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Abstract

We study a model in which agents are matched in pairs in order to undertake a

task and have preferences over both the partner and the task they are assigned to.

Preferences over partner-task pairs are non separable, but correlated in the following

sense. Every agent has a set of tasks (possibly empty) that he likes to perform with

a potential partner. This set is agent-specific and the set of tasks that agent i would

like to perform with partner j may be different from the set that he likes to perform

with agent k. Preferences are symmetric in the sense that the set of tasks that agent

i likes to perform with agent j coincides with the set of tasks that agent j would like

to perform with agent i. Individual preferences are such that all partner-task pairs

belong to three indifference classes. The topmost indifference class consists of the pairs

in which an agent is matched with a partner and a task they like to perform with

each other. The second class contains all the pairs in which the agent is matched with

a partner with whom she has a set of common good tasks, but the task assigned to

the pair does not belong to this set. Finally, the bottom class contains all pairs in

which the agent is matched with someone with whom she has no common good tasks.

We propose an algorithm that identifies an assignment in the weak core and is Pareto

efficient assignment. We show that the algorithm is strategy-proof. We conjecture that

it is also pairwise strategy proof, meaning that pairs of agents do not have incentive

to jointly misreport the set of common good tasks. We conjecture that the algorithm

is group strategy-proof.
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1 Introduction

In many situations agents are matched in teams in order to perform a task. Agents have

preferences over the task that they are asked to perform as well as over the partners that they

are assigned to work with. Consequently, forming stable teams is important - it ensures that

agents do not have opportunities to abandon their assignments and do better for themselves.

A centralized authority matches agents in pairs and assigns them a task. We are interested

in mechanisms that satisfy stability, efficiency and provide incentives to agents to truthfully

reveal their preferences. This problem shares some features with two-sided matching models

like the roommate problem since agents have preferences over their potential partners. It

also has common features with one-sided matching models like the house allocation model,

the object assignment model because a task has to be assigned to each pair of agents. In

this sense our model is a hybrid of the two classical models.

We consider a model where agents are matched in pairs to perform a task. For each pair

of agents there is a set of tasks, possibly empty that the agents in the pair like to perform

together. Preferences over tasks are dichotomous but not separable because the tasks that

agent i would like to do with agent j can be different from the tasks that agent i would like

to do with another partner k 6= j. The preferences over tasks are pairwise symmetric among

agents because the set of tasks that agent i would like to perform with j coincides with the

set of tasks that j would like to do with i. So for any pair of agents, there exists a set of

common good tasks T (i, j) (possibly empty).

Individuals have preferences over partner, task tuples. Individual preferences are such

that all partner, task tuples can be placed in three indifference classes. The first indifference

class consists of tuples where the agent is paired with a partner with whom she has a non

empty set of common good tasks and is assigned a task from their set of common good

tasks. The second class contains the tuples in which the agent is matched with a partner

with whom she has a non empty set of common good tasks, but the task they are assigned

does not belong to this set. Finally, the third class contains the tuples in which the agent is

matched with someone with whom she has an empty set of common good tasks.

Our main results are as follows. We propose an algorithm, the object constrained maxi-

mum matching algorithm (OCMMA) that generates a weak core assignment. The OCMMA

assignment is Pareto efficient. We also investigate the incentive properties of the OCMMA.

Pairwise symmetry imposes a restriction on the preference profiles. We elaborate on this

point in Section 5. We show that the OCMMA is strategy-proof. We also show that it satis-

fies pairwise strategy-proofness i.e. pairs of agents do not have incentive to jointly misreport

the set of common good tasks. Finally we show that the OCMMA is is group strategy-proof.

Our paper considers a variant the model proposed in Nicoló et al. (2018). Both papers

consider a model where agents have to be matched in pairs and each pair must be assigned

an object. The agents have preferences over partner, project tuples. However the preference
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domain in Nicoló et al. (2018) is separable over partners and projects: the marginal com-

ponent preferences over partners and projects are independent. The component preferences

are assumed to be dichotomous. Thus the component preferences over projects do not de-

pend on the partner assigned. The set of possible partners is partitioned into friends (good

partners) and outsiders (bad partners). The set of projects is partitioned into good andbad

projects. Therefore every partner, project pair can be placed in one of four indifference

classes, depending on whether the partner and the project are good or bad. Friendship is

mutual and transitive and so the set of agents can be partitioned into friendship components.

Finally, preferences of friends satisfy homophily : for any pair of friends i, j, the good sets

of projects for i and j satisfy the set inclusion property. The paper proposes the minimim

demand priority algorithm (MDPA) to identify assignments in the weak core. The MDPA

satisfies a restricted version of Pareto efficiency and is strategy proof.

However, in this paper we consider a model where the component preferences over projects

are dependent on the partner assigned. Agents are friends only if they have a non-empty

set of common good tasks. The preference domain and the proposed mechanism to find

assignments in the weak core are different in the two models. Moreover in the current

model, the algorithm generates Pareto efficient assignments and is group strategy proof.

The remainder of the paper is organized as follows. In Section 2 we present the model. Section

3 describes the OCMMA algorithm. Sections 4 and 5 describe the normative properties of

the OCMMA. Section 6 concludes.

2 The Model

There is a finite set of agents N = {1, 2, . . . , i, j, . . . , n} where n is even. The set of objects

is denoted by A.

An assignment σ is a collection of triples (i, j, a) with the interpretation that the agent

pair (i, j) is assigned object a. In order to ensure feasibility, we require each agent to be

paired with one other agent and one object. In addition, each object is assigned exactly to

one pair or left unassigned. We require all agents to be assigned a partner and an object.

Finally let uσ denote the set of unassigned objects in the assignment σ i.e. it is the set of

objects a such that there does not exist agents i and j with (i, j, a) ∈ σ.

