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Abstract

This paper analyses the properties of (strong) core allocations in a two-period

asymmetric information economy that also involves both negligible and non-

negligible agents as well as an infinite dimensional commodity space. Within

this setup, we allow the consumption set of each agent to be an arbitrary subset

of the commodity space that may not have any lower bound. Our first result

deals with robustness of the the core and the strong core allocations with respect

to the restrictions imposed on the size of the blocking coalitions in an economy

with only non-negligible agents. As an application of this result, we formulate a

characterization of the Aubin core in terms of the set of Aubin non-dominated

allocations in a finite economy. The second result is a generalization of the first

result to an economy that allow simultaneous presence of negligible as well as

non-negligible agents with the consideration of Aubin coalitions. Finally, we show

that (strong) core allocations are coalitional fair in the sense that no coalition

of negligible agents could redistribute among its members the net trade of any

other coalition containing all non-negligible agents in a way which could assign

a preferred bundle to each of its members, and vice versa.
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1 Introduction

The core of an economy is a solution concept which acknowledges the fact that coalitions

of agents may corporate to improve their own welfare. In other words, for any allocation

not belonging to the core, there is a coalition whose members achieve better commodity

bundles that the non-core allocation by redistributing their initial endowments with

themselves. In a classical exchange economy with a continuum of agents, the core

coincides with set of competitive allocations, refer to Aumann (1965). However, the

equivalence theorem fails to hold, in general, if there are some non-negligible market

participants in addition to the negligible ones (see Schitovitz (1973)). The purpose of

the paper is to study the core allocations in the exchange economy embodying large

number of agents some which are non-negligible. Note that the the market participants

become non-negligible due to the following two reasons: (i) first reason is some agents

may endowed with an exceptional initial endowments, because their initial ownership of

commodities are sufficiently large with respect to the total market endowment. This is

typical in monopolistic or, more generally, in oligopolistic markets; and (ii) the second

reason is, while the initial endowment is spread over of continuum of negligible agents,

some of them may join forces and decide a act a single agent in the form of cartels,

syndicates, or similar institutions.

The economic activity is taken into account uncertainty, where agents subscribe

contracts at time τ = 0 ( ex-ante) that are contingent upon the realized state of nature

at time τ = 1 (ex-post), in a way so that their expected payoff is maximized. In this

paper, we consider an infinite dimensional commodity space, as it arises naturally due

to several reasons: modeling allocations over an infinite time horizon, economies with

commodity differentiation, among others. We refer to Mas-colell and Zame (1991) for

more details. Our primary focus is an ordered Banach space having non-empty positive

interior. One major issues arises while dealing with main results is that Lyapunov’s

convexity theorem fails to hold in the exact form. The consumption set for each agent

in each state to assumed to an arbitrary subset of the commodity space, which may

not have any lower bound. Thus, not only the private information restricts the trade

of individuals in the ex-ante stage the structure of the consumption sets prevent us to

apply strong monotonicity condition at certain bundles.

In the above setup, we study the veto power of arbitrary sized coalitions for non-

core allocations and the coalitional fairness of the core allocations. This significantly

extends the scope of the theory, incorporating much larger of models as it involves the

four aspects together: negligible as well as non-negligible agents, infinite dimensional

commodity spaces, uncertainty with asymmetric information, and arbitrary consump-

2



tion sets not necessarily having lower bounds.

Extensions of the Schmeidler-Vind theorems: For an atomless economy with

restricted consumption sets and asymmetric information, we investigate the size of the

blocking coalition for a non-core allocation in our setup. This type of investigations

goes back to the seminal contributions of Schmeidler (1972) and Vind (1972) in a

framework with the positive cone of the Euclidean space as the consumption sets of

agents and without uncertainty. More precisely, Schmeidler (1972) showed that if a

feasible allocation is not the core of the economy then it can be blocked by coalitions

of small measures. Thus, the core (in particular, the set of competitive allocations)

can be implemented only through the formation of small coalitions. Schmeidler’s idea

of blocking mechanism was further extended by Vind (1972) by showing that for any

feasible allocation outside the core of an economy then for any measure ε less than

the measure of the grand coalition there is a coalition S whose measure is exactly ε

such that the non-core allocation is blocked by S. One of the implications of this

theorem is normative in the following sense: as an arbitrary large size of coalitions

are entitled to block each non-core allocation, the core can be seen as a solution sup-

ported by an arbitrary large majority of agents. Later, these results were extended to

several frameworks by Bhowmik and Cao (2012), Bhowmik and Cao (2013), Bhowmik

(2015), Bhowmik and Graziano (2015), Evren and Hüsseinov (2008), Hervés-Beloso

et al. (2000), Hervés-Beloso et al. (2005), Graziano and Romaniello (2012), Pesce

(2010) and Pesce (2014) among others. Recently, Bhowmik and Graziano (2020) have

extended this result in a setting where agents’ consumption sets are arbitrary subsets

(without any lower bound restrictions) of a finite dimensional space and ex ante trades

are defined in terms of some general restrictions. Such restrictions include two differ-

ent scenarios: asymmetric information economies and asset market economies. In the

present paper, we generalizes the above result of Bhowmik and Graziano (2020) to an

economy with an infinite dimensional commodity space but only considering asymmet-

ric information scenario. Not only that, our paper also extends all of the above results

in the following direction.

- First, we consider an ex-ante strong core allocation, which is a feasible allocation

that cannot be weakly blocked by a non-null coalition. By definition, the ex-ante

strong core allocation is an ex-ante core allocation, but the converse fails to hold, in

general. Nevertheless, by adopting continuity and strong monotonicity of preferences,

one can readily verify that two core notions are the same in a classical economy without

uncertainty with asymmetric information in which the positive cone is the consumption

set of each agent. However, in a model that involves either uncertainty with asymmetric

information or arbitrary consumption sets, such a conclusion cannot be immediately
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drawn in the presence of continuity and strong monotonicity of preferences. The present

paper deals with this issue and formulates a set of sufficient condition that ensures

the equivalence of two core notions in our framework. As a consequence, our Vind’s

theorem is also valid for the ex ante strong core in a framework of an infinite dimensional

commodity space.

- We show that the core of a mixed economy coincides with the core of an atomless

economy derived by splitting each atom into a continuum of small agents, and vice

versa. In view of this result and Vind’s theorem for atomless economies, we can gener-

alizes Vind’s theorem to a mixed economy by considering generalized coalitions. It is

worthwhile to pointing out that this result is the first generalization of Vind’s theorem

in an economy with asymmetric information and a finite dimensional commodity space,

where the feasibility is defined as exact and the consumption set for each agent is an

arbitrary subset of the commodity space.

Coalitional fairness of ex-core allocations: Next, we investigate the coalitional

fairness of core allocations, which is property of equity, introduced by Gabszewicz

in his seminal paper Gabszewicz (1975), in which bundle comparisons are allowed

between coalitions of agents according to the concept of coalitional envy.1 According

to Gabszewicz (1975), an allocation is coalitionally unfair if a coalition is treated under

the allocation in a discriminatory way by the market. More generally, an allocation

is coalitionally fair if no coalition could benefit from achieving the net trade of some

other coalition, which means under coalitional fairness, no coalition could redistribute

among its members the net trade of any other coalition in a way which could assign a

preferred bundle to each of its members. It is well-known that a core allocation is not

necessarily coalitionally fair in a mixed economy, refer to Gabszewicz (1975). Thus,

we restricts ourselves to coalitions containing either no large agents or all of them,

and show that any core allocation is coalitionally fair in the sense that no coalition of

small agents envies the net trade of a disjoint coalition comprised of all large agents

or vice versa. Therefore, large agents, despite of their privileged initial position, can

not enforce a core allocation because this would render the allocation unfair towards

some coalition of small agents, and vice versa. Related research in this direction either

focuses on a finite dimensional commodity space or an infinite dimensional commodity

space with the positive cone as the consumption set of each agent, see Bhowmik (2015),

Bhowmik and Graziano (2020), and Gabszewicz (1975). Thus, our result generalizes

the above results to centain extent.

1See also Schmeidler and Vind (1972) and Varian (1974).
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2 Description of the model

We consider a standard pure exchange economy with uncertainty and asymmetric in-

formation. We assume that the economic activity takes place over two periods τ = 0, 1.

The exogenous uncertainty is described by a measurable space (Ω,F ), where Ω is a

finite set denoting all possible states of nature at time τ = 1 and the σ-algebra F

denotes all events. At time τ = 0 (ex-ante stage) there is uncertainty about the state

of nature that will be realized at time τ = 1 (ex-post stage). At the ex-ante stage,

agents arrange contract on redistribution of their initial endowments. At τ = 1, agents

carry out previously made agreements, and consumption takes place2.

Economic agents: The space of economic agents is described by a complete proba-

bility space (T,T , µ), where T represents the set of agents, the σ-algebra T represents

the collections of allowable coalitions whose economic weights on the market are given

by µ. A non-null coalition of E is a member of T whose economic weight on the

market is positive. Since µ(T ) < ∞, the set T of agents can be decomposed in the

disjoint union of an atomless sector T0 of non-influential (small or negligible) agents

and the set T1 of influential (large or non-negligible) agents, which is the union of at

most countable family {A1, A2, · · · } of atoms of µ. Abusing notation, we also denote

by T1 the collection {A1, A2, · · · }. Thus, the space of agents not only allow us to in-

vestigate in a unified manner the markets that are competitive and the markets that

are not, but also deal with the simultaneous action of influential and non-influential

agents. This general representation permits to cover simultaneously the case of an

economy with a finite set of agents (when T0 is empty and T1 is finite), the case of an

atomless economy (when T1 is empty), the case of mixed markets in which an ocean

of negligible agents coexists with few influential agents (when both T0 and T1 have

positive measure). Moving from this representation, we can also identify two relevant

subfamilies from T by defining

T0 := {S ∈ T : S ⊆ T0} and T1 := {S ∈ T : T1 ⊆ S}.

Thus, T0 is a subfamily of T containing no atoms whereas T1 is a subfamily of T

containing all atoms. Finally, we denote by

T2 := T0 ∪T1 = {S ∈ T : S ∈ T0 or S ∈ T1}

the subfamily of T formed by coalitions containing either no atoms or all atoms.

2For simplicity, we assume that there are no endowments and thus no consumption at τ = 0.

Hence, agents are only concerned with allocating their second period (τ = 1) endowments.
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Commodity Spaces: The commodity space in our model is an ordered separable

Banach space with the interior of the positive cone is non-empty. We denote by Y the

commodity space of our economy whereas the notation Y+ is employed to denote the

positive cone of Y. Let Y++ be the interior of Y+.

