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Abstract

We model a decision maker’s choice from an exogenously given list
of alternatives. In order to observe an alternative, the decision maker
must observe all preceding. If observing alternatives is costly, then
the decision maker may not observe all the alternatives in the list. We
characterize an optimal stopping rule in this setting, the stop-and-
choose rule from lists (SCR-l). This rule provides an algorithm that
describes when a rational decision maker will stop observing successive
alternatives in a list, and determines which alternative will be chosen.
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1 Introduction

We consider a decision maker (DM) who encounters alternatives in an exoge-
nously given list. In order to observe an alternative, the DM must observe all
the preceding alternatives in the list. When observing alternatives is costly,
the decision making problem is two-fold: when does the DM stop observ-
ing alternatives in the list and which alternative from the set that has been
observed will the DM choose?
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In this paper, we propose an optimal stop-and-choose rule in the above
setting. We present the following examples of our setting:

1. Netflix: The popular OTT platform, Netflix categorizes the content
on its platform: “popular on Netflix”, “continue watching”, “trending
now” etc. are examples of such categories. The titles and thumbnails
of each show within a category is displayed in a sequence. A viewer
can view only a small number of thumbnails at a time and must scroll
to the right to be able to observe the next available show in a category.
The viewer decides when to stop scrolling and which show from the
observed thumbnails to watch.

2. Hiring a candidate: Consider an HR manager who is interviewing can-
didates for a job. The candidates are interviewed in a pre-determined
sequence. Conducting each interview is costly and the manager de-
cides when to stop the search i.e., stop interviewing more candidates
and which one of the interviewed candidates to select. Note that this
problem is a modification of the classical secretary problem, which is
a well known example of optimal search problems. In the secretary
problem, the manager hires or rejects a candidate at the time of the
interview. Therefore, the last candidate to be interviewed is hired. In
our model, a candidate may be hired even if the manager continued
the search for some time after interviewing the candidate.

Decision making from lists has previously been explored in Rubinstein
and Salant (2006). Ishii et al. (2021) models choice from lists in a stochastic
setting. Dimitrov et al. (2015) characterize a special class of choice rules:
divide-and-choose rules from lists in which the decision maker may satisfice:
an alternative is determined, after which the DM stops observing successive
alternatives and chooses from the set observed. The paper closest to our
approach is Weitzman (1979), in which a stop-and-choose rule is developed
in a related setting: the decision maker chooses which alternatives to observe
and when to stop observing more alternatives. In Weitzman (1979), the
sequence in which alternatives are observed is determined by the DM. It
is shown that the optimal strategy for a DM is to observe the alternative
that has the highest “reservation price”1 in the set of alternatives that have
not been observed. The search stops when the reservation price for any
alternative that has not been observed is lesser than the maximum payoff
that an observed alternative yields. In our paper, the search problem faced
by the DM is affected by the exogenous sequence in which the alternatives

1Weitzman (1979) interprets this as analogous to internal rate of return
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appear: in order to observe an alternative that is at position k, the DM must
observe the preceding k− 1 alternatives. The stop-and-choose rule we model
is as follows: the DM continues to observe the next alternative in the list
if the maximum payoff from the set of observed alternatives is lower than
the ”reservation reward” of the next alternative. The reservation reward
depends on the sequence i.e. it takes into account the k − 1 alternatives
that need to be observed before the DM can reach the kth alternative. If
the maximum utility from an alternative in the set already observed exceeds
the reservation reward of the next alternative, the DM stops the search and
chooses the alternative that has the highest utility from the set that has been
observed.