The set of all possible triples is denoted by T , where T = {(i, j, a) : i, j ∈ N, a ∈ A, i 6= j}.
Let Ti denote the set of triples to which agent i belongs i.e. Ti = {i} ×N \ {i} × A.

A partial assignment α ⊂ T such that

1. ∀ t, s ∈ α, t ∩ s = ∅.

2. |α| ≤ |N |
2

.
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For a partial assignment α, let N(α) denote the set of agents in α and A(α) denote the

set of objects in α.

Let Σ denote the set of partial assignments. A partial assignment α is an (complete)

assignment if |α| = |N |
2

. Σc denotes the set of complete assignments. So Σc ⊂ Σ.

2.1 Preferences

Each agent has a preference ordering over possible partner, project pairs i.e. each agent has

preferences over the set of triples that she belongs to.

Consider agent i ∈ N . Agent i has a set of tasks (possibly empty) that she likes to

perform with a potential partner j, denoted by S(i, j) where S(i, j) ∈ 2A. Note that this set

is agent-specific i.e. the set of tasks that agent i would like to perform with partner j may

be different from the set that he likes to perform with agent k.

We assume that for any pair of agents i, j ∈ N , we have S(i, j) = S(j, i). We refer to

this assumption as pairwise alignment in the preferences of any pair of agents.

Each agent i has a preference ordering1 �i over elements in Ti. The triples in Ti can be

classified into three indifference classes as described below. The first indifference class is

H1(�i) = {(i, j, a) ∈ Ti : a ∈ S(i, j)}.

The second indifference class for agent i is

H2(�i) = {(i, j, a) ∈ Ti \H1(�i) : ∃b ∈ A such that (i, j, b) ∈ H1(�i)}.

Finally the third indifference class is H3(�i) = Ti \ [∪2
k=1Hk(�i)].

REMARK: For any pair of agents i, j ∈ N , we assume S(i, j) = S(j, i). This implies

[(i, j, a) ∈ H1(�i) ⇐⇒ (i, j, a) ∈ H1(�j)].

This means that H1(�i) ∩ Tj = H1(�j) ∩ Ti.

Let � denote a preference profile where �= (�1, . . . ,�n). For any preference profile �,

we define the sets Hk(�) = ∪i∈NHk(�i) for k ∈ {1, 2, 3}.

2.2 Blocking and Stability

Let σ be an assignment. A coalition of agents S ∈ 2N is admissible if |S| is even. The set of

projects available to the coalition S is A(S) is

A(S) = {a ∈ A : (i, j, a) ∈ σ and either i ∈ S or j ∈ S} ∪ uσ.
1An ordering is a binary relation which is complete, reflexive and transitive.
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Note that for any agent i in S, the object assigned to i in σ is included in X(S). Thus

|X(S)| ≥ |S|
2

. Let σ′(S) be a partial assignment such that N(σ′) = S and A(σ′) ⊆ A(S).

Definition 1 An admissible coalition S strongly blocks assignment σ at preference profile

� if there exists a partial assignment σ′(S) such that every agent in S is better off in σ′(S).

Definition 2 An assignment is in the weak core if it is not strongly blocked by any admis-

sible coalition.

Definition 3 An admissible coalition S weakly blocks assignment σ at preference profile �
if there exists a partial assignment σ′ such that every agent in S is weakly better off and

some agent in S is strictly better off.

Definition 4 An assignment is in the strong core if it is not weakly blocked by any admis-

sible coalition.

Another possibility is to consider a smaller set of available objects for coalition S,

A0(S) = {a ∈ A : (i, j, a) ∈ σ and i, j ∈ S} ∪ uσ

with A0(S)| ≥ |S|
2

.

The set A0(S) includes an assigned object a in σ only if both agents who have been

assigned a in σ are present in S. Since A0(S) ⊆ A(S), the previous notion of blocking using

A(S) allows for more deviations. Thus if an assignment cannot be blocked by an admissible

coalition S using the objects in A(S), it cannot be blocked by S using the objects in A0(S).

We can show by a simple example that the strong core is empty.

3 Object Constrained Maximum Matching Algorithm

We describe an algorithm to generate an assignment which we refer to as Object Constrained

Maximum Matching Algorithm (OCMMA). We provide the formal description of the algo-

rithm below and discuss it’s properties in the next section.

Let �Σ be a complete order on the set Σ (set of partial assignments) which satisfies the

following for all σ, τ ∈ Σ,

N(σ) ⊃ N(τ) =⇒ σ �Σ τ

Fix an arbitrary profile �. This profile induces the sets {H1(�), H2(�), H3(�)}. We

shall make assignments in the sets H1(�), H2(�), H3(�) in sequence. These will be labelled

Steps 1 to 3 respectively. At the start of the generic step q where q ∈ {1, 2, 3}, the algorithm

is provided two inputs: (i) the set of available projects and (ii) the set of unassigned agents

in N .
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Step 1: Here the set of available objects is A and the set of unassigned agents is N . An

assignment is (fully) contained in H1(�) if all agents in the assignment are in the first

indifference class according to �.2 The set of all assignments with this property is F 1(�)

where,

F 1(�) = {σ ∈ Σ : σ ⊆ H1(�)}.

Choose the assignment which is maximal in the set F (�) according to the order �Σ.

Denote the maximal assignment by σ1
max.

The set of agents who have been assigned a partner and an object in Step 1 is N(σ1
max).

Similarly the set of objects assigned is A(σ1
max). After the completion of Step 1, the set of

unassigned agents is N \ N(σ1
max) and the set of available objects is A \ A(σ1

max). Proceed

to Step 2.

Step 2: Step 2 repeats Step 1 with the sets A \ A(σ1
max) and N \ N(σ1

max) but with an

important difference.

