definitions:

Definition 1 (Consistent State). An agent’s consistent state is that state on which the
agent places a higher initial belief.

Definition 2 (Consistent and Inconsistent Signals). The correct signal in the agent’s
consistent state is defined as her consistent signal. The incorrect signal for this state is
called her inconsistent signal.

An agent’s consistent signal ‘agrees with’ her prior. It is clear that the signals sL and
sH will constitute consistent and inconsistent signals for all agents.

Definition 3 (Default and Contrary Actions). The optimal action for an agent based
(only) on her prior beliefs is called her default action. The remaining action in {A,R}
is called her contrary action.

We denote the default action of type t by adef(t).

We thus have the following:

Type Consistent State Consistent Signal Default Action
X θ = 1 sH A

Y θ = 0 sL R

Social Information: An agent can observe the actions of a subset of the agents who came
before her, with some control over this subset. In particular, the agent nt can form a
link with (i.e. choose to observe) one person of the previous generation. We denote the
“predecessor choice” of agent nt by µnt ∈ {(n− 1)X, (n− 1)Y }.
When she chooses µnt, nt is able to view not only this agent’s action, but also the action
of the agent with whom µnt formed a link, and so on, all the way back to the first genera-
tion. Thus, if 3X chooses 2X who chose 1Y , then the fourth generation on observing 3X
will be able to see all three actions a1Y , a2X and a3X . If an agent is indifferent between

4One may alternatively say that there are only two signals sL and sH and think of p3 as the probability
of not receiving a signal.
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observing either of her predecessors, we assume that she observe her own type5.

The sequence of events is as follows. The first generation, having no history to observe
(and thus no predecessor choice to make), take actions based on their signals. Subsequent
generations on arrival must first choose their predecessors. Note that choosing a prede-
cessor essentially means choosing a particular kind of history to observe. There are two
branches starting from the first generation where each subsequent agent is connected to
their chosen predecessor. The problem of choosing a predecessor is then the problem of
deciding which of these branches to attach oneself to.
Upon choosing a predecessor, agents receive their signal and can view the actions taken
by the agents in their chosen branch. Based on this information, they choose which action
to take. Then, given their action and the true state θ, they receive their payoff.

The sequence of actions of previous generations which an agent might observe, along
with the identities of the people taking those actions, constitute a ‘history’. Denote a
history upto generation n by

hn =
{
ai ti

}n

i=1

with
tn ∈ {X, Y } and ti−1 = µi ti for i = 2, ..., n− 1

where ti ∈ {X, Y } represents the type of the ith generation agent in the given history.
For example, h3 = R1Y, A2X, R3X denotes one possible history upto the third generation.
This history gives us the following information: one, it tells us that 3X chose to observe
2X and 2X chose to observe 1Y and two, it gives us the actions taken by these agents.
We denote the set of all possible histories upto the nth generation by Hn.

We will particularly be interested in histories where agents choose to observe their
opposite types e.g. 2X chooses 1Y , 3Y chooses 2X, 4X chooses 3Y and so on.
Let HO

n ⊂ Hn (where O stands for ‘opposite’) denote the set of all possible histories upto
generation n where each agent it for i = 2, ..., n chooses a predecessor of the opposite
type. We will refer to such a history as a “history of opposites”.
Denote by HO

n (X) the set of those histories in HO
n where the last i.e. nth agent is of type

X. Similarly define HO
n (Y ). Clearly, HO

n = HO
n (X) ∪HO

n (Y ) and HO
n (X) ∩HO

n (Y ) = φ.
Note that, given n, the identity of every agent in any history belonging to the sets HO

n (X)
and HO

n (Y ) is fixed. For example, if n = 4, then the agents in any history h4 ∈ HO
4 (X)

are necessarily 1Y, 2X, 3Y, 4X.

Suppose that agent (n+1)t observes some signal s and some history hn. Her posterior
belief (on the state θ = 1) at the information set (s, hn) is then given by r(n+1)t(s, hn)

5We assume that the tie-breaking rule does not randomize between predecessors in order to avoid
complicated histories where both agents of a generation have observed the same predecessor. Although
we assume here than an indifferent agent observes her own type, we can replace this by a rule choosing
the opposite type without affecting the result in Theorem 1 (a weak inequality will replace the strong
inequality in equation 4.7).

10



and is calculated using Bayes’ rule:

r(n+1)X(s, hn) = qX P(s | θ = 1) P(hn | θ = 1)
qX P(s | θ = 1) P(hn | θ = 1) + (1− qX) P(s | θ = 0) P(hn | θ = 0)

This can be rewritten in the following way:

r(n+1)X(s, hn)
1− r(n+1)X(s, hn) = qX P(s | θ = 1) P(hn | θ = 1)

(1− qX) P(s | θ = 0) P(hn | θ = 0)

Agent (n + 1)t is said to be “on her prior” after seeing (s, hn) if her posterior belief
r(n+1)t(s, hn) is exactly equal to her prior belief qt. It is clear that if one of (n+ 1)X and
(n+ 1)Y is on prior at (s, hn), then so is the other one.

Note that the predecessor choice of an agent is not based on any private information.
In addition, as discussed above, the tie-breaking rule is deterministic. Using common
knowledge of rationality, it is thus easy to see that an agent nt can figure out the pre-
decessor choices of all generations before her. Thus, when agent (n + 1)X is choosing
whether to observe nX or nY , the predecessor choices of generations upto n are known
to her. Given these predecessor choices and the state θ, let the probability of (n + 1)X
being on his prior when he observes nt be

P
(
r(n+1)X = qX

∣∣∣ θ , nt ) =
∑
s∈S

∑
hn ∈H

1r(n+1)X(s,hn)=qX
.P(s | θ) .P(hn | θ)

where 1r(n+1)X(s,hn)=qX
is an indicator function taking value 1 when (n + 1)X’s posterior

belief at (s, hn) is equal to qX , and 0 otherwise, and some set H is the set of all the
possible histories that (n+ 1)X can see when he chooses to observe agent nt.
If (n+ 1)X is on his prior at (s, hn), then

P(s | θ = 0) .P(hn | θ = 0) = P(s | θ = 1) .P(hn | θ = 1)

⇒ P
(
r(n+1)X = qX

∣∣∣ θ = 0 , nt
)

= P
(
r(n+1)X = qX

∣∣∣ θ = 1 , nt
)

Thus, given any state θ, we may denote by P(r(n+1)X = qX |nt ) the probability of (n+1)X
being on his prior when he observes nt.

Similarly, for s1 ∈ S,

P
(
r(n+1)X = qX

∣∣∣ θ , s1, nt
)

= P(s1 | θ) .
∑

hn ∈H

1r(n+1)X(s1,hn)=qX
.P(hn | θ)

Let a(n+1)t(s, hn) denote the action that agent (n+ 1)t would take on the information
set (s, hn). We call this her ‘optimal’ action given s and hn. We assume that agent
(n+ 1)t chooses between the actions A and R in the following way:

a(n+1)t(s, hn) =


R if r(n+1)t(s, hn) < 1

2
adef(t) if r(n+1)t(s, hn) = 1

2
A if r(n+1)t(s, hn) > 1

2
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We denote by S(a(n+1)t |hn) the set of signals for which, given the history hn, agent
(n+1)t takes action a(n+1)t. We call this the implied signal set of agent (n+1)t given this
history and her action. Given hn we call S(R(n+1)t |hn) agent (n + 1)t’s ‘rejection set’,
and S(A(n+1)t |hn) her ‘acceptance set’. These sets are mutually exclusive and exhaustive
subsets of the signal set S. Thus we say that (n+1)t creates a ‘partition’ of her signal set
given hn. Note that writing the set S(A(n+1)t|hn) is sufficient for describing this partition.

For any given history, we can derive the implied signal set of each agent in that his-
tory. Thus, the history can alternatively be written as a sequence of subsets of the
signal set S. Consider an example. Suppose 2X observes 1X and we have the history
R1XR2X with S(R1X) = {sL} and S(R2X |R1X) = {sL, sN}. Then we say that R1XR2X

⇒ {sL}×{sL, sN}. Similarly, R1XA2X ⇒ {sL}×{sH}. Since sL and sH cancel each other
out, R1XA2X provides no net information and we may say in addition that R1XA2X ⇒ φ.