Defining an economy: We introduce a mixed economy with uncertainity and asym-

metric information, and an ordered separable Banach space whose positive cone has

non-empty interior as the commodity space.

Definition 2.1. An economy is defined as E := {(Xt,Ft, ut, e(t, ·),Pt) : t ∈ T} with

the following specifications:

(A) Xt : Ω ⇒ Y denotes the (state-contingent) consumption set of agent t ∈ T 3;

(B) Ft is the σ-algebra generated by a measurable partition Pt of Ω (i.e. Pt ⊆ F )

denoting the private information of agent t;

(C) ut : Ω× Y→ R is the state-dependent utility function of agent t;

(D) e(t, ·) : Ω→ Y is the random initial endowment of agent t;

(E) Pt : Ω→ [0, 1] is the prior of agent t.

Available Information and Expected Utilities: The family of all paritions of

Ω is denoted by P. Since Ω is finite, P has only finitely many different elements:

P1, · · · ,Pn. We assume that Ti := {t ∈ T : Pt = Pi} is T -measurable for all

1 ≤ i ≤ n. For every 1 ≤ i ≤ n, define Gi to be the set of all functions ϕ : Ω→ Y such

that ϕ is Pi-measurable.4 For any x : Ω → Y, define the ex-ante expected utility

of agent t by the usual formula

Vt(x) =
∑
ω∈Ω

ut(ω, x(ω))Pt(ω).

We now state our main assumptions to be used throughout the paper.

Assumption 2.2. Consider an ecoonomy E as defined in Definition 2.1.

(A1) For all (t, ω) ∈ T × Ω, Xt(ω) is a closed convex cone.

(A2) The correspondence Θ : T × Ω ⇒ Y, defined by Θ(t, ω) := Xt(ω), is such that

Θ(·, ω) is T -measurable for all ω ∈ Ω.

3Notice that we do not impose non-negative constraints on consumption sets. Thus, short sales

are allowed.
4By Pi-measurability, we mean the measurability with respect to the σ-algebra generated by Pi.
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(A3) The mapping e(·, ω) : T → Y is T -measurable for all ω ∈ Ω and e(t, ω) is an

interior point of Xt(ω) for all ω ∈ Ω.

(A4) The mapping ϕ : T → [0, 1]Ω, defined by ϕ(t) = Pt, is T -measurable.

(A5) For all (t, ω) ∈ T1 × Ω, ut(ω, ·) is concave.

(A6) For all (t, ω) ∈ T × Ω, ut(ω, ·) is continuous and for all x ∈ R`, t 7→ ut(ω, x) is

T -measurable.

(A7) For all (t, ω) ∈ T × Ω, ut(ω, y) > ut(ω, x) for all x, y ∈ Xt(ω) with y ≥ x and

x 6= y.

(A8) For all (t, ω) ∈ T ×Ω, x ∈ At and ε > 0, there is an y ∈
⋂
{εGi : i ∈ K}∩B(0, ε)Ω

such that x+ y ∈ Xt and ut(ω, x(ω) + y(ω)) > ut(ω, x(ω))5.

(A′8) For all (t, ω) ∈ T ×Ω, x ∈ At and ε > 0, there is an y ∈
⋂
{εGi : i ∈ K}∩B(0, ε)Ω

such that x+ y ∈ intXt and ut(ω, x(ω) + y(ω)) > ut(ω, x(ω)).

Remark 2.3. The assumptions in (A1)-(A7) are standard in the literature of general

equilibrium in economies with asymmetric information and/ or restricted consumption

sets.

3 Extensions of the Schmeidler-Vind theorems

Our aim in this section is to introduce the (strong) core allocations in an economy

with a mixed measure space of agents and provide characterizations by means of the

size of the coalitions in the sense of Schmeidler (1972) and Vind (1972) in an economy

containing only a continuum of negligible agents or negligible as well as non-negligible

agents.

3.1 Defining Core Allocations

In this subsection, we first introduce the classical ex-ante (strong) core for a two

period economy with uncertainty, where it is assumed implicitly that the trade takes

place at time τ = 0 and that contracts are binding: they are carried out after the

resolution of uncertainty and there is no possibility of their renegotiation. Moreover,

the consumption of each agent is compatible with her private information. Secondly,

5B(0, ε) denotes the ball centered at 0 and radius ε in R`.
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we deal with the relationship between the two different notions of core allocations. We

start introducing the concept of an allocation, which is a specification of the amount

of commodities assigned to each agent.

Definition 3.1. An allocation in E is a Bochner integrable function f : T × Ω→ Y
such that

(i) f(t, ω) ∈ Xt(ω) for all (t, ω) ∈ T × Ω; and

(ii) f(t, ·) ∈ Gi for all (t, ω) ∈ Ti × Ω and all 1 ≤ i ≤ n.

It is said to be feasible if
∫
T
f(·, ω)dµ =

∫
T
e(·, ω)dµ for all ω ∈ Ω. We assume that e

is an allocation.

Our first notion of core aims to study the blocking mechanism under the assump-

tions that a coalition deviates from a proposed allocation if it’s members guarantee a

stictly better commodity bundle for themselves by the redistribution.

Definition 3.2. A feasible allocation f is ex-ante blocked by a non-null coalition

S if there is an allocation g such that Vt(g(t, ·)) > Vt(f(t, ·)) µ-a.e. on S, and∫
S

g(·, ω)dµ =

∫
S

e(·, ω)dµ

for all ω ∈ Ω. The ex-ante core of E , denoted by C (E ), is the set of feasible allocations

that are not ex ante blocked by any non-null coalition.

The next formalisation of core differs from the earlier one in the sense that agents

within a blocking coalition are not worse-off by the re-distribution whereas members

of a sub-coalition are strctly better-off.

Definition 3.3. A feasible allocation f is ex-ante weakly blocked by a non-null

coalition S if there is a sub-coalition R of S and an allocation g such that

(i) Vt(g(t, ·)) > Vt(f(t, ·)) µ-a.e. on R;

(ii) Vt(g(t, ·)) ≥ Vt(f(t, ·)) µ-a.e. on S; and

(iii)
∫
S
g(·, ω)dµ =

∫
S
e(·, ω)dµ for all ω ∈ Ω.

The ex-ante strong core of E , denoted by C s(E ), is the set of feasible allocations

that are not ex ante weakly blocked by any non-null coalition.
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Recognized that any ex ante strong core allocation is also an ex ante core allocation.

For the converse, we additionally assume in our next result that if an allocation f is ex

ante weakly blocked by a coalition S via some allocation g and if B is a sub-coalition of

S in which members of B strictly prefer g to f then the information available to both

coalitions are the same. The basic intuition is that members belonging to Ri, where

R := S \ B, can be allocated Pi-measurable consumption bundles which give higher

utilities by reducing the utility level of the members of Bi under g, due to continuity

and strong monotonicity. However, such an argument cannot be done easily in the

presence of arbitrary consumption sets. In what follows, we establish this result in

an economy with either no atom or finitely many atoms by applying Lemma 5.1 and

Lemma 5.2 in Appendix. To this end, we define IS := {i : µ(Si) > 0} for any non-null

coalition S, where Si := S ∩ Ti for all 1 ≤ i ≤ n.

Proposition 3.4. Suppose that f is weakly blocked by a coalition S via some G -

assignemnt g satisfying Vt(g(t, ·)) > Vt(f(t, ·)) µ-a.e. on some sub-coalition B of S

satisfying IB = IS. Further, assume that either of the following two conditions is

satisfied:

(1) T = T0; and

(2) B = S and T1 has finitely many atoms.

Then there are coalitions E,R and an G -assignment y such that

(i) R ⊆ E ⊆ S, IR = IE = IS and T1 ⊆ R;6

(ii) f is blocked by E via y;

(iii) g(t, ·) + z ∈ Xt for all z ∈ B(0, η)Ω and µ-a.e. on R; and

(iv) Vt(g(t, ·) + z) > Vt(f(t, ·)) for all z ∈ B(0, η)Ω and µ-a.e. on R.

Proof. The proof of the proposition is relegated to Appendix.

3.2 The Size of Blocking Coalitions in a continuum economy

In this subsection, we address the issues related to the size of a bolcking coalition,

extending the corresponding results of Schmeidler (1972) and Vind (1972) to the case

of a continuum economy with arbitrary consumption sets and private information.

6If T1 = ∅ then T1 ⊆ R is automatically satisfied.
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Extending the Schmeidler Theorem: The insight of Schmeidler theorem was that,

in a continuum economy, if a feasible non-core allocation is blocked by some coalition

S then it can also be blocked by a coalition of any given measure less than that of

S. The immediate implication of this theorem includes the fact that the core (and

thus, the set of competitive allocations) can be implemented by the formation of small

coalitions only. In what follows, we extend this result to our framework. This definitely

extend the corresponding result of Bhowmik and Graziano (2019) to a certain extent.

It is worthwhile to pointing out that the techniques adopted in the proof of Bhowmik

and Graziano (2019) are not appropriate in our setup of infinitely many commodities.

Thus, in order to obtain the Schmeidler theorem in our framework, we first establish

the following proposition. This proposition can be considered as an extension of the

Lyapunov convexity theorem.

Proposition 3.5. Let E be a continuum economy and let the assumptions (A1)-(A8)

be satisfied. Suppose that ψ, f and g are allocations such that Vt(g(t, ·)) > Vt(f(t, ·))
µ-a.e. on some non-null coalition S and 0 < δ < 1. Assume further that g(t, ω) is an

interior point of Xt(ω) for all (t, ω) ∈ R × Ω for some sub-coalition R of S satisfying

IR = IS. Then there are an η0 > 0, two non-null coalitions B and C, and an allocation

ϕ such that

(i) C ⊆ B ⊆ S, IC = IB = IS and µ(B) = δµ(S);

(ii) ϕ(t, ω) + z(ω) ∈ Xt(ω) for all z(ω) ∈ B(0, η0) and (t, ω) ∈ C × Ω;

(iii) Vt(ϕ(t, ·) + z) > Vt(f(t, ·)) for all z ∈ B(0, η0)Ω and µ-a.e. on C;

(iv) Vt(ϕ(t, ·)) > Vt(f(t, ·)) for all z ∈ B(0, η0)Ω and µ-a.e. on B \ C; and

(v)
∫
B

(ϕ(·, ω)− ψ(·, ω))dµ = δ
∫
S
(g(·, ω)− ψ(·, ω))dµ for all ω ∈ Ω.

Proof. The proof of the proposition is relegated to Appendix.

The following theorem is an immediate implication of above proposition, which

extends Schmeidler’s (1972) theorem to our framework.