2 Model

Let A denote the set of all monetary rewards. For simplicity, assume that
A = R+. The decision maker (DM) faces a predetermined sequence or list
of n ∈ N boxes, each containing some potential monetary reward. Any such
list is denoted by X = (Xi)

n
i=1. For any n ∈ N, let X denote the set of all

such lists of size n. For any X ∈ X and any i ∈ {1, 2, . . . , n}, Xi denote a
random variable, whose realized values, denoted by xi, are monetary rewards
(xi ∈ A). We assume that n is known by the DM. Given a listX ∈ X, the DM
believes that the potential rewards from any of the n boxes are distributed
according to a n dimensional joint cumulative distribution function F , i.e.,
the DM believes that X ∼ F . Here F is any n dimensional cumulative
probability distribution function defined over An. Suppose Fn denote the set
of all such n dimensional cumulative probability distribution function over
An Given a list X ∈ X, the DM, who wants to maximize his expected reward,
has to determine which boxes to open and which reward to choose among
the opened boxes. We assume that the DM cannot skip a box, i.e., given a
list X ∈ X, and any i ∈ {2, 3, . . . , n}, if the DM wants to open box i, then
he has to open all previous boxes Xj, where j ∈ {1, 2, . . . , i− 1}. Opening
a box is costly for the DM. We denote by ci the cumulative cost of opening
boxes X1, X2, . . . Xi. For any i < j; 0 < ci < cj. The DM may decide not to
open any boxes. In such a case, he earns a default monetary reward w ∈ A.

2.1 Belief modification

For any list X ∈ X, opening any box Xi is costly and in this model the cost
accumulates as the DM moves through the list. As such, we assume that the
DM uses F as a prior belief about the list and updates it based on observed
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rewards. In order to define this modification procedure, we introduce the
following notations:

� Marginal Distribution: Given X ∈ X and the DM’s belief that X ∼
F , one can construct the DM’s marginal beliefs as follows. For any
k ∈ {1, 2, . . . , n}, and any {i1, i2, . . . , ik} ⊆ {1, 2, . . . , n}, the marginal
cumulative distribution of (X(i1), X(i2), . . . , X(ik)) is defined as

F{i1,i2,...,ik}(.) =

∫
x(j)∈A for all j /∈{i1,i2,...,ik}

dF

For example, givenX ∼ F , the DM’s marginal belief aboutX1, denoted
by F1, is defined as

F1(x1) =

∫
x2∈A

∫
x3∈A

. . .

∫
xn∈A

dF

� Conditional Beliefs: Given a list X ∈ X and an i ∈ {1, 2, . . . , n− 1},
suppose the DM has opened all the boxes Xj, where j ∈ {1, 2, . . . , i}.
Let the observed reward vector be (x1, x2, . . . , xi). Let the remaining
list be denoted by X i. Note that X i = (Xj)

n
j=i+1. Now suppose that

the DM believes that conditioned on observing (x1, x2, . . . , xi), X
i ∼

G(x1,x2,...,xi). Note that G(x1,x2,...,xi) ∈ Fn−i for any (x1, x2, . . . , xi) ∈ Ai.

� Expected returns: Given a list X ∈ X and the DM’s belief X ∼ F , the
expected return from opening box X1 is

E(X1) =

∫
x1∈A

∫
x2∈A

. . .

∫
xn∈A

x1dF =

∫
x1∈A

x1dF1 ∈ A

As we assume that the DM cannot skip a box, so we assume that to
calculate expected return from any box Xi, where i ∈ {2, 3, . . . , n},
he takes into account the observed reward vector (x1, x2, . . . , xi−1). As
such the expected reward from opening box Xi for any i ∈ {2, 3, . . . , n}
is

E(Xi|x1, x2, . . . , xi−1) =

∫
xi∈A

∫
xi+1∈A

. . .

∫
xn∈A

xidG(x1,x2,...,xi)

Next, we introduce possible modification of the belief. We consider the fol-
lowing three methods of belief modification.
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Independence : Here, DM disregards the observed reward vector, and as-
sumes for any i ∈ {2, 3, . . . , n}

G(x1,x2,...,xi)(xi+1, xi+2, . . . , xn) = F{i+1,i+2,...,n}(xi+1, xi+2, . . . , xn)

In other words, under this modification scheme, given the list X ∈ X,
DM believes that each box Xi yields potential reward xi following the
cumulative distribution function Fi independent of any other box Xj.

