Effectiveness of macroprudential regulations and capital controls in India

Dr Sonalika Sinha Reserve Bank of India ISID Conference

December 18, 2019

Disclaimer: Views expressed in this paper are personal and do not necessarily reflect the official viewpoint of RBI or RBI staff

Motivation

- Primary logic of prudential regulation in India Countercyclicality
- Macroprudential regulations have consequences on banks, firms (cross-country evidence)
- Heterogeneity in effectiveness of prudential measures

Mechanism: For macroprudential regulation to be effective in controlling the aggregate supply of bank lending, it must be the case that:

- i. banks reallocate their loan portfolio; and/or,
- ii. banks tap into their capital base in response to mandatory regulation.

What are the consequences of macroprudential regulation on bank and firm-level?

This paper...

Effectiveness of intensity vs discrete measures of macroprudential regulations

- Bank level: Patterns in aggregate bank lending to regulation
- Policy interactions: Substitutes or complements? Evidence from interest rate channel.
- Sectoral level: Case of real estate sector in India (most active)

Where is the credit going?

• Firm-level outcomes: What type of borrowers are impacted?

Determinants of MPM effectiveness

- Role of capitalization: Discern patterns in bank lending of different capital levels
- Do levels matter?: Evidence from real estate sector loans

Role of capital flow measures:

• Foreign capital inflow: How do capital controls impact bank lending patterns?

Review of Findings

- Intensity-measures: More pronounced than discrete/unweighted measures.
- Bank level: Policy effectiveness is ownership-agnostic, role of capitalization overrides.
 - Lending portfolios of well-capitalized and large banks are not impacted by aggregate macroprudential regulations.
- Policy interactions: Interactive effects of macroprudential regulation and (interest rate channel of) monetary policy not significant.
- Where is credit going?: Weakly capitalized banks increase lending to poor quality borrower firms, unintended consequence.
- Sectoral level: Level of lending exposure matters in policy responsiveness, <u>levels matter</u>.
- Foreign capital: Easing capital flow from abroad potentially replaces bank credit as a funding source (credit growth declines).

Contributions of the Paper

- 1. Systematically document time-varying macroprudential toolkit in India
- 2. Policy evaluation of discrete versus intensity-based measures over a long time horizon
- 3. Bank, sector and firm-level outcomes
- 4. Policy interaction effects in India departure from common literature
- 5. Bank responsiveness to foreign capital controls

Regulatory Details: MPM and CFM

Timeline of macroprudential policy announcements

Sectors: Real estate, Commercial Real Estate, Retail, NBFC and Capital Market

Unique nature of macroprudential regulations in India

Unique nature of macroprudential regulations in India

Data and Measures

Data

1. Bank-level: Sample of individual banks

- OSMOS: RBI's Off-Site Monitoring and Surveillance System.
- Variables from standalone balance sheets; Identity Bank classification
- Time Period: 2002-2018, quarterly (68 bank-quarters)
- 2. Regulatory-level: We choose policy announcements from RBI circulars between 2002-2018
 - Sample covers entire time period during which macroprudential tools have been actively deployed in India
 - Macroprudential tools extracted from individual Master Circulars (to create a continuous series) and matched with bank-level information
 - Firm-level: Non-financial borrowers (Prowessdx), matched with their lead banker information (2008-18)

Bank Level Measures

- 1. We define 'Loan Growth' as the quarterly growth of 'Gross Loans and Advances' in any given period (deseasonalized).
- 2. Construct the MPM and CFM indices using PCA (explained ahead)
- 3. Calculate 'Liquid Assets' = $\left(\frac{Securities + LiquidAssets}{TotalAssets}\right)$
- 4. Calculate Capital Adequacy Ratio 'CRAR'

Use distribution of 'CRAR' through the sample period into four quartile groups of capitalization. (1 is weakly capitalized and 4 is strongly capitalized)

We need measures to indicate low-quality of borrowers based on solvency and liquidity criteria (using Chari et al.)

- Solvency: We sort firms based on '<u>Debt-Equity Ratio</u>' every year, firms with above median ratio in a year t is tagged as a 'Low Solvency' firm.
- 2. Liquidity: We sort firms based on '<u>Cash Ratio</u>' every year, firms with below median ratio in a year *t* is tagged as a 'Low Liquidity' firm.

Policy Measures

We need measures to indicate aggregate macroprudential and capital inflow to guage the policy environment.

- Macroprudential Measures:
 - Risk weights (5 sectors)
 - Provisioning requirements (5 sectors)
 - Reserve requirements (Tier1, Tier2, SLR and CRR)
- Capital Flow Measures:
 - Limits in FPI in government securities
 - Limits in FPI in corporate bonds
 - FDI restrictiveness index (Source: OECD)
 - FCNRB limits
 - External Commercial borrowings

Constructing Policy Measures

We capture intensity-based measures of regulatory tools using Principal Component Analysis (PCA). This allows different weights to instruments, which is more indicative of practical application. All indicators are normalized.