Let P(a(n+1)X | θ, nt ) denote the probability that agent (n+ 1)X observing agent nt
takes action a, where a ∈ {A,R}, given state θ. P(a(n+1)X | θ , nt) is then the probability
of being at those information sets (out of whichever information sets are feasible when
observing nt) where (n+ 1)X takes action a.
Note that when agent (n+1)t is deciding between observing nX and nY , the predecessor
choices upto generation n are already fixed. Thus, P(a(n+1)X | θ , nt) is defined for a given
sequence of predecessor choices upto generation n.
In cases where the predecessor choice of agent (n + 1)X is already given or is not the
point of discussion, we use the notation P(a(n+1)X | θ).

Let EU (n+1)X(nt) denote the expected payoff of agent (n+1)X when observing agent
nt, where t ∈ {X, Y }. EU (n+1)Y (nt) is similarly defined. Since their choice must be made
before their own signal is realised or they are able to see the history of actions in their
chosen branch, it is this payoff that the (n + 1)th generation compares for t = X and
t = Y when choosing who to observe. For example, for t = Y , we have

EU (n+1)X(nY ) = qX .P(A (n+1)X | θ = 1, nY ) . U(A | θ = 1)
+ (1− qX) .P(A (n+1)X | θ = 0, nY ) . U(A | θ = 0)
+ qX .P(R (n+1)X | θ = 1, nY ) . U(R | θ = 1)
+ (1− qX) .P(R (n+1)X | θ = 0, nY ) . U(R | θ = 0)

= qX .P (n+1)X(A | θ = 1, nY ) − (1− qX) .P (n+1)X(A | θ = 0, nY )

Let P
(
ant1

1 a
(n+1)t2
2

∣∣∣ θ ), where a1, a2 ∈ {A,R} and t1, t2 ∈ {X, Y }, refer to the joint
probability that agent nt1 takes action a1 and agent (n + 1)t2, who chooses to observe
nt1, takes the action a2. Thus,

P
(
ant1

1 a
(n+1)t2
2

∣∣∣ θ ) = P(ant1
1 | θ ) .P(a(n+1)t2

2 | θ, nt1, ant1
1 )

Notice that there is a considerable amount of symmetry in this model. For example,
sL and sH together cancel each other out– they are mirror images in this sense. Similarly,

12



for any history of opposites in the set HO
n (X) there will be a corresponding mirror image

history in the set HO
n (Y ). The priors of the two types are also mirror images around 1

2 .
We introduce the following notation in order to be able to exploit this symmetry.

Loosely speaking, a hat over a notation signifies that we are referring to its mirror
image. To see this more precisely in the case of private signals, consider the involution
defined by ŝ:

Let ŝ = f(s) : S → S be such that

f(sL) = sH , f(sN) = sN , f(sH) = sL

For a given θ, we use θ̂ to refer to the remaining state in {0, 1}. Similarly, we have,
for actions, Â = R and R̂ = A, and for types, X̂ = Y and Ŷ = X.

For a history hn, the mirror image history ĥn contains, for each action ait in hn

(i = 1, ..., n), the action âit̂ in its place, i.e. both the actions and identities of agents
are reversed. For example, the mirror image of the history h3 = A1XR2YR3Y is ĥ3 =
R1YA2XA3X .

Implied signal sets will also have mirror images. For S1 ⊂ S, we have Ŝ1 := {ŝ | s ∈
S1}. For example, if S1 = {sL, sN}, then Ŝ1 = {sN , sH}. It is then easy to see that, sim-
ilar to the way in which sL and sH cancel each other out, the sets {sL, sN} and {sN , sH}
will also cancel each other out.

4 Analysis
The first generation takes their action based on their private signal. At the uninformative
signal, it is clear that 1X and 1Y will both take their default actions. It follows that they
take their default action at their consistent signal as well.

If these agents were to take their default action at their inconsistent signal, it would
mean that signals don’t really matter, not just for them but also for subsequent gener-
ations, who will be in a similar position as the first generation. Moreover, predecessor
choice will not be of any importance. Thus, in order to ensure that signals matter and
predecessor choice is relevant, we have the following assumption:

qX <
p1

p1 + p2
(4.1)

(4.1) implies that 1X rejects on sL and by symmetry, that 1Y accepts on sH . Thus,
the first generation take their contrary action at their inconsistent signal and 1X and 1Y
partition their signal sets in the following way:

S(A1X) = {sN , sH} , S(A1Y ) = {sH}

We also make the following assumption:

Assumption 1. qX < min
{

p1(1− p1)
p1(1− p1) + p2(1− p2) ,

p2(1− p2)2

p1(1− p1)2 + p2(1− p2)2

}

13



If we think of {sL, sN} as a ‘weak low signal’ and of {sN , sH} as a ‘weak high signal’,
then Assumption 1 describes conditions defining the strength of a ‘weak’ signal relative
to the standard signal.
To be precise, Assumption 1 implies the following actions for any agent (n+ 1)t,

if s(n+1)t = sL and hn ⇒ {sN , sH}, then R
if s(n+1)t = sL and hn ⇒ {sN , sH} × {sN , sH}, then A

The first statement implies that, given qX and p1
p2

, the probability of getting the uninfor-
mative signal p3 is high enough that type X rejects at {sL} × {sN , sH} even though he
would have accepted at {sL} × {sH}. Similarly, the second statement implies that given
qX and p1

p2
, p3 is low enough that type Y accepts at {sL} × {sN , sH} × {sN , sH} just like

he would have at {sL} × {sH} × {sH}.
Thus, Assumption 1 states that, for either type of agent, (a) one ‘weak’ signal is not
strong enough to overcome a ‘standard’ signal in the opposite direction, and (b) two
‘weak’ signals are strong enough for this task.

Note that since qX >
1
2, if qX <

p2(1− p2)2

p1(1− p1)2 + p2(1− p2)2 , we must have

p2 (1− p2)2 > p1 (1− p1)2

⇒ 1− p2

(1− p1) + (1− p2) >
p1 (1− p1)

p1 (1− p1) + p2 (1− p2)

Thus Assumption 1 implies the following:

qX <
p1 (1− p1)

p1 (1− p1) + p2 (1− p2) (4.2)

qX <
1− p2

(1− p1) + (1− p2) (4.3)

qX <
p2(1− p2)2

p1(1− p1)2 + p2(1− p2)2 (4.4)

Note also that (4.1) automatically holds when Assumption 1 is satified.

4.1 Results
We begin by noting that, asymptotically, agents in this model always prefer to observe
their own type. Let us see why. Consider some generation n. If n is sufficiently large, we
know that given the structure of the model, the probability of being in an informational
cascade will be very close to one (Bikchandani, Hershleifer & Welsch, 1992; Lee 1993).
Now suppose that this generation n has chosen to observe their own type. With proba-
bility close to one, agents nX and nY are in an information cascade, which means that
their actions convey no information to the next generation. Thus, the predecessor choice
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problem for generation (n + 1) is identical to that of generation n, and so (n + 1) will
also prefer to connect to the branch where generation (n − 1) is of the same type. This
means that (n+1) would choose to observe the same type in its previous generation. Now
suppose that generation n chose to observe the opposite type. By a similar argument
as above, the next generation i.e. (n + 1) would also like to attach itself to the branch
where the type of generation (n − 1) is opposite to her own type. However, this means
that in the immediately previous generation, (n + 1) should choose to observe the same
type. Thus, generation (n + 1) always chooses to observe it’s own type. Using the first
part of the argument again, it is easy to see that all later generations will also prefer to
observe their same type.

The predecessor choices of agents in general, however, are not as predictable. We find
that agents will often prefer to form a link with their opposite type, and this preference
is not necessarily short-lived across generations. In order to arrive at the predecessor
choice of any agent (n + 1)t, one may, given the sequence of predecessor choices up to
generation n, calculate all information sets agent (n + 1)t may be on, find her posterior
belief and optimal action for each of these, and thus calculate and compare her expected
payoff from observing a predecessor of type X with one of type Y. However, it would be
useful to find some simple rules describing how agent (n + 1)t will behave at different
information sets, bypassing the need for repeated calculations of posterior beliefs. The
following lemma helps us do so.

