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1. INTRODUCTION

A social choice function (SCF) selects an alternative at every collection of pref-

erences of the agents in a society. An SCF is called ordinal Bayesian incentive

compatible (OBIC) with respect to a prior (belief) if, by misreporting his sincere

preference, no agent can increase his expected utility according to his prior for

any utility function representing his sincere preference. An SCF is called locally

robust OBIC (LOBIC) with respect to a prior if it is OBIC with respect to all

priors lying in a small neighborhood of the original prior. LOBIC ensures that

agents are incentivized to reveal their sincere preferences even if the designer is

slightly unsure about their beliefs. The objective of this paper is to explore the

structure of SCFs that are LOBIC with respect to correlated priors. Relevance of

correlated priors in mechanism design is well-established in the literature (see

Bhargava et al. (2015), Yamashita (2018), Laffont and Martimort (2000), Albert

et al. (2017a), Albert et al. (2017b) for details).

We use the notion of ‘betweenness’ to formulate the correlation structure of

the priors. For an illustration, suppose that there are two agents 1 and 2, and

three alternatives a, b and c. Suppose further that agent 1 has the preference abc.1

Note that the preference bac differs from abc by the swap of a and b, whereas

the preference bca differs from abc by the swap of both a and b, and a and c. In

some sense, the preference bca is “farther away” from abc than bac is from abc.

In such situations, we say that the preference bac lies between abc and bca. Now,

suppose that agent 1 believes that agent 2 is of his type, that is, has a preference

that is similar to his preference. Positive correlation under betweenness relation

says that agent 1 will deem the preference abc more likely than the preference

bac, and the preference bac more likely than the preference bca. On the other

hand, if agent 1 believes that agent 2 is of his opposite type, then negative

correlation under betweenness relation imposes exactly opposite structure on

his belief about agent 2’s preference.

1By abc we denote a preference where a is first-ranked, b is second-ranked, and c is third-
ranked.

2



In this paper, we assume the coexistence of both positively correlated and

negatively correlated beliefs, as well as independent beliefs. Each agent classifies

other agents into three categories: the positively correlated agents, the negatively

correlated agents, and the independent agents, and forms his belief accordingly.

We first consider the question whether every SCF can be LOBIC with respect

to some (correlated or uncorrelated) prior. We show that the answer is “no”

and consequently provide a condition on an SCF that is necessary for it to be

LOBIC with respect to some prior. Next, we focus on correlated priors (under

betweenness relations) and provide a sufficient condition on an SCF for it to be

LOBIC with respect to such priors. Finally, we provide a discussion on how our

results can be generalized for arbitrary correlated priors.

The structure of LOBIC SCFs when priors are independent is well-explored in

the literature. Majumdar and Sen (2004) show that if the domain of preferences

is unrestricted, then under unanimity, the notion of OBIC (in the context of

incomplete information) and that of dominant strategy incentive compatibility

(DSIC) (in the context of complete information) are almost surely equivalent.2,3

Mishra (2016) extends this result for arbitrary domains under an additional as-

sumption called elementary monotonicity. Karmokar and Roy (2018) generalize

these results for RSCFs and additionally provide some more structure of OBIC

RSCFs on various domains.

In contrast to the case of independent priors, to the best of our knowledge

the structure of LOBIC SCFs with respect to correlated priors is relative less

explored. Only paper we know in this topic is Bhargava et al. (2015). Our paper

improves their result in the following ways.

(i) Bhargava et al. (2015) assume that all the agents are positively correlated

with each other. In reality, agents might as well be negatively correlated.

As we have explained earlier, we allow for the coexistence of positive

correlation, negative correlation, and independence in our analysis.

2That is for a class of independent priors with Lebesgue measure 1.
3Unanimity implies that whenever all agents agree on their top-ranked alternative, that

alternative is chosen by the SCF.
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(ii) Bhargava et al. (2015) use the notion of top-set correlation to measure

positive correlation. To the best of our understanding, it may not be an

appropriate measure for positive correlation. To see this, suppose that

there are two agents 1 and 2, and three alternatives a, b and c. Assume that

agent 1 has the preference abc. Suppose that he believes agent 2 has the

preference abc with probability slightly higher than 50%, say 50.01%, and

the preference cba with probability slightly lower than 50%, say 49.99%.

Note that while the opposite preference cba is believed to be highly likely

(with close to 50% probability), preferences such as bac or acb that are

closer to abc are believed to be impossible. According to the notion of

top-set correlation, such a belief is positively correlated. However, we feel

that it violates the basic intuition of positive correlation: preferences such

as bac and acb should receive higher probability than cba. As discussed

earlier, our notion of priors under betweenness relations rules out such

possibilities.