Theorem 3.6. Consider a continuum economy E and assume that the assumptions

(A1)-(A8) are satisfied. Let f be a feasible allocation E blocked by some coalition S.

Then for any ε ∈ (0, µ(S)), there is a coalition R such that µ(R) = ε and f is blocked

by R.

Proof. The proof of the theorem is relegated to Appendix.
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Extending the Vind Theorem: The Vind (1972) states that, in a continuum econ-

omy, if a feasible allocation is not in the core of the economy then there is a blocking

coalition of any given measure less than the measure of the grand coalition. Thus, the

core allocations (and thus, the competitive allocations) can also be characterized by

coalitions of arbitrary large sizes. We now intended to show a similar result in our

framework. To this end, we first the establish the following result, which claims that

if an allocation is blocked by a coalition S via some allocation g then there is another

allocation h in which everbody is better off than what she gets under f . This Propo-

sition extends the corresponding results in Bhowmik and Cao (2013), Hervés-Beloso

and Moreno-Garćıa (2008), and Vind (1972).

Proposition 3.7. Suppose that f and g are two allocations such that Vt(g(t, ·)) >

Vt(f(t, ·)) µ-a.e. on some non-null coalition S with g(t, ω) being an interior point of

Xt(ω) for all (t, ω) ∈ R × Ω for some sub-coalition R of S satisfying IR = IS, and

0 < δ < 1. Then there exist some allocation h such that Vt(h(t, ·)) > Vt(f(t, ·)) µ-a.e.

on S, h(t, ·) is an interior point of Xt for all t ∈ G for some sub-coalition G of S with

IG = IS, and ∫
S

h(·, ω)dµ =

∫
S

(δg(·, ω) + (1− δ)f(·, ω))dµ

for all ω ∈ Ω.

Proof. The proof of the proposition is relegated to Appendix.

Corollary 3.8. Consider now a mixed economy where all large agents have continuous

and quasi-concave utility functions. For any large agent A and x, y ∈ XA, if VA(y) >

VA(x) and 0 < δ < 1 then, by Lemma 5.26 of Aliprantis and Border (2006), we have

VA(δy + (1 − δ)x) > VA(x). In view of this, the conclusion of Proposition 3.7 can be

obtained in a mixed model.

Next, we formulate a version of Vind’s (1972) theorem on the blocking of an arbi-

trary coalition.

Theorem 3.9. Consider a continuum economy E in which the assumptions (A1)-

(A′8) are satisfied. Let f be a feasible allocation such that f /∈ C (E ). Then for any

ε ∈ (0, µ(T )), there is some coalition R such that µ(R) = ε and f is blocked by R.

Proof. The proof of the theorem is relegated to Appendix.

Remark 3.10. We now complete the proof by replacing the assumption [A′8] with

IT\S ⊆ IS and [A8]. Let D := T \S. For each i ∈ ID, there is some Fi ∈ TDi such that
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µ(Fi) = δµ(Di) and

bi(ω) := δ

∫
Di

(g(·, ω)− e(·, ω)) dµ−
∫
Fi

(g(·, ω)− e(·, ω)) dµ ∈ B (0, ηδµ(Ci)) .

Define z : C × Ω → Y by letting z(t, ω) := bi(ω)
δµ(Ci)

if (t, ω) ∈ Ri × Ω and i ∈ ID; and

z(t, ω) := 0, otherwise. Let g̃ : T × Ω→ Y be an allocation such that

g̃(t, ω) :=

{
g(t, ω)− z(t, ω), if (t, ω) ∈ C × Ω;

g(t, ω), otherwise.

By Proposition 3.7, there exist some G -assignment h such that Vt(h(t, ·)) > Vt(f(t, ·))
µ-a.e. on S, and ∫

S

h(·, ω)dµ =

∫
S

(δg̃(·, ω) + (1− δ)f(·, ω))dµ

for all ω ∈ Ω. We define an assignment y : T × Ω→ Y defined by

y(t, ω) :=

{
ψ(t, ω), if (t, ω) ∈ F × Ω;

h(t, ω), otherwise.

It can be raedily verified that f is blocked by the coalition E := F ∪ S via y.

As an application of Theorem 3.9, we have the following result.

Theorem 3.11. The Aubin core of E finite coincides with the set of feasible allocations

that are Aubin non-dominated in E finite.

Proof. The proof of the theorem is relegated to Appendix.

3.3 The Size of Blocking Coalitions in a mixed economy

In this subsection, we first associate E with an atomless ecomomy Ẽ and study the con-

nection between the ex-ante core allocations of these two economies. This extends the

result of Greenberg and Shitovitz (1986) and some of its follow up papers as mentioned

in Section 1.

Given the economy E , the economy Ẽ is obtained by splitting each large agent into

a continuum of small agents whose characteristics are the same as that of large agent.

Therefore, the space of agents of Ẽ , denoted by (T̃ , T̃ , µ̃), satisfies the following: (i)

T̃0 = T0 and µ̃(T̃1) = µ(T1), where T̃1 := T \T0; (ii) T̃ and µ̃ are obtained by the direct
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sum of T and µ restricted to T0 and the Lebesgue atomless measure space over T̃1;

and (iii) each atom Ai one-to-one corresponds to a Lebesgue measurable subset Ãi of

T̃1 such that µ(Ai) = µ̃(Ãi), where {Ãi : i ≥ 1} can be expressed as the disjoint union

of the intervals {Ãi : i ≥ 1} given by Ã1 := [µ(T0), µ(T0) + µ(A1)), and

Ãi :=

[
µ(T0) + µ

(
i−1⋃
j=1

Aj

)
, µ(T0) + µ

(
i⋃

j=1

Aj

))
,

for all i ≥ 2. Furthermore, the space of states of nature and the commodity space of

Ẽ are the same as those of E . Finally, the characteristics (X̃tF̃t, ũt, ẽ(t, ·), P̃t) of each

agent t ∈ T̃ in Ẽ are defined as follows:

X̃t :=

{
Xt, if t ∈ T0;

XAi , if t ∈ Ãi,

F̃t :=

{
Ft, if t ∈ T0;

FAi , if t ∈ Ãi,

ũt :=

{
ut, if t ∈ T0;

uAi , if t ∈ Ãi,

ẽ(t, ·) :=

{
e(t, ·), if t ∈ T0;

e(Ai, ·), if t ∈ Ãi,
and

P̃t :=

{
Pt, if t ∈ T0;

PAi , if t ∈ Ãi.
We now introduce some notations for the rest of the section. To an allocation f in E ,

we associate an allocation f̃ := Ξ[f ] in Ẽ , defined by

f̃(t) :=

{
f(t), if t ∈ T0;

f(Ai), if t ∈ Ãi.

Reciprocally, for each allocation f̃ in Ẽ , we define an allocation f := Φ[f̃ ] in E such

that

f(t) :=

{
f̃(t), if t ∈ T0;

1
µ(Ai)

∫
Ai
f̃dµ̃, if t = Ai.

Recognized that if f is a feasible allocation in E then Ξ[f ] is a feasible allocation in Ẽ .

Similarly, for each feasible allocation f̃ in Ẽ , the allocation Φ[f̃ ] is feasible in E .

13



We show that an allocation is in the ex ante core of a mixed economy assigns

indifferent consumption plans to all large agents. This is due to the fact that all agents

have the same characteristics.

Proposition 3.12. Let the assumptions (A1)-(A8) be satisfied for a mixed economy

E . Let R be a coalition in T1
7 having the same characteristics. If f is in the ex ante

core of E then Vt(f(t, ·)) = Vt(xf ) µ-a.e. on R, where

xf (ω) :=
1

µ(R)

∫
R

f(·, ω)dµ

for all ω ∈ Ω.

Proof. The proof of the proposition is relegated to Appendix.

Remark 3.13. If Y is finite dimensional then one can dispense with the assumption A′8.

In fact, the assumption A′8 help us to apply Proposition 3.5 in the proof of Proposition

3.12. In the case of finite dimension, we can just use A8 and apply Lyapunov convexity

theorem instead of Proposition 3.5.

Lemma 3.14. Let E be a continuum economy and let the assumptions (A1)-(A8) be

satisfied. Suppose that f and g are allocations such that Vt(g(t, ·)) > Vt(f(t, ·)) µ-a.e.

on some coalition S and g(t, ω) is an interior point of Xt(ω) for all (t, ω) ∈ R×Ω for

some sub-coalition R of S satisfying IR = IS. Assume further that µ(S ∩H) ≥ α > 0

for some coalition H of E . Then there are a coalition B and an allocation h such that

f is blocked by B via h and µ(B ∩H) = α.

Proof. The proof of the lemma is relegated to Appendix.

Theorem 3.15. Let E be a mixed economy satisfying the assumptions (A1)-(A8). If

f̃ ∈ C (Ẽ ) then f ∈ C (E ).

Proof. The proof of theorem is relegated to Appendix.

Theorem 3.16. Let E be a mixed economy satisfying the assumptions (A1)-(A8).

Suppose also that R ∈ T1 is a coalition having the same characteristics. Then f ∈
C (E )⇒ f̃ ∈ C (Ẽ ) if either of the following two conditions are true:

(i) (A′8) is satisfied and R = T1 has at least two elements; and

(ii) T1 has exactly one element and µ(R \ T1) > 0.

7If T1 is empty then R contains only negligible agents.
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Proof. The proof of the theorem is relegated to Appendix.

In view of above results and Theorem 3.9, one can readily derive the following result

as in Bhowmik and Graziano (2015).

Theorem 3.17. Consider a mixed economy E in which the assumptions (A1)-(A′8) are

satisfied. Let f be a feasible allocation such that f /∈ C (E ). Then for any ε ∈ (0, µ(T )),

there is some coalition R such that µA(R) = ε and f is blocked by R.

4 Coalitional Fairness of Core Allocations

In this section, we study the coalitional fairness of the ex ante core allocations. This

means that the stability of an allocation under the coalitional improvement guarantees

that it is also equitable in the sense that no coalition envies the net trade of any other

disjoint coalition. The concept of a coalitionally fair allocation was first proposed by

Gabszewicz in his seminal paper Gabszewicz (1975) for an exchange economy, where

an allocation is said to be coalitionally fair if no coalition can redistribute among

its members the net trade of any other coalition, in such a way that each of them is

better-off. It is worthwhile to pointing out that competitive equilibrium allocations

are coalitionally fair, which also belongs to the core of the economy. For a classical

economy with an atomless measure space of agents, Aumman’s core-equivalence theo-

rem guarantees that the set of coalitionally fair allocations coincides with the core of

the economy. However, it is unclear to us whether such a result hold true whenever

the consumption sets are not bounded from below and restrictions imposed on ex ante

trade. On the other hand, in a classical mixed economy, it is well known (refer to Shi-

tovitz (????????????)) that the core-equivalence theorem does not hold in general, and

one should expect a kind of exploitation of small agents by large agents. Fortunately,

Bhowmik and Graziano (?????) obtained a partial result on the coalitional fairness

of the core allocations in the sense that no coalition of small agents envies the net

trade of a disjoint coalition comprised of all large agents and vice versa in a framework

similar to us but only for finitely many commodities. This result extends Theorem 2

in Gabszewicz (1975), who established the result in a classical deterministic economy

with finitely many commodities.

