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Abstract
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Second, we consider domains that are not necessarily single-peaked and provide a character-
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strategy-proofness, and equal treatment of equals if and only if it is the uniform rule. Third, we
consider the case where the shares of the agents are bounded and provide a characterisation
of the division rules on single-peaked domains satisfying efficiency, strategy-proofness, and
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replacement monotonicity and some responsiveness assumption.
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1. INTRODUCTION

We consider the problem of dividing one unit of an infinitely divisible good amongst a number

of agents. Each agent has a single-peaked preference over the possible shares. A division rule

decides a share for each agent at every collection of preferences.

A division rule is efficient if it is not possible to give everybody a better share. It is strategy-

proof if no agent can strictly benefit by misreporting his/her preferences. It is said to satisfy equal

treatment of equals if whenever two agents have the same preferences, they get the same amount

of shares.

Theorem 3.2 of this paper provides a characterization of all single-peaked domains on which a

division rule satisfies efficiency, strategy-proofness, and equal treatment of equals if and only if it

is the uniform rule. Sprumont (1991) shows the same result but only for single-peaked domains

containing all continuous single-peaked preferences. It follows from our result that the uniform

rule is the only division rule satisfying efficiency, strategy-proofness, and equal treatment of

equals on single-peaked domains such as Euclidean, generalized Euclidean, etc., that arise in

practical problems. Next, we consider domains that do not satisfy our characterization and

provide a class of non-uniform rules on those that satisfy efficiency, strategy-proofness, and equal

treatment of equals.

Next, we consider the case where preferences need not be single-peaked. While single-

peakedness over share is plausible, non-single-peaked preferences can arise when agents have

two or more favourite shares. For instance, if the total amount of administrative work has to be

divided amongst the faculties, some faculty might prefer to have either no administrative work

or a lot of administrative work in a semester. This is because, by doing a lot of administrative

work a faculty may get the next semester free from administrative work, while doing moderate

administrative work every semester might just cause disturbance for him/her to do research.

We provide a characterization of maximal such non-single-peaked domains on which a division

rule satisfies efficiency, strategy-proofness, and equal treatment of equals if and only if it is the

uniform rule.

We consider the situation where there are restrictions on the shares of the agents. Such a

situation arises when some government property (land, etc.) has to be divided amongst its

citizens and for Egalitarian reasons the planner might like to ensure that nobody gets too small or

too high shares. There can be other reasons for having such restrictions as well. We provide a
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characterization of the division rules on the single-peaked domain satisfying efficiency, strategy-

proofness, and equal treatment of equals when shares of the agents are restricted.

Finally, we relax the assumption of equal treatment of equals. Although equal treatment

of equals is a fairness property, the social planner might like to distinguish agents based on

characteristics such as age, sex, financial strength, etc. We discuss that the structure of such rules

are not quite tractable. In view of this, we impose two additional mild restrictions: replacement

monotonicity and responsiveness. Replacement monotonicity says that if the share of an agent

decreases (increases), then the shares of all other agents will increase (decrease). Responsiveness

ensures some consistency property of the division rules. We provide a characterization of division

rules that satisfy efficiency, strategy-proofness, replacement monotonicity, and responsiveness on

the maximal single-peaked domain.

Barberà et al. (1997) provide a characterization of division rules that satisfy efficiency, strategy-

proofness, and replacement monotonicity on the maximal single-peaked domain. Their character-

ization result involves some other function (that they denote by g) which they require to satisfy

some additional properties. However, to the best of our understanding, characterizing g is a hard

problem. The results in Ching (1994) follows as a corollary of our result.

2. MODEL

2.1 DOMAINS AND THEIR PROPERTIES

Let N = {1, . . . , n} be the set of agents who must share one unit of some perfectly divisible good.

Each agent i ∈ N has a preference Ri which is a complete and transitive binary relation on [0, 1].

For all x, y ∈ [0, 1], xRiy means consuming a quantity x of the good is, from i’s viewpoint, at least

as good as consuming a quantity y. Strict preference of Ri is denoted by Pi, indifference by Ii. A

preference Ri is continuous if for each x ∈ [0, 1], {y ∈ [0, 1] | yRix} and {y ∈ [0, 1] | xRiy} are

closed sets.

We assume preferences are single-peaked which is defined as follows. A preference Ri is

single-peaked if there exists τ(Ri) ∈ [0, 1], called the peak of Ri, such that for all x, y ∈ [0, 1]

[τ(Ri) < x < y] or [y < x < τ(Ri)] =⇒ [τ(Ri)PixPiy].

Thus, a preference is single-peaked if it decreases as one goes far from its peak (in one particular
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direction). Throughout this paper we denote by S a set of single-peaked preferences. Next, we

introduce the notion of minimal richness for a single-peaked domain.

Definition 2.1. A single-peaked domain S is said to satisfy minimal richness if for all x ∈ [0, 1],

there exists a continuous preference R ∈ S such that τ(R) = x.

We let RN = (Ri)i∈N ∈ Sn denote the announced preferences (also called a profile) of all agents

and R−i denote (Rj)j∈N\i for i ∈ N. For a profile RN, we define τ(RN) = (τ(R1), . . . , τ(Rn)) as

the collection of peaks at the profile RN. We let Sn
+ = {RN ∈ Sn |

n

∑
i=1

τ(Ri) ≥ 1} denote the

profiles where the total demand is at least 1 and let Sn
− = {RN ∈ Sn |

n

∑
i=1

τ(Ri) ≤ 1} denote the

profiles where the total demand is at most 1.

2.2 DIVISION RULES AND THEIR PROPERTIES

In this section, we introduce the notion of division rules and discuss their properties.

Let ∆n be the set {(x1, . . . , xn) ∈ [0, 1]n |
n

∑
i=1

xi = 1} of all divisions of the good amongst n

agents. A division rule f is a function f : Sn → ∆n. In other words, a division rule decides a

division of the good at every given profile. For a division rule f , a profile RN , and an agent i ∈ N,

we denote by fi(RN) the share of agent i at the profile RN by the rule f . Below, we mention some

desirable properties of a division function.

Efficiency says that if the total demand at a profile, i.e., the sum of the peaks at that profile, is

weakly less than the total available amount 1 (or weakly bigger than that), then each agent will

receive a share that is weakly bigger than (or weakly lesser than) his/her peak. This ensures that

the outcome is Pareto efficient, that is, cannot be modified in a way so that it is weakly better for

everybody and strictly better for somebody.

Definition 2.2. A division rule f : Sn → ∆n is efficient if for all RN ∈ Sn,

[
RN ∈ Sn

−

]
=⇒ [ fi(RN) ≥ τ(Ri) for all i ∈ N], and[

RN ∈ Sn
+

]
=⇒ [ fi(RN) ≤ τ(Ri) for all i ∈ N].

Strategy-proofness ensures that if an agent misreports his/her preferences, then he/she will

not get a share that is strictly preferred for him/her.
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Definition 2.3. A division rule f : Sn → ∆n is strategy-proof if for all i ∈ N, all RN ∈ Sn, and all

R′i ∈ S , we have

fi(RN)Ri fi(R′i, R−i).

Equal treatment of equals says that if two agents have the same preference, they will get an

equal share of the good.

Definition 2.4. A division rule f : Sn → ∆n satisfies equal treatment of equals if for all i, j ∈ N

and all RN ∈ Sn, we have

[Ri = Rj] =⇒ [ fi(RN) = f j(RN)].

Now, we introduce the notion of the uniform rule (Benassy (1982)).

Definition 2.5. A division rule u : Sn → ∆n is called the uniform rule if for all RN ∈ Sn and all

i ∈ N,

ui(RN) =

 min {τ(Ri), λ(RN)} if RN ∈ Sn
+, and

max {τ(Ri), µ(RN)} if RN ∈ Sn
−,

where λ(RN) ≥ 0 solves the equation ∑
i∈N

min {τ(Ri), λ(RN)} = 1 and µ(RN) ≥ 0 solves the

equation ∑
i∈N

max {τ(Ri), µ(RN)} = 1.