(iii) Theorem 1 in Bhargava et al. (2015) says that a unanimous SCF is LOBIC

with respect to a prior if and only if it satisfies a property called ordinal

nondomination (OND). It follows from our result that the “only if” part of

this theorem is not correct.4

The rest of the paper is organized as follows. Section 2 introduces the basic

model. Section 3 and Section 4 present a necessary and a sufficient condition for

LOBIC, respectively. Section 5 provides a discussion on how our results can be

generalized for arbitrary priors. All proofs are collected in the appendix.

2. PRELIMINARIES

Let A be a set of alternatives with |A| = m. A preference P is defined as a

complete, transitive, and antisymmetric binary relation on A. We denote the

weak part of a preference P by R, that is, for two alternatives a and b, aRb means

4In the proof of Theorem 1 in Bhargava et al. (2015), the authors consider two cases. However,
to our understanding, there is a third case that the authors have missed.
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either aPb or a = b. We denote by P(A) the set of all preferences on A. A

domain D (of preferences on A) is a subset of P(A).

Let P be a preference and k ∈ {1, . . . , m}. We denote the k-th ranked alter-

native in P by P(k). The upper contour set of top k alternatives is defined as

Uk(P) := ∪l≤kP(l), and the upper contour set of an alternative a is defined as

U(a, P) := {b ∈ A | bRa} . Note that U(a, P) contains the alternative a itself.

To minimize notations, sometimes we do not use brackets for singleton sets.

Each agent i ∈ N has a domain of (admissible) preferences Di. We denote by

DN the product set ∏
i∈N
Di, and for i ∈ N, we denote by D−i the set ∏

j 6=i
Dj. An

element PN = (P1, . . . , Pn) of DN is called a preference profile. For a preference

profile PN, we denote the restriction of PN to N \ {i} by P−i.

A belief µi of an agent i is a probability distribution on DN. Note that by

considering beliefs that are probability distributions on DN (and not on D−i),

we allow for the possibility that a belief of an agent i may depend on his own

preference Pi. A collection µN = (µ1, . . . , µn) of beliefs is called a prior (profile).

For a prior µi and a preference Pi of agent i, we denote by µi(. | Pi) the condi-

tional belief (conditional probability distribution on D−i given Pi) of i given the

preference Pi.

A utility function is a mapping u : A → R. A utility function u : A → R is

said to represent a preference P if for all a, b ∈ A, we have aPb if and only if

u(a) > u(b).

A social choice function (SCF) (on DN) is a mapping f : DN → A.

Consider an SCF f , a prior µN, and an agent i. Suppose that the (sincere)

preference of agent i is Pi. Fix a utility function ui of agent i that represents his

preference Pi. Then, agent i’s expected utility according to his conditional belief

µi(. | Pi) is given by

∑
P−i∈D−i

ui( f (Pi, P−i))µi(P−i | Pi).

An SCF is called ordinal Bayesian incentive compatible (OBIC) with respect to

5



a prior if no agent can increase his expected utility (according to his belief condi-

tional on his sincere preference) with respect to any utility function representing

his preference by misreporting his sincere preference.

Definition 2.1. An SCF f is ordinal Bayesian incentive compatible (OBIC) with

respect to a prior µN if for all i ∈ N, all Pi, P′i ∈ Di, and all utility functions ui

representing Pi, we have

∑
P−i∈D−i

ui( f (Pi, P−i))µi(P−i | Pi) ≥ ∑
P−i∈D−i

ui( f (P′i , P−i))µi(P−i | Pi).

An equivalent definition of OBIC can be given by means of stochastic domi-

nance. It says that no agent can increase the expected probability of any upper

contour set of his sincere preference by misreporting his sincere preference.

Definition 2.2. An SCF f is OBIC with respect to a prior µN if for all i ∈ N, all

Pi, P′i ∈ Di, and all a ∈ A, we have

∑
P−i| f (Pi,P−i)∈U(a,Pi)

µi(P−i | Pi) ≥ ∑
P−i| f (P′i ,P−i)∈U(a,Pi)

µi(P−i | Pi).

An SCF f is is locally robust with respect to a prior µN if it is OBIC with respect

to all priors in some (small) open neighborhood of µN. In other words, a locally

robust OBIC continues to be OBIC if the social planner makes ”small” mistakes

in estimating agents’ priors. To model this, we need the notion distance between

two priors: the distance between µN and µ̄N is defined as ∑
i∈N

∑
PN∈DN

(µi(PN)−

µ̄i(PN))
2. We denote by Bε(µN) the open ball of radius ε centered at µN, that is,

the set of all priors µ̄N that are at most ε distance from µN.

Definition 2.3. An SCF f is locally robust OBIC (LOBIC) with respect to a

prior µN if there exists ε > 0 such that f is OBIC with respect to all priors in

µ̄N ∈ Bε(µN).

We illustrate the notion of LOBIC by means of the following example.
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Example 2.1. Suppose that there are two agents {1, 2} and three alternatives

{a, b, c}. We denote by abc the preference where a, b, and c are the top-ranked,

second-ranked, and third-ranked alternatives, respectively. In Table 1, we

present an SCF, say f , and in Table 2 and Table 3 we present the conditional

beliefs µ1 and µ2 of agent 1 and agent 2, respectively. These tables are self-

explanatory.

