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ABSTRACT 
 

Owing to their peculiar topography and location, the Indo-Gangetic Plains belong to the most 

polluted regions of the world; nine out of ten most polluted cities in the world lie here. The 

valley traps the particulate matter generated in the region and is hence exposed to two to four 

times higher fine particulate matter [particulate matter smaller than 2.5 µg/m3 (PM2.5)] than 

rest of the country. This study utilises the “valley effect” as a basis for a natural experiment. 

An exogenous threshold is drawn from geographical literature and is based on the lower 

boundary of the Indo-Gangetic Plains. Results obtained by using a regression discontinuity 

design in this study provide first causal estimates on the health impact of long-term exposure 

to PM2.5 by using data from India. PM2.5 exposure is found to be 49% higher and life 

expectancy is 2.6 years lower in the Plains relative to other districts in the sample. Early life 

mortality is found to be positively and significantly affected by sustained exposure to PM2.5. 

It is also found that life expectancy at birth reduces by 1.2 years due to additional 10 µg/m3 

of PM2.5 exposure, ceteris paribus.  Around 5.2 years of life can be saved in the Indo-

Gangetic Plains if the national standard for PM2.5 is met in the region. The life years saved 

rise to 8.8 years when the WHO standard is met. India can raise life expectancy by 1.7 and 

5.3 years if the national and the WHO standards for PM2.5 are met, respectively. 

 

 

HIGHLIGHTS 
 

- Regression discontinuity design based on Indo-Gangetic Plains. 

- Fall in life expectancy by 1.2 years due to additional 10 µg/m3 of PM2.5 exposure. 

- Estimated gains in life expectancy of 5.3 years on meeting the WHO standards in 

India. 
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INTRODUCTION 
 

Air pollution has reached dangerously high levels in India. More than 99% of the Indian 

population is exposed to PM2.5 concentration levels exceeding the World Health Organization 

standard of 10 µg/m3 (Apte and Pant, 2019). Higher incidence of cardiorespiratory diseases 

like heart stroke, lung cancer, asthma has been observed in heavily polluted regions in the 

world (WHO, 2016). Studies have also found early life mortality to rise and life expectancy 

to fall as a result of exposure to PM2.5 (Pope et al., 2002; Tanaka, 2015; Heft-Neal et al., 

2018). Ambient air pollution hinders the natural growth process in the early life stages 

(Zhang et al., 2018; Lavigne et al., 2018) and may even lead to a modification in the DNA of 

the population (Carre et al., 2017).  

 

Several studies find a robust relationship between particulate matter and health in different 

countries. Chay and Greenstone (2003) have utilised a regression discontinuity design (RDD) 

to study the impact of total suspended particulate (TSP) matter on infant mortality rate (IMR) 

for US counties during 1971-72. They find a fall in infant mortality rate by 0.5% due to a 1% 

decline in TSP concentration. Arceo et al. (2016) find a rise in IMR by 8.8% due to a rise in 

PM10 by 10 µg/m3  in Mexico city. Heft-Neal et al. (2018) find an IMR effect of 9.2% due to a 

rise in PM2.5 by 10 µg/m3 in Africa. Greenstone and Hanna (2014) conducted an analysis of 

the impact of environmental regulations targeting air and water pollution on infant mortality 

rate in India. They find that though the regulations improved air quality, it did not have a 

statistically significant impact on infant mortality rate. Water policies, however, did not lead 

to any improvement in water quality. In a study conducted in China, Tanaka (2015) finds a 

significant decline of 20% in infant mortality rate due to the first large-scale environmental 

regulations in China. 

 

Many studies report that a reduction in long-term exposure to particulate matter improves life 

expectancy. Pope et al. (2002) find a gain of 0.7 years due to 10 µg/m3 fall in the long term 

exposure to PM2.5 in the United States. Chen et al. (2013) and Ebenstein et al. (2017) find gains 

in life expectancy to be 0.3 years and 0.64 years in China due to 10 µg/m3 decline in the long 

term exposure to TSP and PM10, respectively. Such studies continue to hold immense 

significance for environmental policy making in countries like India where the emission 

standards remain too high and a systematic tackling of the air pollution problem is urgently 
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required. However, no such long-term exposure study on PM2.5 that utilises data from Indian 

population exists.  

 

The objective of this study is to estimate the impact of long-term exposure to PM2.5 on health 

outcomes in India. More specifically, we examine the impact of sustained exposure to PM2.5 

on early life mortality and life expectancy at birth in India.   For early life mortality rates, we 

consider neo-natal mortality rate, infant mortality rate and under-five mortality rate. Evidence 

on such effect is important because recent scientific studies have found that the small size of 

PM2.5 enables it to enter the blood stream and placenta of pregnant women, thereby affecting 

the health status of their offspring (Zhang et al., 2018; Lavigne et al., 2018). Such evidence 

will facilitate better understanding of the benefits of reducing the concentration levels of PM2.5 

in the country. The results from the study will facilitate evidence based environmental policy 

making in India and other countries that face similar levels of air pollution. 

 

To investigate the causal effect of air pollution on health, we identify a physical boundary 

from the geographical literature that serves as an exogenous threshold to facilitate a 

regression discontinuity design (RDD). According to the Plate Tectonic Theory, collision of 

the Indian subcontinent with the Eurasian continent led to the origin of the Himalayan 

Ranges and a deep depression on their south (Burrard, 1915; Aitchison and Davis, 2007). 

This depression, known as the Indo-Gangetic Plains (IGP), is one of the most populated as 

well as polluted regions of the world. The peculiar topography of the region being sunken 

and landlocked by the Himalayas on the North and the Central Highlands on its South 

restricts the wind passage thereby making displacement of the particulate matter generated in 

the region difficult (Guttikunda and Gurjar, 2012). Districts lying south of the Plains do not 

suffer from this unfavorable “valley effect” and hence are exposed to much lower pollution 

levels.  