In what follows, we explain the uniform rule by means of an example

3. A CHARACTERIZATION OF DOMAINS FOR UNIFORM RULE

In this section, we present a characterization of the domains on which every division rule

satisfying efficiency, strategy-proofness, and equal treatment of equals is the uniform rule. Our

characterization depends on the number of agents. We consider different cases based on this

number.

3.1 THE CASE OF TWO AGENTS

First, we present a condition that we use in our characterization result. Condition U for two agents

says that for every interval (x, y) not containing the point
1
2

, there is a preference with peak in

that interval such that the boundary point of the interval that is closer to
1
2

is strictly preferred
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to the other one, that is, if (x, y) ⊆
[
0,

1
2
]

then y is preferred to x, and if (x, y) ⊆
[1

2
, 1
]

then x is

preferred to y according to that preference.

Definition 3.1. A domain S is said to satisfy Condition U for two agents if

(i) for all intervals (x, y) ⊆
[
0,

1
2
]

there exists R ∈ S with τ(R) ∈ (x, y) such that yPx, and

(ii) for all intervals (x, y) ⊆
[1

2
, 1
]

there exists R ∈ S with τ(R) ∈ (x, y) such that xPy.

Our next theorem provides a characterization of all domains on which every division rule for

two agents satisfying efficiency, strategy-proofness, and equal treatment of equals is the uniform

rule.

Theorem 3.1. (i) Suppose a minimally rich single-peaked domain S satisfies Condition U for two agents.

Then, a division rule f : S2 → ∆n satisfies efficiency, strategy-proofness, and equal treatment of equals if

and only if it is the uniform rule.

(ii) Suppose a single-peaked domain S does not satisfy Condition U for two agents. Then, there is a division

rule f : S2 → ∆n other than the uniform rule that satisfies efficiency, strategy-proofness, and equal

treatment of equals.

Proof. The proof of the theorem is relegated to Appendix A. �

3.2 THE CASE OF MORE THAN TWO AGENTS

In this section, we provide a characterization of all domains on which every division rule for

more that two agents satisfying efficiency, strategy-proofness, and equal treatment of equals

is the uniform rule. We use the following condition in our characterization. Condition U for n

agents, where n > 2, is a stricter version of Condition U for 2 agents. It imposes (i) and (ii) of

the latter condition with the (obvious) modification that
1
2

is now replaced by
1
n

. However, it

additionally imposes two other conditions that are, in a sense, partial complements of (i) and (ii)

in the Condition U for 2 agents. Recall that (i) of the said condition says that for every subset (x, y)

of
[
0,

1
2
]
, there is a preference with the peak in that interval according to which y is preferred to x.

Part (iii) of Condition U for n agents requires that for such intervals (now subsets of
[
0,

1
n
]
), there

is a preference according to which x is preferred to y. In a similar manner, (iv) of Condition U for

n agents is kind of the complement of (ii) of Condition U for two agents. However, in contrast to
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(ii), (iv) is imposed only on the intervals that are subsets of
[ 1

n
,

1
2
]
. It requires for such intervals

that there is a preference with peak in that interval according to which y is preferred to x.

Note that combining (i) and (iii), and (ii) and (iv) in Condition U for n agents, it follows

that for every interval (x, y) such that either (x, y) ⊆ [0,
1
n
] or (x, y) ⊆

[ 1
n

,
1
2
]
, there are two

preferences with the peaks in that interval such that preference over x and y is reversed in those

two preferences, that is, according to one of them, x is preferred to y, and according to the other,

y is preferred to x. Apart from the said implication, Condition (ii) additionally imposes some

restrictions on intervals that are subsets of
[ 1

n
, 1
]
.

Definition 3.2. A domain S is said to satisfy Condition U for n agents, where n > 2, if

(i) for all intervals (x, y) ⊆
[
0,

1
n
]
, there exists R ∈ S with τ(R) ∈ (x, y) such that yPx,

(ii) for all intervals (x, y) ⊆
[ 1

n
, 1
]
, there exists R ∈ S with τ(R) ∈ (x, y) such that xPy,

(iii) for all intervals (x, y) ⊆
[
0,

1
n
]
, there exists R ∈ S with τ(R) ∈ (x, y) such that xPy, and

(iv) for all intervals (x, y) ⊆
[ 1

n
,

1
2
]
, there exists R ∈ S with τ(R) ∈ (x, y) such that yPx.

Our next theorem presents a characterization of all domains on which every division rule for

more than two agents satisfying efficiency, strategy-proofness, and equal treatment of equals is

the uniform rule.

Theorem 3.2. (i) Suppose n > 2 and let a minimally rich single-peaked domain S satisfy Condition U for

n agents. Then, a division rule f : Sn → ∆n satisfies efficiency, strategy-proofness, and equal treatment of

equals if and only if it is the uniform rule.

(ii) Suppose n > 2 and let a single-peaked domain S do not satisfy Condition U for n agents. Then, there

is a division rule f : Sn → ∆n other than the uniform rule that satisfies efficiency, strategy-proofness, and

equal treatment of equals.

Proof. The proof of the theorem is relegated to Appendix B. �

4. VIOLATION OF CONDITION U

In this section, we investigate the structure of division rules that evolve if a domain fails to satisfy

Condition U (for 2 of n agents). As before, we treat the cases of 2 agents and more than 2 agents

separately.
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4.1 THE CASE OF TWO AGENTS

Note that a domain violates Condition U for two agents if there is an interval (x, y) not containing

the point
1
2

such that for each preferences with the peak in that interval, the boundary point

z ∈ {x, y} of the interval that is farther away from
1
2

is weakly preferred to the other one. Below,

we present this observation formally.

Observation 4.1. A domain S is said to violate Condition U for 2 agents on an interval (x, y) with
1
2

/∈ (x, y) if for all R ∈ S , τ(R) ∈ (x, y) implies

(i) xRy if (x, y) ⊆
[
0,

1
2
]
, and

(ii) yRx if (x, y) ⊆
[1

2
, 1
]
.

To ease our presentation, for two subsets A and B of [0, 1], we write A < B to mean that each

element of A is less than each element of B, that is, a < b for all a ∈ A and all b ∈ B. Similarly,

for a number x and an interval (a, b), we write x < (a, b) to mean that x < a. We use similar

notations without further explanation.

We say a domain violates Condition U for 2 agents on intervals (x1, y1), . . . , (xk1 , yk1) and on

intervals (w1, z1), . . . , (wk2 , zk2), where 0 < (x1, y1) < · · · < (xk1 , yk1) <
1
2
< (w1, z1) < · · · <

(wk2 , zk2) < 1, if each interval in this collection satisfies the corresponding condition (based on

whether it is less than or bigger than
1
2

) in Observation 4.1. In what follows, we present a class of

division rules on such domains that are different from the uniform rule.

To help the reader, we first present this division rule for a domain that violates Condition U for

2 agents only on two intervals (x, y) and (w, z), where (x, y) <
1
2
< (w, z). We call these rules

adjusted uniform rules. These rules behave like the uniform rule at every profile except a few

where they adjust the outcome of the uniform rule by giving some lesser preferred amount to

some particular agent i. These profiles are those where (i) the total demand (that is, the sum of

the peaks) is at least 1 and agent i’s peak is in the interval [x, y), or (ii) the total demand is at

most 1 and agent i’s peak is in the interval (w, z]. In Case (i), x + τ(Rj) ≥ 1 implies that agent i

gets x and the other agent j gets the rest, and x + τ(Rj) < 1 implies agent j gets his/her top and

agent i gets the rest. In Case (ii), z + τ(Rj) ≤ 1 implies agent i gets z and agent j gets the rest, and

z + τ(Rj) > 1 implies agent j gets his/her top and agent i gets the rest. Note that in both Case

(i) and Case (ii), agent i would get his/her peak and agent j would get the rest by the uniform
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rule. Thus, these rules are in a sense negatively biased towards the agent i in comparison with

the uniform rule. For ease of presentation, we just mention the outcome share of one agent, that

of the other agent is the remaining share.