In what follows, we argue that f is LOBIC with respect to µN = (µ1, µ2). We

follow Definition 2.2 for this. Suppose that the sincere preference of agent 1 is

P1 = abc. Suppose further that he considers a misreport as P′1 = acb. Note that

his conditional belief µ1(. | abc) at P1 = abc is given in the first row of Table 2.

Further note that the (non-trivial) upper contour sets of the preference abc are {a}

and {a, b}. The believed (through µ1(. | abc)) probability that the outcome lies in

the upper contour set {a} (that is, the outcome is a) when 1 reports abc is µ1(abc |

abc) + µ1(acb | abc) + µ1(bca | abc) = 0.25 + 0.25 + 0.20 = 0.70. Similarly, the

believed (through µ1(. | abc), and not through µ1(. | acb)) probability that the

outcome is a when 1 misreports his preference as acb is µ1(abc | abc) + µ1(acb |

abc) + µ1(bac | abc) + µ1(cba | abc) = 0.25 + 0.25 + 0.04 + 0.06 = 0.60. Since

µ1({P2| f (P1, P2) = a} | abc) ≥ µ1({P2| f (P′1, P2) = a} | abc), we have that the

requirement of OBIC is satisfied for this instance. One can verify that f satisfies

this requirement for other instances as well. Furthermore, one can check that all

these requirements will be satisfied if we slightly perturb the prior (profile) µN,

ensuring that the SCF remains LOBIC.

1 \ 2 abc acb bac bca cab cba
abc a a c a b b
acb a a a b c a
bac b a b b a c
bca c b b b a c
cab a a b c c c
cba a c b a c c

Table 1: Example of an SCF that does not satisfy OND but satisfies LOBIC
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1 \ 2 abc acb bac bca cab cba
abc 0.25 0.25 0.04 0.20 0.20 0.06
acb 0.25 0.25 0.20 0.01 0.09 0.20
bac 0.20 0.15 0.25 0.25 0.14 0.01
bca 0.15 0.20 0.25 0.25 0.01 0.14
cab 0.15 0.14 0.01 0.20 0.25 0.25
cba 0.01 0.25 0.23 0.01 0.25 0.25

Table 2: Conditional belief of Agent 1

1 \ 2 abc acb bac bca cab cba
abc 0.25 0.25 0.01 0.01 0.01 0.09
acb 0.25 0.25 0.09 0.25 0.25 0.01
bac 0.09 0.20 0.25 0.25 0.15 0.20
bca 0.01 0.01 0.25 0.25 0.09 0.20
cab 0.20 0.20 0.20 0.23 0.25 0.25
cba 0.20 0.09 0.20 0.01 0.25 0.25

Table 3: Conditional belief of Agent 2

3. A NECESSARY CONDITION FOR LOBIC WITH RESPECT TO A(NY)

CORRELATED PRIOR

In this section, we provide a necessary condition for an SCF to be LOBIC. Our nec-

essary condition uses the notion of sequential ordinal non-domination (sequen-

tial OND). Bhargava et al. (2015) introduce the notion of ordinal non-domination

(OND), sequential OND is a modification of that.

First, we present the notion of OND. For an illustration, consider an agent

i with (sincere) preference Pi and a preference profile P−i of all agents except

i. Suppose that agent i can “manipulate” by misrepresenting his preference

as P′i when others have the profile P−i, that is, suppose f (P′i , P−i)Pi f (Pi, P−i).

Informally speaking, OND says that there must be another preference pro-

file P′−i of the agents in N \ {i} at which such a “manipulated gain” is lost.

More formally, there must be P′−i such that for i (i) reporting his sincere pref-

erence Pi against P′−i is weakly better than the outcome i obtained by manipu-
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lating, that is, f (Pi, P′−i)Ri f (P′i , P−i), and (ii) the (sincere) outcome f (Pi, P−i) is

weakly better than the outcome obtained by misreporting P′i against P′−i, that is,

f (Pi, P−i)Ri f (P′i , P′−i).

Definition 3.1. An SCF f : DN → A satisfies the ordinal nondomination

(OND) property if for all i ∈ N, all Pi, P′i ∈ Di, and all P−i ∈ D−i such that

f (P′i , P−i)Pi f (Pi, P−i), there exists P′−i ∈ D−i with the property that f (Pi, P′−i)Ri f (P′i , P−i)

and f (Pi, P−i)Ri f (P′i , P′−i).

In what follows, we argue by means of Example 2.1 that the OND property is

not necessary for LOBIC. Consider the LOBIC SCF f in Example 2.1. Consider

P1 = abc, P′1 = acb, and P2 = bac. We have f (P′1, P2)P1 f (P1, P2). However, there

is no P′2 such that f (P1, P2)R1 f (P′1, P′2) and f (P1, P′2)R1 f (P′1, P2). Therefore, f

does not satisfy the OND property.

