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Abstract

We consider a productive network formed by agents with heterogeneous privately-

known productivity types. Under convex cost of link formation, bilateral links create

endogenous externalities. We calculate the “rearrangement cost” imposed on the en-

tire network by each subset of other agents an agent can link to, and the consequent

social opportunity cost of such subsets. We construct a mechanism to implement the

socially optimal network, which specifies transfers based on the calculated opportu-

nity cost, and a allocation to each agent consisting of network links. Once agents form

allocated links, network connections might reveal further information to an agent on

types of other agents. As a robustness check we allow pairwise adjustments under

full information at the stage after forming the allocated network. We show that the

mechanism is strict ex post incentive compatible, implements the optimal network as

a pairwise-stable network and does not have a budget deficit.
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1 Introduction

Productive activity is often the outcome of collaboration. Much of scientific research in-
volves interaction among individuals or research units. Similarly, joint ventures are a
common form of corporate organization for the production of goods and services. In this
paper we study the problem of incentive design on productive networks and construct a
mechanism to implement the socially optimal network.

We consider a network formed by a finite population of agents who differ in their in-
nate productivity, which we call their “type.” Each bilateral link generates output that is
strictly increasing in the types of the two agents, and each agent receives an equal share
of that output. Links are costly to form. Crucially, we assume that for any agent, the total
cost of forming connections is increasing and convex in the number of links formed, that
is, the marginal cost of link formation is increasing in the number of links.

Convexity of cost implies that any network formed on the basis of private incentives is
typically not socially optimal. There may be direct inefficiencies in bilateral link formation
between agents who differ in the number of existing links, implying a divergence between
private and social optima.1 A second reason for departure from social optimality in the
presence of convex costs is more subtle, as it relates to the impact of a set of links on
the entire network. With convex costs, when agent i connects to a set of other agents, the
marginal cost of all agents in the set are driven up. These agents must then use this higher
marginal cost to assess the desirability of every one of their other existing connections
(simply because they can save this marginal cost by dropping any of those connections).
Therefore an agent j forming a link with i might drop her link with k, who might, in
turn, now find it optimal to form a link with ℓ, and so on. It follows that the impact
of the formation of a link ripples across the entire network, generating both negative
and positive effects across other agents. Agents i and j do not take into account such
externalities when deciding to form a link, implying that privately incentive compatible
networks may fail to be socially optimal.

These inefficiencies create a scope for incentive design over networks. The first task is
to quantify the complex structure of externalities that can arise from links and calculate

1Suppose total output of a link between i and j is 1, shared equally. The marginal cost of i (with no
existing links) is 0.1, and that for j is 0.6 (with some existing links). The link might be part of the socially
optimal network (output 1 exceeds combined marginal costs of 0.7), but j would reject any such link.
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the opportunity cost of links. Note that with convex cost, we cannot consider the impact
of single links in isolation. Instead we must evaluate the externality generated by the
entire set of connections an agent makes. A contribution of our paper is to elucidate a
method to calculate the “rearrangement cost” imposed on the entire network by any set
of connections of an agent, which precisely captures the externality. Adding direct costs
to this, we get the opportunity cost of each such set.

We specify a mechanism that uses these calculations to specify transfers and network allo-
cations to implement the socially optimal network as an equilibrium network, and show
that the total transfers are non-positive, so that the “budget” (of zero) is not exceeded. A
novel aspect of a mechanism that specifies a network allocation is that agents can adjust
network links even after receiving an allocation. We clarify these notions below.

An agent i can potentially connect to any subset of other agents, which we call a “con-
nector set” of i. In a direct mechanism, agents report privately-known types. Based on
the reports, the designer calculates the socially optimal network, allocates the associated
connector sets to each individual, and announces transfers for all possible connector sets.
The transfers reflect the opportunity cost of such sets as calculated from reports. The
agents then form the allocated links. However, they might adjust these links if new infor-
mation arises once a network is formed. It seems reasonable to allow for the possibility that
the agents learn the types of their partners, so that if an allocated link proves unprofitable
given the true type of the relevant partner, it would be severed. Network connections
may also facilitate learning types of agents beyond immediate partners. If the network
outcome is subject to deviations from subsequent information discovery that arise be-
cause of the presence of a network, the mechanism cannot be considered robust. To address
the problem, we specify an adjustment process under full information after the formation of
an allocated network, adopting pairwise-stability (Jackson and Wolinsky, 1996) under full
information (PWS-FI) as the network equilibrium notion.