Lemma 1 (Decision rules with three signals). For n ≥ 2, suppose that all generations
up to n have observed their opposite types. Let agent (n+ 1)t′, where t′ ∈ {X, Y }, receive
the private signal s ∈ S and observe some history hn ∈ HO

n . If Assumption 1 is satisfied,
then the following hold:

1. (a) r(n+1)X(s, hn) /∈
[

1
2 , qX

)
, ∀s ∈ S and hn ∈ HO

n

(b) r(n+1)Y (s, hn) /∈ ( qY ,
1
2 ], ∀s ∈ S and hn ∈ HO

n

2. (n+ 1)t′ decides between A and R using the following “decision rules”:
(i) On receiving her consistent signal, if (n + 1)t′ is on her prior, she takes her

default action. If she is not on her prior, she takes her contrary action if the
last two actions in hn are her contrary actions, and otherwise takes her default
action.

(ii) On receiving the uninformative signal, if (n + 1)t′ is on her prior, she takes
her default action. If she is not on her prior, (n+ 1)t′ follows (i.e. takes the
same action as) her predecessor.

(iii) On receiving her inconsistent signal, (n + 1)t′ follows the latest agent of the
opposite type in hn.

3. (a) If S(A(n+1)X |hn) = φ, then

P(hn | θ = 1)
P(hn | θ = 0) ∈

{
p2 (1− p1)
p1 (1− p2) ,

(1− p1)2

(1− p2)2

}
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(b) If S(A(n+1)Y |hn) = S, then

P(hn | θ = 1)
P(hn | θ = 0) ∈

{
p1 (1− p2)
p2 (1− p1) ,

(1− p2)2

(1− p1)2

}

Proof. Appendix A. �

Given a history of opposites, Lemma 1 is helpful in two ways. One, as discussed in
Corollary 1 below, it tells us that under the given assumptions, agents of type X and
Y generally agree in their actions when receiving the same information, disagreeing only
when this information is effectively null. Two, it provides some useful rules describing
the actions of a given generation in terms of actions taken by previous generations.
Let us note a few colloraries of Lemma 1. Since these follow almost immediately from
Lemma 1, their proofs are omitted.

Corollary 1. Let hn ∈ HO
n .

(a) If the agent (n+ 1)t, for t ∈ {X, Y }, is on her prior at some signal s1, then for any
s < s1, she will take action R at (s, hn) and for any s > s1, she will take action A at
(s, hn). At (s1, hn), she takes her default action.

(b) Consider any s ∈ S.
If r(n+1)X(s, hn) 6= qX , then a(n+1)X(s, hn) = a(n+1)Y (s, hn) i.e. both (n + 1)X and
(n+ 1)Y take the same action at (s, hn).
If r(n+1)X(s, hn) = qX , both agents take their default actions.

Corollary 1 allows us, for any given history, to fully determine the acceptance and
rejection sets of an agent who is on prior at some signal in S, and notes that the two
types of agents, if they observe the same history of opposites, take differing actions only
when they are on prior. This implies the following: For t ∈ {X, Y }, and hn ∈ HO

n (t),

P
(
A(n+1)X

∣∣∣ θ, nt ) = P
(
A(n+1)Y

∣∣∣ θ, nt ) + P
(
r(n+1)X = qX

∣∣∣ θ, nt )
P
(
R(n+1)X

∣∣∣ θ, nt ) = P
(
R(n+1)Y

∣∣∣ θ, nt ) − P
(
r(n+1)X = qX

∣∣∣ θ, nt ) (4.5)

Corollary 2. Let t ∈ {X, Y }. If hn ∈ HO
n (t̂) and S(A(n+1)t |hn) = S(A1t ), then

r(n+1)t(sN , hn) = qt.

This result states that if, given a history of opposites, an agent partitions her signal
set in the same way that the first generation of her type partitioned their own signal set,
then this agent will be on prior at sN (given this history) just like the first generation
was (at the null history).

Corollary 3. Let t ∈ {X, Y } and hn ∈ HO
n (t).
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1. If ant is type t’s default action, then the (n+ 1)th generation cannot be on prior at
t′s consistent signal given hn.

2. If ant is type t’s contrary action, then the (n + 1)th generation cannot be on prior
at t’s inconsistent signal or the uninformative signal.

Corollary 3 describes situations where an agent can not be on her prior, and implies
the following: For hn ∈ HO

n (Y ),

P
(
r(n+1)X = qX

∣∣∣ sL, nY, R
nY
)

= 0

P
(
r(n+1)X = qX

∣∣∣ sN , nY, A
nY
)

= 0

P
(
r(n+1)X = qX

∣∣∣ sH , nY, A
nY
)

= 0

(4.6)

Corollary 4. Let t ∈ {X, Y }. If hn ∈ HO
n (t̂ ) and the last action in hn i.e. ant̂ is type

t’s default action, then (n+ 1)t on seeing hn takes his default action for all signals in S.
Therefore,

P(AnY R(n+1)X | θ ) = 0
P(RnX A(n+1)Y | θ ) = 0

Corollary 4 implies that when an agent (n+ 1)t observes a history of opposites where
the last agent is of his opposite type (t̂), and this agent has already “switched over” i.e.
taken his own contrary (and type t’s default) action, then (n + 1)t will never “switch
over” himself.

Corollary 5. Let t ∈ {X, Y } and hn ∈ HO
n . If (n + 1)t receives her inconsistent signal

and the last action in hn is her contrary action, then (n+1)t will take her contrary action.

Corollary 5 notes that for an agent receiving her inconsistent signal, an (immediate)
predecessor taking the agent’s contrary action is sufficient to make her do so as well,
given a history of opposites.

The following theorem describes the predecessor choice of the second generation given
Assumption 1 and describes the condition required for a history of opposites to arise up
to some generation (n+ 1).

Theorem 1 (Predecessor choice with three signals). Suppose Assumption 1 holds. The
second generation then strictly prefers to observe their opposite type. Any subsequent
generation (n + 1) (for n ≥ 2) will also observe opposite type if all previous generations
have observed their opposite type and

P
(
A (n+1)X

∣∣∣ θ = 1, nY
)
> P

(
R (n+1)X

∣∣∣ θ = 0, nY
)

+ P
(
r(n+1)X = qX

∣∣∣nY ) (4.7)

with the above probabilities given by Propositions 1 and 2.

Proof. For second generation:
The second generation agents when choosing between 1X and 1Y consider all possible
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Information Set (I) P(I | θ = 0) P(I | θ = 1) a2X a2Y

sL, R
1X {sL} × {sL} p2

1 p2
2 R R

sL, A
1X {sL} × {sN , sH} p1 (1− p1) p2 (1−p2) R R

sN , R
1X {sN} × {sL} p1 p3 p2 p3 R R

sN , A
1X {sN} × {sN , sH} p3 (1−p1) p3 (1− p2) A A

sH , R
1X {sH} × {sL} p1 p2 p1 p2 A R

sH , A
1X {sH} × {sN , sH} p2(1−p1) p1 (1− p2) A A

Table 1: Observing 1X

information sets they may encounter to calculate their optimal action for each case, as
done below.

Observing 1X: Recall that R1X ⇒ {sL} and A1X ⇒ {sN , sH}.
In the given table, a2X refers to a2X(s, h1) where h1 refers to a given history upto

(involving) 1st generation X. For example, if the second generation sees the private signal
sL and observes action R taken by 1X, her posterior belief r2X(sL, R

1X) is given by

r2X(sL, R
1X)

1− r2X(sL, R1X) = qX

1− qX

P(sL|θ = 1)
P(sL|θ = 0)

P(R1X |θ = 1)
P(R1X |θ = 0)

= qX

1− qX

p2
2
p2

1

We then compare r2X(sL, R
1X) to 1

2 to determine a2X(sL, R
1X).

r2X(sL, R
1X) Q 1

2
qX

1− qX

Q
p2

1
p2

2
>

p1

p2

Using the assumption in (4.1), we have r2X(sL, R
1X) < 1

2 and thus a2X(sL, R
1X) = R.