Note that f satisfies the requirement of OND for all other situations. For

instance, when P1 = acb , P′1 = abc and P2 = bca, the requirement of OND is

satisfied by taking P′2 = cba.

In view of Example 1, we modify the OND property as sequential OND. In

contrast to the OND property where a gain of agent i by manipulation can be

paid back at exactly one preference profile P′−i, in case of sequential OND the

same can happen through a sequence of preference profiles (P1
−i, . . . , Pk

−i) for

some k ≥ 1. Note that OND is a special case of sequential OND where the length

of the sequence is 1.

Definition 3.2. For an SCF f : DN → A and a pair of distinct preferences (Pi, P′i )

in Di, a sequence (P1
−i, . . . , Pk

−i) of elements of D−i is called an OND sequence

for f with respect to (Pi, P′i ) if for all l = 1, . . . , k, we have f (Pi, Pl
−i)Pi f (P′i , Pl

−i)

and f (Pi, Pl+1
−i )Ri f (P′i , Pl

−i), where Pk+1
−i = Pk

−i.

Definition 3.3. An SCF f : DN → A satisfies the sequential OND property if

for all i ∈ N, all Pi, P′i ∈ Di, and all P−i ∈ D−i with f (P′i , P−i)Pi f (Pi, P−i), there

exists an OND sequence (P1
−i, . . . , Pk

−i) for f with respect to (Pi, P′i ) such that

f (Pi, P−i)Ri f (P′i , Pk
−i) and f (Pi, P1

−i)Ri f (P′i , P−i).
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In what follows, we argue that the SCF f in Table 1 satisfies the sequen-

tial OND property. Recall that f satisfies the OND property (and hence, the

sequential OND property) for all situations except the one where P1 = abc,

P′1 = acb, and P2 = bac. Consider the sequence (P1
2 = bca, P2

2 = cab) of prefer-

ences of agent 2. Note that (i) f (P1, P1
2 )R1 f (P′1, P2), (ii) f (P1, P2)R1 f (P′1, P2

2 ), and

(iii) f (P1, P2
2 )R1 f (P′1, P1

2 ). Thus, f satisfies the sequential OND property.

Now, we present the main theorem of this section. It says that sequential

OND is a necessary condition for an SCF to be LOBIC with respect to any prior.

Theorem 3.1. An SCF is LOBIC with respect to some prior only if it satisfies the

sequential OND property.

The proof of this theorem is relegated to Appendix A.

4. A SUFFICIENT CONDITION FOR LOBIC WITH RESPECT TO PRIORS

SATISFYING BETWEENNESS RELATIONS

In this section, we consider correlated (both positively and negatively) beliefs

and provide a sufficient condition for an SCF to be LOBIC with respect to such

priors.

Bhargava et al. (2015) introduced the notion of top-set (TS) correlation as a

measure of positive correlation. It says that every agent i with preference Pi

conditionally believes that for every k = 1, . . . , m− 1, other agents are likely to

have preferences with the same set of top k alternatives as him.

Definition 4.1. A belief µi of agent i is top-set correlated if for all Pi, all k =

1, . . . , m− 1, and all B ⊆ A such that B 6= Uk(Pi) and |B| = k, we have

∑
P−i|Uk(Pj)=Uk(Pi) ∀j 6=i

µi(P−i | Pi) > ∑
P−i|Uk(Pj)=B ∀j 6=i

µi(P−i | Pi).

In what follows, we argue that top-set correlation might not be the right

measure for positive correlation. Suppose that there are three alternatives a, b,

and c and two agents 1 and 2. Suppose further that agent 1 has preference
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P1 = abc. If agent 1 believes that agent 2 is of his type (that is, positively

correlated with him), then he must deem preferences that are “closer” to abc

more likely for 2 than the ones that are “farther away” from abc. For instance,

µ1(bac | P1) and µ1(acb | P1) should be bigger than µ1(cba | P1). However,

this is not ensured by the definition of top-set correlation. For instance, beliefs

such as µ1(abc | P1) = 0.5 + ε and µ1(cba | P1) = 0.5 − ε, where ε > 0 is

arbitrarily small, satisfy top-set correlation but do not really represent positive

correlation.5 At the extreme, note that for any preference P1 (over any number

of alternatives), a belief of agent 1 that gives positive probability to only P1 and

its opposite preference, with arbitrarily small higher probability to P1, satisfies

top-set correlation. However, according to such a belief, any preference which is

obtained through a small change in P1 gets much lower probability (in fact zero

probability) than the preference that is completely opposite of P1, contradicting

the intuition behind positive correlation.

In view of the above discussion, we introduce a new notion of correlated belief.

Our notion is based on the notion of betweenness. A preference P is said to lie

between two preferences P1 and P2, denoted by P ∈ (P1, P2), if P1∆P ⊆ P1∆P2,

where P∆P′ = {{x, y} | xPy and yP′x} denotes the set of (unordered) pairs of

alternatives whose relative orderings are different in P and P′. In other words, P

lies between P1 and P2 if P is “more similar“ to P1 than P2 is to P1.

