
LOCAL VS. GLOBAL INCENTIVE COMPATIBILITY ON ORDINAL TYPE

SPACES∗

Souvik Roy1 and Ujjwal Kumar1

1Economic Research Unit, ISI Kolkata

September, 2019

Abstract

We consider locally incentive compatible (LIC) mechanisms with deterministic allocation
rules and transfers with quasilinear utility. We use a “uniform” notion of local incentive
compatibility. A mechanism is LIC if there is some (small) ε > 0 such that it is IC on ev-
ery pair of types s and t with the (Euclidean) distance between them at most ε. We show
that LIC and IC are equivalent on a strict ordinal type-space if the ordinal domain satisfies
the no-restoration property (Sato (2013)). A large class of strict ordinal type-spaces such as
single-peaked, single-dipped, single-crossing, etc., satisfy the no-restoration property. Next,
we show that the same does not hold if we allow the type-space to be weak. We introduce
the notion of almost everywhere IC. A mechanism is almost everywhere IC if it IC outside
a set of (Lebesgue) measure zero. We provide a sufficient condition on weak type-spaces
for the equivalence of LIC and almost everywhere IC. Various subsets of single-peaked and
single-crossing domains satisfy our sufficient condition. Finally, we provide results on how
to check whether a given mechanism is IC or not. It follows from our result that in addition
to local types, only a few types on the “boundary” of the type-space needed to be checked
additionally. Our results apply to several non-convex type-spaces, and thereby generalize the
results in Carroll (2012) considerably.

KEYWORDS: local incentive compatibility, (global) incentive compatibility, ordinal type spaces

JEL CLASSIFICATION CODES: D82, D44, D47

This is a preliminary and incomplete draft. Please do not quote.

∗The authors would like to thank Debasis Mishra for his valuable suggestions.

1

1. INTRODUCTION

We consider standard mechanism design problem where a set of agents have valuations for each

object in a finite set of objects. Based on these valuations, the planner has to select an object to be

shared by all the agents and some payment for each agent. Such a decision scheme is called a

mechanism.

Agents evaluate their net utilities by means of quasilinear utility functions. A mechanism is

incentive compatible (IC) if no agent can increase his/her net utility by misreporting his/her type.

A mechanism is locally IC (LIC) if no agent can increase his/her net utility by misreporting to a

type that is “close” to his/her sincere types.

An important problem in mechanism design is to characterize the IC mechanisms for a given

type-space. Except from the case when the type-space is R|A|, where A is the set of objects, this

turns out to be a hard problem. As an intermediate step, researchers have got interested in

exploring if the requirement of IC can be reduced considerably. Local IC (LIC) turns out to be a

way.

LIC ensures that a mechanism is IC on the types that are sufficiently close (with respect to

Euclidean distance) to each other. Carroll (2012) worked with a slightly weaker notion of LIC and

showed that if the type-space is convex, then LIC is equivalent to IC. The objective of this paper

is to extend the results in Carroll (2012) to non-convex type-spaces.

First, we consider type-spaces that are strict, that is, no two objects have the same valuation in

any type. A domain is said to satisfy the no-restoration property if between any two preferences

of the domain, there is a path of preferences in which no two alternatives change their relative

ordering more than once. Almost all well-known domains such as single-peaked, single-crossing,

single-dipped, etc., satisfies the no-restoration property. The notion of no-restoration property is

introduced in Sato (2013), where it is shown that if a domain satisfies this property then every

locally strategy-proof social choice function is strategy-proof. We extend this result for cardinal

set-up and show that if an ordinal domain satisfies the no-restoration property, then every LIC

mechanism on its type-space is IC. It is worth mentioning that our result applies to domains that

are not necessarily convex, not even connected.

Next, we consider weak type-spaces. We introduce the notion of almost everywhere IC. A

mechanism is almost everywhere IC if it is IC outside a set of (Lebesgue) measure zero. We

provide a sufficient condition on a weak ordinal domain so that every LIC mechanism on its

2

type-space is almost everywhere IC. The closure of single-peaked or single-crossing type-spaces,

single-plateaued type-spaces, etc., satisfy our sufficient condition.

Finally, we consider the problem of checking whether a given mechanism is IC or not on an

arbitrary domain. We show that apart from checking the local types, one needs to check only the

boundary types to ensure IC of a mechanism.

As we have mentioned, our results apply to domains that are not necessarily convex, not even

connected. Thus, they generalize the results in Carroll (2012) in a considerable manner. Mishra

et al. (2016) consider the same problem for a particular type of mechanisms, called payments-only

mechanisms. We extend their results by dropping the assumption of payments-onlyness.

In the auction design literature with transfers and quasilinear utility, a long standing research

agenda has been to identify a minimal set of incentive constraints that will imply overall incentive

compatibility - see discussions on relaxed problem in Chapter 7 of Fudenberg and Tirole (1991),

Armstrong (2000) and Chapter 6 in Vohra (2011).

2. MODEL

We present the basic model in two further subsections. First, we present the notion of ordinal

preferences, the notion of types and discuss the notion of a type representing an ordinal preference.

Second, we present the notion of mechanisms and discuss their properties.

2.1 ORDINAL DOMAINS AND TYPE-SPACES

Let A be a finite set of alternatives. A strict preference on A is a linear order, that is, an antisym-

metric, complete, and transitive binary relation on A. For two alternatives a, b ∈ A and a strict

preference P, we write aPb to mean that a is strictly preferred to b according to P. We denote by

P̂(A) the set of all strict preferences on A. A strict ordinal domain D̂ is a subset of P̂(A).

A weak preference on A is a weak order, that is, a complete and transitive binary relation on A.