The first notion fairness requires that no coalition of small agents envies the net

trade of a disjoint coalition comprised of all large agents.

Definition 4.1. A feasible allocation f is called C(T0,T1)(E )-fair if there do not exist

two disjoint elements S ∈ T0, E ∈ T1 and an G -assignment g such that µ-a.e. on S

and for each ω ∈ Ω:
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(i) Vt(g(t, ·)) > Vt(f(t, ·)); and

(ii)

∫
S

(g(·, ω)− e(·, ω))dµ =

∫
E

(f(·, ω)− e(·, ω))dµ.

In what follows, we show that any allocation in the ex-ante core is coalitionally fair

in a way that no coalition of small agents can redistribute among its members the net

trade of any other coalition containing all large agents, in such a way that each of them

is better-off.

Theorem 4.2. Let (A1)-(A?) be satisfied. Then any allocation in the ex-ante core of

E is C(T0,T1)(E )-fair.

Proof. The proof of the theorem is relegated to Appendix.

In the next notion fairness, the role of coalitions are opposite, i.e., no coalition

containing all large agents envies the net trade of a disjoint coalition of small agents.

Definition 4.3. A feasible allocation f is called C(T1,T0)(E )-fair if there do not exist

two disjoint elements S ∈ T1, E ∈ T0 and an G -assignment g such that µ-a.e. on S

and for each ω ∈ Ω:

(i) Vt(g(t, ·)) > Vt(f(t, ·)); and

(ii)

∫
S

(g(·, ω)− e(·, ω))dµ =

∫
E

(f(·, ω)− e(·, ω))dµ.

To prove that any ex-ante core allocation is C(T1,T0)(E )-fair we establish the follow-

ing lemma.

Lemma 4.4. Assume that f and h are two allocations such that Vt(h(t, ·)) > Vt(f(t, ·))
µ-a.e. on some coalition S. Then there exist 0 < λ, η < 1, a sub-coalition R of S and

an allocation such that

(i) y(t, ·) + z ∈ Xt for all z ∈ B(0, η)Ω and µ-a.e. on R;

(ii) Vt(y(t, ·) + z) > Vt(f(t, ·)) for all z ∈ B(0, η)Ω and µ-a.e. on S;

(iii) Vt(y(t, ·)) > Vt(f(t, ·)) for all z ∈ B(0, η)Ω and µ-a.e. on S \R; and

(iv)
∫
S
(y − e)dµ = (1− λ)

∫
S
(h− e)dµ.

Proof. The proof of theorem is relegated to Appendix.
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The following theorem demonstrates that any allocation in the ex-ante core is coali-

tionally fair in a way that no coalition comprised of all large agents can redistribute

among its members the net trade of any other coalition containing only small agents,

in such a way that each of them is better-off.

Theorem 4.5. Let (A1)-(A?) be satisfied. Then any allocation in the ex-ante core is

C(T1,T0)(E )-fair.

Proof. The proof the theorem is relegated to Appendix.

5 Appendix

Lemma 5.1. Suppose that f and g are two G -allocations such that Vt(g(t, ·)) >

Vt(f(t, ·)) µ-a.e. on some coalition S with g(t, ω) being an interior point of Xt(ω)

for all (t, ω) ∈ S × Ω. Then for any 0 < ε < µ(S), there are some η > 0 and a

sub-coalition R of S such that

(i) µ(R) > µ(S)− ε;

(ii) g(t, ω) + z(ω) ∈ Xt(ω) for all z(ω) ∈ B(0, η) and (t, ω) ∈ R× Ω; and

(iii) Vt(g(t, ·) + z) > Vt(f(t, ·)) for all z ∈ B(0, η)Ω and µ-a.e. on R.

Proof. Define a correspondence Υ : S ⇒ R+ by letting

Υ(t) :=
{
η ∈ (0,∞) : g(t, ·) + z ∈ Xt and Vt(g(t, ·) + z) > Vt(f(t, ·)) for all z ∈ B(0, η)Ω

}
.

By the continuity of preferences and the fact that g(t, ω) is an interior point of Xt(ω)

for all (t, ω) ∈ S × Ω, we have Υ(t) 6= ∅ µ-a.e. on S. As Υ(t) is bounded from above,

the function ϕ : T → R+, defined by ϕ(t) = supΥ(t), is well-defined. We show that ϕ

is TS-measurable. To this end, first note that the function ψ : S × YΩ → R, defined

by ψ(t, z) := Vt(g(t, ·) + z) − Vt(f(t, ·)), is a Carathéodory function, and thus, it is

TS ⊗B(YΩ)-measurable. Define a correspondence G : S ⇒ YΩ by letting

G(t) :=
{
z ∈ YΩ : ψ(t, z) > 0

}
.

It follows that G is non-empty valued and has TS⊗B(YΩ)-measurable graph. Consider

a correspondence H : S ⇒ YΩ defined by

H(t) :=
{
z ∈ YΩ : g(t, ω) + z(ω) ∈ Xt(ω) for all ω ∈ Ω

}
.
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Due to the closeness of Xt(ω), H(t) can be equivalently expressed as

H(t) =
{
z ∈ YΩ : dist(g(t, ω) + z(ω), Xt(ω)) = 0 for all ω ∈ Ω

}
.

In view of the fact that 0 ∈ H(t), we have H(t) 6= ∅ for all µ-a.e. on S. Moreover,

GrH is TS ⊗B(YΩ)-measurable as GrH = y−1({0}), where y : S × YΩ → R, defined

by y(t, ω) := dist(g(t, ω) + z(ω), Xt(ω)), is TS ⊗ B(YΩ)-measurable. Finally, define

a correspondence Φ : S ⇒ YΩ such that Φ(t) := G(t) ∩ H(t) for all t ∈ S. As

0 ∈ Φ(t), we have Φ(t) 6= ∅ for all t ∈ S. Moreover, GrΦ is TS ⊗B(RΩ)-measurable.

Analogously, the correspondnce Θη : S ⇒ YΩ, defined by Θη(t) := B(0, η)Ω, has

TS ⊗B(YΩ)-measurable graph, for all η > 0. Thus,

Υ(t) = {η ∈ R+ : Θη(t) ⊆ Φ(t)} = {η ∈ R+ : Λη(t) = ∅} ,

where Λη : S ⇒ YΩ, defined as Λη(t) := Θη(t)∩(YΩ\Φ(t)), has TS-measurable graph.

Finally, the TS-measurability of ϕ follows from the fact that for each α > 0, we have

{t ∈ S : ϕ(t) < α} =
⋃

η∈Q∩(0,α)

ProjSΛη.

For each η ∈ Q ∩ (0, 1), define Bη := {t ∈ S : ϕ(t) ≥ η}. Thus, {Bη : η ∈ Q ∩ (0, 1)}
is family of TS-measurable sets such that Bη ⊆ Bη′ if and only if η ≥ η′ and S ∼⋃
{Bη : η ∈ Q ∩ (0, 1)}8. Let ε ∈ (0, µ(S)). Then there is some η0 ∈ Q ∩ (0, 1) such

that µ(Bη0) > µ(S)− ε. Set R := Bη0 and note that, for t ∈ R, as ϕ(t) ≥ η0, we have

B(0, η0)Ω ⊆ Φ(t). This completes the proof.

The following lemma on the convexity of vector measure is an application of the

infinite dimensional version of the Lyapunov convexity theorem (refer to Uhl (???????)),

whose proof can be found in Bhowmik and Cao (2013) and Evren and Hüsenov (2008).

Lemma 5.2. Consider a continuum economy and assume that f ∈ L1

(
µ,YΩ

)
. Suppose

also that S,R are two coalitions of E such that µ(S ∩R) > 0. Then,

H := cl

{(
µ(B ∩R),

∫
B

fdµ

)
: B ∈ TS

}
is a convex subset of R × YΩ. Moreover, for any 0 < δ < 1, there is a sequence

{Gn}n≥1 ⊆ TS such that µ(Gn ∩R) = δµ(S ∩R) for all n ≥ 1 and

lim
n→∞

∫
Gn

f(·, ω)dµ = δ

∫
S

f(·, ω)dµ

for all ω ∈ Ω.

8C ∼ D means µ(C∆D) = 0, where C∆D = (C \D) ∪ (D \ C).
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Proof of Proposition 3.4: It is given that

(i) Vt(g(t, ·)) ≥ Vt(f(t, ·)) µ-a.e. on S;

(ii) Vt(g(t, ·)) > Vt(f(t, ·)) µ-a.e. on B and IB = IS; and

(iii)
∫
S
g(·, ω)dµ =

∫
S
e(·, ω)dµ for all ω ∈ Ω.

Define ϕ : T × Ω × (0, 1) → Y by letting ϕ(t, ω, λ) := λg(t, ω) + (1 − λ)e(t, ω). By

Lemma 5.26 of Aliprantis and Border (2005), we conclude that ϕ(t, ω, λ) is an interior

point of Xt(ω) for all (t, ω, λ) ∈ T ×Ω× (0, 1). Let Υ : B ⇒ (0, 1) be a correspondence

such that

Υ(t) := {λ ∈ (0, 1) : Vt(ϕ(t, ·, λ)) > Vt(f(t, ·))} .

By the continuity of preference, we have Υ(t) 6= ∅ µ-a.e. on B. Also, GrΥ is TB ⊗
B((0, 1))-measurable as GrΥ = ψ−1({0}), where ψ : B × (0, 1) → R, defined by

ψ(t, λ) := Vt(ϕ(t, ·, λ)) − Vt(f(t, ·)), is TB ⊗B((0, 1))-measurable. Therefore, Υ has

TB-measurable selection γ. For each λ ∈ (0, 1) ∩ Q, define Bλ := {t ∈ B : γ(t) ≥ λ}.
Thus, {Bλ : λ ∈ Q ∩ (0, 1)} is family of TB-measurable sets such that Bλ ⊆ Bλ′ if and

only if λ ≤ λ′ and B =
⋃
{Bλ : λ ∈ Q ∩ (0, 1)}. Let ε > 0 be such that

ε < min{µ(Bi) : i ∈ IB} if T1 = ∅,

and

ε < min{µ(Bi) : i ∈ IB} and ε < min{µ(Ai) : 1 ≤ i ≤ n} if T1 6= ∅,

where {A1, · · · , An} is the collection of all atoms in T1. Therefore, there is some

λ0 ∈ (0, 1) ∩ Q such that µ(Bλ0) > µ(B) − ε. Hence, IBλ0 = IB = IS and T1 ⊆ Bλ0 .