The calculation for 2Y is done in a similar way. In this manner, one can calculate
a2X(s, h1) and a2X(s, h1) for all possible combinations of s and h1, as done in the last two
columns.
This exercise is repeated for the case where the second generation observes 1Y .

Observing 1Y: Recall that R1Y ⇒ {sL, sN} and A1Y ⇒ {sH}.
Note that in certain cases, we need the help of assumptions in order to determine

what a2X or a2Y will be. For example, we need Assumption 1 to get r2Y (sH , R
1Y ) > 1

2 .
The 2nd generation then calculates their expected payoff from observing 1X and 1Y :

EU2X(1X) = qX .P(A2X | θ = 1, 1X) − (1− qX) .P(A2X | θ = 0, 1X)
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= qX . [ P(A2X | θ = 1, 1X) + P 2X(A | θ = 0, 1X) ]
− P(A2X | θ = 0, 1X)

= qX

{
[ p3 (1− p2) + p1 p2 + p1 (1− p2) ]

+ [ p3 (1− p1) + p1 p2 + p2 (1− p1) ]
}

− [ p3 (1− p1) + p1 p2 + p2 (1− p1) ]

Similarly, one may write EU2X(1Y ) to get

EU2X(1X)−EU2X(1Y ) = (2qX − 1)
{
p2

3 − p1 p2
}

From Assumption 1 we have p2 (1− p2)2 > p1 (1− p1)2. Since p1 > p2, this is equivalent
to p2

3 < p1 p2. Since qX > 1
2 we have EU2X(1X) < EU2X(1Y ) and thus 2X chooses 1Y .

A similar argument shows that 2Y will choose 1X.

For subsequent generations:
Suppose some generation (n + 1), for n > 2, is trying to decide which predecessor they
should observe, given that up to generation n, everybody has chosen opposite types.
Consider the problem from the perspective of agent (n+ 1)X (the problem for (n+ 1)Y
will be symmetric). If (n+ 1)X chooses nX, then

EU (n+1)X(nX) = qX .P(A (n+1)X | θ = 1, nX) − (1− qX) .P(A (n+1)X | θ = 0, nX)

= qX .
[

P(A (n+1)X | θ = 1, nX) + P(A (n+1)X | θ = 0, nX)
]

− P(A (n+1)X | θ = 0, nX)

Similarly deriving EU (n+1)X(nY ), we get

EU (n+1)X(nX)− EU (n+1)X(nY )

= qX

[
P
(
A (n+1)X

∣∣∣ θ = 1, nX
)
− P

(
A (n+1)X

∣∣∣ θ = 1 nY
)

+ P
(
A (n+1)X

∣∣∣ θ = 0, nX
)
− P

(
A (n+1)X

∣∣∣ θ = 0, nY
) ]

−
[

P
(
A (n+1)X

∣∣∣ θ = 0, nX
)
− P

(
A (n+1)X

∣∣∣ θ = 0, nY
) ]

= (2qX − 1)
[

P
(
A (n+1)X

∣∣∣ θ = 1, nX
)
− P

(
A (n+1)X

∣∣∣ θ = 1, nY
) ]

= − (2qX − 1)
[

P
(
A (n+1)X

∣∣∣ θ = 1, nY
)
− P

(
R (n+1)X

∣∣∣ θ = 0, nY
)

− P
(
r(n+1)X = qX

∣∣∣ θ = 0, nY
) ]

(using (4.5) )

Since qX > 1
2 , we have

EU (n+1)X(nY ) Q EU (n+1)X(nX)
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⇔ P
(
A (n+1)X

∣∣∣ θ = 1, nY
)
Q P

(
A (n+1)X

∣∣∣ θ = 1, nX
)

⇔ P
(
A (n+1)X

∣∣∣ θ = 1, nY
)
Q P

(
R (n+1)X

∣∣∣ θ = 0, nY
)

(4.8)

+ P
(
r(n+1)X = qX

∣∣∣nY )
We notice that (n + 1)X chooses that predecessor with whom he is more likely to

accept (his default action).
�

It is interesting to think about why early generations prefer to observe opposite types.
Consider the second generation. If 2X observes the action A taken by 1X, she knows
that 1X either received sN or sH (in terms of the terminology introduced, she knows
that 1X received a ’weak high’ signal). On the other hand, if she observes the action A
taken by 1Y , it is clear that 1Y received the high signal sH . Thus, an action when taken
by a type for which it is a contrary action, reveals more precise information about their
signal. On receiving an inconsistent signal, an agent would therefore prefer to observe an
agent of the opposite type. This turn out to be the driving factor in the unconditional
preference for opposite type for early generations. While agents prefer to observe their
own type conditional on receiving the uninformative signal, Assumption 1 implies that
the probability of receiving the uninformative signal is not too high. Conditional on re-
ceiving the consistent signal, while the second generation is indifferent, later generations
seem to prefer their own type. However, since an agent’s own prior belief favours taking
his default action, the preference here for his own type is weaker than the preference for
opposite type in the first case.

With Theorem 1, we have now written the entire problem of (n + 1)X’s predecessor
choice in terms of (n+1)X hypothetically observing nY . We now work with the problem
in this form and will therefore, in what follows, mostly omit the notation describing who
(n+ 1)X is observing.

Proposition 1 (Recurrence of joint probabilities). Suppose all agents up to generation
n observe opposite types. The joint action probabilities for nY and (n + 1)X are then
given by

P
(
AnYA(n+1)X

∣∣∣ θ )
P
(
RnYA(n+1)X

∣∣∣ θ )
P
(
RnYR(n+1)X

∣∣∣ θ )
 =


0 0 1
0 P(sH | θ

)
0

1 1− P(sH | θ
)

0




P
(
A(n−1)YAnX

∣∣∣ θ̂ )
P
(
R(n−1)YAnX

∣∣∣ θ̂ )
P
(
R(n−1)YRnX

∣∣∣ θ̂ )


+


0

P
(
r(n+1)X = qX

∣∣∣ sN , nY
)

+ P
(
r(n+1)X = qX

∣∣∣ sH , nY
)

−P
(
r(n+1)X = qX

∣∣∣ sN , nY
)
− P

(
r(n+1)X = qX

∣∣∣ sH , nY
)


for θ ∈ {0, 1}. The joint action probabilities for nX and (n+1)Y may be written similarly.
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Proof. Suppose that all agents up to the nth generation has chosen a predecessor of
the opposite type and now it is the (n + 1)th generation’s turn to choose. Consider the
problem from the point of view of (n+ 1)X. We know that

P(A(n+1)X | θ, nY ) = P(RnY A(n+1)X | θ) + P(AnY A(n+1)X | θ)
P(R(n+1)X | θ, nY ) = P(RnY R(n+1)X | θ)

(4.9)

since P(AnY R(n+1)X) = 0 from Corollary 4 of Lemma 1. From Lemma 1, we also know
that (n+ 1)X will follow the decision rules, and thus,

P
(
RnY R(n+1)X

∣∣∣ θ)
= P(sL | θ) .P(RnY | θ) . 1
+ P(sN | θ) .P(RnY | θ) − P

(
r(n+1)X = qX

∣∣∣ θ, sN , nY
)

+ P(sH | θ) .P
(
R(n−1)X RnY

∣∣∣ θ) − P
(
r(n+1)X = qX

∣∣∣ θ, sH , nY
)

(using 4.6)

= P
(
R(n−1)XRnY

∣∣∣ θ) + P(A(n−1)XRnY | θ) .
[

1− P(sH | θ)
]

− P
(
r(n+1)X = qX

∣∣∣ θ, sN , nY ) − P
(
r(n+1)X = qX

∣∣∣ θ, sH , nY )

Similarly, we derive the following:

P
(
RnY A(n+1)X

∣∣∣ θ) = P(A(n−1)XRnY | θ) .P(sH | θ ) + P
(
r(n+1)X = qX

∣∣∣ θ, sN

)
+ P

(
r(n+1)X = qX

∣∣∣ θ, sH

)
P
(
AnY R(n+1)X

∣∣∣ θ) = 0

P
(
AnY A(n+1)X

∣∣∣ θ) = P(A(n−1)XAnY | θ)

Using symmetry, we also have, for a1, a2 ∈ {R,A},

P
(
a

(n−1)X
1 a nY

2

∣∣∣ θ) = P
(
â

(n−1)Y
1 â nX

2

∣∣∣ θ̂ )
Combining all of the above, we get the result in Proposition 1. �

The following proposition gives us a similar recurrence rule for the probabilities of
generation (n + 1) being on the prior with a given signal, using these probabilities of
previous generations.