Definition 4.1. A division rule f : S2 → ∆2 is said to be an adjusted uniform rule for 2 agents

with respect to intervals (x, y) and (w, z) if there exists an agent i ∈ N, such that

(i) for all (R1, R2) ∈ S2
+ with τ(Ri) ∈ [x, y), we have

(a) x + τ(Rj) ≥ 1 =⇒ f j(RN) = 1− x,

(b) x + τ(Rj) < 1 =⇒ f j(RN) = τ(Rj),

(ii) for all (R1, R2) ∈ S2
− with τ(Ri) ∈ (w, z], we have

(a) z + τ(Rj) ≤ 1 =⇒ f j(RN) = 1− z,

(b) z + τ(Rj) > 1 =⇒ f j(RN) = τ(Rj), and

(iii) for all other profiles (R1, R2) ∈ S2, f (R1, R2) = u(R1, R2).

We are now ready to present our general class of division rules on domains that violate

Condition U for 2 agents on arbitrary class of intervals. These rules treat each interval below
1
2

and each interval above
1
2

in the same way as the adjusted uniform rule presented above treats

the intervals (x, y) and (w, z), respectively.

Definition 4.2. Let (x1, y1), . . . , (xk1 , yk1) and (w1, z1), . . . , (wk2 , zk2) be a collection of intervals

such that 0 < (x1, y1) < · · · < (xk1 , yk1) <
1
2
< (w1, z1) < · · · < (wk2 , zk2) < 1. A division

rule f : S2 → ∆2 is said to be an adjusted uniform rule for 2 agents with respect to intervals

(x1, y1), . . . , (xk1 , yk1) and (w1, z1), . . . , (wk2 , zk2) if there exists an agent i ∈ N, such that

(i) for all (R1, R2) ∈ S2
+ such that there exists r ∈ {1, . . . , k1} with τ(Ri) ∈ [xr, yr), we have

(a) xr + τ(Rj) ≥ 1 =⇒ f j(RN) = 1− xr,

(b) xr + τ(Rj) < 1 =⇒ f j(RN) = τ(Rj),

(ii) for all (R1, R2) ∈ S2
− such that there exists s ∈ {1, . . . , k2} with τ(Ri) ∈ (ws, zs], we have

(a) zs + τ(Rj) ≤ 1 =⇒ f j(RN) = 1− zs,
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(b) zs + τ(Rj) > 1 =⇒ f j(RN) = τ(Rj), and

(iii) for all other profiles (R1, R2) ∈ S2, f (R1, R2) = u(R1, R2).

Clearly, adjusted uniform rules are different from the uniform rule. Our next theorem says

that ? rules satisfy efficiency, strategy-proofness, and equal treatment of equals on a domain that

violates Condition U for 2 agents on intervals (x1, y1), . . . , (xk1 , yk1) and (w1, z1), . . . , (wk2 , zk2),

where 0 < (x1, y1) < · · · < (xk1 , yk1) <
1
2
< (w1, z1) < · · · < (wk2 , zk2) < 1.

Theorem 4.1. Let (x1, y1), . . . , (xk1 , yk1) and (w1, z1), . . . , (wk2 , zk2) be a collection of intervals such that

0 < (x1, y1) < · · · < (xk1 , yk1) <
1
2
< (w1, z1) < · · · < (wk2 , zk2) < 1 and let S be a single-peaked

domain that violates Condition U for 2 agents on these intervals. Then, every adjusted uniform rule for 2

agents f : S2 → ∆2 satisfies efficiency, strategy-proofness, and equal treatment of equals.

Proof. The proof of this theorem is similar to the proof of Theorem 3.1. So we left it to the

reader. �

4.2 THE CASE OF n AGENTS

As we have mentioned earlier, (i) and (ii) of Condition U for n agents are suitable adaptations

(with
1
2

being replaced by
1
n

) of (i) and (ii) of Condition U for 2 agents. Thus, if a domain violates

any of these conditions, then suitably modified (for n agents) versions of adjusted uniform

rules will satisfy efficiency, strategy-proofness, and equal treatment of equals. For the sake of

completeness, we present these rules below. As before, to help the reader, we first present these

rules for the case where a domain violates (i) and (ii) on just two intervals (x, y) and (w, z) such

that 0 < (x, y) <
1
n
< (w, z) < 1.

To describe the rules formally, we first introduce a generalized version of the uniform rule.

While the uniform rule divides 1 amount of the good amongst all the agents, a generalized

uniform rule does the same for arbitrary amount of the good amongst arbitrary subsets of agents.

It has a similar formulation as the uniform rule.

To ease the presentation, we introduce the following notations. For an amount x ∈ [0, 1] of the

good and a subset sN = {1, . . . , | sN|} ⊆ N of agents, we denote by ∆x
| sN| the set of all divisions of

the amount x amongst the agents in sN, that is, ∆x
| sN| = {(x1, . . . , x| sN|) ∈ [0, 1]| sN| |

| sN|

∑
j=1

xj = x}.
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Definition 4.3. For sN ⊆ N and x ∈ [0, 1], a division rule u(x, sN) : S | sN| → ∆x
| sN| is called the

generalized uniform rule for (x, sN) if for all R
sN ∈ S |

sN| and all i ∈ sN,

u(x, sN)
i (R

sN) =


min {τ(Ri), λ(R

sN)} if ∑
i∈ sN

τ(Ri) ≥ x, and

max {τ(Ri), µ(R
sN)} if ∑

i∈ sN

τ(Ri) < x,

where λ(R
sN) ≥ 0 solves the equation ∑

i∈ sN

min {τ(Ri), λ(R
sN)} = x and µ(R

sN) ≥ 0 solves the

equation ∑
i∈ sN

max {τ(Ri), µ(R
sN)} = x.

Note that when x = 1 and sN = N, the rule u(x, sN) boils down to the uniform rule u.

As before, we only specify the shares of n− 1 agents in an outcome, the remaining agent gets

the remaining share. An adjusted uniform rule for n agents behaves in the same manner as an

adjusted uniform rule for 2 agents with the modification that the shares of the agents other than

the “particular agent” i are decided by using a generalized uniform rule.

Definition 4.4. A division rule f : Sn → ∆n is said to be an adjusted uniform rule for n agents

with respect to intervals (x, y) and (w, z), where 0 < (x, y) <
1
n
< (w, z) < 1, if there exists an

agent i ∈ N, such that

(i) for all RN ∈ Sn
+ with τ(Ri) ∈ [x, y) and τ(Rj) ≥ y for all j 6= i, we have

(a) x + ∑
j 6=i

τ(Rj) ≥ 1 =⇒ f j(RN) = u1−x
j (RN\i) for all j 6= i,

(b) x + ∑
j 6=i

τ(Rj) < 1 =⇒ f j(RN) = τ(Rj) for all j 6= i,

(ii) for all RN ∈ Sn
− with τ(Ri) ∈ (w, z] and τ(Rj) ≤ w for all j 6= i, we have

(a) z + ∑
j 6=i

τ(Rj) ≤ 1 =⇒ f j(RN) = u1−z
j (RN\i) for all j 6= i,

(b) z + ∑
j 6=i

τ(Rj) > 1 =⇒ f j(RN) = τ(Rj) for all j 6= i, and

(iii) for all other profiles RN ∈ Sn, f (RN) = u(RN).

We now present the adjusted uniform rules for n agents for the general case where a domain

violates (i) and (ii) of Condition U for n agents on an arbitrary collection of intervals.

11



Definition 4.5. Let (x1, y1), . . . , (xk1 , yk1) and (w1, z1), . . . , (wk2 , zk2) be a collection of intervals

such that 0 < (x1, y1) < · · · < (xk1 , yk1) <
1
n

< (w1, z1) < · · · < (wk2 , zk2) < 1. A division

rule f : Sn → ∆n is said to be an adjusted uniform rule for n agents with respect to intervals

(x1, y1), . . . , (xk1 , yk1) and (w1, z1), . . . , (wk2 , zk2) if there exists an agent i ∈ N, such that

(i) for all RN ∈ Sn
+ such that there exists r ∈ {1, . . . , k1} with τ(Ri) ∈ [xr, yr) and τ(Rj) ≥ yr

for all j 6= i, we have

(a) xr + ∑
j 6=i

τ(Rj) ≥ 1 =⇒ f j(RN) = u1−xr
j (RN\i) for all j 6= i,

(b) xr + ∑
j 6=i

τ(Rj) < 1 =⇒ f j(RN) = τ(Rj) for all j 6= i,

(ii) for all RN ∈ Sn
− such that there exists s ∈ {1, . . . , k2} with τ(Ri) ∈ (ws, zs] and τ(Rj) ≤ ws

for all j 6= i, we have

(a) zs + ∑
j 6=i

τ(Rj) ≤ 1 =⇒ f j(RN) = u1−zs
j (RN\i) for all j 6= i,

(b) zs + ∑
j 6=i

τ(Rj) > 1 =⇒ f j(RN) = τ(Rj) for all j 6= i, and

(iii) for all other profiles RN ∈ Sn, f (RN) = u(RN).