We use the notion of strict ex post network implementation, which requires the following
two conditions to hold for implementing any network G. First, the mechanism is strict
ex post incentive compatible (Bergemann and Morris, 2005, 2009): for any agent, truthful
reporting is a strict best response to similar reporting by others. Second, given truthful
reporting by all agents, the network allocated is G and it is PWS-FI.

We show that the second condition holds when G is socially optimal. To show the first,
we need to consider the network equilibrium that arises under any report profile. Fol-
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lowing a report profile, transfers and allocation are specified. If the allocated network
is PWS-FI, it is a network equilibrium. We show this is the case under truthful report-
ing. However, under misreports, the allocated network could have scope for changes.
We specify a pairwise adjustment process starting from the allocated network and define
the network equilibrium, which exists under every report profile (and consequent trans-
fers/allocation). Given network equilibria that arise following reports, we then show that
at the reporting stage, the mechanism is ex post incentive compatible.

Our work makes three contributions. We consider the question of mechanism design on
a network, with consequent non-standard issues of network readjustments after the allo-
cation is specified. Second, we consider convex costs which generate endogenous exter-
nalities. We calculate the rearrangement cost and the resulting opportunity cost imposed
on the network by each connector set of an agent. Using these calculations, we specify a
mechanism that internalizes the externality and the total transfers do not exceed the bud-
get (of zero). Finally, strict ex post implementation implies a detail-free result. However,
while this relaxes the distribution-reliance of standard mechanism design, we do follow
the standard practice of focusing on the truthtelling equilibrium, so our implementation
is partial.

1.1 Related literature

Our setting involves preference interdependence arising through the fact that output re-
sults from network links, therefore the payoff of any agent depends on types of linked
partners. In this setting, we use the notion of ex post incentive compatibility (Bergemann
and Morris, 2005) that achieves partial robust implementation. A detail-free full imple-
mentation approach is considered in Bergemann and Morris (2009), who show that this
can be achieved if preference interdependence is not too strong. A more recent paper by
Ollár and Penta (2017) shows an important route out of such restrictions while achieving
full implementation. They consider strategic externalities, which are potentially manipu-
lable. Strong strategic externalities give rise to multiplicity of equilibria. However, intro-
ducing relatively mild moment-based conditions on beliefs (thus departing a little from
robustness of ex post implementation) Ollár and Penta (2017) show that the designer is
able to weaken strategic externalities, ensuring uniqueness. Whether a related approach
might be useful for full implementation in network design under convex costs is an inter-
esting question that we hope to address in future.
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We consider incentives of agents who form a network, which naturally relates to the liter-
ature on networks. However, we are not aware of any direct antecedents of a mechanism
design approach on networks under convex costs.

A large literature discusses the impact of exogenous externalities in network settings.2

In the context of strategic network formation models, externalities are usually defined as
direct costs/benefits experienced by some agents as result of the formation/severance of
links by other pairs. In our setting externality is endogenous, arising through convex cost.

Jackson and Wolinsky (1996) study a co-author model. This is a network formation model
with negative externality as players’ return from being connected to a specific partner is
negatively proportional to their own degrees – the formation of a new link negatively
impacts the payoff of any existing partner. As individual agents do not internalize this
cost, private and social optimality differ. In view of such problems, Bloch and Jackson
(2007) study the role of transfers between agents in the formation of networks in a com-
plete information setting. They highlight how, in the presence of negative externalities,
it is possible to induce the formation of efficient equilibrium networks by allowing trans-
fers that are conditioned on the final network structure. In the setting of these papers,
externalities of a link are exogenous and either a cost or a benefit on the payoff of agents
not directly involved in the link. We consider a mechanism design exercise in an incom-
plete information scenario (with possible full-information adjustments after an allocation
is specified). Further, externalities of any set of links are indirect impacts arising through
optimal readjustment of links by agents not directly involved, and the impact could be
positive for some agents and negative for others at the same time.