Proposition 2 (Recurrence of ‘on prior’ probabilities). Suppose hn ∈ HO
n (Y ). Then,

P(r(n+1)X = qX | sL, nY )
P(r(n+1)X = qX | sN , nY )
P(r(n+1)X = qX | sH , nY )

 =


0 p1p2

p3
p1p2

0 0 p3

1 0 0




P(rnX = qX | sL, (n− 1)Y )
P(rnX = qX | sN , (n− 1)Y )
P(rnX = qX | sH , (n− 1)Y )



+


P(r(n−2)X = qX | sN , (n− 3)Y )

0
0
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Proof. Appendix A. �

Propositions (1) and (2) are central to the analysis because they provide us with useful
recurrence relations - if we know the vectors of joint action probabilities and ‘on prior’
probabilities for the second generation, we can write these vectors for any subsequent
generation, given that everybody before this generation observed their opposite type.

Using (4.8), since we know that nX chose to observe (n− 1)Y , we have

[
1 1 −1

]


P
(
A(n−1)YAnX

∣∣∣ θ = 1
)

P
(
R(n−1)YAnX

∣∣∣ θ = 1
)

P
(
R(n−1)YRnX

∣∣∣ θ = 0
)
 >

[
1 1 1

] 
P
(
rnX = qX

∣∣∣ sL, (n− 1)Y
)

P
(
rnX = qX

∣∣∣ sN , (n− 1)Y
)

P
(
rnX = qX

∣∣∣ sH , (n− 1)Y
)


The following inequality then describes the predecessor choice of (n+ 1)X:

EU (n+1)X(nY ) Q EU (n+1)X(nX)

[
1 1 −1

]


P
(
AnYA(n+1)X

∣∣∣ θ = 1
)

P
(
RnYA(n+1)X

∣∣∣ θ = 1
)

P
(
RnYR(n+1)X

∣∣∣ θ = 0
)
 Q

[
1 1 1

] 
P
(
r(n+1)X(sL, hn) = qX

)
P
(
r(n+1)X(sN , hn) = qX

)
P
(
r(n+1)X(sH , hn) = qX

)


(4.10)

Now since the second generation has observed opposite types, we can use the above
for n = 2 and given values of p1 and p2 to check whether the third generation will observe
their opposite type. If the third generation does do so, then the decision rules hold and so
we can use the above inequality, now for n = 3, to check whether the fourth generation
will observe their opposite type. In this manner, we may figure out, given p1 and p2,
which generation first chooses to observe their own type (‘switches’). Let us denote this
generation by nswitch.

4.2 Simulation
Given the following vectors of joint action probabilities for 1Y and 2X, and ‘on prior’
probabilities for the second generation (calculated by hand),

P
(
A1YA2X

∣∣∣ θ = 0
)

P
(
R1YA2X

∣∣∣ θ = 0
)

P
(
R1YR2X

∣∣∣ θ = 0
)
 =


p2

p2(1− p2)
(1− p2)2




P
(
A1YA2X

∣∣∣ θ = 1
)

P
(
R1YA2X

∣∣∣ θ = 1
)

P
(
R1YR2X

∣∣∣ θ = 1
)
 =


p1

p1(1− p1)
(1− p1)2




P(r2X = qX | sL, 1Y )
P(r2X = qX | sN , 1Y )
P(r2X = qX | sH , 1Y )

 =


p1 p2

0
0


we use Theorem 1 to simulate the model for given values of p1, p2 and p3 with the help
of Propositions 1 and 2.
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Theorem 1 notes that when Assumption 1 is satisfied, the second generation starts by
observing their opposite type and any subsequent generation (n+1), for n ≥ 2, continues
to observe opposite types as long as (4.7) holds. When (4.7) holds for some generation
(n+ 1), we have a history of opposites upto (n+ 1) and thus this same condition will tell
us who the next generation will choose to observe.

When (4.7) is not satisfied for some subsequent generation, we know that this gen-
eration will be the first to observe same type, thus, this generation becomes nswitch. We
represent our data pictorially in figures 1 to 6. We make the following observations from
these:

1. Keeping p3 fixed, nswitch weakly increases as p1

p2
falls.

2. Keeping p1

p2
fixed, nswitch weakly increases as p3 falls.

3. If some even generation 2m (for m ≥ 1) has chosen to observe opposite type, the
odd generation 2m+ 1 will also find it optimal to observe opposite type. i.e. nswitch

is always even.

The first two results seem fairly intuitive. For example, if, keeping the likelihood of the
signals sL and sH fixed, we increase the value of p3, it means that, for a given generation,
the probability of not receiving any information increases. Thus, with higher chance, an
agent will have to follow her predecessor. Conditional on getting a neutral signal, an
agent would rather observe her own type, since in this case there is no conflict in simply
following her predecessor, even if their exact signal is not inferable. Thus, the incentive
to observe one’s own type goes up. Even if initial generations find the actions of opposite
types more informative, later generations, wishing to avoid the possibility of taking their
contrary action based on following an opposite type who received no information, will
switch faster to their own type.
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Figure 1: Values of nswitch when p1
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= 2
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4.3 Two signal case
In this subsection, we assume that p3 = 0, and thus there are only two signals sL and sH .
We retain our previous notations, keeping in mind that, now, S = {sL, sH} and we have
p1 + p2 = 1.

As before, our starting assumption is that first generation agents do not take their
default action on all signals, which in this case implies that

qX < p1 (4.11)

Similar to the previous subsection, we characterise decision rules for both types, as
given in Lemma 1. There are two major differences. One, the rules in this case apply to
any kind of history, and not just a history of opposites. Two, these rules do not require
any additional parametric condition on the prior beliefs.

Lemma 2 (Decision rules for two signal case). The decision making rules of any gener-
ation (n+1) are as follows:
For n+ 1 = 2:
(a) On receiving his consistent signal, the agent takes his default action.
(b) On receiving his inconsistent signal, he follows his predecessor.

For n+ 1 > 2: Suppose the agent observes (s, hn).
(a) If the agent is on his prior at (s, hn), then he takes his default action.
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(b) If the agent is not on his prior,
i. On observing sL he rejects unless the last two actions in hn have been acceptances.

ii. On receiving sH he accepts unless the last two actions in hn have been rejections.

Proof. Proof omitted (available on request).
�

The expected payoff of agent (n+ 1)X when he chooses to observe nt, for t ∈ {X, Y }, is
given by:

EU (n+1)X(nt) = qX .
[

P(A(n+1)X | θ = 1, nt) + P(A(n+1)X | θ = 0, nt)
]

− P(A(n+1)X | θ = 0, nt)
Therefore,

EU (n+1)X(nX)− EU (n+1)X(nY )

= qX

[
P
(
A (n+1)X

∣∣∣ θ = 1, nX
)
− P

(
A (n+1)X

∣∣∣ θ = 1, nY
)

+ P
(
A (n+1)X

∣∣∣ θ = 0, nX
)
− P

(
A (n+1)X

∣∣∣ θ = 0, nY
) ]

−
[

P
(
A (n+1)X

∣∣∣ θ = 0, nX
)
− P

(
A (n+1)X

∣∣∣ θ = 0, nY
) ]

The expression for EU (n+1)Y (nX)− EU (n+1)Y (nY ) will be similar. It then follows that
P(A(n+1)t | θ, nX) = P(A(n+1)t | θ, nY ) for θ ∈ {0, 1}

⇒ EU (n+1)t (nX) = EU (n+1)t (nY )
(4.12)

Theorem 2 (Predecessor choice with two signals). When p3 = 0 and the tie-breaking
rule randomizes between the two types with equal probability, individual (n + 1)t for any
n ≥ 1 and t ∈ {X, Y } is indifferent between observing her own type and the opposite type.
Proof. Proof omitted (available on request). �

It may be verified that Theorem 2 will hold for any tie-breaking rule that chooses the
same type with probability ps and the opposite type with probability 1−ps, for ps ∈ [0, 1].
It should be noted that while agents are able to figure out the predecessor choices of all
generations before them in cases of strict preference, this is not generally true for cases of
indifference. When the tie-breaking rule is not deterministic, subsequent agents will not
know the actual realization of the predecessor choice for a generation that randomised
between the two types.