An assignment is (fully) contained in H2(�) if all agents in the assignment are in the

second indifference class according to �. The set of all assignments with this property is

F 2(�) where,

F 2(�) = {σ ∈ Σ : ∀ (i, j, a) ∈ σ, i, j ∈ N \N(σ1
max); a ∈ A \ A(σ1

max) and (i, j, a) ∈ H2(�)}.

Choose the assignment which is maximal in F 2(�) according to �Σ. Denote the maximal

assignment by σ2
max.

The sets of the assigned agents and objects in Step 2 areN(σ2
max) and A(σ2

max respectively.

Thus the set of unassigned agents after the completion of Step 2 is N \N(σ1
max∪σ2

max). The

set of available objects is A \ A(σ1
max ∪ σ2

max). Proceed to Step 3.

Step 3: Here the set of available objects is A \ [∪2
k=1Ak]. The set of unassigned agents is

N \ [∪2
k=1Nk]. An assignment is (fully) contained in H3(�) if all agents in the assignment are

in the third indifference class according to �. The set of all assignments with this property

is F 3(�) where,

F 3(�) = {σ ∈ Σ : ∀ (i, j, a) ∈ σ, i, j ∈ N\N(σ1
max∪σ2

max); a ∈ A\A(σ1
max∪σ2

max) and (i, j, a) ∈ H3(�)}.

Choose the assignment which is maximal in F 3(�) according to the order �Σ. Denote

the maximal assignment by σ3
max.

The assignment generated by the OCMMA algorithm is σ1
max∪σ2

max∪σ3. This completes

the description of the algorithm.

2Note that for an agent i in triple t of the assignment, this means t ∈ H1(�).
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4 Properties of the OCMMA

In this section, we show that the OCMMA algorithm satisfies several important properties.

4.1 Pareto Efficency

Theorem 1 The OCMMA algorithm generates a Pareto efficient assignment at every �.

Proof : Let � be an arbitrary preference profile and σ be the assignment generated by the

algorithm at �. We assume for contradiction that σ is not Pareto efficient. This implies

that there exists τ ∈ Σc such that τ Pareto dominates σ.

Since σ is generated by the algorithm, we know that it can be decomposed into three

partial assignments where each partial assignment corresponds to a step in the algorithm.

The assignment σ can be decomposed into three partial assignments (σ1
max, σ

2
max, σ

3).

The set N(σ1
max) consists of the agents who are matched in Step 1 of the OCMMA. The

set A1 consists of objects allocated in Step 1 of the OCMMA.

Consider the assignment τ and the partial assignment τ ∩H1(�). The set N(τ ∩H1(�))

consists of agents who are in the first indifference class in the assignment τ .

Claim 1: N1(τ ∩H1(�)) = N(σ1
max).

Proof: Since τ Pareto dominates σ, we have N(σ1
max) ⊆ N(τ ∩H1(�)). F 1(�) is the set of

partial assignments in Step 1 of the algorithm. Since F 1(�) = {α ∈ Σ : α ⊆ H1(�)}, we

have τ ∩H1(�) ∈ F (�).

The partial assignment σ1
max is chosen in Step 1 of the algorithm. So σ1

max �Σ τ ∩H1(�).

This implies N(σ1
max) 6⊂ N(τ ∩H1(�)). Thus N(σ1

max) = N(τ ∩H1(�)).

We have shown that the assignment τ has the same set of agents in the first indifference

class as the assignment σ.

The set N(σ2
max) consists of agents in the second indifference class in the assignment σ.

Similarly N(τ ∩H2(�)) is the set of agents in the second indifference class in the assignment

τ .

Claim 2: N(τ ∩H2(�)) = N(σ2
max).

Proof: We know N2 ⊆ N2(τ). This follows from the assumption that τ Pareto dominates

σ. In Step 2 of the algorithm, σ2
max is chosen as the maximal element from the set F 2(�)

according to the order �Σ. There are two possibilities with respect to the partial assignment

τ ∩H2(�): either it belongs to the set F 2(�) or it does not. We will consider these two cases

separately.

(i) τ ∩H2(�) ∈ F 2(�).
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We have σ2
max �Σ τ ∩ H2(�). This implies N(σ2

max) 6⊂ N(τ ∩ H2(�)). So N(σ2
max) =

N(τ ∩H2(�)).

(ii) τ ∩H2(�) /∈ F 2(�).

We will show that there exists a partial assignment α ∈ F 2(�) such that for any (i, j, a) ∈
τ ∩H2(�), there exists (i, j, x) ∈ α with x ∈ A \A1. The partial assignment α contains the

same set of agents as τ ∩ H2(�) i.e. N(α) = N(τ ∩ H2(�)). In addition, α contains the

same set of pairs as the assignment τ ∩ H2(�), where each pair is assigned an object from

the set A \ A(σ1
max). Note that the two assignments are welfare equivalent for the agents in

τ ∩H2(�) as the set of pairs remains unchanged in the two assignments.

We know that N(τ ∩ H2(�)) ∈ N \ N(τ ∩ H1(�)). By Claim 1, we have N(τ ∩ H1(�
)) = N(σ1

max). So N(τ ∩H2(�)) ∈ N \N(σ1
max). We construct the partial assignment α as

follows. For any (i, j, a) ∈ τ ∩H2(�),

1. If (i, j, a) such that a ∈ A \ A(σ1
max), then (i, j, a) ∈ α.

2. If (i, j, a) such that a /∈ A \ A(σ1
max), then (i, j, x) ∈ α for some x ∈ A \ A(σ1

max).

In Step 2 of the algorithm, the set of agents is N \ N(σ1
max) and the set of objects is

A \ A(σ2
max). Recall the set F 2(�)

F 2(�) = {β ∈ Σ : ∀ (i, j, a) ∈ β such that (i, j, a) ∈ H2(�); i, j ∈ N\N(σ1
max) and a ∈ A\A(σ1

max)}.