 

For the study, we consider districts in the Indo-Gangetic Plains and districts that lie below the 

plains, but within a distance of approximately five degree latitude. The lower boundary of the 

Indo-Gangetic Plains (Fig. 1) exogenously divides this sample into treatment and control 

group such that the districts in the Indo-Gangetic Plains form the treatment group while the 

other districts form the control group. The districts to the north and the south of the boundary 

are similar in several ways and some of them even lie in the same state. Differences in 

ecology, degree of urbanization, and socioeconomic variables may influence health indicators 
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such as life expectancy and early life mortality. We check for the validity of a regression 

discontinuity design by using predicted life expectancy as a proxy variable for the health 

impact of these factors (Chen et al., 2013; Ebenstein et al. 2017). We find that predicted life 

expectancy moves smoothly across the boundary as it is insignificantly different at the 

boundary. This helps in examining a causal relationship between human health and air 

pollution. Moreover, we control for variables like income, literacy rate, share of rural 

households, share of minority population, share of households with access to clean drinking 

water and clean cooking fuel in our regression equations. 

 

 
Fig. 1. Lower boundary of the Indo-Gangetic Plains depicted in brown, used as the 

threshold for conducting Regression Discontinuity Analysis 

Source: Plotted using ArcGIS 

±

0 520 1,040260 Kilometers
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Our findings are as follows. The unfavorable location and topography of the Indo-Gangetic 

Plains has severely affected the pollution concentrations in the region and the health of its 

inhabitants. The PM2.5 exposure is about 23 µg/m3 or 49% higher, and life expectancy is 2.6 

years lower in the region as compared to the control group. The early life mortality rates are 

also significantly higher in the region suggesting that when individuals are exposed to high 

levels of pollution for a long period of time, the probability of survival of their future 

offspring may reduce considerably. Further, life expectancy at birth reduces by 1.2 years due 

to additional 10 µg/m3 of PM2.5 exposure, ceteris paribus. Hence, India can raise life 

expectancy on average by 1.7 and 5.3 years if the national and WHO standards for PM2.5 are 

met, respectively. 

 

This study addresses several gaps in the literature assessing the health impact of air pollution. 

First, the study estimates the impact of sustained exposure to PM2.5 on life expectancy and 

early life mortality in India by utilizing differences in long run exposure to particulate matter 

in the Indo-Gangetic Plains (IGP) and the districts below it. The studies from India have 

estimated health effects of short-term exposure to particulate matter (Guttikunda and Goel, 

2013; Chowdhury and Dey, 2016). These studies often underestimate the loss in life 

expectancy since they only capture deaths of the vulnerable population such as old and sick 

that are accelerated due to a sudden rise in air pollution (Lvovsky, 1998).  

 

Second, this is the first long-term exposure study that utilizes data from India. Scarcity of 

reliable data in India has limited the number of long-term exposure studies for India. 

Greenstone et al. (2015) have utilized the estimates from the Chinese study by Chen et al. 

(2013) to extrapolate the life expectancy gains in India of 3.2 years due to a reduction in 

PM2.5 levels to the annual Indian National Ambient Air Quality Standard of 40 µg/m3. 

Similarly, Greenstone and Fan (2018) have used estimates from the study by Ebenstein et al. 

(2017) to find life expectancy gains of 1.8 years on achieving the Indian standards for PM2.5. 

There is a substantial difference in the reported life expectancy gains in the above studies. A 

major limitation of these two studies is that the life expectancy gains due to reduction in 

PM2.5 in India are computed by using coefficients that were estimated for China . Further, the 

studies by Chen et al. (2013) and Ebenstein et al. (2017) utilize data on TSP and PM10 

exposure, respectively, to estimate their impact on mortality and life expectancy in China. 

Greenstone et al. (2015) and Greenstone and Fan (2018), then, use these estimates to 

extrapolate the health impact of PM2.5 exposure in India by utilizing conversion ratios. 
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Arguably, these extrapolated estimates may not correctly reflect the health effects of 

improvements in air quality in India. The divergence may further be exacerbated due to 

several socioeconomic and behavioral differences between India and China. In such a 

scenario, it is important to estimate the impact of improvement in air quality on the health 

status of the Indian population using data from within India.  

 

A novelty of the study is to use the lower boundary of IGP as an exogenous threshold for the 

regression discontinuity design to investigate a causal relationship between health and air 

pollution thereby advancing the literature from observational studies. Fourth, most studies 

have dealt with the mega-cities in India (Cropper et al., 1997; Shah and Nagpal, 1997a; 

Kandlikar and Ramachandran, 2000; Nema and Goyal, 2010; WHO, 2018). Although nine of 

the ten most polluted cities in the world lie in the IGP (Guttikunda and Jawahar, 2012), there 

has been limited literature covering the entire region. The Indo-Gangetic Plains are the main 

focus of this study. Fifth, the study fills the deficit in the literature on the health impact of 

PM2.5 exposure in India. PM2.5 is much more harmful to health than other pollutants due to its 

easy penetration in lungs (since the diameter of PM2.5 is below 2.5 µm).  

 

METHODS 

 

We adopt three main approaches in our analysis, namely, the conventional Ordinary 

Least Squares method (OLS), the Regression Discontinuity Design (RDD) and the Two-

Stage Least Squares method (2SLS). Under the OLS, the four health outcomes are 

regressed on PM2.5 exposure as shown in the equation below: 

 

                                         𝑌" = a$ + a&	𝑃𝑀" + 𝑋"𝜙 + 𝑒"                                                        (1) 

 

where 𝑗 represents a district in the sample. 𝑌"  represents health outcome in district 𝑗, i.e., 

either life expectancy at birth or an early-life mortality rate. 𝑃𝑀" is the level of fine 

particulate matter exposure in district 𝑗 over a period of 17 years, from 1998 to 2014. 𝑋" is a 

vector of demographic covariates in a district which are likely to affect the mortality rate or 

expected life years. 𝑒" is the random error which is assumed to be distributed normally with 

mean zero. 
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The ideal way to establish causality would be to compare the health outcomes of the same 

individuals with and without exposure to pollution. That is, the effect of a treatment must be 

compared with a counterfactual which is identical to the treatment group in every way 

but has not received the treatment. This means that one is interested in understanding the 

difference between 𝑌.(1) and 𝑌.(0) where 𝑌.(𝑘) is the outcome variable (i.e., health 

outcome) with 𝑘 = 1 if individual 𝑖 received the treatment (high exposure to fine 

particulate matter) and 0, otherwise. However, the pair 𝑌.(1) and 𝑌.(0) is never observed 

simultaneously since individual 𝑖 is either exposed or not exposed to the treatment.  