Our next theorem says that adjusted uniform rules satisfy efficiency, strategy-proofness, and

equal treatment of equals on a domain that violates (i) and (ii) of Condition U for n agents.

Theorem 4.2. Let (x1, y1), . . . , (xk1 , yk1) and (w1, z1), . . . , (wk2 , zk2) be a collection of intervals such that

0 < (x1, y1) < · · · < (xk1 , yk1) <
1
n
< (w1, z1) < · · · < (wk2 , zk2) < 1 and let S be a single-peaked

domain that violates (i) and (ii) of Condition U for n agents on these intervals. Then, every adjusted

uniform rule for n agents f : Sn → ∆n satisfies efficiency, strategy-proofness, and equal treatment of

equals.

Proof. The proof of this theorem is similar to the proof of Theorem 3.2. So we left it to the

reader. �

Next, we investigate what happens if a domain violates (iii) or (iv) of Condition U for n agents.

Note that a domain violates (iii) or (iv) if either there is an interval (x, y) ⊆
[
0,

1
n
]

such that y

is weakly preferred to x for every preference with peak in that interval, or there is an interval

(x, y) ⊆
[ 1

n
,

1
2
]

such that x is weakly preferred to y for every preference with peak in that interval.
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Observation 4.2. A domain S is said to violate (iii) or (iv) of Condition U for n agents on an interval

(x, y) ⊆
[
0,

1
2
]

with
1
n

/∈ (x, y) if for all R ∈ S , τ(R) ∈ (x, y) implies

(i) yRx if (x, y) ⊆
[
0,

1
n
]
, and

(ii) xRy if (x, y) ⊆
[ 1

n
,

1
2
]
.

In what follows, we present a class of division rules on domains that violate (iii) and (iv) of

Condition U for n agents. We call these rules adjusted* uniform rule. For simplicity, we present

them for the case where there are exactly two intervals (x, y) and (w, z) with 0 < (x, y) <
1
n
< (w,

z) <
1
2

on which (iii) or (iv) of Condition U for n agents is violated. Versions of these rules for

other cases (that is, when the said condition is violated on multiple intervals) can be obtained in a

similar way as we have done in Definition 4.5. Recall that an adjusted uniform rule for n agents is

negatively biased towards a particular agent who we have denoted by i. Adjusted* uniform rules

too are negatively biased towards some agent i, however for the ease of presentation, we present

these rules for the case where i = n− 1. Versions of these rules for arbitrary values of i can be

constructed symmetrically.

We first explain an adjusted* uniform rule for the case when there is an interval (x, y) on which

(iii) or (iv) of Condition U for n agents is violated. For ease of presentation, we use the notation

(xn−1, yn−1) to denote the interval (x, y). We do this because, as we have mentioned, we present

these rules such that agent n− 1 is treated differently (in fact, negatively). Such a rule is based

on a collection of parameters: n− 2 points x1, . . . , xn−2 and two intervals (xn−1, yn−1), (xn, yn)

such that {x1, . . . , xn−2} < (xn−1, yn−1) < (xn, yn). An adjusted* uniform rule coincides with

the uniform rule at all profiles except a few as follows. Consider an arbitrary profile with total

demand at most 1 such that agents 1, . . . , n− 2 have peaks x1, . . . , xn−2, respectively, and agent

n− 1 has peak in the interval (xn−1, yn−1). Adjusted* uniform rule says that (a) if agent n has

peak in the interval (xn, yn), then everybody except agent n− 1 will get their peaks, and (b) if

agent n’s peak is weakly less than xn, then everybody except agents n− 1 and n will get their

peaks, and agent n will get xn. Note that for the uniform rule, agent n− 1 would get τ(Rn−1) in

case (a) and τ(Rn−1) in case (b). Thus, adjusted* uniform rules are negatively biased towards

some particular agents, who, in our case, is agent n− 1. The behaviour of this rule with respect to

an interval (w, z) (which we denote by (wn−1, zn−1)) on which (iii) or (iv) of Condition U for n

13



agents is violated is symmetric. In what follows, we present a formal definition of these rules

considering both the situations (that is, violation of both (iii) and (iv) of Condition U for n agents).

Definition 4.6. Let {x1, . . . , xn−2} < (xn−1, yn−1) < (xn, yn) and {w1, . . . , wn−2} < (wn−1,

zn−1) < (wn, zn) be such that
n−2

∑
i=1

xi + xn−1 + yn =
n−2

∑
i=1

xi + yn−1 + xn = 1 and
n−2

∑
i=1

wi + w + zn =

n−2

∑
i=1

wi + z + wn = 1. A division rule f : Sn → ∆n is said to be a an adjusted* uniform rule, if

(i) for all RN ∈ Sn
− with τ(Ri) = xi for all i ∈ {1, . . . , n− 2} and τ(Rn−1) ∈ (xn−1, yn−1), we

have

(a) τ(Rn) ∈ (xn, yn) =⇒ fi(RN) = τ(Ri) for all i 6= n− 1, and

(b) τ(Rn) ≤ xn =⇒ fi(RN) = τ(Ri) for all i ∈ {1, . . . , n− 2} and fn(RN) = xn,

(ii) for all RN ∈ Sn
− with τ(Ri) = wi for all i ∈ {1, . . . , n− 2} and τ(Rn−1) ∈ (wn−1, zn−1), we

have

(a) τ(Rn) ∈ (wn, zn) =⇒ fi(RN) = τ(Ri) for all i 6= n− 1, and

(b) τ(Rn) ≥ zn =⇒ fi(RN) = τ(Ri) for all i ∈ {1, . . . , n− 2} and fn(RN) = zn,

(iii) for all other RN ∈ Sn, we have f (RN) = u(RN).

Our next theorem says that adjusted* uniform rules satisfy efficiency, strategy-proofness, and

equal treatment of equals on a domain that violates (iii) and (iv) of Condition U for n agents.

Theorem 4.3. Let (xn−1, yn−1) and (wn−1, zn−1) be two intervals such that 0 < (xn−1, yn−1) <
1
n
< (wn−1, zn−1) <

1
2

and let S be a single-peaked domain that violates (iii) and (iv) of Condition U

for n agents on these intervals. Then, every adjusted* uniform rule f : Sn → ∆n satisfies efficiency,

strategy-proofness, and equal treatment of equals.

Proof. The proof of this theorem is similar to the proof of Theorem 3.2. So we left it to the

reader. �

5. A NECESSARY CONDITION ON AN ARBITRARY DOMAIN FOR THE UNIFORM

RULE

In Section , we have provided a necessary and sufficient condition on a single-peaked domain so

that the uniform rule is the only division rule satisfying efficiency, strategy-proofness, and equal
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treatment of equals. Question arises as to whether single-peakedness is necessary for the uniform

rule to satisfy these properties. It turns out that the answer is negative, that is, the uniform rule

can satisfy these properties even on non-single-peaked domains. In what follows, we provide a

necessary condition on a domain so that the uniform rule satisfies efficiency, strategy-proofness,

and equal treatment of equals. We further show that under some richness condition, the uniform

rule is the unique rule satisfying efficiency, strategy-proofness, and equal treatment of equals on

domains satisfying our necessary condition.