The next section sets out our model. Section 3 calculates the rearrangement cost and op-
portunity cost of connector sets. Section 4 characterizes the socially optimal network.
Section 5 presents the mechanism and describes the network equilibrium that arises af-
ter the specification of allocation and transfers. Section 6 defines the notion of network
implementation and presents the implementation result. Section 7 concludes.

2Jackson (2010) provides a succinct overview.
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2 The model

There is a finite set of agents N = {1, . . . , n}. Agents privately observe their own type
θi, drawn independently from Θi ≡ [θ, θ] ⊆ R+. We use standard notation θ−i ∈ Θ−i =

×j ̸=iΘj and θ ∈ Θ = ×i∈NΘi for profiles. As an agent is associated with own type, we
use i and θi interchangeably.

Agents can form productive bilateral links with others. A network G(N, L) comprises a
set of nodes N and a set of links L. Links are undirected, so that for any pair i, j ∈ N we
have ij ∈ L if and only if ji ∈ L. Agents cannot form links with themselves, so ii /∈ L for
any i ∈ N. Let Γ be the set of all possible undirected networks of size |N|.3 Starting with
any network G, let G − ij denote the network where a link between i and j is removed,
and similarly, let G + ij denote a network where this link is added.

Let Ψ(N\{i}) be the power set of N\{i}. This is the set of all subsets of agents that i could
potentially connect to. We refer to its typical element ψi as a connector set of agent i.

Note that a connector set, which does not include i, is distinct from a neighborhood of i,
which does. Agent i’s neighborhood {i, ψi} in G is the set {ψi ∪ {i} : ij ∈ L for all j ∈ ψi}.
Clearly, one and only one connector set is associated with each neighborhood. The degree
of agent i in network G is di(G) = |ψi|, the cardinality of the connector set of i in G.

A link between types θi and θj produces output g(θi, θj) ∈ R+ for each agent.4 Here
g(·, ·) is positive, strictly increasing, and symmetric in both arguments. Let Y({i, ψi}|θ) =
∑j∈ψi

2g(θi, θj) be the output generated by the neighborhood {i, ψi} under type profile θ

and let Y(G|θ) = ∑i∈N Y({i, ψi}|θ)/2 be the total output generated by a network G.

Forming links is costly. Let C(k) denote the total cost for an agent forming k ∈ 1, . . . , n− 1
links and assume C(0) = 0. Then MCk ≡ C(k)− C(k − 1) indicates the marginal cost for
the k-th link. We assume increasing marginal cost, or MCk ⩾ MCk−1 for any k, with strict
inequality for some values of k.

The net social value of network G is

V(G|θ) = Y(G|θ)− ∑
i∈N

C(di(G)). (2.1)

For a given profile θ, a socially optimal network G∗(θ) is the network architecture that
3Since each agent is a node in a network, we use the terms “agent” and “node” interchangeably.
4An asymmetric split would not change the results qualitatively.
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maximizes the net social value,

G∗(θ) = arg max
G∈Γ

V(G|θ). (2.2)

Note that given a finite set of agents, any network is of finite size. Therefore V(G) is well-
defined and finite for any G ∈ Γ. Further, the set Γ is itself a finite set. Therefore a socially
optimal network G∗(θ) exists for any θ ∈ Θ.

Agent i’s utility in G given profile θ is vi(G|θ) = Y({i, ψi}|θ)/2− C(di(G)) + ti where the
first two terms define i’s valuation while the third term is any transfer paid to agent i. The
tuple ⟨N, (Θi, vi)i∈N⟩ is common knowledge among agents.

2.1 Network stability without intervention

To see the impact of endogenous externalities arising through increasing marginal costs,
we need a notion of network stability without intervention, then compare privately stable
and socially optimal networks.