This lack of counterfactual may lead to omitted variable bias and hence to the existence of 

endogeneity.1 In addition, data on fine particulate matter may have some measurement error as 

it has been captured through satellite. The satellite-driven data on pollution is unable to collect 

information on days that are too cloudy; these days could be more polluted relative to clear 

sunny days (Greenstone and Fan, 2018). The intensity of this problem may be reduced 

considerably with the use of averages.  

 

The regression discontinuity design (RDD) was introduced by Thistlethwaite and 

Campbell (Thistlethwaite and Campbell, 1960) and has been extensively used in the 

literature to infer causality in diverse fields. In an RDD, whether an individual receives 

the treatment or not is completely or partially determined by an assignment variable 

(latitudinal difference in our analysis), which may take value on either side of an 

exogenously defined threshold. The regression discontinuity design then estimates the 

local average treatment effects by comparing the districts just above and just below the 

IGP boundary. If any discontinuity is observed in the conditional distribution of the 

outcome variable at the threshold, then it may be inferred as an evidence for a causal 

relationship between the treatment and the outcome (Imbens and Wooldridge, 2007). A 

necessary identifying assumption is that there should not be a discontinuous jump in the 

unobserved determinants of the outcome variable. The study utilizes the discontinuity in 

PM2.5 at the IGP boundary that has emerged as a result of the peculiar topography and 

location of the Great Plains.  

                                                
1 The presence of endogeneity is verified in the model by using the Durbin-Wu-Hausman test. 
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The following equations are estimated to test whether the valley effect of the IGP causes a 

discontinuous change in the particulate exposure and health outcomes:  

 

                     𝑃𝑀" = 	b$ + b&𝑁" + b6𝑓(𝐿") + 𝑋"	𝑘 + 	𝜐"                                                          (2) 

																											𝑌" = g$ + g&𝑁" + g6𝑓(𝐿") + 𝑋"𝜙 + 𝑢"  
                                                            (3) 

 

where 𝑗 refers to a district in the sample, 𝑃𝑀" is the average annual exposure to PM2.5 in 

district 𝑗 over the period 1998-2014. 𝑌" is the health outcome in district 𝑗. The health 

outcomes considered are neonatal mortality rate (NNMR), infant mortality rate (IMR), under-

five mortality rate (U5MR), and life expectancy at birth (LEB). 𝑁" is the dummy variable 

which takes value one if a district lies in the IGP, and zero, otherwise. 𝑓(𝐿") is a function of 

the degrees north of the IGP boundary. Separate regressions using 𝑓(𝐿") as a linear function 

and as a quadratic function are conducted. 𝑋" is a vector of other covariates that may affect 

health outcomes such as income, literacy rate, access to clean drinking water, access to clean 

cooking fuel, share of rural households and minority share in the population in a district. b& 

and g&are the coefficients of interest in the above equations, measuring the valley effect of the 

Indo-Gangetic Plains on exposure to fine particulate matter and the health outcomes, 

respectively.  

 

To find the impact of PM2.5 exposure on early life mortality and life expectancy at birth 

we use two-stage least squares method where PM2.5 exposure is instrumented by dummy 

variable 𝑁" . The exclusion restrictions for the instrument are satisfied. Equation (2) serves 

as the first stage equation, and the predicted values of 𝑃𝑀"  are then used in the second stage, 

as shown in equation (4) below. 

 

                        𝑌" = d$ + d&𝑃𝑀;< + d6𝑓(𝐿") + 𝑋"f+ 𝑒"                                                          (4) 

 

where 𝑃𝑀;<  denotes the fitted values obtained by estimating equation. The coefficient d& 

estimates the average treatment effect on health outcomes in our analysis. 
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DATA SOURCES 
 

Data on early life mortality rates viz., neonatal mortality rate (NNMR), infant mortality rate 

(IMR) and under-five mortality rate (U5MR) are computed from the National Family Health 

Survey (NFHS), Round 4, 2015-16. In the absence of data on life expectancy and age-

specific death rates at district level, we use the United Nations method to compute life 

expectancy at birth (LEB). This method has been used by the Population Branch of the 

United Nations, Department of Social Affairs to compute life expectancy using only infant 

mortality rate in countries lacking data on vital statistics (Kesarwani, 2015). The underlying 

assumption here is that each district follows the same fertility and mortality patterns as the 

state it belongs to. In this method, first, 𝐿𝐸𝐵 is estimated as a function of 𝐼𝑀𝑅 separately for 

each state using the following linear regression equation. 

 

                                𝐿𝑛(𝐿𝐸𝐵B) 	= 	𝑎	 + 	𝑏	 ∗ 	𝐼𝑀𝑅B                                                                (5) 

 

where subscript 𝑠 denotes variable at the state level. The values of 𝑎 and 𝑏 thus estimated are 

used to compute 𝐿𝐸𝐵 at district level by using the formula below. 

 

                             𝐿𝐸𝐵G 	= 	𝑒𝑥𝑝(𝑎J 	+	𝑏K 	∗ 	 𝐼𝑀𝑅G)                                                                (6) 

 

where subscript 𝑑 denotes variable at the district level, 𝑎J and 𝑏K denote the estimated values of 

𝑎 and 𝑏 from equation (5). The methodology uses two data sources. The state-level data on 

life expectancy and infant mortality rate for a period from 1995-99 to 2012-16 are taken from 

the Sample Registration System (SRS) Abridged Life Table and the SRS Bulletin Reports, 

respectively. The data on infant mortality rate have been computed for 234 districts from 

NFHS (2015-16) using DHS guidelines.  