A domain (not necessarily single-peaked) is said to satisfy Condition N if the following holds:

if the peak of a preference is bigger than
1
n

, then preference declines as one moves from the

top-ranked alternative towards
1
n

, and all the points that are less than
1
n

are ranked below
1
n

.1

Note that there is no restriction on the relative ordering of the points that are less than
1
n

or

bigger than the top-ranked alternative of the preference. Symmetrically opposite thing happens

for a preference with top-ranked alternative smaller than
1
n

. Chatterji et al. (2013) introduce the

notion of semi-single-peaked domains. It can be verified that Condition N is equivalent to semi

single-peakedness with threshold
1
n

.

Definition 5.1. A domain D satisfies Condition N if for all R ∈ D the following holds:

(i) τ(R) ≥ 1
n

implies that for all x, y, z with 0 ≤ z <
1
n
≤ x < y ≤ τ(R) ≤ 1, we have yPxPz,

and

(ii) τ(R) <
1
n

implies that for all x, y, z with 0 ≤ τ(R) ≤ y < x ≤ 1
n
< z ≤ 1 we have yPxPz.

Our next theorem says that a domain has to satisfy Condition N in order for the uniform rule

to satisfy efficiency, strategy-proofness, and equal treatment of equals.

Theorem 5.1. Let D be a domain such that the uniform rule u : Dn → ∆n satisfies efficiency, strategy-

proofness, and equal treatment of equals. Then, D must satisfy Condition N.

Proof. The proof of this theorem is similar to the proof of Theorem 3.1. So we left it to the

reader. �

Our following theorem asserts that if a domain contains all preferences satisfying Condition

N, then the uniform rule is the only rule that satisfies efficiency, strategy-proofness, and equal

1By peak, we refer to the top-ranked alternative of a preference.
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treatment of equals. Thus, Theorem 5.2 generalizes Theorem 3.2 on arbitrary (non-single-peaked)

domains.

Theorem 5.2. LetD be the domain containing all preferences satisfying Condition N. Then, every division

rule f : Dn → ∆n satisfying efficiency, strategy-proofness, and equal treatment of equals if and only if it is

the uniform rule.

Proof. The proof of this theorem is similar to the proof of Theorem 3.2. So we left it to the

reader. �

6. DIVISION PROBLEMS WITH RESERVATIONS

In this section, we consider situations where there are bounds on the shares that an agent can

receive. For 0 ≤ α < β ≤ 1, a division rule f : Sn → ∆n is said to be [α, β]-restricted if

fi(RN) ∈ [α, β] for all i ∈ N and all RN ∈ Sn. Note that an [α, β]-restricted division rule satisfies

equal treatment of equals only if
1
n
∈ [α, β]. So, throughout this section we assume that

1
n
∈ [α, β].

In what follows, we introduce a particular type of [α, β]-restricted division rule, which we call the

[α, β]-restricted uniform rule and denote by u[α,β].

The [α, β]-restricted uniform rule works in the following way. Consider an arbitrary profile RN .

Compute the outcome u(RN) of the uniform rule u at the profile. For each agent i whose share

ui(RN) is less than α, calculate the deficit α− ui(RN) of i’s share from α. Finally, calculate the

total deficit ∑
{i|ui(RN)<α}

(α− ui(RN)) from α of all agents whose shares are less than α. Similarly,

calculate the total excess ∑
{i|ui(RN)>β}

(ui(RN)− β) from β of all agents whose shares are bigger

than β.

Consider the case where the total deficit from α is strictly bigger than the total excess from β

at u(RN). The [α, β]-restricted uniform rule u[α,β] gives α to each agent i whose share ui(RN) is

smaller than α. For all other agents, it fixes a “cut-off” ν ∈ [α, β] such that (a) if someone’s share in

u(RN) is smaller than ν, he/she continues to get the same share as in u(RN), and (b) if someone’s

share in u(RN) is bigger than ν, then he/she gets ν. The cut-off ν is chosen in a way that sum of

all shares at u[α,β](RN) is 1. The case where the total deficit from α is strictly smaller than the total

excess from β at u(RN) is analogous (or, symmetric).

Consider the remaining case where the total deficit from α is equal to the total excess from β at

u(RN). In this case, the [α, β]-restricted uniform rule u[α,β] gives (a) α to each agent i whose share
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ui(RN) is smaller than α, (b) β to each agent i whose share ui(RN) is bigger than β, and (c) the

same share as u(RN) to every other agent.2

Definition 6.1. An [α, β]-restricted division rule u[α,β] : Sn → ∆n is called the [α, β]-restricted

uniform rule if for all RN ∈ Sn,

(i) ∑
{i∈N|ui(RN)<α}

(
α− ui(RN)

)
> ∑
{i∈N|ui(RN)>β}

(
ui(RN)− β

)
implies

(a) u[α,β]
i (RN) = α for all i ∈ N with ui(RN) < α, and

(b) u[α,β]
i (RN) = min{ν, ui(RN)} for all i ∈ N with ui(RN) ≥ α,

where ν ≤ β is such that
n

∑
i=1

u[α,β]
i (RN) = 1,

(ii) ∑
{i∈N|ui(RN)<α}

(
α− ui(RN)

)
< ∑
{i∈N|ui(RN)>β}

(
ui(RN)− β

)
implies

(a) u[α,β]
i (RN) = β for all i ∈ N with ui(RN) > β, and

(b) u[α,β]
i (RN) = max{µ, ui(RN)} for all i ∈ N with ui(RN) ≤ β,

where µ ≥ α is such that
n

∑
i=1

u[α,β]
i (RN) = 1, and

(iii) ∑
{i∈N|ui(RN)<α}

|ui(RN)− α| = ∑
{i∈N|ui(RN)>β}

|ui(RN)− β|, then

(a) u[α,β]
i (RN) = α for all i ∈ N with ui(RN) < α,

(b) u[α,β]
i (RN) = β for all i ∈ N with ui(RN) > β, and

(c) u[α,β]
i (RN) = ui(RN) for all i ∈ N with α ≤ ui(RN) ≤ β.

It is left to the reader to verify that the [α, β]-restricted uniform rule is unique.

Our next theorem provides a characterization of the division rules satisfying efficiency, strategy-

proofness, and equal treatment of equals when shares of the agents are bounded. It says that a

division rule satisfies the mentioned properties if and only if it is the [α, β]-restricted uniform rule.

Theorem 6.1. Let S be a minimally rich single-peaked domain. Suppose that the shares of the agents

must lie in the interval [α, β], where 0 ≤ α ≤ 1
n
≤ β ≤ 1. Then, a division rule satisfies efficiency,

strategy-proofness, and equal treatment of equals if and only if it is the [α, β]-restricted uniform rule.
2This case can be considered as special case of the previous case by replacing the strict inequality between total

deficit and total excess by a weak inequality. However, to make the presentation reader friendly, we make it a
separate case.
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Proof. The proof of this theorem is similar to the proof of Theorem 3.2. So we left it to the

reader. �

7. RELAXING EQUAL TREATMENT OF EQUALS

In this section, we explore what happens to the structure of the division rules if we drop equal

treatment of equals. Such a rule can be characterized by means of a property called uncompro-

misingness. Uncompromisingness says that if an agent moves his/her peak closer or farther

away from his/her share (without changing the side with respect to the share), then his/her share

cannot be changed. For instance, if an agent’s peak is x at a profile and his/her share at that

profile is y where x < y, then his/her share will continue to be y as long as his/her peak is in the

interval [0, y] (while other agents do not change their preferences).

Definition 7.1. A division rule f : Sn → ∆n satisfies uncompromisingness if for all RN ∈ Sn, all

i ∈ N, and all R′i ∈ S

(i) fi(RN) < τ(Ri) and fi(RN) ≤ τ(R′i) imply fi(RN) = fi(R′i, R−i), and

(ii) fi(RN) > τ(Ri) and fi(RN) ≥ τ(R′i) imply fi(RN) = fi(R′i, R−i).

Our next theorem characterizes the efficient and strategy-proof division rules by means of

uncompromisingness. This result can be found in Sprumont (1991) and Barberà et al. (1997).

Note that the above theorem is not so helpful in constructing a division rule that is efficient

and strategy-proof. In view of this, we proceed to impose some additional (milder than ETE)

restrictions on a division rule so that we can provide a functional form of the division rules

satisfying those properties. Our next property is called replacement monotonicity (Barberà et al.