It is interesting to note that in the two extreme cases where ps = 0 and ps = 1
(among others), we will see realizations of predecessor choices that are vastly different.
Even though all agents will continue to remain indifferent between the two predecessors,
in the first case we see mixed histories where there is interaction between the two groups,
in the second case we will have segregation, with agents always observing only their own
type.
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5 Conclusion
This work studies a model of sequential learning with predecessor choice. We consider
two types of agents, each having different prior beliefs, and analyse which type of their
immediate predecessor agents prefer to form a link with. With two signals, we show that
agents will be indifferent between observing predecessors of their own type and the oppo-
site type. The tie-breaking rule, however, plays an important role in determining whether
the two types interact with each other. If agents always break ties in favour of their own
type, there will be segregation between the two groups, even though all generations will
remain indifferent between types.

Introducing an additional uninformative signal results in the possibility of strict pref-
erence for the two types of predecessors. Under some parametric conditions on the prior
beliefs, it is optimal for the second generation to observe their opposite type. We derive
conditions under which subsequent generations continue to observe their opposite type
and characterize decision rules which specify the action taken by these agents in this case.
One of the important questions we ask in this work is whether it is possible for the two
types of agents to continue observing each other even as the number of generations grows
large. Results suggest that this is not possible. In the long run, we find that agents will
prefer to observe their own type, regardless of the history of predecessor choices before
them. Thus, even in the absence of any behavioural preference to interact with similar
others, agents end up forming links within their own group in the long run. This suggests
a bleak picture for societal cohesion in the context of this model. It is striking that this
segregation occurs even if the prior beliefs qX and qY are arbitrarily close to 1

2 , i.e. there
are only extremely small differences between the two groups.
The conditions under which interaction between groups occurs more frequently is another
point of interest of this work. For the case where initial generations prefer to observe their
opposite type, we find that a lower probability of not receiving any private information,
or a lower signal precision (as measured by the likelihood of receiving a correct versus
an incorrect signal) are able to sustain opposite observing behaviour for longer. If one
believes that there is some intrinsic value to different groups interacting with each other,
outside of any gains from learning or welfare considerations, it becomes interesting to
look for ways in which the two types can be influenced to have more cross-ties.

Future work on this topic would include an analysis of varying interaction between
groups on learning, especially in the short run. We note here that opposite observing
histories can sometimes prevent (delay) an information cascade from being transmitted
to agents that follow, something which would be sure to happen if agents were all of the
same type. In particular, if an agent takes the same action on all signals but is on her
prior at one of these signals, then, the following agent, being her opposite type, takes a
different action at this signal. Thus, this agent will not ignore his private information,
even though the previous agent has done so. It would be interesting to extend the analysis
to more than two types, and to consider a case where information is received only about
the immediately previous generation. One may also consider a situation where links are
not necessarily formed sequentially- this would capture a network in a more general sense.
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A Appendix: Proofs
Proof of Lemma 1. We prove this lemma by induction.

For n = 2 :
If the second generation observes their opposite types, then the third generation on
observing 2X sees the history (a1Y , a2X) and on observing 2Y see the history (a1Y , a2X).

Note that
S(A2X |R1Y ) = {sH}, S(A2X |A1Y ) = S

and S(A2Y |R1X) = S, S(A2Y |A1X) = {sN , sH}

Let us consider the case when 3X observes 2X. Other cases will follow a similar logic. We
prove the three parts of the statement one by one.

Information Set (I) P(I | θ = 0) P(I | θ = 1) a3X a3Y

sL, R
1Y , R2X {sL} × {sL, sN} × {sL, sN} p1 (1− p2)2 p2 (1− p1)2 R R

sL, R
1Y , A2X {sL} × {sL, sN} × {sH} p1 p2 (1− p2) p1 p2 (1− p1) R R

sL, A
1Y , A2X {sL} × {sH} × S p1 p2 p1 p2 A R

sN , R
1Y , R2X {sN} × {sL, sN} × {sL, sN} p3 (1− p2)2 p3 (1− p1)2 R R

sN , R
1Y , A2X {sN} × {sL, sN} × {sH} p2 p3 (1− p2) p1 p3 (1− p1) A A

sN , A
1Y , A2X {sN} × {sH} × S p2 p3 p1 p3 A A

sH , R
1Y , R2X {sH} × {sL, sN} × {sL, sN} p2 (1− p2)2 p1 (1− p1)2 R R

sH , R
1Y , A2X {sH} × {sL, sN} × {sH} p2

2 (1− p2) p2
1 (1− p1) A A

sH , A
1Y , A2X {sH} × {sH} × S p2

2 p2
1 A A

Table 2: Observing 2X

1. For the first part of the statement, we show that r3X(s, h2) /∈
[

1
2 , qX

)
for any s ∈ S

and h2 ∈ HO
2 (X).

Consider the history R1YR2X .

r3X(sH , R
1YR 2X )

1− r3X(sH , R1YR 2X) = qX

1− qX

p1 (1− p1)2

p2 (1− p2)2

Using (4.4),

r3X(sH , R
1YR 2X) < 1

2

⇒ r3X(s, R1YR 2X ) < 1
2 ∀ s ∈ S
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/∈
[ 1

2 , qX

)
and 3X rejects at all signals given the history R1YR 2X .

One may similarly consider the other histories.

2. Let us now prove the second part of the statement i.e. the decision rules.
At his consistent signal (sH): When both 1Y and 2X reject, then 3X is not on prior
at sH

(
r3X(sH , R

1YR 2X) < 1
2

)
and should therefore reject, which he does. For all

other histories, he should accept, which he obeys as well.
At his inconsistent signal (sL): From table (2), it is clear that a3X matches a1Y for
the first three rows, where s3X = sL. Thus 3X is following the latest opposite type.
At the uninformative signal (sN): From table (2), 3X is not at prior in any of the
rows where he receives sN , and he is clearly following 2X in all three cases.

3. The third part of the statement is concerned with 3X in instances where he rejects
on all signals. This happens only with the history R1YR2X where,

r3X(sN , R
1YR2X)

1− r3X(sN , R1YR2X) = qX

1− qX

p3 (1− p1)2

p3 (1− p2)2

⇒ P(R1YR2X | θ = 1)
P(R1YR2X | θ = 0) = (1− p1)2

(1− p2)2

∈
{
p2 (1− p1)
p1 (1− p2) ,

(1− p1)2

(1− p2)2

}
as required.

Thus, all three parts of the statement are true in this case.

Now assume that the statement is true for some n.