 

District-level data on exposure to PM2.5 was obtained from Donkelaar et al. (2016) for 233 

districts in the sample from 1998 to 2014. “PM2.5 exposure” for a given year is defined as the 

average of the PM2.5 readings in all the previous years. For instance, the PM2.5 exposure 

relevant to the year 2000 is calculated as the average of the PM2.5 concentrations in the years 

1998, 1999 and 2000. Subsequently, PM2.5 exposure is averaged across all years for each 

district to arrive at the average PM2.5 exposure. This is used as a measure for the sustained 
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level of PM2.5 exposure in each district. The data includes districts from the states of Bihar, 

Haryana, Punjab, Rajasthan, Madhya Pradesh, Uttar Pradesh and West Bengal and the union 

territory of Delhi. Jharkhand and Chhattisgarh have been excluded since they are newly 

formed states and the districts have been reorganized over time, which makes district level 

pollution data not comparable. The coordinates for the lower boundary of the IGP have been 

taken from the Geomorphic Atlas of Indo-Gangetic Plains (Hecht and Sinha, 2003) created by 

the University of Technology, Dresden, Germany and the Indian Institute of Technology, 

Kanpur, India, with the help of ArcGIS software. The latitudinal difference between each 

district and the boundary is then estimated. Data on the demographic determinants of health 

are taken from Census 2011, NSSO-Round 68 and NFHS-4. 

 

RESULTS 

 

Validity of Regression Discontinuity Design 

 

Table 1 presents the summary statistics of the key variables in our analysis. Columns (1) and 

(2) report the mean values of the variables in the districts lying north and south of the IGP 

boundary, respectively. Column (3) reports the difference in the mean values of the variables 

found in columns (1) and (2). Column (4) shows the difference in means of the variables once 

they are adjusted for a quadratic function of the difference in the degrees of latitude. This 

serves as a test for discontinuity at the IGP boundary. Rejection of the null hypothesis for a 

variable implies that there is a significant difference in the mean values of the variable on the 

two sides of the boundary. 

 

PM2.5 exposure is observed to be significantly higher in the districts lying above the IGP 

boundary in Table 1. This implies that the northern districts lying in the IGP are much more 

polluted (about 1.6 times) than the districts lying below the IGP boundary. On an average, the 

actual life expectancy at birth is lower by 1.77 years in the northern districts lying in the IGP 

relative to the southern districts in the sample. Checking if the observed determinants of 

health differ significantly across the boundary, we find that while the difference in income, 

literacy rate, and share of rural households is insignificant, the share of minority population is 

significantly lower,  access to clean drinking water and access to clean cooking fuel is 

significantly higher in the treatment group. The direction of these latter differences is likely 



 11 

to lead to improvements in health outcomes in the treatment group, thus, unlikely to weaken 

the basis of our analysis. We further test the validity of the RDD in the IGP setting by 

examining the predicted life expectancy in the two groups. Predicted life expectancy is 

estimated as the fitted value from an OLS regression of life expectancy at birth on 

demographic and socioeconomic determinants of health except PM2.5. The difference in the 

predicted life expectancy is found to be insignificant at the boundary.  

 

Table 1. Summary Statistics 

 

 

Variable 

 

 

North 

(1) 

 

 

South 

(2) 

 

Difference in 

means 

(3) 

Adjusted 

difference in 

means 

(4) 

I. Air pollution exposure     

    PM2.5, µg/m3 74.52 47.92 26.60*** 22.49*** 

II. Demographic 

    characteristics 

    

   Literacy rate 0.68 0.66 0.02 0.01 

   Share, rural households 0.77 0.79 -0.02 -0.03 

   Share, treated tap water 0.20 0.11 0.08*** 0.10*** 

   Share, Clean Cooking Fuel 0.33 0.25 0.08*** 0.11*** 

   Share, Minority 0.76 0.83 -0.07*** -0.06*** 

   Ln(Income) 12.04 11.98 0.06 0.06 

   Predicted Life Expectancy 67.37 67.40 0.03 0.16 

   Actual Life expectancy  66.69 68.46 -1.77*** -1.82*** 

Note: n = 234. The results in column (4) are adjusted for a quadratic in degrees of latitude north of the 

Indo-Gangetic Plains boundary. Predicted life expectancy is calculated by OLS using all the 

demographic covariates shown.  

*** Significant at 1% level, ** Significant at 5% level, * Significant at 10% level.  

 

 

Fig. 2 illustrates the fitted values of PM2.5 exposure in districts against the degrees north of 

the IGP boundary. The fitted line is obtained by estimating equation (2) excluding the 

covariates’ vector 𝑋. There is a striking discontinuous jump in the PM2.5 exposure at the 
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boundary implying that geography of the IGP has caused extremely high pollution levels in 

districts lying in the Indo-Gangetic Plain relative to those districts which are close to the 

boundary but lie on its other side. There is a discontinuous jump of 22.5 µg/m3 of PM2.5 

(around 47%) at the boundary.  

 

Fig. 3 illustrates the fitted values of life expectancy at birth obtained by estimating equation 

(3) while excluding the covariates’ vector 𝑋. A discontinuous fall of approximately 1.8 years 

is seen at the boundary. This suggests that there is a significant difference in life expectancy 

at birth in districts lying just above and below the IGP. Figs. 2 and 3 collectively suggest 

causality between fine particulate matter exposure and life expectancy since the 

discontinuous rise in PM2.5 and the discontinuous fall in life expectancy occur at precisely the 

same location. 

 

Fig. 4 presents the graphical analysis of the test for internal validity of the RDD. The fitted 

line is obtained by regressing predicted life expectancy at birth on a quadratic function in 

latitude. The included variables explain about 13% of the variation in life expectancy. 