For two alternatives a, b ∈ A and a weak preference R, we write aRb to mean that a is “as good

as” b according to R. We denote by ĎP(A) the set of all weak preferences on A. A weak ordinal

domain ĎD is a subset of ĎP(A).

A type t is a mapping from A to R that represents the utility/valuation of each alternative in

A. A subset T of R|A| is called a type-space. A type-space T is called strict if t(a) 6= t(b) for all

t ∈ T and all a, b ∈ A, otherwise it is called weak.

3

In this paper, we deal with type-spaces that have some additional structure. We say that a type

t represents a strict preference P if for all a, b ∈ A, aPb if and only if t(a) > t(b). For a domain D

(strict or weak), we denote by V(D) the set of all types that represent some preference in D, that

is, V(D) = {t ∈ R|A| | t represents P for some P ∈ D}. A type-space T is ordinal if there exists a

domain D such that T = V(D).

2.2 MECHANISMS AND THEIR PROPERTIES

We consider one-agent model in this paper. This is without loss of generality for our analysis. In

fact, as it is well-known in the literature, all the results of this paper can be generalized to the case

of more than one agents in a systematic manner.

An allocation rule is a map f : T → A and a payment rule is a map p : T → R. A (direct)

mechanism µ is a pair consisting of an allocation rule f and a payment rule p.

If the agent has type t but (falsely) reports s to the mechanism, then his/her net utility is given

by

t(f (s))− p(s).

In particular, if the agent with type t reports truthfully, then his/her net utility is t(f (t))− p(t).

Note that here we assume quasilinearity to evaluate utility from payments. We say a type t cannot

manipulate to a type s if the net utility from reporting t is at least as much as that from reporting

s, that is, if

t(f (t))− p(t) ≥ t(f (s))− p(s).

Definition 2.1. A mechanism µ is incentive compatible (IC) on a pair of types (t, s) if t cannot

manipulate to s. It is called IC on a type-space T if it is IC on every pair of types (t, s) ∈ T × T.

Next, we introduce the notion of local incentive compatibility. It requires that a mechanism is

incentive compatible on pairs of types that are “very close” to each other. More formally, for a

given (arbitrarily small) ε > 0, a mechanism is called ε-locally IC if it is IC on every pair of types

having (Euclidean) distance at most ε. A mechanism is called locally IC if it is ε-locally IC for

some ε > 0.

Definition 2.2. A mechanism is said to be locally IC if there exists ε > 0 such that it is IC on every

pair of types (t, s) with d(t, s) < ε.

4

3. LOCAL INCENTIVE COMPATIBILITY VS. INCENTIVE COMPATIBILITY ON STRICT ORDINAL

TYPE-SPACES

In this section, we explore the connection between local incentive compatibility and incentive

compatibility on strict ordinal type spaces. More precisely, we investigate under what condition

on a domain, every local IC mechanism is IC.

We present a condition on a strict ordinal domain D̂ called the no-restoration property (see

Sato (2013)). For some 1 ≤ k ≤ m, we denote the k-th ranked alternative of P by P(k). Two

preferences P and P′ are said to be adjacent local if they differ by the ranking of two consecutively

ranked alternatives, that is, there is 1 ≤ k < m such that P(k) = P′(k + 1), P(k + 1) = P′(k),

and P(l) = P′(l) for all l 6= k. A sequence of strict preferences (P1, . . . , Pk) (or a path from P1 to

Pk) is called an adjacent local path if Pl and Pl+1 are adjacent local preferences for all 1 ≤ l < k.

An adjacent local path (P1, . . . , Pk) is said to satisfy the no-restoration property if every pair of

alternatives change their relative ordering at most once along the path, that is, for every distinct

a, b ∈ A, there are no 1 ≤ r < s < t ≤ k such that aPrb, bPsa, and aPtb. A strict ordinal domain D̂

is said to satisfy no-restoration property if for all P, P′ ∈ D̂, there is an adjacent local path in the

domain satisfying the no-restoration property.

We are now ready to present the main result of this section. It says that if a strict ordinal

domain D̂ satisfies the no-restoration property, then every locally IC mechanism on V(D̂) is IC.

Theorem 3.1. Let a strict ordinal domain D̂ satisfy no-restoration property. Then, every locally IC

mechanism on V(D̂) is IC.

The proof of Theorem 3.1 can be found in Appendix .1.

A large class of strict ordinal domains of practical importance such as single-peaked, single-

dipped, single-crossing, etc., satisfy the no-restoration property. Therefore, Theorem 3.1 implies

that locally IC and IC are equivalent on the cardinal versions of these domains.

3.1 A GENERALIZATION IN THE DIRECTION OF CARROLL (2012)

Carroll (2012) introduced a slightly different notion of local IC. He calls a mechanism locally IC if

for every t ∈ T there exists ε > 0 such that for all s ∈ T with d(t, s) < ε, it is IC on both the pairs

of types (t, s) and (s, t). Note that according to this notion, one has the freedom to chose different

ε > 0 for different types, whereas in our notion one has to chose the same ε > 0 for all types. If

5

the infimum value of the εs’ chosen for different types (in Carrol’s.... notion) is positive, then that

infimum value can be taken as the choice of ε in our notion, and consequently these two notions

will become equivalent. However, if the said infimum is zero, then our notion is slightly stronger

than that of Carroll (2012). To see this, consider the situation where there are just two alternatives

and the type-space T = {t ∈ R2 | t(a) 6= t(b)}. Thus, T is disconnected and can be written as a

union of two disjoint open spaces T1 = {t ∈ R2 | t(a) < t(b)} and T2 = {t ∈ R2 | t(a) > t(b)}.