We then have the following assumptions:
A1. (a) r(n+1)X(s, hn) /∈

[
1
2 , qX

)
, ∀s ∈ S and hn ∈ HO

n

(b) r(n+1)Y (s, hn) /∈ ( qY ,
1
2 ], ∀s ∈ S and hn ∈ HO

n

A2. Given some hn ∈ HO
n , (n+ 1)X and (n+ 1)Y , based on their signal s, behave in the

following way:
(i) If hn ∈ HO

n (X),

(n+1)X

sL → follow (n− 1)Y
sN → follow nX
sH → A unless last two R’s and not on
prior

(n+1)Y

sL → R unless last two A’s and not on
prior
sN → follow nX unless on prior
sH → follow nX
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(ii) If hn ∈ HO
n (Y ),

(n+1)X

sL → follow nY
sN → follow nY unless on prior
sH → A unless last two R’s and not on
prior

(n+1)Y

sL → R unless last two A’s and not on
prior
sN → follow nY
sH → follow (n− 1)X

A3. (a) If (n+ 1)X rejects on all signals given hn ∈ HO
n , then

P(hn | θ = 1)
P(hn | θ = 0) ∈

{
p2 (1− p1)
p1 (1− p2) ,

(1− p1)2

(1− p2)2

}

(b) If (n+ 1)Y accepts on all signals given hn ∈ HO
n , then

P(hn | θ = 1)
P(hn | θ = 0) ∈

{
p1 (1− p2)
p2 (1− p1) ,

(1− p2)2

(1− p1)2

}

We now prove the induction statement for (n+1) i.e. for the generation (n+2) observing
(n+ 1).
We look at the problem from the point of view of (n + 2)X. The proof will follow for
(n+ 2)Y along similar lines by symmetry.

Note that we can write (n+ 2)X’s posterior in the following way:

r(n+2)X(s, hn+1)
1− r(n+2)X(s, hn+1) = r(n+1)X(s, hn)

1− r(n+1)X(s, hn)
P(a(n+1)t | θ = 1, hn)
P(a(n+1)t | θ = 0, hn)

Let t represent the type of the last i.e. (n + 1)th agent in hn+1 and let a(n+1)t represent
the action she takes on seeing her signal s(n+1)t and some history hn ∈ HO

n (t̂ ). Thus,
hn+1 = (hn, a

(n+1)t).

Consider any s ∈ S and hn+1 ∈ HO
n+1. Write hn+1 as (hn, a

(n+1)t). There are four possible
ways in which (n+ 1)t can partition her signal set given hn:

1. S(A(n+1)t |hn) = S

2. S(A(n+1)t |hn) = {sN , sH}

3. S(A(n+1)t |hn) = {sH}

4. S(A(n+1)t |hn) = φ

We proceed with the proof using the following steps:

(i.) Start with a particular partition.
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(ii.) For this partition, consider t = X and t = Y in turn.

(iii.) For a given t, consider a(n+1)t = R and a(n+1)t = A (wherever possible).

(iv.) For each action, consider s(n+2)X being sL, sN and sH by turn.

(v.) Prove the first two parts of the induction statement.
Calculate (n + 2)X’s posterior belief r(n+2)X(s, hn+1). Check that this doesn’t lie
between half and qX (including half). Based on how the belief compares to 1

2 ,
determine whether (n+ 2)X will accept or reject.
Compare this action to the one suggested by the decision rules to determine whether
the rules are followed or not.

(vi.) In case (n+ 2)X rejects at all signals given hn+1, prove the third part of the state-
ment.

Let us consider the possible partitions one by one.

1. S(A(n+1)t |hn) = S.

In this case, A(n+1)t provides no new information and thus,

r(n+2)X(s, hn+1) = r(n+1)X(s, hn)

/∈
[ 1

2 , qX

)

Since (n + 1)t accepts at all signals given hn, this implies that (n + 1)X definitely
accepts at all signals given hn and thus, (n + 2)X will also accept at all signals
given hn+1 with both t = X and t = Y . In order to show that (n+ 2)X obeys the
decision rules, we thus have to show that the rules suggest acceptance at all signals.

(a) t=X
For sL:
Since (n + 1)X on receiving sL must have followed nY , his acceptance means
that nY must have accepted in hn. According to the decision rules, at sL,
(n + 2)X should follow the latest opposite type in hn+1 i.e. nY and thus ac-
cept.

For sN :
Since (n + 2)X is not at prior at sN , the decision rules suggest that he should
follow his predecessor i.e. (n+ 1)X and thus accept.

For sH :
The rule again suggests acceptance in this case, since at least one of the last
two actions in hn+1, namely, a(n+1)X , is an acceptance.
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(b) t=Y
From Corollary (4), it is clear that in this case, when (n + 1)Y has accepted,
the decision rules state that (n+ 2)X should also accept at all signals. This is
exactly what (n+ 2)X does, hence he follows the decision rules.

2. S(A(n+1)t |hn) = {sN , sH}

(a) t = X
From Corollary (2) it is clear that r(n+1)X(sN , hn) = qX .

If a(n+1)X = R,
For sL:

r(n+2)X(sL, hn+1)
1− r(n+2)X(sL, hn+1) = r(n+1)X(sL, hn)

1− r(n+1)X(sL, hn)
p2

p1

Since p2 < p1,

r(n+2)X(sL, hn+1) < r(n+1)X(sL, hn)

<
1
2

/∈
[ 1

2 , qX

)
and (n + 2)X will reject at sL. This is in accordance with the decision rules,
since he is following the latest opposite type in hn+1 i.e. nY . We know nY
must have rejected in the given history because at (sL, hn), (n+1)X’s rejection
is coming from following nY , so nY must have rejected.

For sN :
Since r(n+1)X(sN , hn) = qX , this means that sN and hn cancel each other out.
Now, (n + 1)X ′s action reveals one low signal and so (n + 2)X is not at prior
at (sN , hn+1) and should take action R. This is in accordance with the decision
rules, which suggest following the previous person i.e. (n + 1)X at sN , who
rejected.

For sH :

r(n+2)X(sH , hn+1)
1− r(n+2)X(sH , hn+1) = r(n+1)X(sH , hn)

1− r(n+1)X(sH , hn)
p2

p1

= r(n+1)X(sN , hn)
1− r(n+1)X(sN , hn)

i.e. r(n+2)X(sH , hn+1) = r(n+1)X(sN , hn) = qX .
Thus (n + 2)X accepts at sH . This is in accordance with the decision rules
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which suggest taking A when at prior at sH .

Now, if a(n+1)X = A, then
For sL:

r(n+2)X(sL, hn+1)
1− r(n+2)X(sL, hn+1) = r(n+1)X(sL, hn)

1− r(n+1)X(sL, hn)
1− p2

1− p1

= r(n+1)X(sN , hn)
1− r(n+1)X(sN , hn)

p2

p1

1− p2

1− p1

= qX

1− qX

p2(1− p2)
p1(1− p1)

Using (4.2),

r(n+2)X(sL, hn+1) < 1
2

/∈
[ 1

2 , qX

)
and (n + 2)X will reject at sL. This agrees with his decision rules, since he
should follow nY at sL who we know must have rejected in hn since (n + 1)X
rejected at sL.

For sN :
At (sN , hn+1), (n+ 2)X ′s posterior is given by:

r(n+2)X(sN , hn+1)
1− r(n+2)X(sN , hn+1) = r(n+1)X(sN , hn)

1− r(n+1)X(sN , hn)
P(A(n+1)X |θ = 1, hn)
P(A(n+1)X |θ = 0, hn)

= qX

1− qX

1− p2

1− p1

Since p1 > p2, r(n+2)X(sN , hn+1) > qX and thus (n+ 2)X accepts at (sN , hn+1).
According to the decision rules, (n + 2)X at sN should follow his predecessor
i.e. (n + 1)X when he is not on prior. Thus (n + 2)X should accept. Thus he
is following the rules here.

For sH :
r(n+2)X(sH , hn+1) > r(n+2)X(sN , hn+1)

> qX

/∈
[ 1

2 , qX

)
and (n + 2)X accepts at sH . This matches the action suggested by the deci-
sion rules, since at least one of the last two actions in hn+1 is not a rejection
(a(n+1)X = A).
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(b) t = Y
The proof for this part follows a similar logic as in part (a).

3. S(A(n+1)t |hn) = {sH}
Notice that there is a similarity between this case and the previous one, where
the rejection set was {sL}. Any given history here can be considered a mirror
image of a history there. For example, if, here in hn+1, we have (n+ 1)X rejecting
with S(R(n+1)X |hn) = {sL, sN} then in ĥn+1, we have (n + 1)Y accepting with
S(A(n+1)Y | ĥn) = {sN , sH}. This is nothing but a sub-case under the previous
heading, for which we have already shown that the induction statement holds.
The proof for this case will therefore follow along parallel lines to the proof in the
previous case.