A prior of an agent i is positively correlated with respect to the betweenness

property if whenever agent i has sincere preference Pi, he believes that his oppo-

nents’ preferences are more likely to be “closer” (with respect to the betweenness

relation) to Pi. The notion of negatively correlated priors with respect to the

betweenness property is defined in a symmetrically opposite manner: an agent

i believes that his opponents’ preferences are more likely to be “farther away”

from Pi.

We assume that for every agent i ∈ N, there exists a fixed (does not depend

on the preferences of i) partition {N0
i , N+

i , N−i } of N \ {i} such that for any

5The opposite preference P′ of a preference P is the one that reverses the ordering of the
alternatives in P, that is, for all alternatives a and b, aPb if and only if bP′a.
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Pi, µi(. | Pi) is independent of the preferences of the agents in N0
i , positively

correlated with the preferences of the agents in N+
i , and negatively correlated

with preferences of the agents in N−i . We call such a prior (profile) a correlated

prior (profile) under betweenness relation and denote the set of all such corre-

lated priors byM. Below, we provide a formal definition of this. For ease of

presentation, we write P′−i ∈ 〈Pi, P−i〉 to mean P′j ∈ (Pi, Pj) for all j ∈ N+
i and

Pj ∈ (Pi, P′j ) for all j ∈ N−i .

Definition 4.2. A prior µi of an agent i ∈ N is correlated under betweenness

relation (CBR) if for all Pi ∈ Di and all P−i, P′−i ∈ D−i with the property

that P′j ∈ (Pi, Pj) for all j ∈ N+
i and Pj ∈ (Pi, P′j ) for all j ∈ N−i , we have

µi(P′−i|Pi) > µi(P−i|Pi). A prior (profile) µN is correlated if µi is correlated for

each i ∈ N.

Next, we introduce the notion of strong OND. Informally speaking, in ad-

dition to OND, it says that for every preference of an agent, as the preference

profiles of other agents become more similar to his preference, the outcomes of

an SCF become weakly better for him. Thus, it imposes a type of monotonicity

property on an SCF.

Definition 4.3. An SCF f : DN → A satisfies the strong OND property if f

satisfies the OND property and for all i ∈ N, all Pi ∈ Di, and all P−i, P′−i ∈ D−i

such P−i ∈ 〈Pi, P′−i〉, we have f (Pi, P−i)Ri f (Pi, P′−i).

In Table 4, we present an SCF that satisfies the strong OND property.

Example 4.1. Suppose that there are three alternatives {a, b, c} and two agents

{1, 2}. Assume that both agents are positively correlated, that is, N+
i = N \ i for

all i ∈ N. Consider the SCF, say f , presented in Table 4. We argue that f satisfies

the strong OND property. Consider P1 = abc and pick two preferences, say

P2 = bac and P′2 = cba, of agent 2. Note that P2 ∈ 〈P1, P′2〉, and f (P1, P2) = b and

f (P1, P′2) = b. This implies f (P1, P2)R1 f (P1, P′2), and hence f satisfies the strong

OND property for this instance. It can be verified that f satisfies the requirement

of strong OND for all other preference profiles and for all agents.
12



1 \ 2 abc acb bac bca cab cba
abc a a b b a b
acb a a a c c c
bac a a b b a b
bca b c b b c c
cab a a a c c c
cba b c b b c c

Table 4: Example of an SCF that satisfies strong OND property

Now, we present the main result of this section. It says that if an SCF satisfies

the strong OND property, then there must be some correlated prior with respect

to which it is LOBIC.

Theorem 4.1. Suppose that an SCF satisfies the strong OND property. Then, it is

LOBIC with respect to some CBR prior.

The proof of this theorem is relegated to Appendix B.

Since the SCF in Table 4 satisfies the strong OND property, by Theorem 4.1,

there must exist some CBR prior with respect to which it is LOBIC. In Table 5

and Table 6, we present such priors for agents 1 and 2, respectively.

1 \ 2 abc acb bac bca cab cba
abc 0.35 0.25 0.10 0.06 0.20 0.04
acb 0.25 0.35 0.20 0.04 0.10 0.06
bac 0.10 0.06 0.35 0.25 0.04 0.20
bca 0.20 0.04 0.25 0.35 0.06 0.10
cab 0.06 0.10 0.04 0.20 0.35 0.25
cba 0.04 0.20 0.06 0.10 0.25 0.35

Table 5: Conditional prior of Agent 1 for Table 4

5. A DISCUSSION ON GENERALIZING THE RESULTS

In this section, we show how the results in the paper can be generalized beyond

the specific notion of betweenness we have used in the paper. We introduce a
13



1 \ 2 abc acb bac bca cab cba
abc 0.30 0.20 0.20 0.10 0.15 0.05
acb 0.20 0.30 0.15 0.05 0.20 0.10
bac 0.20 0.10 0.30 0.20 0.05 0.15
bca 0.15 0.05 0.20 0.30 0.10 0.20
cab 0.10 0.20 0.05 0.15 0.30 0.20
cba 0.05 0.15 0.10 0.20 0.20 0.30

Table 6: Conditional prior of Agent 2 for Table 4

general notion of betweenness by means of a binary relation and present the

result in Section 4 for this notion. Note that our necessary condition for LOBIC

in Section 3 is independent of the structure of priors, therefore it does not require

any generalization.