Similar to above, by Lemma 5.1, there are some η > 0 and a sub-coalition R of Bλ0

such that

(a) IR = IBλ0 and T1 ⊆ R;

(b) ϕ(t, ω, λ0) + z(ω) ∈ Xt(ω) for all z(ω) ∈ B(0, η) and (t, ω) ∈ R× Ω; and

(c) Vt(ϕ(t, ·, λ0) + z) > Vt(f(t, ·)) for all z ∈ B(0, η)Ω and µ-a.e. on R.

Define F := S \R and note that IF ⊆ IS. Pick an i ∈ IF . By Lemma 5.2, there exists

a sequence {Gn}n≥1 ⊆ TFi such that µ(Gn) = λ0µ(Fi) and for all ω ∈ Ω,

lim
n→∞

∫
Gn

(g(·, ω)− e(·, ω))dµ = λ0

∫
Fi

(g(·, ω)− e(·, ω)) dµ.
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The function ξn : Ω→ Y, defined by

ξn(ω) = λ0

∫
Fi

(g(·, ω)− e(·, ω)) dµ−
∫
Gn

(g(·, ω)− e(·, ω)) dµ,

satisfies ξn ∈ Gi for all n ≥ 1 and {‖ξn(ω)‖ : n ≥ 1} converges to 0 for all ω ∈ Ω.

Choose an ni ≥ 1 such that ξni(ω) ∈ B
(

0, ηµ(Ri)
2|IF |

)
, for all ω ∈ Ω. Define z : R×Ω→ Y

by letting z(t, ω) :=
ξni (ω)

µ(Ri)
if (t, ω) ∈ Ri × Ω and i ∈ IF ; and z(t, ω) := 0, otherwise.

Let

D :=
⋂{

ηµ(R)

2
Gi : 1 ≤ i ≤ n

}
∩ B

(
0,
ηµ(R)

2

)Ω

.

Define C :=
⋃
{Gni : i ∈ IF}. As before, one can find an allocation ξ : C × Ω → Y

such that ξ(t, ·) ∈ D and Vt(g(t, ·) + ξ(t, ·)) > Vt(g(t, ·)) µ-a.e. on C. Define

ζ :=
1

µ(C)

∫
C

ξdµ.

By Lemma 5 in Shitovitz (1973), one has ζ ∈ D, which further implies α := ζµ(C) ∈ D.

Consequently,

β :=
α

µ(R)
∈
⋂{η

2
Gi : 1 ≤ i ≤ n

}
∩ B

(
0,
η

2

)Ω

.

Finally, we define an assignment y : T × Ω→ Y defined by9

y(t, ω) :=


ϕ(t, ω, λ0)− β(ω) + z(t, ω), if (t, ω) ∈ R× Ω;

g(t, ω) + ξ(t, ω), if (t, ω) ∈ C × Ω;

g(t, ω), otherwise.

Recognized that y is an G -allocation with Vt(y(t, ·)) > Vt(f(t, ·)) µ-a.e. on E := C∪R.

It can be readily verified that∫
E

(y(·, ω)− e(·, ω))dµ = λ0

∫
S

(g(·, ω)− e(·, ω))dµ = 0.

For each t ∈ Ri, define

ηi := min {η − dist (0,−β(ω) + z(t, ω)) : ω ∈ Ω} .10

Let η0 := min{ηi : i ∈ IR}. As a consequence, we have y(t, ·) + B(0, η0)Ω ⊆ Xt and

Vt(y(t, ·) + z) > Vt(f(t, ·)) µ-a.e. on R. This completes the proof.

Proof of Proposition 3.5: Let ε > 0 be such that ε < min{µ(Ri) : i ∈ IR}. By

Lemma 5.1, one can find an η > 0 and a sub-coalition C of R such that

9ξ(t, ω) denotes the ωth-coordinate of ξ(t).
10Note that z(·, ω) is constant on Ri.
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(i) µ(C) > µ(R)− ε;

(ii) g(t, ω) + z(ω) ∈ Xt(ω) for all z(ω) ∈ B(0, η) and (t, ω) ∈ C × Ω; and

(iii) Vt(g(t, ·) + z) > Vt(f(t, ·)) for all z ∈ B(0, η)Ω and µ-a.e. on C.

It follows from (i) that IC = IR = IS and IS\C ⊆ IS. Pick an i ∈ IC . By Lemma 5.2,

there exists a sequence {Gn}n≥1 ⊆ TCi such that µ(Gn) = δµ(Ci) and for all ω ∈ Ω,

lim
n→∞

∫
Gn

(g(·, ω)− ψ(·, ω))dµ = δ

∫
Ci

(g(·, ω)− ψ(·, ω)) dµ.

The function ξn : Ω→ Y, defined by

ξn(ω) = δ

∫
Ci

(g(·, ω)− ψ(·, ω)) dµ−
∫
Gn

(g(·, ω)− ψ(·, ω)) dµ,

satisfies ξn ∈ Gi for all n ≥ 1 and {‖ξn(ω)‖ : n ≥ 1} converges to 0 for all ω ∈ Ω.

Choose an ni ≥ 1 such that ξni(ω) ∈ B
(

0, ηδµ(Ci)
2

)
for all i ∈ IS and ω ∈ Ω. Similarly,

for each i ∈ ID (where D := S \ C), there is some Fi ∈ TDi such that µ(Fi) = δµ(Di)

and

bi(ω) := δ

∫
Di

(g(·, ω)− ψ(·, ω)) dµ−
∫
Fi

(g(·, ω)− ψ(·, ω)) dµ ∈ B
(

0,
ηδµ(Ci)

2

)
.

For each ω ∈ Ω, define zi(ω) := bi(ω) if i ∈ ID; and zi(ω) := 0, if i ∈ IS \ ID.

Analogously, define

Ki :=

{
Gni ∪ Fi, if i ∈ ID;

Gni , if i ∈ IS \ ID,

and

Si :=

{
Ci ∪Di, if i ∈ ID;

Ci, if i ∈ IS \ ID.

For each i ∈ IS, define a function ϕi : Ki × Ω→ Y such that

ϕi(t, ω) =

{
g(t, ω) + 1

δµ(Ci)
(ξni(ω) + zi(ω)), if (t, ω) ∈ Gni × Ω;

g(t, ω), otherwise.

It follows that ϕi(t, ·) − e(t, ·) is Fi-measurable. Furthermore, in the light of (ii) and

(iii), we have ϕi(t, ω) ∈ Xt(ω) for all (t, ω) ∈ Ki×Ω and Vt(ϕ
i(t, ·)) > Vt(f(t, ·)) µ-a.e.

on Ki. Lastly, note that∫
Ki

(ϕi(·, ω)− ψ(·, ω))dµ = δ

∫
Si

(g(·, ω)− ψ(·, ω))dµ
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for all ω ∈ Ω. Let B :=
⋃
{Ki : i ∈ IS} and

η0 := min

{
η − dist

(
0,

1

δµ(Ci)
(ξni(ω) + zi(ω))

)
: i ∈ IR and ω ∈ Ω

}
.

Thus, the function ϕ : T ×Ω→ Y, defined by ϕ(t, ω) := ϕi(t, ω) for all (t, ω) ∈ Ti×Ω,

satisfies the requied properties for the above choices of B, C and η0.

Proof of Theorem 3.6: It follows from the fact that f /∈ C (E ), there exists a coalition

S and an assignment g such that f is blocked by S via g. In view of Proposition 3.4,

we can assume that g(t, ω) is an interior point of Xt(ω), for all (t, ω) ∈ B×Ω for some

sub-coalition B of S satisfying IB = IS. Pick an ε ∈ (0, µ(S)). Let δ ∈ (0, 1) be such

that ε = δµ(S). By Proposition 3.5 that there are a coalition R and an G -assignment

ϕ such that

(i) µ(R) = δµ(S);

(ii) Vt(ϕ(t, ·)) > Vt(f(t, ·)) µ-a.e. on R; and

(iii)
∫
R

(ϕ(·, ω)− e(·, ω))dµ = δ
∫
S
(g(·, ω)− e(·, ω))dµ for all ω ∈ Ω.

Consequently, µ(R) = ε and
∫
R

(ϕ(·, ω)− e(·, ω))dµ = 0 for all ω ∈ Ω. This means that

f is blocked by R.

Proof of Proposition 3.7: Let 0 < δ < 1. Thus, there are an η0 > 0, two coalitions

B and C, and an G -assignment ϕ such that

(i) C ⊆ B ⊆ S, IC = IB = IS and µ(B) = δµ(S);

(ii) ϕ(t, ω) + z(ω) ∈ Xt(ω) for all z(ω) ∈ B(0, η0) and (t, ω) ∈ C × Ω;

(iii) Vt(ϕ(t, ·) + z) > Vt(f(t, ·)) for all z ∈ Xt and µ-a.e. on C;

(iii) Vt(ϕ(t, ·)) > Vt(f(t, ·)) µ-a.e. on B \ C; and

(iv)
∫
B

(ϕ(·, ω)− f(·, ω))dµ = δ
∫
S
(g(·, ω)− f(·, ω))dµ for all ω ∈ Ω.

Define

D :=
⋂
{η0µ(C)Gi : 1 ≤ i ≤ n} ∩ B (0, η0µ(C))Ω .

As in Lemma 5.1, the correspondence F : S \B ⇒ D, defined by

F(t) := {z ∈ D : f(t, ·) + z ∈ Xt and Vt(f(t, ·) + z) > Vt(f(t, ·))} ,
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has a TS\B ⊗B(D)-measurable graph. By our stated assumptions, F(t) 6= ∅ for all

t ∈ S \ B. By the Aumann-Saint-Beuve measurable selection theorem, there is a

TS\B-measurable selection ξ of F. Define

ζ :=
1

µ(S \B)

∫
S\B

ξdµ.

By Lemma 5 in Shitovitz (1973), one has ζ ∈ D. So, ε := ζµ(S \B) ∈ D and

γ :=
ε

µ(C)
∈
⋂
{η0Gi : 1 ≤ i ≤ n} ∩ B (0, η0)Ω .