However, there is an insignificant difference in the predicted life expectancy at the IGP 

boundary. This implies that predicted life expectancy (excluding the impact of PM2.5) is  

equal in the districts lying just north and south of the IGP boundary. The insignificant 

difference in predicted life expectancy provides support to the validity of our RDD, and 

suggests that the demographic and socioeconomic variables are unable to explain the abrupt 

fall in life expectancy in districts lying just above the IGP boundary as shown in Fig. 3.  
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Fig. 2. Fitted values of PM2.5 exposure across the IGP boundary 

 

 

 

 
Fig. 3. Fitted values of Life Expectancy at Birth across the IGP boundary 
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Fig. 4. Fitted values of Predicted Life Expectancy across the IGP Boundary 

 

 

Regression Results 

 

The presentation of Tables 2 to 4 is explained as follows. Each cell in each of the tables 

reports results obtained from a separate regression. Each row presents results for a specific 

health outcome (namely, neonatal mortality rate, infant mortality rate, under-five mortality 

rate and life expectancy at birth). The columns report results from different model 

specifications for that particular health outcome. Table 3 has an additional row presenting 

results pertaining to PM2.5.  

 

Table 2 presents the results obtained by using the conventional OLS approach. While 

Columns (1) and (2) report the regression results by estimating equation (1) excluding and 

including demographic and socioeconomic variables, respectively. Exposure to PM2.5 is 

found to adversely affect the health status of the population. From column (2), Additional 10 

µg/m3 of PM2.5 exposure raises the number of deaths of new-borns within first 28 days of life  

by 1.7 per 1000 live births. Similarly, the number of deaths of infants and children under the 

age of 5 years rises by 3.1 and 3.7 per 1000 live births, respectively, due to additional 10 
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µg/m3 of PM2.5 exposure. Life expectancy at birth is found to be negatively affected by 

exposure to fine particulate matter. A rise in PM2.5 exposure by 10 µg/m3 reduces life 

expectancy by 0.54 years. The results are found to be significant at 1%. 

 

Table 2. Impact of PM2.5 on health outcomes using conventional strategy (OLS) 

Dependent Variable (1) (2) 

Neo-Natal Mortality Rate 
0.09* 

(0.05) 

0.17*** 

(0.04) 

Infant Mortality Rate 
0.20*** 

(0.06) 

0.31*** 

(0.06) 

Under-Five Mortality Rate 
0.21*** 

(0.08) 

0.37*** 

(0.07) 

Life Expectancy at Birth 
-0.04*** 

(0.01) 

-0.05*** 

(0.01) 

 

Number of observations 234 232 

Demographic Controls No Yes 

Note: Each cell in the table represents a coefficient from a separate regression, and heteroskedastic-

consistent SEs are reported in parentheses.  

*** Significant at 1% level, ** Significant at 5% level, * Significant at 10% level.  

 

Table 3 presents the local treatment effect of residing in the IGP on PM2.5 levels and the 

above four health outcomes using RDD analysis . Each row presents results for a specific 

outcome, and different columns report results from different model specifications. Column 

(1) reports the results when the difference in latitude from the IGP boundary is used linearly. 

Columns (2) and (3) show the impact of “North” when the polynomial in latitude is 

quadratic. While column (2) excludes demographic and socio-economic controls, column (3) 

includes them.  

 

PM2.5 exposure in districts in the IGP is significantly higher than the districts south of the 

boundary, ranging between ~15-23 µg/m3. Neonatal mortality rate is found to be higher on 

average by approximately 5.6 neonatal deaths per 1000 live births in the districts lying in the 
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IGP. The infant mortality rate in the IGP exceeds that in the districts lying below it in the 

sample by almost 6.5 deaths per 1000 live births. Similarly, the under-five mortality rate is 

also higher by around 7.4 deaths per 1000 live births in the IGP. This implies that neonatal 

mortality rate in districts lying above and close to the boundary is around 16.7% higher than 

the average NNMR in the districts south of the boundary. Similarly, IMR in districts north of 

the boundary is found to be around 13.6% higher than the districts south of the boundary. A 

12.4% higher under-five mortality rate is found in northern districts than the average under-

five mortality rate in the relevant southern districts. Life expectancy at birth is found to fall 

by 2.6 years when individuals reside in the IGP. 

  

Table 3. Impact of being “North” of the boundary on listed variables, RDD  

 Main Independent Variable à  Nj = 0, 1 

 Dependent Variables (1) (2) (3) 

PM2.5, µg/m3 15.12*** 

(2.61) 

22.49*** 

(1.73) 

23.33*** 

(2.01) 

Neo-Natal Mortality Rate 3.51 

(2.33) 

1.80 

(1.76) 

5.64*** 

(1.69) 

Infant Mortality Rate 1.47 

(3.07) 

1.18 

(2.32) 

6.45*** 

(2.31) 

Under-Five Mortality Rate 1.33 

(4.18) 

-0.22 

(3.24) 

7.36** 

(3.14) 

Life Expectancy at Birth -1.26* 

(0.71) 

-1.82*** 

(0.49) 

-2.62*** 

(0.54) 

 

Number of observations 232 234 232 

Demographic Controls Yes No Yes 

Polynomial in latitude Linear Quadratic Quadratic 

Note: Each cell in the table represents a coefficient from a separate regression, and heteroskedastic-

consistent SEs are reported in parentheses. Models in column (1) are estimated with a linear control 

for latitudinal difference and include demographic controls. Models in column (2) include a quadratic 
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in latitudinal difference and do not include demographic and socioeconomic controls. Models in 

column (3) include demographic and socioeconomic controls along with quadratic latitudinal 

difference.  

*** Significant at 1% level, ** Significant at 5% level, * Significant at 10% level.  

 

 

Table 4 presents results of the 2SLS regression analysis and the organization of the table is 

similar to Table 3. A rise in PM2.5 exposure by 10 µg/m3 raises NNMR and IMR by 2.6 and 

3, respectively. The neonatal period of death constituted around 87% of the infant deaths due 

to the rise in PM2.5. The under-five mortality rate also rose by 3.6 with a 10 µg/m3 rise in 

PM2.5 exposure. Life expectancy is found to fall by 1.2 years due to a 10 µg/m3 rise in PM2.5, 

ceteris paribus. We find that the RDD and the 2SLS estimates are much higher than the OLS 

estimates.  