(1997)). It says that if the share of an agent changes by some unilateral deviation of that agent,

then the shares of every other agents will change in the same direction (that is, either all of them

will crease or all of them will decrease).

Definition 7.2. A division rule f : Sn → ∆n is said to satisfy replacement monotonicity if for all

RN ∈ Sn, all i ∈ N, and all R′i ∈ S ,

fi(R′i, R−i)− fi(RN) ≥ 0 =⇒ f j(R′i, R−i)− f j(RN) ≤ 0 for all j ∈ N \ i.
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Barberà et al. (1997) provide some structure of division rules that satisfy efficiency, strategy-

proofness, and replacement monotonicity. However, they do not provide any functional form

characterization, which makes it hard to use their rules in practical problems.

The main problem with characterizing division rules satisfying efficiency and strategy-proofness

is that when an agent changes his/her preferences, efficiency and strategy-proofness do not have

any control on how the shares of the other agents will change. Imposing non-bossiness does not

help as it only takes care of situations when the share of the deviating agent does not change, but

when that changes, then, again, one cannot track the shares of the other agents. Therefore, to have

a clean characterization, we impose some restriction (together with replacement monotonicity)

on how the shares of the other agents will change when that of some agent changes by some

unilateral deviation.

In what follows, we present a verbal description of our restriction. Consider a division problem

with at least three agents. Consider two arbitrary agents (need not be distinct), say 1 and 2.

Consider two situations, say S1 and S2. In situation S1, agent 1 unilaterally changes his/her

preference at some profile RN to some preference R′1, and in situation S2, agent 2 unilaterally

changes his/her preference at some profile QN to some preference Q′2. Suppose that the situations

are such that either both RN and QN are in Sn
+ or both RN and QN are in Sn

−. Suppose further

that in situation Si, agent i’s share changes by a ‘small’ (less than some prefixed small amount

ε) amount by this deviation. Consider two other distinct agents, say 3 and 4. Note that in both

the situations, they do not change their preferences. What we want to ensure is that if the shares

of these agents change, then the relative changes in their shares will be the same in both the

situations. For a clearer description, suppose that the change in the share of agent j ∈ {3, 4}

in situation S ∈ {S1, S2} is δS
j . For instance, δS1

3 = f3(R′1, R−1) − f3(RN). The proportionally

responsive to infinitesimal changes in shares (PRICS) property says that
δS1

3

δS1
4

=
δS2

3

δS2
4

. In other words,

whenever the share of some agent changes by a very small amount by his/her unilateral deviation,

other agents are ’affected’ with a fixed proportion.

To illustrate the idea PRICS, we present a numerical example. Suppose that there are 5 agents.

For ease of presentation, we denote a profile by its top-ranked alternatives. For instance, we write

(0.4, 0.2, 0.1, 0.3, 0.2) to denote a profile where the peaks of agents 1, 2, 3, 4, and 5 are 0.4, 0.2, 0.1,

0.3, 0.2, respectively. Consider two profiles (0.3, 0.2, 0.1, 0.1, 0.2) and (0.15, 0.35, 0.1, 0.1, 0.2). Note

that the total demand at both the profiles is at most 1. Suppose that the outcomes at these profiles
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by some division rule f are (0.3, 0.2, 0.15, 0.15, 0.2) and (0.15, 0.35, 0.15, 0.15, 0.2). Consider the

following two situations. Situation 1: agent 1 changes his/her peak at the profile (0.3, 0.2, 0.1,

0.1, 0.2) to 0.2 and his/her share changes to 0.2 by this unilateral deviation. Situation 2: agent 2

changes his/her peak at the profile (0.15, 0.35, 0.1, 0.2, 0.1) to 0.31 and his/her share changes to

0.31 by this unilateral deviation. Note that the shares of both agents 1 and 2 decrease from the

former profile to the latter in situations 1 and 2, respectively. The question is how that “excess”

amount (0.1 in Situation 1 and 0.04 in Situation 2) will be distributed amongst the other agents.

Loosely put, PRICS says that such a distribution should be done in a consistent manner over the

two situations. More formally, if the shares of two agents change, then the relative change of their

shares must be the same in both the situations. For instance, if f (0.2, 0.2, 0.1, 0.1, 0.2) = (0.2, 0.2,

0.2, 0.2, 0.2), then the outcome f (0.15, 0.31, 0.1, 0.1, 0.2) has to be (0.15, 0.31, 0.17, 0.17, 0.2). Some

other choices of outcomes at the two mentioned profiles are as follows: ((0.2, 0.2, 0.17, 0.23, 0.2)

and (0.15, 0.31, 0.16, 0.18, 0.2)), or ((0.2, 0.2, 0.23, 0.17, 0.2) and (0.15, 0.31, 0.18, 0.16, 0.2)), etc.

Definition 7.3. A replacement monotonic division rule f is said to be proportionally responsive

to infinitesimal changes in shares (PRICS) if for all i, j ∈ N and all RN, QN ∈ Sn there exist

R′i, Q′j ∈ S and ε > 0 with 0 < fi(R′i, R−i)− fi(RN) < ε and 0 < f j(Q′j, Q−j)− f j(QN) < ε such

that for all {k, l} ⊆ N \ {1, 2} and all s ∈ {k, l},

fs(RN)− fs(R′i, R̄−i) > 0 and fs(QN)− fs(Q′j, Q−j) > 0

imply
fk(R′i, R−i)− fk(RN)

fl(R′i, R−i)− fl(RN)
=

fk(Q′j, Q−j)− fk(QN)

fl(Q′j, Q−j)− fl(QN)
, (1)

where either
[
(R′i, R−i), (Q′j, Q−j) ∈ Sn

+

]
or
[
(R′i, R−i), (Q′j, Q−j) ∈ Sn

−

]
.

A special case of PRICS is equally responsive to infinitesimal changes in shares (ERICS), where, as

the name suggests, the value of the expressions in Equation (1) is 1.3 Roughly speaking, here

non-deviating agents are equally “affected” (if at all they are affected) by unilateral deviations of

the others.

3That is,
fk(R̄′i, R̄−i)− fk(R̄N)

fl(R̄′i, R̄−i)− fl(R̄N)
=

fk(R̂′j, R̂−j)− fk(R̂N)

fl(R̂′j, R̂−j)− fl(R̂N)
= 1.
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7.1 A NEW CLASS OF DIVISION RULES

In this section, we define a particular class of allocation functions which we call parametrized

uniform rules. These rules are generalizations of the uniform rule. Recall that the uniform

rule determines the outcome at a profile RN by the equation min{τ(Ri), λ(RN)} or min{τ(Ri),

µ(RN)} depending on whether RN ∈ Sn
+ or RN ∈ Sn

−, where λ(RN) and µ(RN) are such that the

total share becomes 1. Note that for the uniform rule the outcome at the profile where everybody’s

peak is 1 turns out to be (
1
n

, . . . ,
1
n
) and the profile where everybody’s peak is 0 turns out to be

(
1
n

, . . . ,
1
n
). For a parametrized uniform rule, these two outcomes are fixed at two prior divisions

qH and qL. For the uniform rule, the outcomes at the other profiles are determined by giving all

the agents equal weights (in a suitable sense), however, for a parametrized uniform rule, these

weights are fixed a priori as γ and δ for profiles with total demand is at least 1 and at most 1,

respectively.

Definition 7.4. (Parametrized uniform rules) An allocation rule f is called parametrized uniform

rule with respect to a tuple (qH, qL, γ, δ), where qH, qL ∈ ∆ and γ, δ ∈ Rn
++, if for all i ∈ N,

fi(RN) =

 min {τ(Ri), qH
i + γiλ(RN)} if RN ∈ Sn

+, and

max {τ(Ri), qL
i − δiµ(RN)} if RN ∈ Sn

−

where λ(RN) ≥ 0 solves the equation
n

∑
i=1

min {τ(Ri), qH
i + γiλ(RN)} = 1 and µ(RN) ≥ 0 solves

the equation
n

∑
i=1

max {τ(Ri), qL
i − δiµ(RN)}.