Let h : S × Ω→ Y be an assignment such that11

h(t, ω) :=


ϕ(t, ω)− γ, if (t, ω) ∈ C × Ω;

f(t, ω) + ξ(t, ω), if (t, ω) ∈ (S \B)× Ω;

ϕ(t, ω), otherwise.

It is evident that h is an G -assignment and Vt(h(t, ·)) > Vt(f(t, ·)) µ-a.e. on S. It can

be easily verified that∫
S

h(·, ω)dµ =

∫
S

(δg(·, ω) + (1− δ)f(·, ω))dµ

for all ω ∈ Ω. This completes the proof.

Proof of Theorem 3.9: Since f is a non-core allocation, there exists a coalition S

and an allocation g such that f is blocked by S via g. Then for each ε ∈ (0, µ(S)), by

Theorem 3.6, there is a coalition R and an allocation ϕ such that µ(R) = ε and f is

blocked by R via ϕ. If µ(S) = µ(T ), then there is nothing more to verify. Thus, we

assume that µ(S) < µ(T ) and choose an ε ∈ (µ(S), µ(T )). Define

δ := 1− ε− µ(S)

µ(T \ S)
.

By Lemma 5.1, one can find an η0 > 0 and a sub-coalition C of B such that

(A) IC = IB;

(B) g(t, ω) + z(ω) ∈ Xt(ω) for all z(ω) ∈ B(0, η0) and (t, ω) ∈ C × Ω; and

(C) Vt(g(t, ·) + z) > Vt(f(t, ·)) for all z ∈ B(0, η0)Ω and µ-a.e. on C.

11ξ(t, ω) denotes the ωth-coordinate of ξ(t).
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Define

D :=
⋂
{η0δµ(C)Gi : 1 ≤ i ≤ n} ∩ B (0, η0δµ(C))Ω .

As in Lemma 5.1, the correspondence F : T \ S ⇒ D, defined by

F(t) := {z ∈ D : f(t, ·) + z ∈ intXt and Vt(f(t, ·) + z) > Vt(f(t, ·))} ,

is non-empty valued and has TT\S ⊗ B(D)-measurable graph, which further implies

the existence of a TT\S-measurable selection ξ of F. Define

ζ :=
1

µ(T \ S)

∫
T\S

ξdµ.

By Lemma 5 in Shitovitz (1973), one has ζ ∈ D. So, ε := ζµ(T \ S) ∈ D and

γ :=
ε

δµ(C)
∈
⋂
{η0Gi : 1 ≤ i ≤ n} ∩ B (0, η0)Ω .

In view of Proposition 3.5 there exist a coalition F and an G -assignment ψ such that

(a) µ(F ) = (1− δ)µ(T \ S);

(b) Vt(ψ(t, ·)) > Vt(f(t, ·)) µ-a.e. on F ; and

(c)
∫
F

(ψ(·, ω)− e(·, ω))dµ = (1− δ)
∫
T\S(f(·, ω) + ξ(·, ω)− e(·, ω))dµ for all ω ∈ Ω.

Let g̃ : T × Ω→ Y be an allocation such that

g̃(t, ω) :=

{
g(t, ω)− γ(ω), if (t, ω) ∈ C × Ω;

g(t, ω), otherwise.

By Proposition 3.7, there exist some G -assignment h such that Vt(h(t, ·)) > Vt(f(t, ·))
µ-a.e. on S, and ∫

S

h(·, ω)dµ =

∫
S

(δg̃(·, ω) + (1− δ)f(·, ω))dµ

for all ω ∈ Ω. We define an assignment y : T × Ω→ Y defined by

y(t, ω) :=

{
ψ(t, ω), if (t, ω) ∈ F × Ω;

h(t, ω), otherwise.

Recognized that y is an G -allocation with Vt(y(t, ·)) > Vt(f(t, ·)) µ-a.e. on E := F ∪S.

It can be readily verified that µ(E) = ε and∫
E

(y(·, ω)− e(·, ω))dµ = (1− δ)
∫
T

(f(·, ω)− e(·, ω))dµ = 0.
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This completes the proof.

Proof of Proposition 3.12: Denoting by XR, FR, VR, and eR(·) the common values

of Xt, Ft, Vt, and e(t, ·), respectively. Suppose, on contrary, that VR(xf ) > VR(f(t, ·))
for all t ∈ B for some sub-coalition B of R. Then there are an λ ∈ (0, 1) and a

sub-coalition D of B such that

VR(λxf + (1− λ)eR) > VR(f(t, ·))

for all t ∈ D. By Lemma 5.26 of Aliprantis and Border (2005), we conclude that

λxf + (1 − λ)eR is an interior point of XR. It follows that there are an η > 0 and a

sub-coalition E of D such that

VT1(λxf + (1− λ)eT1 − z) > VT1(f(t, ·))

for all z ∈ B(0, η)Ω and t ∈ E. Let δ ∈ (0, 1] be such that µ(E) = δµ(R). Define

D :=
⋂
{ηµ(E)Gi : 1 ≤ i ≤ n} ∩ B (0, ηµ(E))Ω .

As before, one can find an allocation ξ : T0 × Ω→ Y such that

(i) ξ(t, ·) ∈ D µ-a.e. on T0;

(ii) f(t, ·) + ξ(t, ·) ∈ intXt µ-a.e. on T0; and

(iii) Vt(f(t, ·) + ξ(t, ·)) > Vt(f(t, ·)) µ-a.e. on T0.

By Proposition 3.5, there exists an element C ∈ TT\R and an G -assignment ϕ such

that

(A) µ(C) = δµ(T \R);

(B) Vt(ϕ(t, ·)) > Vt(f(t, ·)) µ-a.e. on C; and

(C)

∫
C

(ϕ− e)dµ = λδ

∫
T\R

(f + ξ − e)dµ.

Define

ζ :=
1

µ(C)

∫
C

ξdµ.

By Lemma 5 in Shitovitz (1973), one has ζ ∈ D, which further implies α := ζµ(C) ∈ D.

Consequently,

γ :=
α

µ(E)
∈
⋂
{ηGi : 1 ≤ i ≤ n} ∩ B (0, η)Ω .
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Finally, we define an assignment y : T × Ω→ Y defined by

y(t, ω) :=

{
λxf (ω) + (1− λ)eR(ω)− γ(ω), if (t, ω) ∈ C × Ω;

ϕ(t, ω), otherwise.

It can be readily verified that S := C∪E blocks f via y. This is a contradiction. Hence,

VR(f(t, ·)) ≥ VR(xf ) µ-a.e. on R. Let B be a sub-coalition of R such thatVR(f(t, ·)) >
VR(xf ) for all t ∈ B. By applying Jensen’s inequality, one obtains

VR

(
1

µ(B)

∫
B

fdµ

)
> VR(xf )

and

VR

(
1

µ(R \B)

∫
R\B

fdµ

)
≥ VR(xf ).

Let λ = µ(B)
µ(R)

. By Lemma 5.28 in Aliprantis and Border (2005), one has

VR(xf ) = VR

(
λ

µ(B)

∫
B

fdµ+
1− λ

µ(R \B)

∫
R\B

fdµ

)
> VR(xf ),

which is a contradiction. Therefore, VR(f(t, ·)) = VR(xf ) µ-a.e. on R.

Proof of Lemma 3.14: Let δ ∈ (0, 1] be a number such that α = δµ(S ∩H). Pick an

i ∈ IS. By Lemma 3.6 in Bhowmik and Cao (2013), there is a sequence {Ci
n :≥ 1} ⊆ TRi

such that µ(Ci
n ∩ H) = δµ(Ri ∩ H) for all n ≥ 1 and {xin : n ≥ 1} converges to 0 in

norm-topology, where

xin := δ

∫
Si

(g − e)dµ−
∫
Cin

(g − e)dµ,

for all n ≥ 1. Let F := S \ R. Analogusly, there is a sequence {Di
n :≥ 1} ⊆ TFi

such that µ(Di
n ∩ H) = δµ(F i ∩ H) for all n ≥ 1 and {yin : n ≥ 1} converges to 0 in

norm-topology, where

yin := δ

∫
F i

(g − e)dµ−
∫
Din

(g − e)dµ,

for all n ≥ 1. By Lemma 5.1, there exists an η > 0 such that g(t, ·) + z ∈ Xt and

Vt(g(t, ·) + z) > Vt(f(t, ·)) for all t ∈ R. Let n0 ≥ 1 be such that

1

µ(Ri)

(
xin0

+ yin0

)
∈ B(0, η)Ω.
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Let Gi := Ci
n0
∪ Di

n0
for each i ∈ IS and define B :=

⋃
{Gi : i ∈ IS}. Define an

allocation h : T × Ω→ Y such that

h(t, ω) :=

{
g(t, ω) + 1

µ(Ri)

(
xin0

+ yin0

)
, if (t, ω) ∈ Ci

n0
× Ω and i ∈ IS;

g(t, ω), otherwise.

It can be easily verified that f is blocked by B via h and µ(B ∩H) = α.

Proof of Theorem 3.15: Let f̃ ∈ C (Ẽ ). Suppose by the way of contradiction that

f /∈ C (E ). Consequently, there are a coalition S and an G -allocation g such that

Vt(g(t, ·)) > Vt(f(t, ·)) µ-a.e. on S and∫
S

g(·, ω)dµ =

∫
S

e(·, ω)dµ

for all ω ∈ Ω. Define

S̃ := (S ∩ T0) ∪
⋃
{Ãi : Ai ∈ S}.

Pick an i ≥ 1. For a continuum economy Ẽ , by taking R = Ãi in Proposition 3.12, we

have Vt(f(Ai, ·)) = Vt(f̃(t, ·)) µ-a.e. on Ãi. Hence, f̃ is blocked by S̃ via g̃ := Ξ(g),

which leads to a contradiction.

Proof of Theorem 3.16: First, we define xf : Ω→ Y by letting

xf (ω) :=
1

µ(R)

∫
R

f(·, ω)dµ

for all ω ∈ Ω. Thus, consider a feasible allocation fA : T × Ω→ Y such that

fA(t, ω) :=

{
f(t, ω), if (t, ω) ∈ (T \R)× Ω;

xf (ω), otherwise.

In view of Proposition 3.12, we have Vt(f(t, ·)) = Vt(f
A(t, ·)) µ-a.e. on R. Suppose, by

the way of contradiction, that f̃ /∈ C (Ẽ ). Recognize that f̃A = f̃A and Vt(f̃(t, ·)) =

Vt(f̃A(t, ·)) µ-a.e. on R. Thus, f̃A is not in the core of Ẽ .