Optimistic modification : Here the decision maker compares the observed
reward with the expected reward as follows.

For any i ∈ {2, 3, . . . , n}, if x1 ≥ E(X1), x2 ≥ E(X2|x1), . . . , xi−1 ≥
E(Xi−1|x1, x2, . . . , xi−2), then the DM’s belief about X i conditioned
on observing (x1, x2, . . . , xi−1), denoted by G(x1,x2,...,xi−1), satisfy the
following condition:∫
(xi,xi+1,...,xn)∈An−(i−1)

xidG(x1,x2,...,xi−1) ≥
∫
(xi,xi+1,...,xn)∈An−(i−1)

xidF
B
(x1,x2,...,xi−1)

where FB
(x1,x2,...,xi−1)

(xi, xi+1, . . . , xn) =
F (x1,x2,...,xn)

F1,2,...,i−1(x1,x2,...,xi−1)
is the usual

conditional cumulative distribution function derived from F .

Otherwise, the DM assumes

G(x1,x2,...,xi−1)(xi, xi+1, . . . , xn) = FB
(x1,x2,...,xi−1)

(xi, xi+1, . . . , xn)

In other words, under optimistic modification, if the DM observes that
among the opened boxes, his realized returns are at least as good as
the returns expected under his belief, then he can believe any distribu-
tion for the unobserved part of the list that results in a weakly higher
expected return for the immediate next box as compared to the ex-
pected return calculated from his original belief. But if the DM does
not observes that among the opened boxes, his realized returns are at
least as good as the returns expected under his belief, then he sticks
with his original belief.

Pessimistic modification : Here the decision maker compares the observed
reward with the expected reward as follows.

For any i ∈ {2, 3, . . . , n}, if x1 ≤ E(X1), x2 ≤ E(X2|x1), . . . , xi−1 ≤
E(Xi−1|x1, x2, . . . , xi−2), then the DM’s belief about X i conditioned
on observing (x1, x2, . . . , xi−1), denoted by G(x1,x2,...,xi−1), satisfy the
following condition:∫
(xi,xi+1,...,xn)∈An−(i−1)

xidG(x1,x2,...,xi−1) ≤
∫
(xi,xi+1,...,xn)∈An−(i−1)

xidF
B
(x1,x2,...,xi−1)
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Otherwise, the DM assumes

G(x1,x2,...,xi−1)(xi, xi+1, . . . , xn) = FB
(x1,x2,...,xi−1)

(xi, xi+1, . . . , xn)

In other words, under pessimistic modification, if the DM observes that
among the opened boxes, his realized returns are at most as good as
the returns expected under his belief, then he can believe any distribu-
tion for the unobserved part of the list that results in a weakly lower
expected return for the immediate next box as compared to the ex-
pected return calculated from his original belief. But if the DM does
not observes that among the opened boxes, his realized returns are at
most as good as the returns expected under his belief, then he sticks
with his original belief.

The map C : X −→ A is a choice rule from lists. We denote the reservation
reward associated with observing the ith box by vi: if the DM is paid vi,
he is indifferent between observing or not observing Xi. Next we propose a
class of choice rules as follows

Definition 1 A choice rule from lists C(·) is a stop-and-choose rule from
lists (SCRL) if for any X ∈ X:

(i) For any i ∈ {1, 2, . . . , n}, if maxxk∈A;k<i−ci−1 + xk ≤ vi then observe
xi. If not, stop.

(ii) If the decision maker has stopped after observing xi, for some i ≤ n,
then C(X) = argmaxxk∈A;k≤i −ci + xk.

According to SCRL, the DM observes the next alternative in a list if the
ex-ante expected utility from observing the alternative is higher than the
maximum utility that the DM can obtain from the set of alternatives that
have already been observed. Due to the list structure, the ex-ante expected
utility from observing an alternative includes the opportunity for observing
successive alternatives- if the DM wants to observe the kth alternative in a
list, he must observe all the preceding k−1 alternatives. Once the DM stops,
he chooses the utility maximizing alternative from the set observed.