By construction, α ∈ F 2(�). We have σ2
max �Σ α. This implies N(σ2

max) 6⊂ N(α). Since

N(α) = N(τ ∩H2(�)), we have N(σ2
max 6⊂ N(τ ∩H2(�)). So N(σ2

max) = N(τ ∩H2(�)).3

By Claims 1 and 2, we know N1(τ) = N1 and N2(τ) = N2. Thus τ does not Pareto

dominate σ.

�

4.2 Stability

We show below the OCMMA generates an assignment in the weak core.

Lemma 1 Consider the assignment σ generated by the OCMMA algorithm at the preference

profile �. There does not exist i, j ∈ N and a ∈ A such that (i, j, a) ∈ H1(�) and i, j are in

σ3
max.

3This follows from that fact that N(σ2
max ⊆ N(τ ∩H2(�)).
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Proof : Let � be an arbitrary preference profile and σ be the assignment generated by the

OCMMA algorithm at �. Note that σ can be decomposed into three partial assignments

(σ1
max, σ

2
max, σ

3). We assume for contradiction that there exist i, j ∈ N and a ∈ A such that

(i, j, a) ∈ H1(�) and i, j are in σ3. There exists b ∈ A \ A(σ1
max ∪ σ2

max) such that (i, j, b) ∈
H2(�). Since A \ A(σ1

max ∪ σ2
max) ⊂ A \ A(σ1

max), b ∈ A \ A(σ1
max). Also i, j ∈ N \N(σ1

max)

as i, j are in σ3. Thus in Step 2 of the OCMMA, we have

σ2
max ∪ (i, j, b) ∈ F 2(�). (1)

Also σ2
max ⊂ σ2

max∪(i, j, b). This contradicts the fact that σ2
max is the maximal assignment

in F 2(�) according to �Σ. �

Lemma 2 Consider the assignment σ generated by the OCMMA algorithm at the preference

profile �. There does not exist i, j ∈ N \N(σ1
max) and a ∈ A \ A(σ1

max) such that (i, j, a) ∈
H1(�).

Proof : Let � be an arbitrary preference profile and σ be the assignment generated by the

OCMMA algorithm at �. Note that σ can be decomposed into three partial assignments

(σ1
max, σ

2
max, σ

3). We assume for contradiction that there exist i, j ∈ N \ N(σ1
max) and

a ∈ A\A(σ1
max) such that (i, j, a) ∈ H1(�). So the partial assignment σ1

max∪(i, j, a) ∈ F 1(�).

Also σ1
max ⊂ σ1

max∪(i, j, a). This contradicts the fact that σ1
max is maximal in F 1(�) according

to �Σ. �

Lemma 3 Consider the assignment σ generated by the OCMMA algorithm at the preference

profile �. There does not exist i, j ∈ N \N(σ1
max ∪ σ2

max) and a ∈ A \ A(σ1
max ∪ σ2

max) such

that (i, j, a) ∈ H2(�).

Proof : Let � be an arbitrary preference profile and σ be the assignment generated by the

OCMMA algorithm at �. Note that σ can be decomposed into three partial assignments

(σ1
max, σ

2
max, σ

3). We assume for contradiction that there exist i, j ∈ N \N(σ1
max∪σ2

max) and

a ∈ A\A(σ1
max∪σ2

max) such that (i, j, a) ∈ H2(�). So the partial assignment σ2
max∪(i, j, a) ∈

F 2(�). Also σ2
max ⊂ σ2

max∪ (i, j, a). This contradicts the fact that σ2
max is maximal in F 2(�)

according to �Σ. �

Theorem 2 The OCMMA algorithm generates an assignment in the weak core at every

preference profile �.

Proof : Let � be an arbitrary preference profile and σ be the assignment generated by the

OCMMA algorithm at �. We will show that σ cannot be blocked by an admissible coalition.
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Suppose σ is strongly blocked by an admissible coalition i.e. there exists S ⊆ N and a

partial assignment σ′(S) such that every agent in S is better off in σ′(S).

We consider the following exhaustive possibilities: (I) |S| = 2 and (II) S > 2.

(I) S = 2. Let S = {i, j} and (i, k, a), (j, l, b) ∈ σ. The set of projects available to S is

A(S) = {a, b} ∪ uσ. Suppose S blocks σ via the partial assignment σ′(S) = (i, j, c) where

c ∈ A(S). Since both agents i and j strictly improve by blocking, they are not in H1(�) in

the assignment σ.

We consider the following exhaustive possibilities.

(i) Both agents i and j are in σ3
max. Since agents i and j strictly improve by blocking, there

exists x ∈ A such that (i, j, x) ∈ H1(�). We know this is not possible by Lemma 1.

(ii) Agent i is in σ3
max and j is not. In fact, j is in σ2

max. Thus i, j ∈ N \N(σ1
max). Since both

agents i and j strictly improve by blocking, it must be the case that (i, j, c) ∈ H1(�).4 Note

that c ∈ A\A(σ1
max). We have i, j ∈ N \N(σ1

max), c ∈ A\A(σ1
max) such that (i, j, c) ∈ H1(�).

This is not possible by Lemma 2.

(iii) Agent j is in σ3
max and i is not. This case is symmetric to Case (ii).

(iv) Agent i and j are not in σ3
max. This implies that agents i, j are in σ2

max and i, j ∈
N\N(σ1

max). Since agents i, j improve by blocking, (i, j, c) ∈ H1(�). Also c ∈ A\A\A(σ1
max).

This is not possible by Lemma 2.