In such situations, one can define neighbourhoods of the points, say in T1, such that none of them

intersects T2. This means local IC as defined in Carroll (2012) does not impose IC on a pair of

types (s, t) where s ∈ T1 and t ∈ T2, and consequently such notion of local IC can never ensure

IC. However, in our notion, local IC ensures IC on pair of types that are very close but still come

from different partitions of T. Thus, there are scopes that one can achieve IC by means of our

notion of local IC.

It is worth mentioning that our notion of local IC is as useful as that of Carroll (2012) for

all practical purposes. In reality, if one wants to check (perhaps by means of a computer or

so) whether some mechanism is locally IC or not, he/she can only check it for some given

neighbourhood of each type. In other words, one cannot consider a sequence of neighbourhoods

the size of which converges to zero.

As we have discussed, Theorem 3.1 (or some version of it) cannot be achieved by using the

notion of local IC defined in Carroll (2012). In what follows, we discuss how this notion can

be modified to obtain Theorem 3.1. A mechanism µ is said to be adjusted locally IC on a strict

type-space T if (i) for every type t in T, there is a neighborhood around t such that µ is IC on

both (t, s) and (s, t) for all types s in that neighborhood, and (ii) for every type t̄ that lies on the

boundary of T (that is, in cl(T) \ T), there is a neighborhood of t̄ such that µ is IC on every pair of

strict types in that neighborhood.

Roughly speaking, part (i) says that a locally IC mechanism µ cannot be manipulated from

a strict type t to a strict type s, when t and s are “arbitrarily close”. Implication of part (ii) is

somewhat involved. Note that a strict ordinal type-space is by definition disconnected. For

instance, if there are two alternatives a and b, and D contains both the strict preferences over

these two alternatives, then there are two (connected) components of V(D): one contains all

types that represent the preference where a is preferred to b, and the other contains all types that

represent the preference where b is preferred to a. Now, suppose that a mechanism is IC on pairs

of types that are arbitrarily close to each other as required by part (i). Since one can always find

6

a small neighborhood N(t) around a type t in one component of V(D) such that N(t) does not

intersect the other component, such a mechanism need not be IC on a pair (t, s) where t and s

come from different components. In other words, part (i) can no way ensure IC for a mechanism

on a type-space that is disconnected. To overcome this problem, we introduce part (ii). As desired,

part (ii) imposes IC on pairs of types that are in different components, but still close enough. To

model this closeness, we consider a type that lies on the boundary between two components. For

instance, with two alternatives, such a type is one where both the alternatives have equal utilities.

Consider an arbitrarily small neighborhood of such a type. Since t̄ lies on the boundary, such

a neighborhood will intersect both the components. Part (ii) requires that the mechanism is IC

on any pair of strict types in this neighborhood. Technically, part (ii) ensures that the local IC

property can cross boundaries of a disconnected type-space. If one wants to ensure IC by local IC,

some such condition is clearly necessary for disconnected type-spaces.

Definition 3.1. A mechanism µ on a strict type space T̂ is said to be adjusted locally IC if

(i) for every t ∈ T̂, there exists an open neighborhood N(t) ⊆ T̂ of t such that for all t′ ∈ N(t),

µ IC is on both (t, t′) and (t′, t), and

(ii) for every t̄ ∈ cl(T̂) \ T̂, there exists an open neighborhood N(t̄) ⊆ cl(T̂) of t̄ such that for

all t′, t′′ ∈ N(t) ∩ T̂, µ is IC on (t′, t′′).

Note that the notion of local IC in Carroll (2012) requires only part (i) of the notion of adjusted

locally IC. As we have justified, part (ii) is necessary if, for instance, one is dealing with non-

connected type-spaces. Additionally, it is worth mentioning that the (Lebesgue) measure of the

boundary of strict ordinal type-spaces is zero, and hence, the additional constraint required by

part (ii) can be considered as a mild requirement.

3.2 A GENERALIZATION OF THEOREM 3.1

Note that Theorem 3.1 applies to strict type-spaces in which, for some strict ordinal domain, all

types representing each preference in the domain are present. This requirement is somewhat

strong–one can have situations where, for some ordinal preference, only a few types (but not all)

are present in the type-space. In what follows, we present a generalization of Theorem 3.1 where

this requirement is weakened. In contrast to providing sufficient conditions on ordinal domains,

here we directly look for sufficient conditions on strict type-spaces. We say an alternative a

7

overtakes another alternative b from a strict preference P to another strict preference P′ if bPa and

aP′b.

We say a strict type-space T̂ satisfies the no-restoration property if for every two types t and t′ in

it, there is an adjacent local path (P1, . . . , Pk) of strict preferences, each representing some type in

the type-space, such that (i) the path satisfies the no-restoration property, and (ii) if an alternative

a overtakes another alternative b from a preference Pl to Pl+1, then for each tl+1 representing

Pl+1, we have that (a) for each alternative c other than a, there exists a type tl in T̂ representing

Pl such that from tl to tl+1, the utility of c decreases relative to every other alternative, and (b)

there is a type t̂l representing the preference Pl such that from t̂l to tl+1, the utility of a decreases

relative to every other alternative except b, and from t to t̂l, the utility of a increases relative to b.

Clearly, this condition is quite technical. However, we show that it has significant contributions,

particularly for domains that are “far away” from being convex.

For a strict type-space T̂, we denote the set of all strict preferences that represent some types in

T̂ by D(T̂), that is, D(T̂) = {P | there exists t ∈ T̂ such that t represents P}.