For this purpose we use the notion of pairwise stability (PWS) defined by Jackson and
Wolinsky (1996). However, given that agents form links with others, and there is in-
complete information, we need to specify the information environment in which PWS
holds. Since we want a benchmark under private incentives, we assume that agents learn
all types. This serves as a benchmark by removing any inefficiency due to information
problems (e.g., two types who could add a mutually beneficial link but do not do so
because of lack of information). Any inefficiency that remains is therefore due to the
endogenous externalities through convex cost, which is the problem we address later.

We therefore adopt PWS under full information as the non-intervention benchmark of net-
work stability. This is defined below.

Definition 1. A network G is pairwise stable under full information (PWS-FI) if the following
conditions hold

(i) If types θi and θj are linked, vi(G|θ) ⩾ vi(G − ij|θ) and vj(G|θ) ⩾ vj(G − ij|θ), and

(ii) If types θi and θj are not linked, if vi(G + ij|θ) ⩾ vi(G|θ), then vj(G + ij|θ) < vj(G|θ).

6



In words, a network structure is PWS-FI if, having learnt the types of all other agents,
no agent would gain from severing an existing link and no pair of agents would find it
profitable to form an additional link.

In the presence of convex cost of link formation, the set of pairwise stable networks do not
generally coincide with the set of socially optimal networks. We present two examples
below.

2.2 Example 1

Suppose g(θi, θj) =
√

θi + θj. The social output from the link ij is 2
√

θi + θj. Four agents
draw types θ1 = 4, θ2 = 3, θ3 = 2, and θ4 = 1. The marginal cost of connections is
MC1 = 1 and MC2 = 6. With these parameter values every agent derives positive net
benefit from forming a link, but the high marginal cost of the second link is prohibitively
large for all agents.

Figure 1: All three networks are PWS-FI but only the first from the left is socially optimal. The

labels of the links indicate the total output generated by each link.

Without intervention, there are three PWS-FI configurations, each involving a pairs of
links (see Figure 1). But, only one of them is socially optimal: the costs are the same for
all three, but it is easy to check that aggregate output 2

√
5 + 2

√
5 for the first network

from the left exceeds that for the other two.
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2.3 Example 2

Suppose g(θi, θj) = θiθj. Four agents draw types θ1 = 4, θ2 = 3, θ3 = 2.5, θ4 = 2. The
marginal cost of links are MC1 = 2, MC2 = 7, and MC3 = 15.

The socially optimal network is not PWS-FI (see Figure 2). Links between θ1 and θ2 and
between θ1 and θ3 are socially and privately desirable. Beyond that, it is socially beneficial
for θ2 to connect to θ4 instead of θ3, as the net social value of the former, 2g(θ2, θ4)− MC2 −
MC1 = 12 − 7 − 2 = 3, exceeds the net social value of the latter, 2g(θ2, θ3) − 2MC2 =

15 − 14 = 1. The figure on the left shows the socially optimal network. However, from
θ2’s individual perspective, a link with θ3 has payoff g(θ2, θ3)− MC2 = 7.5 − 7 > 0 while
that with θ4 has payoff g(θ2, θ4)− MC2 = 6 − 7 < 0. Therefore starting from the socially
optimal network, agent 2 would sever the link with agent 4, implying the socially optimal
network is not PWS-FI. The figure on the right shows the PWS-FI network.

Figure 2: The network on the left is socially optimal but not PWS-FI: the link (θ2, θ4) is not prof-

itable for type θ2. On the other hand, link (θ2, θ3) on the right is individually profitable for both

types involved but not socially optimal.