For every agent i ∈ N and every preference Pi of i, fix a binary relation b(Pi) on

D−i satisfying transitivity, anti-symmetricity, and reflexivity (but not necessarily

complete). The relation b(Pi) represents i’s belief about the preference of other

in the following manner: for distinct P−i, P′−i ∈ D−i, (P−i, P′−i) ∈ b(Pi) implies

that P−i is more likely than P′−i according to the correlated belief of i conditional

on Pi. To distinguish the current notion of correlated belief from our earlier one,

we call it correlated under generalized betweeness relation belief .

Definition 5.1. A prior µi of an agent i ∈ N is correlated under generalized

betweenness relation (CGBR) if for all Pi ∈ Di and all distinct P−i, P′−i ∈ D−i

with the property that (P−i, P′−i) ∈ b(Pi), we have µi(P−i|Pi) > µi(P′−i|Pi). A

prior (profile) µN is CGBR if µi is CGBR for each i ∈ N.

Note that the notion of OND sequence does not involve any prior. So, we

continue to use Definition 3.2 for an OND sequence.

Definition 5.2. An SCF f : DN → A satisfies the generalized strong OND

property if it satisfies OND property and the property that for all Pi ∈ Di and all

P−i, P′−i ∈ D−i with (P−i, P′−i) ∈ b(Pi), we have f (Pi, P−i)Ri f (Pi, P′−i).

Theorem 5.1. Suppose that an SCF satisfies the generalized strong OND property.

Then, it is LOBIC with respect to some CGBR prior.
14



The proof of Theorem 5.1 is similar to the proof of Theorem 4.1, and hence it

is omitted.

A. PROOF OF THEOREM 3.1

Proof. Suppose an SCF f : DN → A is LOBIC with respect to some prior µN . We

show that f satisfies the sequential OND property, that is, for all i ∈ N, all Pi, P′i ∈

Di, and all P−i ∈ D−i with f (P′i , P−i)Pi f (Pi, P−i), there exists an OND sequence

(P1
−i, . . . , Pk

−i) for f with respect to (Pi, P′i ) such that f (Pi, P−i)Ri f (P′i , Pk
−i) and

f (Pi, P1
−i)Ri f (P′i , P−i).

Since f is LOBIC, for all agents i ∈ N, all preferences Pi of agent i, and all

k = 1, . . . , m, we have

∑
P−i| f (Pi,P−i)∈Uk(Pi)

µ(P−i | Pi) ≥ ∑
P−i| f (P′i ,P−i)∈Uk(Pi)

µ(P−i | Pi). (1)

Consider an agent i ∈ N, two preferences P̄i, P̄′i ∈ Di , and a preference profile

P̄−i ∈ D−i of the other agents such that f (P̄′i , P̄−i)P̄i f (P̄i, P̄−i). If there does not

exist any such instance, then f satisfies sequential OND vacuously. We proceed

to show that there is an OND sequence (P1
−i, . . . , Pk

−i) for f with respect to (P̄i, P̄′i )

such that f (P̄i, P̄−i)R̄i f (P̄′i , Pk
−i) and f (P̄i, P1

−i)R̄i f (P̄′i , P̄−i). Let f (P̄i, P̄−i) = a and

f (P̄′i , P̄−i) = b.

Consider the upper contour set U(b, P̄i) of b at P̄i. Because bP̄ia, we have

a /∈ U(b, P̄i). Applying (1) to the upper contour set U(b, P̄i), we have

∑
P−i| f (P̄i,P−i)∈U(b,P̄i)

µ(P−i|P̄i) ≥ ∑
P−i| f (P̄′i ,P−i)∈U(b,P̄i)

µ(P−i|P̄i). (2)

Because f (P̄i, P̄−i) = a and a /∈ U(b, P̄i), by (2), there must exist P̂−i such that

f (P̄i, P̂−i) ∈ U(b, P̄i) and f (P̄′i , P̂−i) /∈ U(b, P̄i). Let P̂−i be the set of all such

preferences P̂−i. Let P1
−i be such that f (P̄i

′, P̂−i)R̄i f (P̄i
′, P1
−i) for all P̂−i ∈ P̂−i. In

other words, P1
−i gives agent i the worst outcome in the set P̂−i when his true

preference is P̄i and he reports the preference P̄′i . If f (P̄i, P̄−i)R̄i f (P̄i
′, P1
−i), then

15



the sequence (P1
−i) is an OND sequence for f with respect to (P̄i, P̄′i ). Suppose

instead f (P̄i
′, P1
−i)P̄i f (P̄i, P̄−i). Let f (P̄i

′, P1
−i) = c.