Definition 3.2. A strict type space T̂ satisfies the no restoration property if for all t, t′ ∈ T̂, there

exists an adjacent path of strict preferences (P1, . . . , Pk) in D(T̂) with P1 ∈ D(t) and Pk ∈ D(t′)

such that

(i) (P1, . . . , Pk) is a no restoration path in D(T̂), and

(ii) for all l < k and all tl+1 ∈ D(Pl+1), if some alternative a overtakes some other alternative b

from Pl to Pl+1, then

(a) for all c 6= a, there exists tl ∈ D(Pl) such that tl(c)− tl(x) > tl+1(c)− tl+1(x) fo all

x ∈ A \ {c},

(b) there exists t̂l ∈ D(Pl) such that t̂l(a)− t̂l(y) > tl+1(a)− tl+1(y) for all y ∈ A \ {a, b}

and t(a)− t(b) ≤ t̂l(a)− t̂l(b).

Theorem 3.2. Let T̂ be a strict type space that satisfies the no restoration property. Let µ be a mechanism

that is IC on V(P, P′) ∩ T̂ for all adjacent local preferences P and P′ in D(T̂). Then, µ is IC on T̂.

The proof of Theorem 3.2 can be found in Appendix .1.

8

3.3 GENERAL LOCAL INCENTIVE COMPATIBILITY VS. INCENTIVE COMPATIBILITY ON STRICT

ORDINAL TYPE-SPACES

In this section, we consider a general notion of local preferences in a strict ordinal domain. More

formally, we assume that the pairs of local preferences in a strict ordinal domain are given a

priori, which can be totally arbitrary. Thus, two preferences need not be adjacent in order to

be local. We call two types local if the preferences they represent are local. We investigate the

connection between local IC and IC for this general notion of localness. Kumar et al. [2019,

working paper] provide a necessary and sufficient condition on a strict ordinal domain so that

every local IC ordinal (without any transfer) mechanism on it is IC. They present the structure of

local preferences in an ordinal domain by means of a graph.

Let D̂ be a strict ordinal domain and let G = 〈D̂, E〉 be an (undirected) graph on D̂. Two

preferences in D̂ are called local in G if they form an edge in G. We redefine the notion of

no-restoration path with respect to a graph in a natural way. A path (P1, . . . , Pk) from P1 to Pk is

local in G if every two consecutive preferences in it are local in G. A path (P1, . . . , Pk) local in G,

is called a no-restoration path if for every distinct a, b ∈ A, there are no 1 ≤ r < s < t ≤ k such

that aPrb, bPsa, and aPtb. We say a strict ordinal domain D̂ satisfies the no-restoration property

with respect to G if for all P, P′ ∈ D̂, there is a no restoration local path in G from P to P′.

We introduce the notion of ordinal localness for two types. Two types t̂ and t̂′ are said to be

ordinally local in G if the preferences they represent, (that is, D(t̂) and D(t̂′)) are local in G. Note

that the (Euclidean) distance between two ordinally local types need not be very small.

Our next theorem generalizes Theorem 3.1 for general local structures. It says that if a strict

ordinal domain D̂ satisfies the no-restoration property with respect to a graph, then every

mechanism, that is IC on each pair of ordinally local types, is IC on V(D̂).

Theorem 3.3. Let D̂ be a strict ordinal domain satisfying the no restoration property with respect to a

graph G. If a mechanism is IC on V(P, P′) for all preferences P and P′ in D̂ that are local in G, then it is

IC on V(D̂).

The proof of Theorem 3.3 can be found in Appendix .1.

Note that Theorem 3.3 is slightly different in nature from Theorem 3.1. While in Theorem 3.1,

we impose IC on types that are “close” (with respect to Euclidean distance) in the type-space,

here we impose it on types that come from local ordinal preferences. Clearly, when the notion of

9

localness for preferences is given by an arbitrary graph, it does not make sense to define the same

for types by means of Euclidean distances.

4. LOCAL INCENTIVE COMPATIBILITY VS. INCENTIVE COMPATIBILITY ON WEAK TYPE-SPACES

In this section, we explore the relation between local incentive compatibility and incentive

compatibility on weak type-spaces. We begin with the simpler case where the type-space is the

closure of some strict type-space.

We use the following notations to ease our presentation. For a weak ordinal domain ĎD, we de-

note its maximal strict ordinal subset by strict(ĎD), that is, strict(ĎD) = {R ∈ ĎD | R is a strict preference}.

4.1 CLOSURE OF TYPE-SPACES OF STRICT ORDINAL DOMAINS

Let D̂ be a strict ordinal domain and let cl(V(D̂)) be the closure of V(D̂). We use the same notion

of local IC as in Definition 3.1 for such type-spaces. Since these spaces are closed, part (ii) of

Definition 3.1 is vacuously true, and consequently, our notion of local IC boils down to that of

Carroll (2012). However, Theorem 3.1 does not hold anymore. In order to obtain a version of it,

we need to strengthen our no-restoration property.

A no-restoration adjacent local path (P1, . . . , Pk) in a strict ordinal domain D̂ satisfies the

consistency property if whenever an alternative a overtakes another one from some preference

Pl to Pl+1 along this path, it must be that (i) the alternatives that are ranked strictly below a in

P1 are also ranked strictly below a at Pl, and (ii) in the preference Pl, every alternative that is

ranked above a in P1 is preferred to every alternative that is ranked below a in P1. Loosely put,

consistency says that whenever an alternative moves up from a preference Pl in a no-restoration

path, it must be the case that the alternative is (i) already in a “higher position” in Pl in comparison

with its position in the initial preference P1 of that path, and (ii) the alternatives that are ranked

above a in the initial preference P1 appear as a “top-set” (that is, an upper contour set) in Pl.

Below, we present a formal definition.

Definition 4.1. A no-restoration adjacent local path (P1, . . . , Pk) in a strict ordinal domain D̂

satisfies the consistency property if for all l ∈ {1, . . . , k − 1} and all a ∈ A, a overtakes some

alternative from Pl to Pl+1 implies

(i) L(a, P1) ⊆ L(a, Pl), and

10

(ii) sU(a, P1) = sU(b, Pl) for some b ∈ A.