4. S(A(n+1)t |hn) = φ
This case is symmetrically similar to the first case in which (n+ 1)t accepted on all
signals and will have a similar proof (which we omit).

We have thus proved, for every possible case, that if the statement holds for some n, it
also holds for (n + 1). Since we have also shown that the statement is true for n = 2, it
follows by induction that the statement is true for all n ≥ 2. �

Proof of Proposition 2. The proposition contains 3 parts:
1. P

(
r(n+1)X = qX

∣∣∣ sL, nY
)

= p1 p2

p3
P
(
rnX = qX

∣∣∣ sN , (n− 1)Y
)

+ p1 p2

[
P
(
rnX = qX

∣∣∣ sH , (n− 1)Y
)

+ P
(
r(n−2)X = qX

∣∣∣ sN , (n− 3)Y
) ]

2. P
(
r(n+1)X = qX

∣∣∣ sN , nY
)

= p3 P
(
rnX = qX

∣∣∣ sH , (n− 1)Y
)

3. P
(
r(n+1)X = qX

∣∣∣ sH , nY
)

= P
(
rnX = qX

∣∣∣ sL, (n− 1)Y
)

Since hn ∈ HO
n we will use the fact that everybody upto generation n is following the

decision rules (see Lemma 1).
For sake of convenience, we denote the probabilities involved in the above lemma with

shorthands, using the following rule: given hi ∈ HO
i (t̂),

P
(∗(i+1)t

s

)
= P

(
r(i+1)t = qt

∣∣∣ s, it̂ )
for s ∈ S and 1 ≤ i ≤ n.
We also use the notation “ait ⇒ S1” to mean that S(ait |hi−1) = S1, for S1 ⊂ S.

Given hn−1, nY can partition her signal set in the following ways:
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(a) S(AnY |hn) = S

(b) S(AnY |hn) = {sN , sH}

(c) S(AnY |hn) = {sH}

(d) S(AnY |hn) = φ

We are interested in the ways in which (n + 1)X observing nY may be on his prior.
Consider the above partitions one by one.

(a) S(AnY |hn) = S

Here, anY = A so nY is clearly not on her prior at any signal given hn−1 (and there-
fore nX). Since r(n+1)X(s, hn) = rnX(s, hn−1) here, (n + 1)X will not be on prior at
any signal in this case.

(b) S(AnY |hn) = {sN , sH}
In this case, nY can only be at her prior at sL, if at all.

(i) Suppose nY is on prior at sL.

This means that hn−1 ⇒ {sH}. If nY rejects, then hn ⇒ φ and thus (n + 1)X
will be on prior at sN (and therefore not at sL or sH), with

P
(
(n+ 1)X on prior at sN

∣∣∣ θ) = P(sN | θ) .P(nY on prior at sL | θ )
= p3 .P(nX on prior at sH | θ )

If nY accepts, then hn ⇒ {sH} × {sN , sH} and thus (n + 1)X will not be on
prior at any signal.

(ii) Suppose nY is not on prior at sL.

If nY rejects, then since nY is not on prior at sL, (n+ 1)X will not be on prior
at sN (see above). Using (4.6), he cannot be on prior at sL either. For sH , it is
easy to see that r(n+1)X(sH , hn) = rnX(sN , hn−1) in this case. Since nY accepts
at sN , rnX(sN , hn−1) 6= qX and thus (n+ 1)X cannot be on prior at sH .

If nY accepts, then (n + 1)X will accept on all signals. Thus he may only be
on prior at sL. Since AnY ⇒ {sN , sH}, we have, for this case,

P
(
(n+ 1)X on prior at sL

∣∣∣ θ)
= P(sL | θ) .P

(
hn−1 ⇒ {sH} × {sL, sN} | θ

)
.P(sN ∨ sH | θ)

(c) S(AnY |hn) = {sH}
Using Corollary 2, nY is on prior at sN and thus hn−1 ⇒ φ.
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If nY rejects, then hn ⇒ {sL, sN} which cannot lead to prior for any signal that
(n+ 1)X may get.
If nY accepts, then hn ⇒ {sH} and thus (n+ 1)X will be on prior at sL (and not at
other signals), with

P
(
(n+ 1)X on prior at sL

∣∣∣ θ)
= P(sL | θ) .

P(nY on prior at sN | θ )
P(sN | θ)

.P(snY = sH | θ)

= p1 p2

p3
.P(nX on prior at sN | θ )

(d) S(AnY |hn) = φ
In this case, nY may be on prior only at sH , if at all.
Since RnY contains no new information, (n+1)X will be in the same position as nX.
Thus, if the nth generation is on prior at sH , then (and only then), (n+ 1)X will be
on prior at sH , with

P
(
(n+ 1)X on prior at sH

∣∣∣ θ) = P(sH | θ) .
P(nY on prior at sH | θ )

P(sH | θ)

= P(nY on prior at sH | θ )
= P(nX on prior at sL | θ )

Clearly, (n+ 1)X cannot be on prior at any other signal.

The proof of part (2) and (3) stands complete. For each of the signals sN and sH ,
there is only one partition under which (n+ 1)X can be on prior at this signal and thus
it is easy to see that

P
(∗(n+1)X

sN

)
= p3 .P

(∗nX
sH

)
and P

(∗(n+1)X
sH

)
= P

(∗nX
sL

)
Proof of part (1)
Combining at all cases where (n+ 1)X can be at prior at sL, we have the following:

P
(∗(n+1)X

sL

)
= p1 p2

p3
P
(∗nX

sN

)
+ P(sL | θ) .P(sN ∨ sH | θ) .P

(
hn−1 ⇒ {sH} × {sL, sN} | θ

) (A.1)

If hn−1 ⇒ {sH} × {sL, sN}, then nY at (sN , hn−1) should accept. Since she clearly
won’t be on prior at sN , she must be following (n− 1)X. Thus, a(n−1)X = A.
Moreover, S(A(n−1)X |hn−2) = {sH} which we prove by contradiction below:
Suppose S(A(n−1)X |hn−2) = S. Since (n − 1)X follows (n − 2)Y at sL, a(n−2)Y = A.
Now, nX at sL would also follow (n− 2)Y and accept. However, hn−1 × sL ⇒ {sL, sN}
and so nX should have rejected, which is a contradiction.
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Suppose S(A(n−1)X |hn−2) = {sN , sH}. From Corollary 2, (n− 1)X must be on prior at
sN which implies that hn−2 ⇒ φ. Then hn−1 ⇒ {sN , sH} 6= {sH} × {sL, sN}. Hence we
have a contradiction.
Thus, S(A(n−1)X |hn−2) = {sH} and so

P
(
hn−1 ⇒ {sH} × {sL, sN}

∣∣∣ θ) = P(sH | θ) .P
(
hn−2 ⇒ {sL, sN}

∣∣∣ θ)
Using a similar logic, one may check that if hn−2 ⇒ {sL, sN} then a(n−2)Y = R and
R(n−2)Y ⇒ {sL} or R(n−2)Y ⇒ {sL, sN}. Now,

P
(
hn−2 ⇒ {sL, sN}

∣∣∣ θ )
= P

(
hn−2 ⇒ {sL, sN} ∧R(n−2)Y ⇒ {sL}

∣∣∣ θ )
+ P

(
hn−2 ⇒ {sL, sN} ∧R(n−2)Y ⇒ {sL, sN}

∣∣∣ θ )
= P

(
hn−3 ⇒ {sH} × {sL, sN} | θ

)
.P(sL | θ)

+ P
(
hn−3 ⇒ φ ∧ s(n−2)Y ∈ {sL, sN} | θ

)
(using Corollary 2)

= P
(
hn−3 ⇒ {sH} × {sL, sN} | θ

)
.P(sL | θ) +

P
(
∗(n−2)Y

sN

)
P(sN | θ)

.
[
P(sL | θ) + P(sN | θ)

]

Using (A.1) to similarly write P
(
∗(n−1)X

sL

)
, we thus have

P
(∗(n+1)X

sL

)
= p1 p2

p3
P
(∗nX

sN

)
+ p1 p2

[
P
(∗nX

sH

)
+ P

(∗(n−2)X
sN

) ]

�
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