 

Table 4. Impact of PM2.5 exposure on health outcomes, 2SLS 

Main Independent Variable à Fitted values of PM2.5 (µg/m3) 

Dependent Variable (1) (2) (3) 

Neo-natal Mortality Rate 0.27* 

(0.16) 

0.08 

(0.08) 

0.26*** 

(0.07) 

Infant Mortality Rate 0.14 

(0.20) 

0.05 

(0.10) 

0.30*** 

(0.09) 

Under-Five Mortality Rate 0.15 

(0.27) 

-0.01 

(0.14) 

0.36*** 

(0.13) 

Life Expectancy at Birth -0.09* 

(0.05) 

-0.08*** 

(0.02) 

-0.12*** 

(0.02) 
 

Number of observations 232 234 232 

Demographic Controls Yes No Yes 

Polynomial in latitude Linear Quadratic Quadratic 

Note: Each cell in the table represents a coefficient from a separate regression, and heteroskedastic-

consistent SEs are reported in parentheses. Models in column (1) are estimated with a linear control 

for latitude. Models in column (2) include a quadratic in latitude. Models in column (3) additionally 
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include demographic controls. Two observations are excluded in the second and fourth columns 

because of missing data on income in Palwal (Haryana) and Pratapgarh (Rajasthan). 

*** Significant at 1% level, ** Significant at 5% level, * Significant at 10% level.  

 

 

Life years saved on attaining air quality standards 

 

In our data, the range of  PM2.5 exposure is 33-108 µg/m3 and, the exposure within one 

standard deviation ranges between 45 and 82 µg/m3. This is similar to the range of PM2.5 

exposure in the entire country. Hence, the causal relationship established between air 

pollution and life expectancy is derived from a sample with distribution of PM2.5 exposure 

that closely resembles that of the country. Hence, it is reasonable to extend these results to 

rest of India.  

 

When a region is able to attain the national or WHO standards for PM2.5, the life years saved 

can be calculated by using the formula below: 

 

𝐿𝑖𝑓𝑒	𝑦𝑒𝑎𝑟𝑠	𝑠𝑎𝑣𝑒𝑑	 = 	0.12	 ∗ 	(𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑃𝑀6.T	𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒	—	𝑃𝑀6.T	𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑)	

	

where 0.12 is the estimated coefficient of 𝑃𝑀;<  as reported in Table 4, column (3). In 

estimating the gain in life expectancy, a linear association between PM2.5 exposure and life 

expectancy is assumed throughout the distribution of PM2.5. The assumption bears support 

from the literature (GBD, 2016; Greenstone and Fan, 2018). In Appendix Fig. A1 and Table 

A1, gains in life expectancy at birth are reported for different states and regions, 

respectively. The average PM2.5 exposure in a region is estimated as its weighted average by 

using population as the weight. Assuming that the 2014 pollution concentration levels 

sustain, we find that India can raise life expectancy on average by 1.7 and 5.3 years on 

meeting the national and WHO standards for PM2.5, respectively (Appendix, Table A1). 

 

Robustness Checks  

 

The findings are subjected to several robustness checks. First, a variable on interaction 

between the dummy variable, 𝑁" and the quadratic function, 𝑓(𝐿") variable is added to the 
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RDD and the 2SLS (Appendix, Table A2). Second, elevation above sea level and altitude of 

a district are included separately as proxies for topography. The estimates for pollution, 

early life mortality and life expectancy remain significant at 1% in each case (Appendix, 

Tables A3 and A4). Third, the sample is restricted to different bandwidths of latitudinal 

difference. The estimates for pollution, early life mortality and life expectancy remain 

significant even when the bandwidth reduces to 5o, 4o and 3o (Appendix, Tables A5 and 

A6). 

 

CONCLUSION 

 

The study attempts to understand the causal impact of sustained exposure to PM2.5 exposure 

on four health outcomes (NNMR, IMR, U5MR and LEB) in India. This is the first long-

term exposure study which utilizes district-level data from within the country, unlike the 

previous studies that have used estimates derived from other countries. The 2SLS estimate 

(= - 0.12) is more than double the OLS estimate found in the study (= - 0.05). This suggests 

that the OLS underestimates the causal health impact of air pollution. This may be attributed 

to the lack of counterfactual leading to omitted variable bias and hence, endogeneity.  

 

The estimated impact of exposure to PM2.5 on life expectancy in this study is 71% higher 

than the estimated value by Pope et al. (2002) for the US (= -0.07). This strengthens the 

argument that utilizing the estimates from developed countries may not be desirable for 

developing countries due to several physiological, geographical, socioeconomic, weather-

related and other differences between them. Comparing our results with Greenstone and Fan 

(2018), the estimates from this study are 22% higher as life expectancy reduces by 0.98 years 

for every additional 10 µg/m3 of PM2.5 above the PM2.5 standard in their study, whereas it 

reduces by 1.2 years in our study. The IMR effect of change in PM2.5 by 10 µg/m3 is 6.1% in 

our study, while it is 8.8% and 9.2% in the studies conducted in Mexico and Africa, 

respectively (Arceo et al., 2016; Heft-Neal et al., 2018). 

 

Analysing individual cities of India, Delhi, Patna and Allahabad are likely to gain 

immensely in terms of life years (life expectancy gains exceeding 7 years) if the WHO 

standard for PM2.5 is attained in the districts (Appendix, Table A7). The PM2.5 exposure has 

been the highest in Delhi. Delhi has suffered a loss of 1.9 years of life due to increased 
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PM2.5 exposure levels as compared to 1998 levels. Gains in life expectancy in Delhi are 

around 10.9 years when the WHO standards are reached and around 7.3 years when the 

national standards are met in the city. A significantly higher improvement in life expectancy 

can be seen in the states lying in the Indo-Gangetic Plains owing to higher levels of PM2.5 in 

the region (Appendix, Fig. A1). 