- MPM: First component explains 58.26 percent of sample variation
- CFM: First component explains 59.2 percent of sample variation

Aggregate Policy Measures

Comparing with monetary policy

Intensity vs discrete measure

Policy effects: Bank level

1. Effectiveness of aggregate macroprudential tools on bank loan growth

$$\begin{aligned} \mathbf{Y}_{b,t} &= \alpha_o + \sum_0^k \alpha_{1,k} \triangle MPM_{t-k} + \sum_0^k \alpha_{2,k} \triangle MoPo_{t-k} + \\ \sum_0^k \alpha_{3,k} (\triangle MPM_{t-k} * \triangle MoPo_{t-k}) + \sum_0^k \alpha_{4,k} X_{b,t-k} + f_b + f_t + \epsilon_{b,t} \end{aligned}$$

- $Y_{b,t}$ aggregate growth in bank-lending (q-o-q)
- $\triangle MPM_{t-k}$ aggregate macroprudential measure constructed using PCA
- $\triangle MoPo_{t-k}$ change in repo rate (monetary policy tool)
- X_{b,t-k} size (log assets), capital-asset ratio, liquidity (liquid assets/total assets) and return on assets

Effectiveness of aggregated macroprudential tools on bank level lending growth (no channel)

DepVar: Aggregate loan growth	(1)	(2)	(3)	(4)	(5)
∑ ³ ∧ 1(D)(c 00***	4 00***	0 200***	0 -0***	0 05***
$\sum_{0}^{\infty} \bigtriangleup M P M$	-0.22***	-4.82***	-8.399***	-9.58***	-9.35***
5 ³ + 5	(0.99)	(1.02)	(2.33)	(0.451)	(0.452)
$\sum_{0}^{0} \triangle Repo$.382	-1.03	-2.02	-2.13	-1.80
	(1.62)	(1.608)	(0.903)	(0.923)	(0.931)
$\sum_{0}^{3} \triangle (MPM * Repo)$			-1.86*	-1.15	980
			(1.43)	(0.344)	(0.347)
$\sum_{0}^{3} \triangle CFM$				-12.16***	-12.37***
				(2.786)	(2.793)
Year FE	Y	Y	Y	Y	Y
Quarter FE	N	Ν	N	N	N
Bank FE	Y	Y	Y	Y	Y
Bank controls	Y	Y	Y	Y	Y
Observations	1067	935	935	935	915
R-squared	0.135	0.176	0.202	0.236	0.238

Same exercise using discrete index

- The same exercise using a dummy-based macroprudential index yields estimates between 1.24 percent to 1.8 percent.
- Indicative that weighted approach to implementing prudential instruments could potentially alter loan growth by a margin of 4 to 7 percent (i.e. a range of 4.82-9.35 versus a range of 1.24-2.3 percent).

Splitting into capitalisation quartiles

DepVar: Aggregate loan growth	(Weak K)	(Weak K)	(Strong K)	(Strong K)
$\sum_{0}^{3} \triangle MPM$	-15.39***	-8.89	-1.33	-5.49
	(5.915)	(7.142)	(5.164)	(4.403)
$\sum_{0}^{3} \triangle Repo$	4.98	-3.49	-4.13	-4.709*
*	(5.520)	(4.102)	(3.097)	(1.536)
$\sum_{0}^{3} \triangle (MPM * Repo)$	-3.19	1.09	1.32	-2.43
	(3.752)	(3.928)	(0.927)	(0.870)
Year FE	Y	Y	Y	Y
Quarter FE	N	N	N	N
Bank FE	Y	Y	Y	Y
Bank controls	Y	Y	Y	Y
Observations	202	174	209	330
R-squared	0.412	0.504	0.386	0.268

Results are ownership-agnostic

Significant CFM indicates bank credit substitution

- Source: International Banking Statistics (LBS, BIS).
- Quarterly outstanding positions in various instruments by all countries reporting to BIS on their cross-border claims to India.

Where is credit going?: Firm level

Firm debt by quality

Summary stats of firm quality

	Solvency		Liquidity	
	solvent firms	insolvent firms	liquid firms	illiquid firms
Cash ratio	43.12	5.10	75.15	0.40
Solvency (Debt-to-Asset)	0.09	2.10	0.78	1.36
Total debt (log)	3.23	6.04	3.74	6.05
Profits (PBIT/TA)	7.18	5.90	5.33	7.44
Leverage (Debt-to-Equity)	1.27	3.09	2.45	2.54
ICR	32.86	3.79	15.19	12.56
Observations	20,703	32,566	28,802	24,467

Empirical Framework

$$\begin{split} Y_{b,t} &= \alpha_o + \gamma_j + \alpha_1 * BankCap_b * LowQuality_{j,t} + \\ \alpha_2 * BankCap_b * MPM_t + \alpha_3 * BankCap_b * LowQuality_{j,t} * MPM_t + \epsilon_{b,t} \end{split}$$

where,

- $Y_{b,t}$ aggregate growth in bank-lending (annual)
- Low $Quality_{j,t} = Low Solvency_{j,t}$, Low Liquidity_{j,t}