A special case of a parametrized uniform rule with respect to (qH, qL, γ, δ) is called a uniform∗

rule if γi = δi = 1 for all i ∈ N. Also, a uniform∗ rule is called the uniform rule if qH
i = qL

i =
1
n

for

all i ∈ N. In what follows, we provide an example to illustrate how a parametrized uniform rule

works.

Example 7.1. Let N = {1, 2, 3, 4, 5}. Consider the parametrized uniform rule f with respect to the

parameters (qH, qL, γ, δ), where qH = qL = (0.3, 0.1, 0.2, 0.4, 0) and γ = δ = (2, 1, 3, 1, 2). Take a

profile RN with τ(RN) = (0.4, 0.2, 0.1, 0.3, 0.2). Since RN ∈ Sn
+, by the definition of parametrized

uniform rule, fi(RN) = min {τ(Ri), qH
i + γiλ(RN)} for all i ∈ N, where λ(RN) ≥ 0 solves the

equation
n

∑
i=1

min {τ(Ri), qH
i + γiλ(RN)} = 1. Take i ∈ {3, 4}. Note that τ(Ri) < qH

i . Therefore,

min {τ(Ri), qH
i + γiλ(RN)} = τ(Ri), and hence fi(RN) = τ(Ri).
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By using the values of fi(RN) for i ∈ {3, 4}, we get

min{0.4, 0.3 + 2λ(RN)}+ min{0.2, 0.1 + λ(RN)}+ 0.1 + 0.3 + min{0.2, 2λ(RN)} = 1

=⇒ min{0.4, 0.3 + 2λ(RN)}+ min{0.2, 0.1 + λ(RN)}+ min{0.2, 2λ(RN)} = 0.6. (2)

It is easy to check that if λ(RN) > 0.05, then min{0.4, 0.3 + 2λ(RN)} = 0.4, min{0.2, 0.1 +

λ(RN)} ≥ 0.2, and min{0.2, 2λ(RN)} ≥ 0.1. However, then (2) cannot hold. So, it must be that

λ(RN) ≤ 0.05. Note that in that case the minimum value of each of the expressions in the left

hand side of (2) will be the term containing λ(RN). Therefore, (2) reduces to

0.3 + 2λ(RN) + 0.1 + λ(RN) + 2λ(RN) = 0.6

=⇒ 0.4 + 5λ(RN) = 0.6

=⇒ λ(RN) = 0.04.

Using the value of λ(RN), we obtain f (RN) = (0.38, 0.14, 0.1, 0.3, 0.08).

7.2 RESULTS

Our first theorem characterizes the division rules satisfying efficiency, strategy-proofness, and

PRICS as the parametrized uniform rules.

Theorem 7.1. Let S be a single-peaked domain. Then, every division rule f : Sn → ∆n satisfies efficiency,

strategy-proofness, and PRICS if and only if it is a parametrized uniform rule.

Proof. The proof of this theorem is similar to the proof of Theorem 3.1. So we left it to the

reader. �

The following corollary characterizes the division rules satisfying efficiency, strategy-proofness,

and ERICS as uniform∗ rules.

Corollary 7.1. Let S be a single-peaked domain. Then, every division rule f : Sn → ∆n satisfies efficiency,

strategy-proofness, and ERICS if and only if it is a uniform∗ rule.

We obtain the results in Sprumont (1991) and Ching (1994) as corollaries of Theorem 7.1.

Corollary 7.2. Let S be a single-peaked domain. Then, every division rule f : Sn → ∆n satisfies efficiency,

strategy-proofness, and anonymity (or ETE) if and only if it is the uniform rule.
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A. PROOF OF THEOREM 3.1

Proof. (i) (If part) Since S is a single-peaked domain, if part of the Theorem follows from Sprumont

(1991).

(Only-if part) Let f : S2 → ∆2 be a division rule satisfying efficiency, strategy-proofness, and

equal treatment of equals. We show that for all (R1, R2) ∈ S2, f (R1, R2) = g(R1, R2). Consider a

profile (R1, R2) ∈ S2. We distinguish the following cases:

Case (i) max{τ(R1), τ(R2)} ≤
1
2

or min{τ(R1), τ(R2)} ≥
1
2

.

We only prove the case when max{τ(R1), τ(R2)} ≤
1
2

. The case min{τ(R1), τ(R2)} ≥
1
2

can be

proved using similar arguments. By the definition of uniform rule, g(R1, R2) = (
1
2

,
1
2
). Note

that if τ(R1) = τ(R2) ≤
1
2

then by strategy-proofness, efficiency, and equal treatment of equals

f (R1, R2) = (
1
2

,
1
2
). This means if τ(R1) < τ(R2) =

1
2

, f (R1, R2) = (
1
2

,
1
2
). Suppose not, then

by efficiency f2(R1, R2) >
1
2

. But f2(R1, R2) =
1
2

. So, agent 2 will manipulate at (R1, R2) via

R1, a contradiction. Similarly, for τ(R2) < τ(R1) =
1
2

, f (R1, R2) = (
1
2

,
1
2
). Now suppose

τ(R1), τ(R2) <
1
2

. If f (R1, R2) 6= (
1
2

,
1
2
), then there exists i ∈ {1, 2} such that fi(R1, R2) >

1
2

.

WLG assume i = 1. But this is a contradiction to strategy-proofness since f (R2, R2) = (
1
2

,
1
2
) and

by single-peakedness
1
2

P1 f1(R1, R2).

Case (ii) max{τ(R1), τ(R2)} >
1
2

and min{τ(R1), τ(R2)} <
1
2

.

WLG assume that max{τ(R1), τ(R2)} = τ(R1) and min{τ(R1), τ(R2)} = τ(R2). Suppose

τ(R1) + τ(R2) < 1. By the definition of uniform rule g(R1, R2) = (τ(R1), 1 − τ(R1)). As-

sume for contradiction that g(R1, R2) 6= f (R1, R2). This means by efficiency f1(R1, R2) >

τ(R1). Note that by efficiency and strategy-proofness for all y ∈ [0, 1] and all Ry, Ry
1 ∈ S ,

f1(Ry, R2) = f1(Ry
1, R2). Consider the set {y ∈ [0, 1] | f1(R1, R2) = f1(Ry, R2)}. Let x = inf{y ∈

[0, 1] | f1(R1, R2) = f1(Ry, R2)}. Note that by strategy-proofness for all y ∈ (x, f1(R1, R2)],

f1(Ry, R2) = f1(R1, R2). Since f1(R1, R2) > τ(R1), we have x < f1(R1, R2) and by Case (i) x >
1
2

.

Suppose x ∈ {y ∈ [0, 1] | f1(R1, R2) = f1(Ry, R2)}, i.e., f1(Rx, R2) = f1(R1, R2). Note that

by the minimal richness condition there exists a continuous single-peaked preference R with

τ(R) = x. Let z < x be such that zP f1(R1, R2). By efficiency and f1(Rx, R2) = f1(R1, R2), we

have f1(Rz, R2) ∈ [z, x). This means agent 1 manipulates at (R, R2) via Rz, a contradiction. Thus,
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x /∈ {y ∈ [0, 1] | f1(R1, R2) = f1(Ry, R2)}. By efficiency, we have f1(Rx, R2) = x. Since x >
1
2

by Condition 2? there exists a R′ with τ(R′) ∈ (x, f1(R1, R2)) such that xP′ f1(R1, R2). But this

means f is manipulable at (R′, R2) via Rx as f1(Ry, R2) = f1(R1, R2) for all y ∈ (x, τ(R1)]. Thus

f1(R1, R2) = τ(R1), and f2(R1, R2) = 1− τ(R1), which in turn implies f (R1, R2) = g(R1, R2).

The case τ(R1) + τ(R2) > 1 can be proved similarly.