Consider the upper contour set U(c, P̄i). Applying (1) to U(c, P̄i), we have

∑
P−i| f (P̄i,P−i)∈U(c,P̄i)

µ(P−i | P̄i) ≥ ∑
P−i| f (P̄′i ,P−i)∈U(c,P̄i)

µ(P−i | P̄i). (3)

Because f (P̄i
′, P1
−i)P̄i f (P̄i, P̄−i), we have that f (P̄i, P̄−i) /∈ U(c, P̄i). Hence, by (3)

there must exist P∗−i such that f (P̄i, P∗−i) ∈ U(c, P̄i) and f (P̄′i , P∗−i) /∈ U(c, P̄i).

As before, let P∗−i be the set of all such preference profiles P∗−i and let P2
−i be

such that f (P̄i
′, P∗−i)R̄i f (P̄i

′, P2
−i) for all P∗−i ∈ P∗−i. By the definition of P2

−i,

we have f (P̄′i , P2
−i) /∈ U(c, P̄i). This, together with the fact that f (P̄′i , P1

−i) = c,

implies f (P̄′i , P1
−i)P̄i f (P̄′i , P2

−i), and hence P1
−i 6= P2

−i. If f (P̄i, P̄−i)R̄i f (P̄i
′, P2
−i),

then (P1
−i, P2

−i) is an OND sequence for f with respect to (P̄i, P̄′i ) such that

f (P̄i, P̄−i)R̄i f (P̄′i , P2
−i) and f (P̄i, P1

−i)R̄i f (P̄′i , P̄−i) . If not, then we proceed to

the next step.

Continuing in this manner we can construct an OND sequence (P1
−i, P2

−i, . . . , Pk
−i)

for f with respect to (P̄i, P̄′i ) such that f (P̄i, P̄−i)R̄i f (P̄′i , Pk
−i) and f (P̄i, P1

−i)R̄i f (P̄′i , P̄−i).

The termination of the process is guaranteed by the fact that P1
−i, P2

−i, . . . , Pk
−i

are all distinct. To see why they are distinct, note that, in a similar way as

we have shown f (P̄′i , P1
−i)P̄i f (P̄′i , P2

−i) in the preceding paragraph, we can show

f (P̄′i , P1
−i)P̄i f (P̄′i , P2

−i)P̄i . . . P̄i f (P̄′i , Pk
−i). This in particular means P1

−i, P2
−i, . . . , Pk

−i

are all distinct. �

B. PROOF OF THEOREM 4.1

Proof. Suppose an SCF f : DN → A satisfies strong OND. We show that there

exists a CBR prior µN such that f is LOBIC with respect to µN. We proceed to

construct the mentioned CBR prior µN. Let µN be such that

(i) µi(P−i|Pi) > 0 for all i ∈ N, all Pi ∈ Di, and all P−i ∈ D−i

(ii) µi(P−i|Pi) > µi(P′−i|Pi) for all i ∈ N, all P−i ∈ Di such that P−i ∈ 〈Pi, P′−i〉,
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(iii) µi(P−i|Pi) > ∑
P′−i| f (Pi,P−i)Pi f (Pi,P′−i)

µi(P′−i|Pi) for all i ∈ N and all Pi ∈ Di.

Here, (i) is a requirement for locally robustness, (ii) ensures that µN is a CBR

prior, and (iii) is a technical condition that we need to ensure that f is LOBIC

with respect to µN.

Since f satisfies the strong OND property, for all i ∈ N, all Pi ∈ Di, and all

P−i, P′−i ∈ D−i such P−i ∈ 〈Pi, P′−i〉, we have f (Pi, P−i)Ri f (Pi, P′−i). This implies

that for any given P−i, there is no P′′−i in the set {P′−i | f (Pi, P−i)Pi f (Pi, P′−i)}

such that P′′−i ∈ 〈Pi, P−i〉. Hence, the prior µN is indeed a CBR prior. We proceed

to show that f is LOBIC with respect µN.

Consider (arbitrary) i ∈ N, Pi, P′i ∈ Di and a utility representation ui of Pi.