 

There remain a few limitations in the study. The study utilises data on infant mortality rate 

to estimate life expectancy at birth at the district level. More accurate estimates could be 

achieved if district-level data on life expectancy derived from age-specific mortality rates 

were available. For measuring PM2.5 exposure, a combination of satellite-driven data and 

data from monitoring stations on PM2.5 would have been more comprehensive. However, 

due to the lack of district-level data for the relevant districts from monitoring stations, this 

study relies on satellite data. The future work can investigate the causal impact of exposure 

to air pollution (primarily PM2.5, and PM1) on morbidity and the overall mortality rate. An 

analysis of cause-specific mortality at the district level would be useful. With the presence 

of more comprehensive datasets, more elaborate studies can be done for India.  
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DEFINITIONS 
 
1. Neonatal Mortality Rate (NNMR): Probability of dying during the first 28 days of life, 
expressed per 1,000 live births.  
Source: Computed as per UNICEF definition from NFHS 4, 2015-16 
 
2. Infant Mortality Rate (IMR): Probability of dying between birth and exactly 1 year of age, 
expressed per 1,000 live births.  
Source Computed as per UNICEF definition from NFHS 4, 2015-16 
 
3. Under-Five Mortality Rate (U5MR): Probability of dying between birth and exactly 5 
years of age, expressed per 1,000 live births.  
Source: Computed as per UNICEF definition from NFHS 4, 2015-16 
 
4. Life Expectancy at Birth (LEB): Average number of years that a new-born is expected to 
live if current mortality rates continue to apply. 
Source: Computed as per WHO definition from NFHS 4, 2015-16 

5. Latitudinal difference: Latitudinal difference between a district and a corresponding 
district lying in the lower boundary of the Indo-Gangetic Plains. 

6. Literacy Rate: Proportion of people aged 7 and above who can both read and write with 
understanding in any language. 
Source: Census 2011  
 
7. Access to treated tap water: Proportion of households who have access to treated tap water 
within their premises. 
Source: Census 2011  
 
8. Access to clean cooking fuel: Proportion of households who use LPG or electricity as the 
primary source of fuel for cooking purposes. 
Source: NFHS 4, 2015-16 
 
9. Share of rural households: Proportion of households not in urban areas. An urban area is 
defined as: 
(a)  all places with a Municipality, Corporation or Cantonment or Notified Town Area 
(b)  all other places which satisfied the following criteria: 
              (i)    a minimum population of 5,000. 
             (ii)    at least 75% of the male working population was non-agricultural. 
            (iii)    a density of population of at least 400 sq. Km. (i.e. 1000 per sq. Mile) 
 Source: Census 2011  
 
10. Consumption expenditure: Household Consumer Expenditure (HCE) is most easily 
understood as expenditure incurred by households on consumption goods and services, i.e., 
on goods and services used for the direct satisfaction of individual needs and wants or the 
collective needs of members of the community and not for further transformation in 
production.  
Source: NSSO, Round 68, 2011-12 
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11. Share of minority population: Proportion of households belonging to Scheduled Caste, 
Scheduled Tribe or Other Backward Class. 
Source: NFHS 4, 2015-16 
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Fig. A1. State-wise gains in life expectancy on meeting WHO standard for PM2.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 27 

 

 

 

 

Table A1. Life years saved on attaining the air quality standards 

Region Weighted Average 

PM2.5 (µg/m3) 

Life Years Saved: 

National Standard 

Life Years Saved: 

WHO Standard 

National 54.07 1.69 5.29 

Indo-Gangetic Plains 83.70 5.24 8.84 
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Table A2. Inclusion of interaction variable for robustness check 

Main Independent Variable à Nj = 0, 1 Fitted values of PM2.5 (µg/m3) 

Dependent Variable (1) (2) 

PM2.5, µg/m3 22.76*** 

(2.26) 

- 

Neo-natal Mortality Rate 4.08** 

(1.84) 

0.20** 

(0.08) 

Infant Mortality Rate 3.77 

(2.48) 

0.19* 

(0.10) 

Under Five Mortality Rate 3.98 

(3.35) 

0.21 

(0.14) 

Life Expectancy at Birth -1.69*** 

(0.56) 

-0.08*** 

(0.02) 

 

Number of observations 232 232 

Demographic Controls Yes Yes 

Polynomial in latitude Quadratic Quadratic 

Estimation method RDD 2SLS 

Note: Each cell in the table represents a coefficient from a separate regression, and 
heteroskedastic-consistent SEs are reported in parentheses. The estimates in column (1) 
denote the impact of being located in the IGP on the relevant dependent variables. The 
estimates in column (2) denote the change in the dependent variable due to a unit change in 
the PM2.5 concentration level, ceteris paribus. 
*** Significant at 1% level, ** Significant at 5% level, * Significant at 10% level. 
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Table A3. Inclusion of elevation for robustness check 

Main Independent Variable à Nj = 0, 1 Fitted values of PM2.5 (µg/m3) 

Dependent Variable (1) (2) 

PM2.5, µg/m3 20.90*** 

(2.40) 

- 

Neo-natal Mortality Rate 5.99*** 

(1.96) 

0.31*** 

(0.10) 

Infant Mortality Rate 8.78*** 

(2.74) 

0.45*** 

(0.12) 

Under Five Mortality Rate 9.70*** 

(3.70) 

0.51*** 

(0.17) 

Life Expectancy at Birth -3.04*** 

(0.64) 

-0.15*** 

(0.03) 

 

Number of observations 228 228 

Demographic Controls Yes Yes 

Polynomial in latitude Quadratic Quadratic 

Estimation method RDD 2SLS 

Note: Each cell in the table represents a coefficient from a separate regression, and 
heteroskedastic-consistent SEs are reported in parentheses. The estimates in column (1) 
denote the impact of being located in the IGP on the relevant dependent variables. The 
estimates in column (2) denote the change in the dependent variable due to a unit change in 
the PM2.5 concentration level, ceteris paribus. 
*** Significant at 1% level, ** Significant at 5% level, * Significant at 10% level. 
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Table A4. Inclusion of altitude for robustness check 

Main Independent Variable à Nj = 0, 1 Fitted values of PM2.5 (µg/m3) 

Dependent Variable (1) (2) 

PM2.5, µg/m3 19.46*** 

(2.56) 