(II) |S| > 2.5

The set of available projects to S is A(S) = {a ∈ A : (i, j, a) ∈ σ and either i ∈ S or j ∈
S} ∪ uσ. Suppose S blocks σ by the partial assignment σ′(S). Consider agent i ∈ S and let

(i, j, a) ∈ σ′(S). Since i strictly improves in σ′(S), we have i /∈ N(σ1
max).

There are two subcases to consider.

(i) Agent i is in σ2
max.

By assumption, (i, j, a) ∈ σ′(S) where j ∈ S and a ∈ A(S). Since agent i strictly

improves, we have (i, j, a) ∈ H1(�i). Pairwise alignment implies (i, j, a) ∈ H1(�j).
Suppose a ∈ uσ. Then i, j ∈ N \N(σ1

max) and a ∈ A\A(σ1
max) such that (i, j, a) ∈ H1(�).

We know this is not possible by Lemma 2.

So a ∈ A(S) \uσ. There exists k ∈ S such that (k, l, a) ∈ σ. Since k also stricly improves

by blocking, we know that the triple (k, l, a) does not belong to σ1
max. So a ∈ A \ A(σ1

max).

Then there exist i, j ∈ N \ N(σ1
max) and a ∈ A \ A(σ1

max) such that (i, j, a) ∈ H1(�). This

is not possible by Lemma 2.

4Agent j is in the second indifference class in σ and a strict improvement implies j moves to the first

indifference class. Since (i, j, c) ∈ H1(�j) implies (i, j, c) ∈ H1(�j), we know agent i improves to the first

indifference class.
5Note that |S| is even.
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(ii) Agent i is in σ3
max.

By assumption, (i, j, a) ∈ σ′(S) where j ∈ S and a ∈ A(S). There are two possibilities:

either i improves to the first or the second indifference class by blocking.

Suppose agent i strictly improves to the first indifference class i.e. (i, j, a) ∈ H1(�i).
Pairwise alignment implies (i, j, a) ∈ H1(�j). Let a ∈ uσ. Then i, j ∈ N \ N(σ1

max) and

a ∈ A \ A(σ1
max) such that (i, j, a) ∈ H1(�). We know this is not possible by Lemma 2. So

a ∈ A(S) \ uσ. There exists k ∈ S such that (k, l, a) ∈ σ. Since k also stricly improves by

blocking, we know that the triple (k, l, a) does not belong to σ1
max. So a ∈ A\A(σ1

max). Then

there exist i, j ∈ N \N(σ1
max) and a ∈ A \ A(σ1

max) such that (i, j, a) ∈ H1(�). This is not

possible by Lemma 2.

The only remaining possibility is that agent i improves to the second indifference class

i.e. (i, j, a) ∈ H1(�i). By pairwise alignment, we have (i, j, a) ∈ H1(�j). Let a ∈ uσ. Then

i, j ∈ N \N(σ1
max ∪ σ2

max) and a ∈ A \A(σ1
max ∪ σ2

max) such that (i, j, a) ∈ H2(�). We know

this is not possible by Lemma 3. So a ∈ A(S)\uσ. There exists k ∈ S such that (k, l, a) ∈ σ.

Since k also stricly improves by blocking, we know that the triple (k, l, a) does not belong

to σ1
max. So a ∈ A \ A(σ1

max). We know (i, j, a) ∈ H2(�). Thus there exist b ∈ A such that

(i, j, b) ∈ H1(�). So we have i, j ∈ N and b ∈ A such that (i, j, b) ∈ H1(�) and agents i, j

are in σ3
max. This is not possible by Lemma 1.

�

5 Strategic Properties of the OCMMA

In this section we investigate the strategic properties of the OCMMA. We assume that

the preferences of an agent are private information and can be misreported by an agent if

she believes this could be advantageous. However the assumption of symmetry introduces

some complications in the standard model as it imposes a restriction on preference profiles.

Therefore individual announcements of preferences may lead to profile announcements that

are inconsistent with symmetry. Below, we propose a variant of the OCMMA that satisfac-

torily deals with this issue. We show that it is strategy-proof. We also show that it is group

strategy-proof.

We now describe a general mechanism in this setting. Each agent i announces a preference

ordering �i that contains three pieces of information: H1(�i), H2(�i) and H3(�i). Since

H1(�i) provides a complete description of �i, it is sufficient for agent i to announce her first

indifference class H1(�i).
Consider the set of reports by the agents, (�̃1, . . . , �̃n). The mechanism calculates the

set H1(�̃) as follows: for any pair of agents i, j, the mechanism considers triples containing

i and j which are present in the intersection of the reported (first) indifference classes of i

and j i.e. H1(�̃i) ∩H1(�̃j). So
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H1(�̃) = {(i, j, a) ∈ T : (i, j, a) ∈ H1(�̃i) ∩H1(�̃j)}.

Note that considering intersection of the (first) indifference classes for every pair of agents

ensures that the symmetry assumption is satisfied.

Let Γi denote the set of all possible announcements of agent i. Recall that Σc is the set

of all complete (feasible) assignments.

An assignment rule is a map σ, σ : ×i∈NΓi → Σc.

5.1 Strategy Proofness

In this section, we show the OCMMA is strategy proof.

Definition 5 An assignment rule σ is strategy-proof if there does not exist �,�′i∈ Γi and

�−i∈ ×j 6=iΓi such that σ(�′i,�−i) �i σ(�i,�−i).

The notion of strategy-proofness is standard: an agent cannot strictly improve by mis-

reporting her preferences for any possible announcements of the preferences of other agents.

Our first result in this section is the following.

Theorem 3 The OCMMA algorithm is strategy-proof.

Proof : Consider an arbitrary agent i. Let �i be a preference ordering for agent i and � be

a preference profile. We will show that there does not exist �̃i such that σ(�̃i,�−i) �i σ(�).