Let �M(Pi, P′i ) = {P̄−i ∈ D−i | f (P′i , P̄−i)Pi f (Pi, P̄−i)} be the set of all preference

profiles of the agents in N \ i such that agent i can manipulate by misreporting

his sincere preference Pi as P′i . Furthermore, let M(Pi, P′i ) = {P−i ∈ D−i |

f (Pi, P−i)Pi f (P′i , P−i)} be the set of all preference profiles of the agents in N \ i

such that agent i cannot manipulate by misreporting his sincere preference Pi

as P′i . Clearly, M(Pi, P′i ) ∩ �M(Pi, P′i ) = ∅. To show that f is LOBIC, we need to

show that

∑
P−i∈M(Pi,P′i )

µi(P−i|Pi)[ui
(

f (Pi, P−i)
)
− ui

(
f (P′i , P−i)

)
]

≥ ∑
P̄−i∈�M(Pi,P′i )

µi(P̄−i|Pi)[ui
(

f (P′i , P̄−i)
)
− ui

(
f (Pi, P̄−i)

)
]. (4)

For each P−i ∈ M(Pi, P′i ), we define

S(P−i) = {P̄−i ∈ �M(Pi, P′i ) | f (Pi, P−i)Ri f (P′i , P̄−i) and f (Pi, P̄−i)Ri f (P′i , P−i)}.

Since f satisfies the strong OND property (and hence, the OND property in

particular), we obtain the following two facts.

(i) For all P−i ∈ M(Pi, P′i ) with S(P−i) 6= ∅ and all P̄−i ∈ S(P−i) , we have

ui
(

f (Pi, P−i)
)
− ui

(
f (P′i , P−i)

)
≥ ui

(
f (P′i , P̄−i)

)
− ui

(
f (Pi, P̄−i)

)
,
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which means

ui
(

f (Pi, P−i)
)
− ui

(
f (P′i , P−i)

)
≥ max

P̄−i∈S(P−i)
ui
(

f (P′i , P̄−i)
)
− ui

(
f (Pi, P̄−i)

)
.

(5)

(ii)

∪P−i∈M(Pi,P′i )
S(P−i) = �M(Pi, P′i ). (6)

Consider P−i ∈ M(Pi, P′i ). For every P̄−i ∈ S(P−i), we have f (Pi, P−i)Pi f (Pi, P̄−i).

This, together with Part (iii) of the definition of µN, gives us

µi(P−i|Pi) > ∑
P̄−i∈S(P−i)

µi(P̄−i|Pi). (7)

Using standard algebra, we have

∑
P̄−i∈S(Pi)

µi(P̄−i | Pi)
[
ui
(

f (P′i , P̄−i)
)
− ui

(
f (Pi, P̄−i)

)]
≤ ∑

P̄−i∈S(Pi)

µi(P̄−i | Pi) max
P̄−i∈S(Pi)

[
ui
(

f (P′i , P̄−i)
)
− ui

(
f (Pi, P̄−i)

)]
= max

P̄−i∈S(Pi)

[
ui
(

f (P′i , P̄−i)
)
− ui

(
f (Pi, P̄−i)

)]
∑

P̄−i∈S(Pi)

µi(P̄−i | Pi). (8)

By (5), we have (9), and by (7) we have (10).

max
P̄−i∈S(Pi)

[
ui
(

f (P′i , P̄−i)
)
− ui

(
f (Pi, P̄−i)

)]
∑

P̄−i∈S(Pi)

µi(P̄−i | Pi)

≤
[
ui
(

f (Pi, P−i)
)
− ui

(
f (P′i , P−i)

)]
∑

P̄−i∈S(Pi)

µi(P̄−i | Pi). (9)

[
ui
(

f (Pi, P−i)
)
− ui

(
f (P′i , P−i)

)]
∑

P̄−i∈S(Pi)

µi(P̄−i | Pi)

≤
[
ui
(

f (Pi, P−i)
)
− ui

(
f (P′i , P−i)

)]
µi(P−i | Pi). (10)
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Combining (8), (9), and (10), we obtain (11).

[
ui
(

f (Pi, P−i)
)
−ui

(
f (P′i , P−i)

)]
µi(P−i | Pi) ≥ ∑

P̄−i∈S(Pi)

µi(P̄−i | Pi)
[
ui
(

f (P′i , P̄−i)
)
−ui

(
f (Pi, P̄−i)

)]
.

(11)

By summing both sides of (11) over the elements P−i of M(Pi, P′i ), we have

∑
P−i∈M(Pi,P′i )

[
ui
(

f (Pi, P−i)
)
− ui

(
f (P′i , P−i)

)]
µi(P−i | Pi)

≥ ∑
P−i∈M(Pi,P′i )

∑
P̄−i∈S(Pi)

µi(P̄−i | Pi)
[
ui
(

f (P′i , P̄−i)
)
− ui

(
f (Pi, P̄−i)

)]
. (12)

Since by (6) ∪P−i∈M(Pi,P′i )
S(P−i) = �M(Pi, P′i ), all the elements of �M(Pi, P′i )

appear in the summand in the R.H.S. of (12). Therefore, it follows that

∑
P−i∈M(Pi,P′i )

[
ui
(

f (Pi, P−i)
)
− ui

(
f (P′i , P−i)

)]
µi(P−i | Pi)

≥ ∑
P̄−i∈�M(Pi,P′i )

µi(P̄−i | Pi)
[
ui
(

f (P′i , P̄−i)
)
− ui

(
f (Pi, P̄−i)

)]
.

as required by (4). This completes the proof of the theorem.

�
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