A strict ordinal domain is said to satisfy the consistent no-restoration property if between every

two preferences in it, there is a consistent no-restoration adjacent local path. Note that a large

class of single-peaked and single-crossing domains satisfy the consistent no-restoration property.

In what follows, we introduce the notion of almost everywhere IC. We use the following

notation to ease the presentation. For a weak type-space sT, we denote its maximal strict subset by

strict(sT), that is, strict(sT) = {t ∈ sT | t(a) 6= t(b) for all distinct a, b ∈ A}.

Definition 4.2. A mechanism on a weak type-space sT is said to be almost everywhere IC, if it is

IC on every pair of types in sT × strict(sT).

Thus, an almost everywhere IC mechanism might fail to become IC on a pair of types (t, t̄)

only if t̄ lies on the boundary of sT. As we have already mentioned, the (Lebesgue) measure of

the boundary sT \ strict(sT) is zero. Therefore, the measure (in the product space) of the pairs on

which an almost everywhere IC mechanism may fail to be IC is also zero.

Our next theorem says that if a strict ordinal domain D̂ satisfies the consistent no-restoration

property, then every local IC mechanism on its type-space cl(V(D̂)) is almost everywhere IC.

Theorem 4.1. Let a strict ordinal domain D̂ satisfy the consistent no-restoration property. If a mechanism

on cl(V(D̂)) is locally IC, then it is almost everywhere IC.

The proof of Theorem 4.1 can be found in Appendix .2.

4.2 TYPE-SPACES OF WEAK ORDINAL DOMAINS

In this section, we consider a more general class of weak type-spaces where the type-space need

not be the closure of some strict ordinal type-space, and investigate the connection between local

IC and IC on such spaces.

A type t̄ is said to represent a weak preference R if aRb if and only if t̄(a) ≥ t̄(b). For a weak

ordinal domain ĎD, we denote the set of all types that represent some weak preference in ĎD by

V(ĎD), that is, V(ĎD) = {t̄ ∈ R|A| | t̄ represents R for some R ∈ ĎD}. Note that for arbitrary weak

ordinal domain ĎD, the type-space V(ĎD) need not be connected.

Note that if a weak type-space is the closure of some strict ordinal type-space, then it auto-

matically includes types of certain weak ordinal preferences. In other words, one does not get

much control on restricting the weak ordinal preferences. For an illustration, suppose that there

11

are three alternatives a, b, and c, and consider the (singleton) domain D̂ containing the single

preference P = abc. If we take the closure of V(D̂), then all types representing the preferences

in {abc, [ab]c, a[bc], [abc]} are included.1 However, one might be interested in the type-space

representing only the preferences, for instance, {abc, [ab]c}, or {abc, [ab]c, a[bc]}, etc. Clearly, such

a type-space cannot be represented as a closure of some strict ordinal type-space.

In order to generalize Theorem 4.1 for weak ordinal type-spaces, we introduce the notions of

weak-compatibility and dichotomous richness on a weak ordinal domain. For a weak preference

R, we say a strict preference P̂ is compatible with R if aPb implies aP̂b for all a, b ∈ A. For instance,

if R = [ab]c[de] f , then the following preferences are compatible with R: abcde f , abced f , bacde f ,

and baced f . Weak compatibility says that for every weak preference R in ĎD, there exists a strict

preference in ĎD that is compatible with R.

A weak ordinal domain ĎD satisfies the dichotomous richness property if for all strict preference

P̂ ∈ strict(ĎD) and all a ∈ A, there exists a weak preference R ∈ ĎD in which alternatives that are

weakly preferred to a in P̂ form a top indifference class and the ones that are less preferred to a in

P̂ form a bottom indifference class, that is, xIy for all x, y ∈ A such that either x, y ∈ sU(a, P̂) or

x, y /∈ sU(a, P̂), and xPy for all x ∈ sU(a, P̂) and y /∈ sU(a, P̂). For instance, if P̂ = wxyz, then for

a = y the preference described above is R = [wxy]z, and for a = x we have R = Note that the

preference R has two indifference classes, except when a is the bottom ranked alternative in P̂ (in

which case R has one indifference class containing all alternatives). Such a preference is called

dichotomous.

To ease our presentation, we say that a weak ordinal domain ĎD satisfies the consistent no-

restoration property (as defined in Section 4.1) if strict(ĎD) satisfies it. The implication of our

next theorem is as follows. Consider a weak ordinal domain ĎD that satisfies the consistent

no-restoration property, the weak compatibility property, and the dichotomous richness property,

and consider a mechanism on its type-space. As in Theorem 3.3, for every pair of adjacent local

strict preferences P̂ and P̂′ in the domain, consider the types in cl(V(P̂, P̂′)). However, since all

such types might not be present in V(ĎD), consider only those that are present, that is, the types

cl(V(P̂, P̂′)) ∩V(ĎD). Suppose that the mechanism is IC on all such types. Then, Theorem 4.2 says

that it will be almost everywhere IC on the whole type-space V(ĎD).

Theorem 4.2. Let a weak ordinal domain ĎD satisfy the consistent no-restoration property, the weak-

1By [ab]c, we denote a weak preference where a and b are indifferent, and are preferred to c.

12

compatibility property, and the dichotomous richness property. Suppose that a mechanism µ is IC on

cl(V(P̂, P̂′)) ∩V(ĎD) for all adjacent strict preferences P̂, P̂′ ∈ strict(ĎD). Then, µ is almost everywhere

IC on V(ĎD).

The proof of Theorem 4.2 can be found in Appendix .2.

Note that Theorem 4.2 is quite similar in nature to Theorem 3.3, except the fact that in contrast to

Theorem 3.3 where we consider arbitrary notion of localness, here we consider adjacent localness.