We therefore only need to show that i cannot benefit by misreporting H1(�̃i). In view of

the assumptions made, this is equivalent to checking that i cannot benefit by changing her

first indifference class.

Let (σ1
max, σ

2
max, σ

3) be the assignment generated by OCMMA at the preference profile

�.

Agent i can misreport in only one of two ways: (i) by announcing H1(�̃i) such that

H1(�̃i) ⊂ H1(�i) i.e. by contracting the first indifference class and (ii) by announcing

H1(�̃i) such that H1(�i) ⊂ H1(�̃i) i.e. by expanding the first indifference class.

Case (i): H1(�̃i) ⊂ H1(�i).
Suppose there exists a misreport by agent i say, �̃i such that i strictly improves by

reporting �̃i.
Let (σ̃1

max, σ̃
2
max, σ̃

3) be the assignment generated by the mechanism at the preference

profile (�̃i,�−i). Let Ñ1 and Ã1 denote the set of agents and the set of objects allocated in

Step 1 of the mechanism at the preference profile (�̃i,�−i).
For the preference profile (�̃i,�−i), the mechanism calculates the set H1(�̃i,�−i) as

follows: (i) For agents k, l ∈ N \{i}, if (k, l, a) ∈ Hk(�k)∩Hl(�l) then (k, l, a) ∈ H1(�̃i,�−i)
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and (ii) for agents i ∈ N and l ∈ N \ {i}, if (i, l, a) ∈ H1(�̃i) ∩ H1(�l) then (i, l, a) ∈
H1(�̃i,�−i).

This implies

H1(�̃i,�−i) ⊂ H1(�). (2)

By Equation 2, F 1(�̃i,�−i) ⊂ F 1(�).

We have assumed that agent i strictly improves by misreporting. So agent i does not

belong to any triple in the partial assignment σ1
max and i /∈ N1. There are two possibilities:

(1) agent i improves to the first indifference class by misreporting and (2) agent i improves

to the second indifference class by misreporting.

We will show that Cases 1 and 2 are not possible.

Case 1: Agent i cannot improve to the first indifference class by misreporting.

Claim 1: σ̃1
max = σ1

max.

Since i does not belong to any triple in σ1
max, we have σ1

max ∈ H1(�̃i,�−i).6
Since F 1(�̃i,�−i) ⊂ F 1(�) and σ1

max ∈ F 1(�̃i,�−i), σ1
max is the maximal assignment in

F 1(�̃i,�−i) according to �Σ.7 Thus the mechanism chooses the partial assignment σ1
max in

Step 1 at the preference profile (�̃i,�−i). So σ̃1
max = σ1

max. Also Ñ1 = N1 and Ã1 = A1.

This implies agent i is not allocated in Step 1 of the mechanism at the preference profile

(�̃i,�−i) i.e. i /∈ Ñ1.

We have shown that agent i is not allocated in the first step of the mechanism when

she misreports to �̃i. Then agent i is allocated in Steps 2 or 3 of the mechanism at the

preference profile (�̃i,�−i). The following claim shows that it is not possible that agent i

improves to the first indifference class when she is allocated in Steps 2 or 3 of the mechanism

at the preference profile (�̃i,�−i).

Claim 2: There does not exist a triple containing i, say (i, j, a) such that (i, j, a) ∈ σ̃2
max∪ σ̃3

and (i, j, a) ∈ H1(�i).

We will prove the claim by contradiction. Suppose there exists a triple, (i, j, a) ∈ σ̃2
max ∪ σ̃3

such that (i, j, a) ∈ H1(�). Then i, j ∈ N \N1 and a ∈ A \A1. Since Ñ1 = N1 and Ã1 = A1,

we have i, j ∈ N \N1 and a ∈ A \ A1.

Consider the assignment σ generated by the mechanism at preference profile �. There

exist i, j ∈ N \N1 and a ∈ A \ A1 such that (i, j, a) ∈ H1(�). We know this is not possible

by Lemma 2.

Case 2: Agent i cannot improve to the second indifference class by misreporting.

6All agents who belong to some triple in σ1
max do not misreport.

7Suppose not. Then σ1
max is not the maximal assignment in F 1(�) according to �Σ.
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Since σ̃1
max = σ1

max and i does not belong to any triple in σ1
max, we know agent i is not

allocated in the first step of the mechanism at the preference profile (�̃i,�−i). Thus agent

i is allocated in the second or third step of the mechanism at (�̃i,�−i).

Claim 3: σ̃2
max = σ2

max.

Proof: We know σ̃1
max = σ1

max, Ñ1 = N1 and Ã1 = A1. Also H2(�̃i,�−i) ⊆ H2(�).

Then

F 2(�̃i,�−i) ⊆ F 2(�).

We have shown in Case 1 that agent i cannot improve to the first indifference class by

misreporting. This implies that agent i does not belong to any triple in σ2
max.

8 Thus any

triple (k, l, a) ∈ σ2
max has the property that k, l ∈ N \ {i} and (k, l, a) ∈ H2(�̃i,�−i).

So σ2
max ∈ F 2(�̃i,�−i). Since F 2(�̃i,�−i) ⊆ F 2(�), we have σ2

max is the maximal

assignment in F 2(�̃i,�−i) according to �Σ. Thus σ̃2
max = σ2

max. This completes the proof of

Claim 3.

Claim 3 and the fact that it is not possible for agent i to improve to the first indifference

class by misreporting (Case 1) imply that agent i does not belong to any triple in σ2
max. Thus

i does not belong to any triple in σ̃2
max. This means that agent i is not allocated in Step 2

of the mechanism at (�̃i,�−i).
The only remaining possibility is agent i is allocated in Step 3 of the mechanism at

(�̃i,�−i). Let (i, j, a) ∈ σ̃3. Then i, j ∈ N \ [Ñ1 ∪ Ñ2] and a ∈ A \ [Ã1 ∪ Ã2]. By Claims 1

and 3, we have i, j ∈ N \ [N1 ∪N2] and a ∈ A \ [A1 ∪ A2].