3 Rearrangement cost and opportunity cost of links

When would a particular connector set ψi of i be part of a socially optimal network? The
social benefit of adding agent i connected to ψi is clear: it is simply the added output
Y({i, ψi}|θ). Calculating the opportunity cost of ψi is more complicated. This is what we
do in this section.
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A part of opportunity costs of ψi are direct link-formation costs incurred by i as well as
by each agent in ψi. The more interesting component is the costs imposed on others when
i connects to ψi through link changes across the network. We call this the rearrangement
cost of ψi.5

To calculate the rearrangement cost, we proceed as follows. Exclude i from the set of
agents. Suppose agents other than i are optimally arranged. Now ask, if we connect i
with ψi, how much disruption would it cause for others? To answer this, still consider a
network of agents other than i, but with the additional constraint that agents in ψi have
an extra “shadow” link so that their marginal costs are raised by one extra degree. Derive
the optimal network with the constraint in place. The difference in the value of the two
optimal networks – unconstrained optimum of agents in N−i versus their constrained
optimum – gives us the rearrangement cost of ψi. Adding direct costs, we get the op-
portunity cost. Note that embedded in these calculations for i is that others are always
arranged optimally. This is why when we compare the benefit minus opportunity cost
of different connector sets, the one with the largest difference is the one that should be
part of the socially optimal network, which answers the question posed at the top of the
section.

3.1 The rearrangement cost of a connector set

Consider the problem of constructing any network starting from an empty one, in which
all nodes are disconnected. Let d0

i denote the degree of an agent i before any link is
formed. As we start from an empty network, d0

i = 0 for all i ∈ N. As 1, 2, . . . , k links are
formed for i, the link formation cost of i then rises as C(1) = MC1, C(2) = MC1 + MC2,
. . . , C(k) = MC1 + . . . + MCk.

Now consider an artificial case where we repeat the same process but where for a subset
of agents, we have a virtual starting degree d0

i = 1: that is, these agents start with one
external “shadow” link: links for which output contribution is ignored in the computation
of the total output generated by the network. This implies that when considering links
for any such agent, the cost of forming 1, 2, . . . , k links are MC2, MC2 + MC3, . . . , MC2 +

5Note that if marginal costs are constant, rearrangement cost associated with any set of links is zero.
Indeed, in this case we can simply consider bilateral links: whether a link between two agents should
optimally form does not depend on the presence of other links.
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. . . + MCk+1. Note that for agent i with degree di(G), we can write

MC2 + . . . + MCdi(G)+1 = C(di(G) + 1)− C(1).

Let H denote the set of agents for whom d0
i = 1, while d0

i = 0 for agents in N\H. Let
(G|H)∗ denote the constrained socially optimal network. This is given by

(G|H)∗ = arg max
G∈Γ

(
Y(G)− ∑

i∈H

(
C(di(G) + 1)− C(1)

)
− ∑

i∈N\H
C(di(G))

)
.

When determining the constrained optimal network (G|H)∗, costs are artificially raised
for nodes in H. Crucially, note that once we have derived (G|H)∗, its net social value is
determined with costs considered in the usual way. Thus V((G|H)∗) is given by equa-
tion (2.1), with G replaced by (G|H)∗.

We now define formally the network rearrangement cost of a connector set ψi of agent
i. Remove i from N and calculate the constrained socially optimal network denoted by
(G−i|ψi)

∗. This is the optimal network in which the connection costs of agents of the con-
nector set ψi are artificially burdened by an additional shadow connection. Clearly, the
value of this network is weakly lower than that of the unconstrained optimal network
without i, denoted by G∗

−i.
6 The difference between the two net values captures the loss

in value from the constraint. This loss is precisely due to the difference in network con-
nections across the network with or without the extra links for the set ψi, capturing the
rearrangement cost of ψi.

Definition 2 (Rearrangement cost). The rearrangement cost generated by the connector set ψi

of agent i, denoted by RCi(ψi), is given by

RCi(ψi) ≡ V(G∗
−i)− V((G−i|ψi)

∗).

The rearrangement costs evaluates, for a network that excludes agent i, the reduction in
the net value of the optimal network if a set ψi of agents are constrained to own a shadow
link each.