(ii) Suppose S does not satisfy Condition 2?. This means WLG there exists an interval (x, y) ⊆

[
1
2

, 1] such that for all R ∈ S with τ(R) ∈ (x, y), yRx. Consider the division rule f given in the

following

f (RN) = g(RN) if τ(RN) ≥ 1 or τ(Ri) /∈ (x, y] for all i ∈ {1, 2},

f (RN) = (y, 1− y) if τ(R1) ∈ (x, y] and τ(R2) ≤ 1− y

f (RN) = (1− τ(R2), τ(R2)) if τ(R1) ∈ (x, y] and 1− τ(R1) ≥ τ(R2) > 1− y

We show that f satisfies equal treatment of equals, efficiency, and strategy-proofness. Since for

all cases where R1 = R2 by definition of f , we have f (R1, R2) = g(R1, R2) and g satisfies equal

treatment of equals, f satisfies equal treatment of equals. To check efficiency, note that we need

to check for only those (R1, R2) ∈ S2 where f (R1, R2) 6= g(R1, R2). Suppose τ(R1) ∈ (x, y] and

τ(R2) ≤ 1− y. By definition of f , f1(R1, R2) = y and f2(R1, R2) = 1− y. Since preferences are

single-peaked and τ(R1) ≤ f1(R1, R2), τ(R2) ≤ f2(R1, R2), this is efficient. Similarly, it can be

shown for the case when τ(R1) ∈ (x, y] and 1− τ(R1) ≥ τ(R2) > 1− y. This shows f satisfies

efficiency.

To show strategy-proofness suppose (R1, R2) ∈ S2 such that τ(R1, R2) ≥ 1 and τ(R1) ≥ τ(R2).

By the definition of f , f1(R1, R2) = 1− τ(R2) and f2(R1, R2) = τ(R2). If τ(R2) ≤ 1− y, then since

τ(R1) + τ(R2) ≥ 1, f1(R1, R2)R1y and hence agent 1 would not manipulate at (R1, R2) via R′1
with τ(R′1) ∈ (x, y]. If τ(R2) ≥ 1− y, then f1(R′1, R2) = 1− τ(R2) for all R′1 with τ(R′1) ∈ (x, y]

and hence, agent 1 would not manipulate at (R1, R2) via R′1. �

B. PROOF OF THEOREM 3.2

Proof. (i) Let n ≥ 3 and S be a domain satisfying Condition ? for n agents. We show that a

division rule f : Sn → ∆n satisfying efficiency, strategy-proofness, and equal treatment of equals

if and only if it is the uniform rule.
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(If part) Since S is single-peaked domain If part of theorem follows from the main Theorem of

Sprumont (1991).

(Only-if part) We first prove a lemma.

Lemma B.1. (i) Let RN ∈ Sn and i ∈ N be such that fi(RN) < τ(Ri). Further let R′i ∈ S be such that

fi(RN) ≤ τ(R′i). Then, fi(R′i, R−i) ≤
1
2

implies fi(RN) = fi(R′i, R−i).

(ii) Let RN ∈ Sn and i ∈ N be such that fi(RN) > τ(Ri). Further let R′i ∈ S be such that

fi(RN) ≥ τ(R′i). Then, fi(RN) = fi(R′i, R−i).

Proof. (i) Since fi(RN) < τ(Ri), by efficiency f j(RN) ≤ τ(Rj) for all j ∈ N, and hence,
n

∑
j=1

τ(Rj) >

1. Similarly, as fi(RN) ≤ τ(R′i) and f j(RN) ≤ τ(Rj) for all j 6= i, we have τ(R′i) + ∑
j 6=i

τ(Rj) ≥

n

∑
j=1

f j(RN) = 1. This means by efficiency, fi(R′i, R−i) ≤ τ(R′i).

Assume for contradiction fi(R′i, R−i) ≤
1
2

but fi(R′i, R−i) 6= fi(RN). This together with strategy-

proofness imply, fi(RN) < τ(Ri) < fi(R′i, R−i) ≤ τ(R′i). Let x = sup{y ∈ [0, 1] | fi(Ry, R−i) =

fi(RN)}. This is well defined since by strategy-proofness and efficiency, fi(Ry, R−i) = fi(R̄y, R−i)

for all y ∈ [0, 1], and all Ry, R̄y ∈ S . Note that since fi(RN) < τ(Ri) < fi(R′i, R−i) ≤
1
2

,

fi(RN) < x <
1
2

. Suppose x ∈ {y ∈ [0, 1] | fi(Ry, R−i) = fi(RN)}. Let R be a continuous

preference with τ(R) = x and x < z be such that zP fi(RN). Consider Rz ∈ S . By efficiency,

fi(Rz, R−i) ∈ (x, z]. This means agent i manipulates at (R, R−i) via Rz, a contradiction, and hence,

x /∈ {y ∈ [0, 1] | fi(Ry, R−i) = fi(RN)}. This together with efficiency imply fi(R, R−i) = x.

Note that by strategy-proofness for all y ∈ [ fi(RN), x), fi(Ry, R−i) = fi(RN). Since S satisfies

Condition ? for n agents and x <
1
2

, there exists a preference R̂ with

• τ(R̂) ∈ ( fi(RN), x) if either ( fi(RN), x) ⊆ (0,
1
n
) or ( fi(RN), x) ⊆ (

1
n

,
1
2
) such that xP̂ fi(RN),

or

• τ(R̂) ∈ (
1
n

, x) if fi(RN) <
1
n
< x such that xP̂

1
n

.

In both the cases agent i manipulates at RN via R, a contradiction, and hence, fi(RN) =

fi(R′i, R−i).

(ii) We can prove this using similar arguments as in the proof of (i). �
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Let RN ∈ Sn. If ∑
i∈N

τ(Ri) = 1 then, by efficiency, τ(Ri) = fi(RN) = gi(RN) for all i ∈ N.

Suppose ∑
i∈N

τ(Ri) > 1. Note that by efficiency, fi(RN) ≤ τ(R) and gi(RN) ≤ τ(Ri) for all

i ∈ N. WLG assume that τ(R1) ≤ · · · ≤ τ(Rn). Assume for contradiction f (RN) 6= g(RN).

If RN = (Rn, . . . , Rn) then by equal treatment of equals fi(RN) = gi(RN) for all i ∈ N, a

contradiction. Therefore, assume RN 6= (Rn, . . . , Rn). We proceed to Step 1.

Step 1. Since f (RN) 6= g(RN), there exists i ∈ N such that fi(RN) < gi(RN) ≤ τ(Ri).

Let R′i = Rn. We show fi(R′i, R−i) < gi(R′i, R−i). If i = n, then there is nothing to show.

Suppose i 6= n. First we show, fi(R′i, R−i) ≤
1
2

. Since at (R′i, R−i), R′i = Rn, by equal treatment

of equals fi(R′i, R−i) = fn(R′i, R−i), which in turn implies fi(R′i, R−i) ≤
1
2

. Thus applying

Lemma B.1, we can say that fi(RN) = fi(R′i, R−i). By the definition of uniform rule, gi(RN) ≤

gi(R′i, R−i) as τ(Ri) ≤ τ(R′i). Combining all these observations we get fi(R′i, R−i) < gi(R′i, R−i).

If (R′i, R−i) = (Rn, . . . , Rn) then by equal treatment of equals we have a contradiction. Suppose

(R′i, R−i) 6= (Rn, . . . , Rn). We proceed to Step 2.

Step 2. Since fk(R′i, R−i) < gk(R′i, R−i) for all k ∈ {i, n}, there exists j /∈ {i, n} such that

gj(R′i, R−i) < f j(R′i, R−i). By efficiency, gj(R′i, R−i) < f j(R′i, R−i) ≤ τ(Rj). Let R′j = Rn.

Strategy-proofness of f implies f j(R′i, R−i) ≤ f j(R′i, R′j, R−{i,j}). By the definition of uniform

rule, gj(R′i, R−i) = gj(R′i, R′j, R−{i,j}) since gj(R′i, R−i) < τ(Rj) < τ(R′j). Combining all these

we get, gj(R′i, R′j, R−{i,j}) < f j(R′i, R′j, R−{i,j}). If (R′i, R′j, R−{i,j}) = (Rn, · · · , Rn) the by equal

treatment of equals we have a contradiction, otherwise we apply Step 1 to (R′i, R′j, R−{i,j}).

Since N is finite and at every Step we change the preference of a new agent by Rn, eventually

it will lead to a contradiction. �
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