We state and prove our main result: the characterization of SCRL.
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3 Result

Theorem 2 Assume that the DM follows independent belief modification.
Then any choice rule C is an SCRL if and only if

vi = max



−ci + vi
∫ vi
−∞ dFi +

∫∞
vi

xidFi,

−ci+1 + vi
∫ vi
−∞ dFi+1 +

∫∞
vi

xi+1dFi+1,

...

−cn + vi
∫ vi
−∞ dFn +

∫∞
vi

xndFn


Proof. We first show sufficiency. Consider a DM observing a list X ∈ X.
Suppose the reservation utility of the ith alternative in X is vi, where

vi = max



−ci + vi
∫ vi
−∞ dFi +

∫∞
vi

xidFi,

−ci+1 + vi
∫ vi
−∞ dFi+1 +

∫∞
vi

xi+1dFi+1,

...

−cn + vi
∫ vi
−∞ dFn +

∫∞
vi

xndFn


Note that, irrespective of the definition of vi, if the DM has observed i
boxes, then he will choose the maximum reward from the opened boxes.
So, if the decision maker has stopped after observing xi, for some i ≤ n,
then C(X) = argmaxxk∈A;k≤i−ci + xk. Next, we need to show that for any
i ∈ {1, 2, . . . , n}, under the above definition of vi, the DM will observe Xi if
maxxk∈A;k<i−ci−1+xk ≤ vi. Suppose for contradiction that the DM observes
Xi, but maxxk∈A;k<i−ci−1 + xk > vi. Note that vi is the minimum utility
that the DM requires in order to be indifferent to observing Xi. Note that
maxxk∈A;k<i−ci−1+xk denotes the maximum net reward the DM can achieve
if the DM observed all the boxes up to i−1. Then maxxk∈A;k<i−ci−1+xk > vi
shows that by observing box i, the DM is losing some reward, which contra-
dicts reward maximizing behavior of the DM and concludes the proof of the
sufficiency part, i.e, for the above definition of vi, any choice rule must be a
SCRL.

We now show necessity. For any X ∈ X, let C(X) be an SCRL. Suppose
the DM stops after observing the (i − 1)th alternative. By the definition of
SCRL,
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maxxj∈A;j≤(i−1)−cj + xj > vi

where vi is the reservation utility for observing Xi. The maximum expected
reward from {Xi, Xi+1, . . . , Xn} is

max

{
−ci +

∫ ∞

−∞
xidFi,−ci+1 +

∫ ∞

−∞
xi+1dFi+1, . . . ,−cn +

∫ ∞

−∞
xndFn

}
vi is set as the minimum utility that the DM requires in order to be indif-
ferent to observing alternatives on wards from i. Since the DM cannot skip
alternatives, vi must contain information of the maximum expected utility
that the DM can obtain by not stopping at i−1. Therefore, vi is the solution
of the dynamic programming problem (Weitzman (1979)):

vi = max

{
−ci +

∫ ∞

−∞
xidFi,−ci+1 +

∫ ∞

−∞
xi+1dFi+1, . . . ,−cn +

∫ ∞

−∞
xndFn

}
Note that in [0, vi] the DM is assured vi. This implies that

vi = max



−ci + vi
∫ vi
−∞ dFi +

∫∞
vi

xidFi,

−ci+1 + vi
∫ vi
−∞ dFi+1 +

∫∞
vi

xi+1dFi+1,

...

−cn + vi
∫ vi
−∞ dFn +

∫∞
vi

xndFn



Theorem 2 shows that the reservation utility characterizes SCRL. When
the DM encounters alternatives in a list, he compares the expected utility
from observing each subsequent alternative with the maximum utility he can
obtain from the set of alternatives that have already been observed. The
formulation of reservation utility takes into account the list structure: for
each position in the list considers not only the opportunity of observing the
alternative at that position, but also the opportunity of observing all suc-
cessive alternatives. The characterization under different methods of belief
modification is still in progress.
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