6Alternatively, using the same notation as for constrained networks, the unconstrained socially optimal
network without i is G∗

−i = (G−i|∅)∗, that is the constraint set is the empty set.
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Note that two different agents (say i or j) connecting to the same subset of other agents
(that is, the same connector set) can generate different rearrangement costs as the precise
link changes depend on which other agents are in the network (N\{i} and N\{j} are
different sets). Therefore the rearrangement cost depends on the identity of the removed
agent, accounting for the subscript i in RCi. However, the rearrangement cost RCi(ψi)

does not depend on the type θi of agent i. This feature is crucial to our mechanism, as it
ensures that the social opportunity cost of any ψi does not depend on the type reported
by i.

3.2 The social opportunity cost of a connector set

The opportunity cost sums rearrangement cost and direct costs to form new links.

Let Gψi denote the network (G−i|ψi)
∗ ∪ {i, ψi}. This is the constrained optimal network

with the shadow links replaced by actual links with i. The degree of any agent j ∈ ψi in
this network is dj(Gψi) = dj((G−i|ψi)

∗) + 1.

Definition 3 (Social opportunity cost). The social opportunity cost of the connector set ψi,
denoted by OCS

i (ψi), is the sum of direct and indirect costs, given by

OCS
i (ψi) = C(|ψi|) + ∑

j∈ψi

MCdj(Gψi )
+ RCi(ψi). (3.1)

The first two terms are the direct private costs of forming connections between i and
agents ψi. Note that for i, the cost of connecting to the connector set ψi is C(|ψi|). For
j ∈ ψi, the relevant cost of connecting to i is the largest marginal cost MCdj(Gψi )

. This is
the amount j would save if the ij link were dropped. The third term is the rearrangement
cost of the connector set ψi as derived above.

Below we calculate the rearrangement cost and opportunity cost for the examples intro-
duced earlier.

3.2.1 Example 1 (continued)

Consider the connector sets for agent 1 in Example 1 (see Section 2.2). The socially optimal
network requires links between the pairs: {(θ1, θ4), (θ2, θ3)}. Since the assumed structure
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of marginal costs prohibits any agent having more than one link in any optimal network,
we can restrict attention to singleton connector sets, {{θ2}, {θ3}, {θ4}}. We also ignore
the empty connector set, ∅, for which rearrangement cost is obviously zero.

Let us calculate RC1({θ2}), the rearrangement cost for ψ1 = {θ2}.

• Remove θ1 from the population. Calculate the resulting socially optimal network G∗
−1.

This has θ2 and θ3 connected and leaves θ4 disconnected (network on the left in Figure 3).
The net social value of this network is 2

√
θ2 + θ3 − 2MC1 = 2

√
5 − 2.

• Now calculate the socially optimal network (G∗
−1|{θ2}). Remove θ1 as before, but now

constrain θ2 to own a shadow link. With the increased marginal cost of a second link for
θ2, a link between θ2 and θ3 is now sub-optimal, and instead optimally replaced by a link
between θ3 and θ4 (see the network on the right in Figure 3). This network has net social
value 2

√
θ3 + θ4 − 2MC1 = 2

√
3 − 2.

• The rearrangement cost is RC1({θ2}) = 2(
√

5 −
√

3).

Figure 3: With θ1 removed, it is optimal for θ2 to connect with θ3 (left). If θ2 is constrained to

form a shadow link (in gray), its connection with θ3 becomes sub-optimal (dashed link), and the

constrained optimal network would connect θ3 and θ4 instead. The rearrangement cost measures

the loss in value due to this change in structure.

The opportunity cost of ψ1 = {θ2} is then simply the sum of the direct cost of linking θ1

to θ2 and the rearrangement cost calculated above:

OCS
1 ({θ2}) = 2MC1 + RC1({θ2}) = 2 + 2(

√
5 −

√
3).

Similar calculation shows that OCS
1 ({θ3}) = 2 + 2(

√
5 −

√
4). The rearrangement cost of
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ψ1 = {θ4} is zero, as θ4 is disconnected in the optimal network without 1, so the value
of the network is unaffected by the imposition of a shadow link on θ4. The opportunity
cost for this connector set then simply coincides with the direct costs of link formation:
we have OCS

1 ({θ4}) = 2.