- 

Neo-natal Mortality Rate 7.05*** 

(2.21) 

0.39*** 

(0.12) 

Infant Mortality Rate 10.02*** 

(3.12) 

0.55*** 

(0.15) 

Under Five Mortality Rate 11.46*** 

(4.25) 

0.64*** 

(0.20) 

Life Expectancy at Birth -3.04*** 

(0.70) 

-0.16*** 

(0.04) 

 

Number of observations 232 232 

Demographic Controls Yes Yes 

Polynomial in latitude Quadratic Quadratic 

Estimation method RDD 2SLS 

Note: Each cell in the table represents a coefficient from a separate regression, and 
heteroskedastic-consistent SEs are reported in parentheses. The estimates in column (1) 
denote the impact of being located in the IGP on the relevant dependent variables. The 
estimates in column (2) denote the change in the dependent variable due to a unit change in 
the PM2.5 concentration level, ceteris paribus. 
*** Significant at 1% level, ** Significant at 5% level, * Significant at 10% level. 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 



 31 

Table A5. Impact of “North” on listed variables, RDD for different bandwidths 

Note: Each cell in the table represents a coefficient from a separate regression, and 
heteroskedastic-consistent SEs are reported in parentheses.  
*** Significant at 1% level, ** Significant at 5% level, * Significant at 10% level. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Main Independent Variable à Nj = 0, 1 

Dependent Variable (1) (2) (3) 

PM2.5, µg/m3 22.52*** 

(2.03) 

22.39*** 

(2.03) 

22.38*** 

(2.11) 

Neo-natal Mortality Rate 5.83*** 

(1.72) 

5.92*** 

(1.73) 

6.07*** 

(1.75) 

Infant Mortality Rate 6.85*** 

(2.36) 

6.84*** 

(2.37) 

7.05*** 

(2.42) 

Under Five Mortality Rate 7.58** 

(3.23) 

7.68** 

(3.25) 

8.16** 

(3.28) 

Life Expectancy at Birth -2.85*** 

(0.55) 

-2.76*** 

(0.54) 

-2.43*** 

(0.54) 

 

Number of observations 218 211 192 

Demographic Controls Yes Yes Yes 

Polynomial in latitude Quadratic Quadratic Quadratic 

Bandwidth 5o 4o 3o 
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Table A6. Impact of PM2.5 on listed variables, 2SLS for different bandwidths 

Note: Each cell in the table represents a coefficient from a separate regression, and 
heteroskedastic-consistent SEs are reported in parentheses.  
*** Significant at 1% level, ** Significant at 5% level, * Significant at 10% level. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Main Independent Variable à Fitted values of PM2.5 (µg/m3) 

Dependent Variable (1) (2) (3) 

Neo-natal Mortality Rate 0.36*** 

(0.11) 

0.36*** 

(0.12) 

0.31** 

(0.12) 

Infant Mortality Rate 0.52*** 

(0.15) 

0.52*** 

(0.15) 

0.42*** 

(0.16) 

Under Five Mortality Rate 0.61*** 

(0.20) 

0.61*** 

(0.21) 

0.51** 

(0.22) 

Life Expectancy at Birth -0.15*** 

(0.04) 

-0.14*** 

(0.04) 

-0.13*** 

(0.04) 

 

Number of observations 218 211 192 

Demographic Controls Yes Yes Yes 

Polynomial in latitude Quadratic Quadratic Quadratic 

Bandwidth 5o 4o 3o 
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Table A7. 20 Most Populous Districts 

District Population 

(Millions) 

PM2.5 

Concentration, 

2014 (µg/m3) 

PM2.5 

Concentration, 

1998 (µg/m3) 

Increase in 

Life 

Expectancy 

if district 

meets 

National 

Standard 

(40 µg/m3) 

Increase in 

Life 

Expectancy 

if district 

meets 

WHO 

Standard 

(10 µg/m3) 

Change in 

Life 

Expectancy 

Due to 

Change in 

PM2.5 , 

1998-2014 

(years ) 

 

Delhi 17 101.2 85.5 7.3 10.9 -1.9 

Thane, 

Maharashtra 

11 41.5 32.9 0.2 3.8 -1 

North 24 

Parganas, 

West Bengal 

10 43.5 37.1 0.4 4 -0.8 

Bangalore 

Urban, 

Karnataka 

9.6 29.7 27.2 0 2.4 -0.3 

Mumbai 

(Suburban), 

Maharashtra 

9.4 45.2 36.3 0.6 4.2 -1.1 

Pune, 

Maharashtra 

9.4 44.8 33.3 0.6 4.2 -1.4 

South 24 

Parganas, 

West Bengal 

8.2 41.8 37.8 0.2 3.8 -0.5 

Barddhaman, 

West Bengal 

7.7 50.7 49.6 1.3 4.9 -0.1 

Ahmadabad, 

Gujarat 

7.2 44.2 47.1 0.5 4.1 +0.3 

Murshidabad, 

West Bengal 

7.1 57.9 48.9 2.1 5.7 -1.1 
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Jaipur, 

Rajasthan 

6.6 53.8 50 1.7 5.3 -0.5 

Nashik, 

Maharastra 

6.1 36.8 27.9 0 3.2 -1.1 

Surat, Gujarat 6.1 39.9 34 0 3.6 -0.7 

Allahabad, 

Uttar Pradesh 

6 72.8 65.4 3.9 7.5 -0.9 

Paschim 

Medinipur, 

West Bengal 

5.9 46.2 47.4 0.7 4.3 +0.1 

Patna, Bihar 5.8 84.9 63.2 5.4 9 -2.6 

Hugli, West 

Bengal 

5.5 47.3 46.6 0.9 4.5 -0.1 

Rangareddy, 

Telangana 

5.3 34.6 29.8 0 3 -0.6 

East 

Godavari, 

Andhra 

Pradesh 

5.2 36.1 30.1 0 3.1 -0.7 

Nadia, West 

Bengal 

5.2 53.2 45.4 1.6 5.2 -0.9 

 
 
 
 
 
 
 
 
 