Poor quality firms borrow more from weaker capitalised banks

		Weakly K banks		Adequately K banks
	(Insolvent firm)	(Illiquid firm)	(Insolvent firm)	(Illiquid firm)
$Bankcap_b * LowSolvency_{j,t} * MPM_t$	1.993***			
	(0.084)			
$Bankcap_b * LowLiquidity_{j,t} * MPM_t$		1.327***		
		(0.082)		
$Bankcap_b * LowSolvency_{j,t} * MPM_t$			0.173***	
U 7			(0.014)	
$Bankcap_b * LowLiquidity_{i,t} * MPM_t$				0.151***
				(0.014)
Observations	34,335	34,335	34,335	34,335
Firm FE	Y	Y	Y	Y
Banker FE	Y	Y	Y	Y
Year FE	N	N	N	Ν

Standard errors are clustered at the firm level. All specifications include time varying controls.

* p < 0.05, ** p < 0.01, *** p < 0.001

Sectoral level: Real estate sector in India

Risk weights in real estate over time

Effectiveness of intensity measures at sectoral level (sectoral share is channel)

$$\begin{split} \mathbf{Y}_{b,t} &= \alpha_o + \sum_0^k \alpha_{1,k} \triangle MPM_{s,t-k} * \triangle Share_{s,b,t-k} + \\ &\sum_0^k \alpha_{2,k} \triangle MoPo_{t-k} * \triangle Share_{s,b,t-k} + \sum_0^k \alpha_{3,k} (\triangle MPM_{s,t-k} * \\ &\triangle MoPo_{t-k} * \triangle Share_{s,b,t-k}) + \sum_0^k \alpha_{4,k} X_{b,t-k} + f_b + f_t + f_q + \epsilon_{b,t} \end{split}$$

- $Y_{b,t}$ aggregate loan growth by banks
- $\triangle MPM_{s,t-k}$ change in individual risk weight to real estate sector, in this case
- $\triangle Share_{s,b,t-k}$ change in sectoral share of real estate in total lending

Effect of housing risk weights on aggregate loan growth

DepVar: Aggregate loan growth	(1)	(2)	(3)	(4)
$\sum_{0}^{3} \triangle (Riskweight * ShareHousing)$	0227	002	0.0121	-0.0095***
	(0.0173)	(0.019)	(0.00442)	(0.00233)
$\sum_{0}^{3} \triangle (Repo * ShareHousing)$	-0.180	-0.025	0.0188	0.142***
•	(0.230)	(0.0628)	(0.0614)	(0.0560)
$\sum_{0}^{3} \triangle (Riskweight * Repo * ShareHousing)$	-0.033	0.0316	0.0011	028*
	(0.0571)	(0.0168)	(0.0164)	(0.0173)
Year FE	Y	Y	Y	Y
Quarter FE	Y	Y	Y	Y
Bank FE	Y	Y	Y	Y
Bank controls	Y	Y	Y	Y
Observations	520	598	598	589
R-squared	0.555	0.566	0.586	0.419

- Ten percent increase in risk weights to housing reduces real estate loan growth by 1.82 percent [1.82=0.0095356*19.74649*10].
- Triple interaction: Reduction in housing sector loan growth of 5.6 percent [5.6=-0.0286856*19.74649*10]

Effect of housing risk weights on loan growth through adjustment in PSL loans

Aggreagte loan growth	(1)	(2)	(3)	(4)
Σ^{3} (D. 1	0 000***	0.0000***	0.0007	0.0075
$\sum_{0}^{\infty} \triangle (Riskweight * SharePSL)$	0.029***	-0.0289***	-0.0067	-0.0075
	(0.012)	(0.00331)	(0.00992)	(0.0183)
$\sum_{0}^{3} \triangle (Repo * SharePSL)$	-0.065	0.088	-0.0304	0.0035
	(0.101)	(0.0559)	(0.0919)	(0.0759)
$\sum_{0}^{3} \triangle (Riskweight * Repo * SharePSL)$	0.029	-0.0289***	-0.0067	-0.0075
	(0.012)	(0.0281)	(0.0563)	(0.0591)
Year FF	Y	Y	Y	Y
Quarter FE	Ý	Ý	Ý	Ŷ
Bank FE	Y	Y	Y	Y
Bank controls	Y	Y	Y	Y
Observations	526	598	575	590
R-squared	0.560	0.603	0.529	0.418

Concluding Remarks

- 1. Intensity-measures are more pronounced than discrete/unweighted measures in explaining effectiveness.
- Capital, rather than loan portfolio reallocation, predominantly influences bank's responsiveness to macroprudential regulatory tools. Findings are ownership-agnostic, and driven by capitalisation and size.
- 3. Interactive effects of macroprudential and (interest rate of) monetary policies do not appear significant.
- 4. Weakly capitalized banks increase lending to low quality borrower firms zombie loans (interest rate channel).
- 5. At the sectoral level, change in regulations are better absorbed by banks with adequate capital and greater lending exposure.
- 6. Reduced capital controls cause decline in bank credit growth.

Thank you!