5. LOCAL IC VS. IC FOR GIVEN MECHANISMS

It follows from our earlier results that on a large class of domains, local IC implies IC or almost

everywhere IC. Recall that the notion of almost everywhere IC leaves the possibility of violating

IC on a pair of types (t, t̄), where t̄ lies on the boundary of the type-space. Although the set of

such types has measure zero, in this section we investigate how to check if a given mechanism is

IC on such pair of types.

Consider a weak type-space sT. Let t̄ be a weak type that lies on the boundary of sT. Consider

an almost everywhere IC mechanism µ = (f , p) on sT. We want to check if it is IC on every pair

of types (t, t̄), where t ∈ sT and t̄ ∈ sT \ strict(sT). Our next theorem says that we do not need to

check this for every t ∈ sT, it is enough to do it for some particular t̂ ∈ strict (sT). This particular

type t̂ satisfies the property that the utility of the outcome f (t̄) relative to any other alternative

strictly increases from t̄ to t̂, that is, t̂(f (t̄))− t̂(x) > t̄(f (t̄))− t̄(x) for all x ∈ A \ { f (t̄)}.

Theorem 5.1. Let sT be a weak type-space. Suppose that a mechanism µ = (f , p) is almost everywhere IC

on sT. Let a weak type t̄ ∈ sT \ strict(sT) and a strict type t̂ ∈ strict(sT) be such that

(i) t̂(f (t̄))− t̂(x) > t̄(f (t̄))− t̄(x) for all x ∈ A \ { f (t̄)}, and

(ii) µ is IC on (t̂, t̄).

Then, µ is IC on sT × {t̄}.

The proof of Theorem 5.1 can be found in Appendix .3.

Suppose a weak ordinal domain ĎD satisfies the consistent no-restoration property, the weak-

compatibility property, and the dichotomous richness property. Suppose that a mechanism µ is IC

on cl(V(P̂, P̂′)) ∩V(ĎD) for all adjacent strict preferences P̂, P̂′ ∈ strict(ĎD). Then by Theorem 4.2,

we know that µ is almost everywhere IC on V(ĎD). Consider a weak type t̄ ∈ V(ĎD) \ strict(V(ĎD))

13

such that at t̄, the utility of the outcome f (t̄) is different from that of every other alternative,

i.e., t̄(f (t̄)) 6= t̄(x) for all x 6= f (t̄). It follows from Theorem 5.1 that an almost everywhere IC

mechanism will be IC on (t, t̄) for all t ∈ V(ĎD). In other words, one does not have to check IC on

such pairs.

Corollary 5.1. Let a weak ordinal domain ĎD satisfy the consistent no-restoration property, the weak-

compatibility property, and the dichotomous richness property. Suppose that a mechanism µ = (f , p)

is IC on cl(V(P̂, P̂′)) ∩ V(ĎD) for all adjacent strict preferences P̂, P̂′ ∈ strict(ĎD). Let a type t̄ ∈

V(ĎD) \ strict V(ĎD). If f (t̄) is such that t̄(f (t̄)) 6= t̄(x) for all x ∈ A \ f (t̄), then µ is IC on V(ĎD)×{t̄}.

The proof of Corollary 5.1 can be found in Appendix .4

For a set sT ⊆ Rn, by sTo we denote the interior of the set sT i.e. sTo = {t ∈ sT | there exists ε >

0 such that s ∈ sT for every s with d(t, s) < ε}. By ∂sT we denote the points in sT that lie on the

boundary of sT i.e. ∂sT = sT \ sTo. Using Theorem 5.1, we can then show that an almost everywhere

IC mechanism on sT is IC on sT × sTo.

APPENDIX

.1 PROOFS OF THEOREM 3.1, 3.2 AND 3.3

Proofs of Theorem 3.1 and 3.2 follows from proof of Theorem 3.3. So we provide only the proof of

Theorem 3.3 below.

Proof. Let (f , p) be a locally IC mechanism. Consider P, P′ ∈ D̂, and types t ∈ ĉl(P), t′ ∈ ĉl(P′).

We need to show t(f (t)) − p(t) ≥ t(f (t′)) − p(t′). Since the domain D is a ”no restoration”

domian, there exists a no retoration path π(P, P′) = (P1, . . . , Pk) from P to P′.

Claim .1. We have t(f (t))− p(t) ≥ t(f (s2))− p(s2) for all s2 ∈ ĉl(P2).

Proof of this claim follows from the fact that f is IC on ĉl(P1, P2).

Claim .2. Let 2 ≤ l < k and suppose that

t(f (t))− p(t) ≥ t(f (sl))− p(sl) for all sl ∈ ĉl(Pl). (1)

Then t(f (t))− p(t) ≥ t(f (sl+1))− p(sl+1) for all sl+1 ∈ ĉl(Pl+1).

14

Proof. Assume for contradiction that there exists s̄l+1 ∈ ĉl(Pl+1) such that

t(f (t))− p(t) < t(f (s̄l+1))− p(s̄l+1). (2)

f is IC on ĉl(Pl, Pl+1). Therefore,

s̄l+1(f (s̄l+1))− s̄l+1(f (sl)) ≥ sl(f (s̄l+1))− sl(f (sl)) for all sl ∈ ĉl(Pl). (3)

Claim .3. t(f (s̄l+1))− t(f (sl)) > sl(f (s̄l+1))− sl(f (sl)) for all sl ∈ ĉl(Pl).