Case 1. R = T1 and |T1| ≥ 2. Choose an element A0 ∈ T1 and let µ(A0) = ε > 0.

By Theorem 3.9, f̃A is blocked by a coalition B̃ of Ẽ with µ̃(B̃) = µ̃(T0) + ε, which

gives µ̃(B̃ ∩ T̃1) ≥ ε. Therefore, in the light of Lemma 3.14, there exist a coalition Ẽ

and an assignment ỹ such that f̃A will be blocked by Ẽ via ỹ and µ̃(Ẽ∩ T̃1) = ε. Define

a coalition S of E such that S := (Ẽ ∩ T0) ∪ A0, and define a function y : T × Ω→ Y
by

y(t, ω) =

{
ỹ(t, ω), if (t, ω) ∈ (T \ A0)× Ω;

1
ε

∫
Ẽ∩T̃1 ỹ(·, ω)dµ̃, otherwise.
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Recognized that y is an G -assignment such that Vt(y(t, ·)) > Vt(f(t, ·)) µ-a.e. on S and∫
S
y(·, ω)dµ =

∫
S
e(·, ω)dµ for all ω ∈ Ω. This is a contradiction.

Case 2. µ(R \ T1) > 0. Define C := R ∩ T0. Since f̃A is not in the core of Ẽ , by

Proposition 3.4, we conclude that there are a coalition B̃ and an assignment ỹ such

that f̃A will be blocked by B̃ via ỹ and ỹ(t, ·) is an interior point of Xt for all t ∈ G̃ for

some sub-coalition G̃ of B̃ satisfying IB̃ = IG̃. If B̃ ⊆ T0, there is noting more to verify.

Thereofore, we assume that µ̃(B̃ ∩ T̃1) > 0. Let ε := µ̃(B̃ ∩ T̃1). Define a function

ỹA : T̃ × Ω→ Y by

ỹA(t, ω) =

{
1
ε

∫
B̃∩T̃1 ỹ(·, ω)dµ̃, if (t, ω) ∈ (B̃ ∩ T̃1)× Ω;

ỹ(t, ω), otherwise.

As IB̃ = IG̃, one of the following must hold: µ̃(G̃∩ T̃1) > 0 or µ(G̃∩R) > 0. It follows

that VT1(ỹ
A(t, ·)) > VT1(f̃

A(t, ·)) µ-a.e. on B̃ and∫
B̃∩T0

(ỹA − e)dµ̃+ ε(ỹA − eT1) = 0. (5.1)

If µ̃(C) ≥ ε then we choose a coalition R̂ ⊆ C such that µ̃(R̂) = ε. Consequently, by

Equation (5.1), we have∫
B̃∩T0

(ỹA − e)dµ̃+ µ̃(R̂)(ỹA − eT1) = 0.

If µ̃(C) < ε then first choose an α ∈ (0, 1) such that µ̃(C) = αε. By Proposition 3.5,

there are two coalitions K̂ and D̂ and an G -assignment ϕ such that K̂ ⊆ D̂ ⊆ B̃ ∩ T0

with IK̂ = ID̂ = IB̃∩T0 ; ϕ(t, ω) is an interior point of Xt(ω) for all (t, ω) ∈ K̂ × Ω; and∫
D̂

(ϕ− e)dµ̃ = α

∫
B̃∩T0

(ỹA − e)dµ̃.

In view of Equation (5.1), we have IK̂∪C = ID̂∪C = IB̃ and∫
D̂

(ϕ− e)dµ̃+ µ̃(C)(ỹA − eT1) = 0.

Hence, in either of these cases, there are coalitions D,K,R and G -allocation ξ such

that K ⊆ D ⊆ B̃ ∩ T0 and N ⊆ C such that IK∪N = ID∪N = IB̃ and∫
D

(ξ − e)dµ̃+ µ̃(N)(ỹA − eT1) = 0.
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If µ̃(D ∩N) = 0 then D ∪N blocks the allocation f̃A via ζ, where the G -allocation ζ

is defined by

ζ(t, ω) =

{
ξ(t, ω), if (t, ω) ∈ D × Ω;

ỹA(t, ω), otherwise.

If µ̃(D ∩N) > 0 the define E := (D \N)∪ (N \D) and G := D ∩N . Recognized that

ζ(t, ω) is an interior point of Xt(ω) for all t ∈ H for some sub-coalition H of K ∪ N
satisfying IH = I(K∪N)∩E. By Proposition 3.5, there is some coalition F ⊆ E and an

G -allocation h such that ∫
F

(h− e)dµ̃ =
1

2

∫
E

(ζ − e)dµ̃.

By Proposition 3.7, there exist an G -allocation ι and a sub-coalition V of G such that

IV = IG, Vt(ι(t, ·)) > Vt(f(t, ·)); and∫
G

(ι− e)dµ =
1

2

∫
G

(ξ − e)dµ+
1

2

∫
G

(ỹA − e)dµ.

Then S := F ∪ G blocks the allocation f̃A via ψ, where the G -allocation ψ is defined

by

ψ(t, ω) =

{
h(t, ω), if (t, ω) ∈ F × Ω;

ι(t, ω), otherwise.

This contradicts with the fact that f is in the ex-ante core of E .

Proof of Theorem 3.11: By definition, any allocation in the Aubin core of E finite is

also Aubin non-dominated. To show the other direction, let x be a feasible allocation

that is Aubin non-dominated in E finite. Assume by the way of contradiction that x

is not in the Aubin core of E finite. Then there are some Aubin coalition γ and an

allocation y such that Vt(yi) > Vt(xi) for all i ∈ supp(γ) and
∑

i∈N γiyi =
∑

i∈N γiei.

Let f := Ξ(x), g := Ξ(y), and define Ri ⊆ Ii such that µ(Si) = γi for all i ∈ supp(γ).

Thus, the coalition R :=
⋃
{Ri : i ∈ supp(γ)} blocks the allocation f via g. This

means that f is not in the core of E cont. By Theorem 3.9, there are some coalition S

and an allocation h such that f is blocked by S via h and µ(S) > 1 − 1
n
. Recognized

that δi := µ(S ∩ Ii) > 0 for all i ∈ N , and define zi := 1
δi

∫
S∩Ti hdµ for all i ∈ N . It

follows that Vi(zi) > Vi(xi) for all i ∈ N , and
∑

i∈N δizi =
∑

i∈N δiei. This means that

x is Aubin dominated in E finite, which is a contradiction.

Proof of Theorem 4.2: Let f be in the ex-ante core of E . Assume by the way of

contradiction that f is not C(T0,T1)(E )-fair. This means that there exist two disjoint

elements S ∈ T0, E ∈ T1 and an G -assignment g such that µ-a.e. on S and for each

ω ∈ Ω:
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(i) Vt(g(t, ·)) > Vt(f(t, ·)); and

(ii)

∫
S

(g(·, ω)− e(·, ω))dµ =

∫
E

(f(·, ω)− e(·, ω))dµ.

By Proposition 3.4, there are an η0 > 0, two coalitions B and R, and an G -assignment

g̃ such that

(i) R ⊆ B ⊆ S and IR = IB = IS;

(ii) g̃(t, ·) + z ∈ Xt for all z ∈ B(0, η0)Ω and µ-a.e. on R;

(iii) Vt(g̃(t, ·) + z) > Vt(f(t, ·)) for all z ∈ B(0, η0)Ω and µ-a.e. on R;

(iv) Vt(g̃(t, ·)) > Vt(f(t, ·)) for all z ∈ B(0, η0)Ω and µ-a.e. on B \R; and

(v)
∫
B

(g̃(·, ω)− e(·, ω))dµ = 1
2

∫
S
(g(·, ω)− e(·, ω))dµ for all ω ∈ Ω.

Define G := S \B and

Di :=
⋂{

η0µ(Ri)

3
Gi : 1 ≤ i ≤ n

}
∩ B

(
0,
η0µ(Ri)

3

)Ω

.

for each i ∈ IG. Pick an i ∈ IG. Then there is some Ci ∈ TGi such that

bi :=
1

3

∫
Gi

(f − e) dµ−
∫
Ci

(f − e) dµ ∈ B
(

0,
η0µ(Ri)

3

)Ω

.

As in Lemma 5.1, the correspondence Fi : Ci ⇒ Di, defined by

Fi(t) := {z ∈ Di : f(t, ·) + z ∈ Xt and Vt(f(t, ·) + z) > Vt(f(t, ·))} ,

is non-empty valued and has TCi⊗B(Di)-measurable graph, which further implies the

existence of a TCi-measurable selection ξi of Fi. Define

ζi :=
1

µ(Ci)

∫
Ci

ξdµ.

By Lemma 5 in Shitovitz (1973), one has ζi ∈ Di. So, εi := ζiµ(Ci) ∈ Di and

γi :=
εi

µ(Ri)
∈
⋂{η0

3
Gi : 1 ≤ i ≤ n

}
∩ B

(
0,
η0

3

)Ω

.

Let zi : Si × Ω → Y be a function define by zi(t, ω) := 1
µ(Ri)

(bi(ω) − γi(ω)) if (t, ω) ∈
Ri × Ω and i ∈ IG; and zi(t, ω) := 0, if i ∈ IS \ IG. Thus,

zi(t, ω) ∈
⋂{η0

3
Gi : 1 ≤ i ≤ n

}
∩ B

(
0,
η0

3

)Ω
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for all (t, ω) ∈ Si × Ω. Consider an G -assignment ϕ : T × Ω→ Y defined by

ϕ(t, ω) =

{
g̃(t, ω) + zi(t, ω), if (t, ω) ∈ Ri × Ω and i ∈ IS;

g̃(t, ω), otherwise.

Firstly, note that Vt(ϕ(t, ·)) > Vt(f(t, ·)) µ-a.e. on B. Furthermore, by (ii) and (iii),

we have

ϕ(t, ω) + B
(

0,
η0

3

)
⊆ Xt(ω)

for all (t, ω) ∈ R× Ω.

Case 1. µ(S ∪ E) = µ(T ). By Proposition 3.7, there is an G -assignment h such

that Vt(h(t, ·)) > Vt(f(t, ·)) µ-a.e. on B, and∫
B

(h− e)dµ =
2

3

∫
B

(ϕ− e)dµ+
1

3

∫
B

(f − e)dµ.

Define

C :=
⋃
{Ci : i ∈ IG} and K := B ∪ C.

Let ψ : T × Ω→ Y be an G -assignment such that

ψ(t, ω) =

{
f(t, ω) + ξ(t, ω), if (t, ω) ∈ C × Ω;

h(t, ω), otherwise.