We have assumed that agent i improves to the second indifference class by misreporting

i.e. (i, j, a) ∈ H2(�i). Thus there exists a triple (i, j, a) such that i, j ∈ N \ [N1 ∪ N2],

a ∈ A \ [A1 ∪ A2] and (i, j, a) ∈ H2(�). This is not possible by Lemma 3.

Cases 1 and 2 show that it is not possible for agent i to improve to the first or the second

indifference class by the misreport �̃i.

Case (ii): H1(�i) ⊂ H1(�̃i).
We will show that the misreport by agent i where she expands her first indifference class,

leads to no change in her assignment.

Consider the preference profile (�̃i,�−i). The mechanism considers the following sets

for pairs of agents: H1(�̃i) ∩ H1(�j) = H1(�i) ∩ H1(�) for agents i, j (where j 6= i) and

H1(�k) ∩H1(�l) for agents k, l ∈ N \ {i}. So

H1(�̃i,�−i) = H1(�). (3)

8Suppose i belongs to some triple in σ2
max. Then agent i has to move to the first indifference class to be

able to strictly improve by misreporting.
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We consider the three steps of the OCMMA at (�̃i,�−i). In the first step, we have

F 1(�̃i,�−i) = F 1(�) (by Equation 3). Thus σ1
max is the assignment chosen in this step at

the preference profile (�̃i,�−i). Since σ1
max is chosen in Step 1, we have F 2(�̃i,�−i) = F 2(�)

in the second step. Thus the assignment chosen in the second step is σ2
max. In the third step,

the assignment chosen is σ3.

We have shown that there is no change in the assignment generated by the OCMMA

when agent i misreports. So agent i does not improve by the misreport.

�

5.2 Group strategy proofness

In this section, we show the OCMMA satisfies group strategy proofness.

Let � denote a preference profile where �= (�1, . . . ,�n). Consider a coalition of agents

C ⊆ N . Let �C denote the collection of preferences of agents in C i.e. �C= {�i}i∈C . Then

the preference profile � can be written as (�C ,�N\C).

Definition 6 An assignment rule σ is manipulable at � by a coalition C ⊆ N if there

exists �′C∈ ×i∈CΓi such that σ(�′C ,�N\C) �i σ(�) for all i ∈ C. An assignment rule σ is

group strategy-proof if it is not manipulable by any coalition C ⊆ N .

Since the OCMMA assignment is Pareto efficient, the grand coalition N cannot obtain

an assignment where all agents are strictly better off by misreporting. Thus it is sufficient

to consider coalitions C where C ⊂ N .

Theorem 4 The OCMMA algorithm is group strategy-proof.

Proof : Consider an arbritrary coalition C ⊆ N . Let � be a preference profile. We assume

for contradiction that there exists �̃C ∈ ×i∈CΓi such that σ(�̃C ,�) �i σ(�) for all i ∈ C.

Let σ = (σ1
max, σ

2
max, σ

3
max) be the assignment generated by the OCMMA at the preference

profile �. Let N1 be the set of agents who are allocated in Step 1 of the mechanism at �
i.e. N1 is the set of agents in σ1

max. Let A1 denote the set of objects allocated in Step 1

of the mechanism at �, so A1 is the set of objects which have been allocated in the partial

allocation σ1
max. Similarly, N2 and A2 denote the set of agents and objects which have been

allocated in Step 2 of the OCMMA at profile � (belong to the partial allocation σ2
max).

Let σ̃ = (σ̃max1 , σ̃2
max, σ̃

3
max) be the assignment generated by the OCMMA at the preference

profile �̃C ,�N\C . Let Ñ1 be the set of agents in σ̃1
max. Let Ñ1 and Ã1 denote the set of

agents and the set of objects allocated in Step 1 of the mechanism at (�̃C ,�N\C).

The first observation is that C ∩ N1 = ∅. This is because all agents in C must strictly

improve when they misreport, and the agents in N1 are in the first indifference class.
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Lemma 4 For any pair of agents i, j ∈ C such that (i, j, a) ∈ σ̃, we have (i, j, a) ∈ H1(�).

Proof : Since agents i, j strictly improve by misreporting, we know S(i, j) is non empty and

there exists x ∈ A such that (i, j, x) ∈ H1(�). By Lemma 1, we know that both agents i and

j cannot belong to σ3
max. So there is at least one agent from {i, j} who belongs to the second

indifference class in σ. Suppose i is the agent who belongs to the second indifference class

in σ. This implies that agent i is in the first indifference class in σ̃ i.e. (i, j, a) ∈ H1(�i). By

pairwaise alignment, we have (i, j, a) ∈ H1(�j). Thus (i, j, a) ∈ H1(�). �

We will show that the assignment generated in the first step of the OCMMA at the

preference profiles � and (�̃C ,�N\C) is the same.

Claim 1: σ1
max = σ̃1

max.

Proof : We will prove the claim by contradiction i.e. we assume σ1
max 6= σ̃1

max.

We know C∩N1 = ∅. This means that the agents in N1 do not misreport and (�̃C ,�N\C
) = (�̃C ,�N1 ,�N\C∪N1). This implies σ1

max ∈ F 1(�̃C ,�N\C).9

Since σ̃1
max is the partial allocation chosen in the first step of the OCMMA at profile

(�̃C ,�N\C), we have σ̃1
max ∈ F 1(�̃C ,�N\C) and σ̃1

max �Σ σ1
max (Statement 1).