Proof. Assume for contradiction that there exist sl ∈ ĉl(Pl) such that

t(f (s̄l+1))− t(f (sl)) ≤ sl(f (s̄l+1))− sl(f (sl)) (4)

By equation 1 and 2, we have p(s̄l+1)− p(sl) < t(f (s̄l+1))− t(f (sl)) for all sl ∈ ĉl(Pl). By 4, this

means p(s̄l+1)− p(sl) < sl(f (s̄l+1))− sl(f (sl)), or sl(f (sl))− p(sl) < sl(f (s̄l+1))− p(s̄l+1). This

means f violates IC from sl to s̄l+1, which contradicts the fact that f is IC on ĉl(Pl, Pl+1). �

Claim .4. f (sl) 6= f (s̄l+1) for all sl ∈ ĉl(Pl).

Proof. Asssume for contradiction that there exists sl ∈ ĉl(Pl) such that f (sl) = f (s̄l+1). Sinc e f

is IC on ĉl(Pl, Pl+1), this means p(sl) = p(sl+1). Plugging these values in 2, we have t(f (t))−

p(t) < t(f (sl))− p(sl), which violates 1. �

Claim .5. There does not exist sl ∈ ĉl(Pl) such that f (s̄l+1)Pl f (sl) and f (sl)Pl+1 f (s̄l+1).

Proof. Assume for contradiction that there exist sl ∈ ĉl(Pl) such that f (s̄l+1)Pl f (sl) and f (sl)Pl+1 f (s̄l+1).

Since f (s̄l+1)Pl f (sl), we have sl(f (s̄l+1))− sl(f (sl)) > 0. Again, since f (sl)Pl+1 f (s̄l+1), we have

s̄l+1(f (s̄l+1))− s̄l+1(f (sl)) < 0. Combining the two equations, we have sl(f (s̄l+1))− sl(f (sl)) >

s̄l+1(f (s̄l+1))− s̄l+1(f (sl)) which contradicts 3. �

We now come back to the proof of Claim 0.2. Partition the alternatives in A \ f (s̄l+1) into

three sets A1, A2, A3 and A4 where A1 = {x ∈ A | xPl f (s̄l+1) and xPl+1 f (s̄l+1)}, A2 = {x ∈

A | xPl f (s̄l+1) and f (s̄l+1)Pl+1x}, A3 = {x ∈ A | f (s̄l+1)Plx and f (s̄l+1)Pl+1x}, A4 = {x ∈

A | f (s̄l+1)Plx and xPl+1 f (s̄l+1)}. In what follows, we construct a type s̃l ∈ ĉl(Pl) in the fol-

lowing way. Let κ1 = maxx∈A1{s̄
l+1(f (s̄l+1))− s̄l+1(x)}, κ2 = maxx∈A2{t(f (s̄l+1))− t(x)}, κ3 =

15

maxx∈A3{s̄
l+1(f (s̄l+1)) − s̄l+1(x)}. Clearly κ1 is negative. We argue that κ2 is also negative.

Since f (s̄l+1) overtakes the alternatives in A2 from Pl to Pl+1 and the path π(P, P′) is a no

restoration path, it must be that these alternatives are above f (s̄l+1) in P, that is xPl f (s̄l+1) for

all x ∈ A2. This, in particular means κ2 is negative. Consider a type s̃l ∈ ĉl(Pl) such that

max(κ1, κ2) < s̃l(f (s̄l+1))− s̃l(x) < 0 for all x ∈ A1 ∪ A2, s̃l(f (s̄l+1))− s̃l(x) > κ3, and s̃l(x) is

arbitrary(subject to the constraints by the preference Pl) for all x ∈ A4. It is left to the reader that

such a type s̃l can be found in ĉl(Pl). By Claim .5 and .4, f (s̃l) /∈ A4 ∪ { f (s̃l)}. We show that for

every possible value of f (s̃l) in A1 ∪ A2 ∪ A3, we lead to a contradiction.

Case 1. Suppose f (s̃l) ∈ A1. Then, by the construction of s̃l, s̃l(f (s̄l+1))− s̃l(f (s̃l)) > κ1 ≥

s̄l+1(f (s̄l+1))− s̄l+1(f (s̃l)), which is a contradiction to 3.

Case 2. Suppose f (s̃l) ∈ A2. Then, by the construction of s̃l, s̃l(f (s̄l+1))− s̃l(f (s̃l)) > κ2 ≥

t(f (s̄l+1))− t(f (s̃l)), which is a contradiction to Claim .3.

Case 3. Suppose f (s̃l) ∈ A3. Then, by the construction of s̃l, s̃l(f (s̄l+1))− s̃l(f (s̃l)) > κ3 ≥

s̄l+1(f (s̄l+1))− s̄l+1(f (s̃l)), which is a contradiction to 3. �

Since ,2 ≤ l < k is arbitrary, by Claim .2, it must be that t(f (t))− p(t) ≥ t(f (t′))− p(t′). This

completes the proof of the Theorem.

�

.2 PROOFS OF THEOREM 4.1 AND 4.2

Proof of Theorem 4.1 follows from proof of Theorem 4.2. So we provide only the proof of Theorem

4.2.

Proof. Let (f , p) be a locally IC mechanism. Let t ∈ cl(V(D̂)) and t′ ∈ strictcl(V(D̂)). Then there

exists P, P′ ∈ D̂, and types t ∈ cl(P), t′ ∈ ĉl(P′). We need to show t(f (t))− p(t) ≥ t(f (t′))− p(t′).

Since the domain D satisfies consistent no restoration property, there exists a consistent no

retoration path π(P, P′) = (P1, . . . , Pk) from P to P′.

Since cl(P, P′) is convex, it follows from Carroll (2012) that t(f (t))− p(t) ≥ t(f (s2))− p(s2)

for all s2 ∈ ĉl(P2).