It can be readily verified that∫
K

(ψ − e)dµ =
1

3

∫
S∪E

(f − e)dµ = 0,

which contradicts with the fact that f is in the ex-ante core of E .

Case 2. µ(S ∪E) < µ(T ). Define Q := T \ (S ∪E). Applying an argument similar

to that in the proof of Theorem 3.9, one can show that there exists an element

c ∈
⋂{η0

3
Gi : 1 ≤ i ≤ n

}
∩ B

(
0,
η0

3

)Ω

such that c =

∫
Q

ξdµ, where

(i) ξ(t) ∈
⋂{η0

3
Gi : 1 ≤ i ≤ n

}
∩ B

(
0, η0

3

)Ω
;

(ii) f(t, ·) + ξ(t) ∈ intGt; and
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(iii) Vt(f(t, ·) + ξ(t)) > Vt(f(t, ·))

µ-a.e. Q. By applying Proposition 3.5, one obtains a coalition D and an G -assignment

κ such that Vt(κ(t, ·)) > Vt(f(t, ·)) µ-a.e. on D and∫
D

(κ− e)dµ =
1

3

∫
Q

(f + ξ − e)dµ

for all ω ∈ Ω. Let ϕ̃ : T × Ω→ Y be an allocation such that

ϕ̃(t, ω) :=

{
ϕ(t, ω)− 1

µ(R)
c(ω), if (t, ω) ∈ R× Ω;

ϕ(t, ω), otherwise.

By Proposition 3.7, there is an G -assignment h such that Vt(h(t, ·)) > Vt(f(t, ·)) µ-a.e.

on S, and ∫
B

(h− e)dµ =
2

3

∫
B

(ϕ̃− e)dµ+
1

3

∫
B

(f − e)dµ.

Let

C := D ∪
⋃
{Ci : i ∈ IG} and K := B ∪ C

Let ψ : T × Ω→ Y be an G -assignment such that

ψ(t, ω) =

{
f(t, ω) + ξ(t, ω), if (t, ω) ∈ C × Ω;

h(t, ω), otherwise.

Therefore, as in Case 1, ψ is blocked by K via ψ. This is a contradiction.

Proof of Lemma 4.4: For any i ∈ IS and r ≥ 1, define

Sri :=

{
t ∈ Si : e(t, ω) + B

(
0,

1

r

)
⊆ Xt(ω) for all ω ∈ Ω

}
.

It follows that {Sri : r ≥ 1} is an increasing sequnce of T -measurable sets and

limr→∞ µ(Si \ Sri ) = 0 for all i ∈ IS. Pick an interger r0 such that µ(Sr0i ) > 2µ(Si)
3

for all i ∈ IS. Let {ηm : m ≥ 1} ⊆ (0, 1) be a sequence of real numbers converging to 0,

and b ∈ Y++ be such that b ∈ B
(

0, 1
3r0

)
. Consider a function hm : S ×Ω→ Y defined

by

hm(t, ω) := (1− ηm)h(t, ω) + ηm(e(t, ω)− 2b).

Put,

Bm :=
{
t ∈ S : Vt(h

k(t, ·)) > Vt(f(t, ·)) for all k ≥ m
}
.
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By (A??) and (A??), the mapping ξk : S → R, defined by

ξk(t) := Vt(h
k(t, ·))− Vt(f(t, ·)),

is T -measurable and so is Bm. It is obvious that {Bm : m ≥ 1} is increasing and

S ∼
⋃
{Bm : m ≥ 1}. Define c := min{µ(Si) : i ∈ IS}, and choose some υ > 0 such

that
2

c

∫
R

(h− e)dµ ∈ B
(

0,
1

3r0

)Ω

for any R ∈ T with R ⊆ S and µ(R) < υ. Let m0 ≥ 1 be an integer such that

µ(S \Bm0) < min{υ, d
4
}, where d := min{µ(Sr0i ) : i ∈ IS}. In view of this, we get

µ(Sr0i ∩Bm0) >
3µ(Sr0i )

4
>
µ(Si)

2
≥ c

2

and
2

c

∫
Si\Bm0

(h− e)dµ ∈ B
(

0,
1

3r0

)Ω

for all i ∈ IS, which further implies

1

µ(Si ∩Bm0)

∫
Si\Bm0

(h− e)dµ ∈ B
(

0,
1

3r0

)Ω

.

for all i ∈ IS. We are ready to choose λ := ηm0 . By Lemma 5 in Shitovitz (1973), one

has
1

µ(Si \Bm0)

∫
Si\Bm0

(h− e)dµ ∈ Gi

for all i ∈ IS. Recognized that µ(Si \ Bm0) < µ(Sr0i ∩ Bm0) for each i ∈ IS. Convexity

of Gi and 0 ∈ Gi further yield that

1

µ(Sr0i ∩Bm0)

∫
Si\Bm0

(h− e)dµ ∈ Gi ∩ B
(

0,
1

3r0

)Ω

for all i ∈ IS. Thus,

xi :=
1

µ(Sr0i ∩Bm0)

∫
Si\Bm0

(h− e)dµ

satisfies xi ∈ Gi ∩ B
(

0, 1
r0

)Ω

for all i ∈ IS, and thus, by the definition of Sr0i , we have

e(t, ω) − xi(ω) ∈ Xt(ω) for all (t, ω) ∈ Sr0i × Ω and i ∈ IS. For all i ∈ IS, consider an

assignment gi : Si × Ω→ Y defined by

gi(t, ω) :=

{
(1− λ)h(t, ω) + λ(e(t, ω)− xi(ω)), if (t, ω) ∈ (Sr0i ∩Bm0)× Ω;

h(t, ω), otherwise.

33



It is obvious that gi(t, ω) ∈ Xt(ω) for all (t, ω) ∈ Si × Ω and gi(t, ·) − e(t, ·) ∈ Gi
for all t ∈ Si. As gi(t, ω) � hm0(t, ω) for all t ∈ Sr0i ∩ Bm0 , we have Vt(gi(t, ·)) >
Vt(h

m0(t, ·)) > Vt(f(t, ·)) for all t ∈ Sr0i ∩ Bm0 . Therefore, Vt(gi(t, ·)) > Vt(f(t, ·)) for

all t ∈ Si, and ∫
Si

(gi − e)dµ = (1− λ)

∫
Si

(h− e)dµ.

for all i ∈ I. Thus, the assignment y : T × Ω→ Y, defined by

y(t, ω) :=

{
gi(t, ω), if (t, ω) ∈ Si × Ω, i ∈ I;

h(t, ω), otherwise,

satisfies the required condition.

Proof of Theorem 4.5: Let f be not in the ex-ante core of E . Suppose, on contrary,

that it is not C(T1,T0)(E )-fair, which means that there exist two disjoint elements S ∈
T1, E ∈ T0 and an G -assignment g such that µ-a.e. on S and for each ω ∈ Ω:

(i) Vt(g(t, ·)) > Vt(f(t, ·)); and

(ii)

∫
S

(g(·, ω)− e(·, ω))dµ =

∫
E

(f(·, ω)− e(·, ω))dµ.

By Lemma 3.5, there exist 0 < λ, η < 1, a sub-coalition R of S with IR = IS and an

G -assignment y such that

(iii) y(t, ·) + z ∈ Xt for all z ∈ B(0, η)Ω and µ-a.e. on R;

(iv) Vt(y(t, ·) + z) > Vt(f(t, ·)) for all z ∈ B(0, η)Ω and µ-a.e. on R;

(v) Vt(y(t, ·)) > Vt(f(t, ·)) for all z ∈ B(0, η)Ω and µ-a.e. on S \R; and

(vi)

∫
S

(y − e)dµ = (1− λ)

∫
S

(g − e)dµ.

By combining (ii) and (vi), we have∫
S

(y − e)dµ = (1− λ)

∫
E

(f − e)dµ.

This implies that∫
S

(y − e)dµ+ λ

∫
E

(f − e)dµ+

∫
T\E

(f − e)dµ = 0.
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As a consequence, we have

1

2

∫
S

(y − e)dµ+
1

2

∫
S

(f − e)dµ+
λ

2

∫
E

(f − e)dµ+
1

2

∫
T\(S∪E)

(f − e)dµ = 0.

Applying an argument similar to that in the proof of Theorem 4.2, one can show that

there exists a function ξ : E × Ω→ Y such that

(i) ξ(t, ·) ∈
⋂{ηµ(R)

2
Gi : 1 ≤ i ≤ n

}
∩ B

(
0, ηµ(R)

2

)Ω

;

(ii) f(t, ·) + ξ(t, ·) ∈ intXt; and

(iii) Vt(f(t, ·) + ξ(t, ·)) > Vt(f(t, ·))

for all t ∈ E. Again, by Lemma 3.5, there exist a sub-coalition B of S with IB = IE
and an G -assignment ϕ such that∫

B

(ϕ− e)dµ =
λ

2

∫
E

(f + ξ − e)dµ.

Define c :=
∫
E
ξdµ and note that

c ∈
⋂{

ηµ(R)

2
Gi : 1 ≤ i ≤ n

}
∩ B

(
0,
ηµ(R)

2

)Ω

.

It follows that

γ :=
c

µ(R)
∈
⋂{η

2
Gi : 1 ≤ i ≤ n

}
∩ B

(
0,
η

2

)Ω

.

Consider an G -assignment ỹ : T × Ω→ Y defined by

ỹ(t, ω) =

{
y(t, ω)− γ(ω), if (t, ω) ∈ R× Ω;

y(t, ω), otherwise.

It is obvious that Vt(ỹ(t, ·)) > Vt(f(t, ·)) µ-a.e. on S. Furthermore, by (ii) and (iii), we

have

ỹ(t, ω) + B
(

0,
η

2

)
⊆ Xt(ω)

for all (t, ω) ∈ R× Ω.

Case 1. µ(S ∪ E) = µ(T ). By Proposition 3.7, there exists an G -assignment h

such that Vt(h(t, ·)) > Vt(f(t, ·)) µ-a.e. on B, and∫
S

(h− e)dµ =
1

2

∫
S

(ỹ − e)dµ+
1

2

∫
S

(f − e)dµ.
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Let ψ : T × Ω→ Y be an G -assignment such that

ψ(t, ω) =

{
ϕ(t, ω), if (t, ω) ∈ B × Ω;

h(t, ω), otherwise.

It can be readily verified that K := B∪S blocks f via ψ, which leads to a contradiction.

Case 2. µ(S ∪ E) < µ(T ). As in the proof of Case 2 of Theorem 4.2, one can

derive a contradiction.
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