Similarly, the partial allocation σ1
max belongs to F 1(�) and is the maximal element in

F 1(�) according to �Σ. Thus we can conclude σ̃1
max /∈ F 1(�). To see this, suppose not i.e.

σ̃1
max ∈ F 1(�). Then σ1

max �Σ σ̃1
max and this contradicts Statement 1 above.

We have σ1
max ∈ F 1(�) and σ̃1

max /∈ F 1(�). Recall that F 1(�) = {σ∈Σ : σ ⊆ H1(�)}. So

there exists a triple (i, j, a) ∈ σ̃1
max such that (i, j, a) /∈ H1(�) and (i, j, a) ∈ H1(�̃C ,�N\C).

Then it must be that case that i, j ∈ C. This follows from (�̃C ,�N\C) = (�̃C ,�N1 ,�N\C∪N1)

and H1(�̃C ,�N1 ,�N\C∪N1) = [∪i∈N1H1(�i)] ∪ [∪i∈CH1(�̃i)] ∪ [∪i∈N\C∪N1H1(�i)].
The above arguments show that there exists i, j ∈ C such that (i, j, a) ∈ σ̃ and (i, j, a) /∈

H1(�). This contradicts Lemma 4. �

Claim 2: For all (i, j, a) ∈ σ̃, [if (i, j, a) ∈ H1(�) then (i, j, a, ) ∈ σ̃1
max].

Proof : We assume for contradiction that Claim 2 is false i.e. there exists (i, j, a) ∈ σ̃

such that (i, j, a) ∈ H1(�) and (i, j, a) /∈ σ̃1
max. By Claim 1, we have σ̃1

max = σ1
max. So

(i, j, a) /∈ σ1
max and (i, j, a) ∈ H1(�). This contradicts Lemma 2. �

Claim 2 establishes that there does not exist a pair of agents i, j in C such that (i, j, a) ∈ σ̃
who are not matched in Step 1 of the OCMMA at the profile (�̃C ,�N\C) and (i, j, a) ∈ H1(�
). This means a pair (i, j, a) ∈ σ̃2

max ∪ σ3
max can never lead to an improvement to the first

indifference class.

9This is because F 1(�̃C ,�N1 ,�N\C∪N1
) = {σ ∈ Σ : σ ⊆ H1(�̃C ,�N1 ,�N\C∪N1

)} and H1(�̃C ,�N1

,�N\C∪N1
) = [∪i∈N1

H1(�i)] ∪ [∪i∈CH1(�̃i)] ∪ [∪i∈N\C∪N1
H1(�i)]. Note that σ1

max ∈ ∪i∈N1
H1(�i).
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Claim 3: σ2
max = σ̃2

max.

Proof : We will prove the claim by contradiction, so we assume σ2
max 6= σ̃2

max.

By Claim 1, we have σ1
max 6= σ̃1

max, N1 = Ñ1 and A1 = Ã1. By Claims 1 and 2, we can

conclude that no agent in C can improve to the first indifference class by misreporting.

Consider set of the agents (N2) who are matched in Step 2 of the OCMMA at profile �.

It must be the case that N2 ∩ C = ∅. This follows from the fact that no agent in C can

improve to the first indifference class by misreporting and an agent in N2 can only improve

if she moves to the first indifference class. Thus (�̃C ,�N\C) = (�̃C ,�N1 ,�N2 ,�N\C∪N1∪N2).

We will now show that σ2
max ∈ F 2(�̃C ,�N\C). Consider a triple (i, j, a) ∈ σ2

max. Since

N1 = Ñ1 and A1 = Ã1, we have i, j ∈ N \Ñ1 and a ∈ A\Ã1. Also (i, j, a) ∈ H2(�̃C ,�N\C).10

Thus from the definition of set F 2(�̃C ,�N\C), we get (i, j, a) ∈ F 2(�̃C ,�N\C).

Since σ̃2
max is chosen in Step of the OCMMA at profile (�̃C ,�N\C), we have σ̃2

max �Σ σ2
max

(Statement 2).

We know σ2
max ∈ F 2(�). Statement 2 and the assumption that σ2

max 6= σ̃2
max imply

σ̃2
max /∈ F 2(�). Thus there exists (i, j, a) ∈ σ̃2

max such that (i, j, a) /∈ H2(�) and (i, j, a) ∈
H2(�̃C ,�N\C). Thus we can conclude that i, j ∈ C.

We have (i, j, a) ∈ σ̃ such that (i, j, a) /∈ σ̃1
max (this is because (i, j, a) ∈ σ̃2

max). By Claim

2, we have (i, j, a) /∈ H1(�).

The above arguments establish that there exist agents i, j ∈ C such that (i, j, a) ∈ σ̃ and

(i, j, a) /∈ H1(�). This contradicts Lemma 4. �

By Claims 1 and 3, we have σ3
max = σ̃3

max. Thus in each step, the allocation generated by

the OCMMA in at the preference profiles � and (�̃C ,�N\C). Thus the agents in C cannot

strictly improve by misreporting.

This completes the proof of the theorem.

�

6 Conclusion

In this paper, we have investigated a class of matching models where agents have to be

matched in pairs with a project. We provide a domain restriction on partner, project pairs

that guarantees the existence of an assignment in the weak core and is Pareto efficient. We

provide an algorithm, the OCMMA that generates an assignment in the weak core at every

preference profile. It satisfies Pareto efficiency. In addition it is strategy-proof. It also

satisfies group strategy-proofness.

10This is because

H2(�̃C ,�N\C) = [∪i∈N2
H2(�i)] ∪ [∪i∈N1

H2(�i)] ∪ [∪i∈CH2(�̃i)] ∪ [∪i∈N\N1∪N2∪CH2(�i)].
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In future, we hope to extend our work to teams of general size. Our current results on

pairs do not extend in a straightforward manner to the more general case.
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