It is sufficient to prove the following:

Claim .6. Let 2 ≤ l < k and suppose that

t(f (t))− p(t) ≥ t(f (sl))− p(sl) for all sl ∈ ĉl(Pl). (5)

16

Then t(f (t))− p(t) ≥ t(f (sl+1))− p(sl+1) for all sl+1 ∈ ĉl(Pl+1).

Proof. Assume for contradiction that there exists s̄l+1 ∈ ĉl(Pl+1) such that

t(f (t))− p(t) < t(f (s̄l+1))− p(s̄l+1). (6)

Assume that cPla and aPl+1c for some a, c ∈ A. Then it must be the case that f (s̄l+1) = a. Since,

π(P, P′) = (P1, . . . , Pk) is a consistent no restoration path from P to P′, L(a, P1) ⊆ L(a, Pl) and

there exists b ∈ A such that sU(a, P1) = sU(b, Pl) for some b ∈ A. In what follows, we construct

a type s̃l ∈ cl(Pl) in the following way. Consider a type s̃l ∈ cl(Pl) such that s̃l(x) = s̃l(y) for

all x, y ∈ sU(b, Pl), s̃l(u) = s̃l(v) for all u, v ∈ L(b, Pl), and s̃l(a)− s̃l(u) > maxv∈L(b,Pl){s̄l+1(a)−

s̄l+1(v)} for some u ∈ L(b, Pl). s̃l(a) − s̃l(z) > s̄l+1(a) − s̄l+1(z) for all z ∈ L(b, Pl). By the

construction of s̃l and the fact that cl(P, P′) is convex, it must be the case that f (s̃l) ∈ sU(b, Pl). By

the construct of s̃l and the fact that the path π(P, P′) = (P1, . . . , Pk) is a consistent no restoration

path, it follows that s̃l ∈ cl(P1). Since, t, s̃l ∈ cl(P), (f , p) must be IC on (t, s). Also, since

f (s̃l) ∈ sU(b, Pl), and by the construction of s̃l , it must be the case that s̃l(a)− s̃l(f (s̃l)) = 0. Since,

f (s̃l) ∈ sU(b, Pl), it must be the case that t(a) − t(f (s̃l)) < 0. Hence we get t(a) − t(f (s̃l)) <

s̃l(a)− s̃l(f (s̃l)). Since t(a)− t(f (s̃l)) < s̃l(a)− s̃l(f (s̃l)) and (f , p) is IC on (t, s̃l) and (s̃l, s̄l+1),

it leads to a contradiction to 6. This completes the proof of the claim. �

This completes the proof of the theorem. �

.3 PROOF OF THEOREM 5.1

Proof. Assume for contradiction that there exists t ∈ sT such that µ = (f , p) is not IC on (t, t̄)

i.e., t(f (t)) − p(t) < t(f (t̄)) − p(t̄). By condition (ii) of the Theorem and the fact that µ is

almost everywhere IC, it must be the case that µ is IC on (t̄, t̂) and (t̂, t̄). Since t̂(f (t̄))− t̂(x) >

t̄(f (t̄))− t̄(x) for all x ∈ A \ { f (t̄)}, it follows that f (t̂) = f (t̄). Since µ is IC on (t̄, t̂) and (t̂, t̄), it

must be the case that p(t̂) = p(t̄). By our assumption for contradiction, we have t(f (t))− p(t) <

t(f (t̄))− p(t̄). Since f (t̂) = f (t̄) and p(t̂) = p(t̄), it follows that t(f (t))− p(t) < t(f (t̂))− p(t̂).

Since t̂ ∈ strict(s(T)), which is a contradiction to µ being almost everywhere IC. This completes

the proof of the Theorem. �

17

.4 PROOF OF COROLLARY 5.1

Proof. The proof of this Corollary is a direct application of Theorem 5.1. Since t̄(f (t̄)) 6= t̄(x)

for all x ∈ A, there exists t̂ ∈ strict(V(s(D))) such that t̂(f (t̄)) − t̂(x) > t̄(f (t̄)) − t̄(x) for all

x ∈ A \ { f (t̄)} and µ is IC on (t̂, t̄). Hence by Theorem 5.1, it follows that µ is IC on V(s(D))× {t̄}.

This completes the proof of this Corollary. �

REFERENCES

ARMSTRONG, M. (2000): “Optimal multi-object auctions,” The Review of Economic Studies, 67,

455–481.

CARROLL, G. (2012): “When are local incentive constraints sufficient?” Econometrica, 80, 661–686.

FUDENBERG, D. AND J. TIROLE (1991): “Game theory mit press,” Cambridge, MA, 86.

MISHRA, D., A. PRAMANIK, AND S. ROY (2016): “Local incentive compatibility with transfers,”

Games and Economic Behavior, 100, 149–165.

SATO, S. (2013): “A sufficient condition for the equivalence of strategy-proofness and nonmanip-

ulability by preferences adjacent to the sincere one,” Journal of Economic Theory, 148, 259–278.

VOHRA, R. V. (2011): Mechanism design: a linear programming approach, vol. 47, Cambridge

University Press.

18

	Introduction
	Model
	Ordinal domains and type-spaces
	Mechanisms and their properties

	Local incentive compatibility vs. incentive compatibility on strict ordinal type-spaces
	A generalization in the direction of carroll2012local
	A generalization of Theorem 3.1
	General local incentive compatibility vs. incentive compatibility on strict ordinal type-spaces

	Local incentive compatibility vs. incentive compatibility on weak type-spaces
	Closure of type-spaces of strict ordinal domains
	Type-spaces of weak ordinal domains

	Local IC vs. IC for given mechanisms
	Proofs of Theorem 3.1, 3.2 and 3.3
	Proofs of Theorem 4.1 and 4.2
	Proof of Theorem 5.1
	Proof of Corollary 5.1