3.2.2 Example 2 (continued)

In Example 2, the socially optimal network has links between the pairs {(θ1, θ2), (θ1, θ3), (θ2, θ4)}.
We focus here on the connector sets of agent 1 that have at most two elements and ignore
the empty connector set.

Figure 4

Consider the connector set ψ1 = {θ2}. In the absence of agent 1, the unconstrained op-
timal network has θ2 connected to θ3 and to θ4, with net social value 2(θ2θ3 + θ2θ4) −
2MC1 − MC1 − MC2 = 14 (see Figure 4). When θ2 is constrained to own one shadow
link, the link between θ2 and θ4 is optimally replaced by a link between θ3 and θ4, re-
ducing net social output to 2(θ2θ3 + θ3θ4)− 2MC1 − MC1 − MC2 = 12 (see diagram on
the left in Figure 5). The rearrangement cost then is RC1({θ2}) = 14 − 12 = 2 and the
associated opportunity cost is

OCS
1 ({θ2}) = C(1) + MC2 + RC1({θ2}) = 2 + 7 + 2 = 11.

Consider, next, the costs associated with 1 connecting to connector set ψ1 = {θ2, θ3}. If
both θ2 and θ3 were constrained to own one shadow link each, the resulting (constrained)
optimal network would have only one connection, the link between θ2 and θ4, and a net
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Figure 5

social value 2θ2θ4 − 2MC1 = 12 − 4 = 8 (see diagram on the right in Figure 5). Once
again, comparing this to the net output of the unconstrained network without θ1, we get
rearrangement cost RC1({θ2, θ3}) = 14 − 8 = 6.

Note that in the network on the right in Figure 5, once we activate the shadow links by
connecting θ1 to {θ2, θ3}, both θ1 and θ2 have two links each, and θ3 has one, hence the
relevant direct costs are C(2) for θ1, MC2 for θ2 and MC1 for θ3. Therefore the opportunity
cost is

OCS
1 ({θ2, θ3}) = C(2) + MC2 + MC1 + RC1({θ2}) = 9 + 7 + 2 + 6 = 24.

4 The socially optimal network

We have identified the opportunity cost of any connector set of an agent. Using this, we
can now re-define the socially optimal network in terms of optimal connector sets.

The result below follows in a straightforward manner from our construction of opportu-
nity cost, which takes into account the impact of a connector set on the entire network.
The net social value of a connector set of agent i is the extra output minus its opportunity
cost, as shown in the last section. Therefore, in the socially optimal network, each i is
linked to the connector set that maximizes the net social value across all connector sets
of i. The result is crucial in that it allows us to restate the socially optimal network sim-
ply by comparing the net social values of connector sets of each agent. We then use this

14



formulation to construct the mechanism for implementing the socially optimal network.

Lemma 1. For any θ ∈ Θ, suppose agent i ∈ N is connected to the connector set ψ∗
i in network

G∗(θ). G∗(θ) is socially optimal if and only if, for all i ∈ N

Y({i, ψ∗
i })− OCS

i (ψ
∗
i ) ⩾ Y({i, ψi})− OCS

i (ψi) (4.1)

for all ψi ∈ Ψ(N\{i}).

Proof: Suppose G∗ is socially optimal but for some i ∈ N there is ψ′
i ∈ Ψ(N\{i}) such

that Y({i, ψ∗
i })−OCS

i (ψ
∗
i ) < Y({i, ψ′

i})−OCS
i (ψ

′
i). Since OCS

i (ψ
′
i) captures the full social

cost of ψ′
i by construction, the right hand side is the social value of ψ′

i . Since the social
value of ψ′

i is higher, a change in the neighborhood of i to {i, ψ′
i} would improve net social

value. But then G∗ is not socially optimal, which gives us a contradiction.

Next, suppose condition (4.1) holds for all i ∈ N and all ψi ∈ Ψ(N\{i}). Suppose that G∗

is not socially optimal. Then there is some optimal network G′ with i connected to ψ′
i ̸= ψ∗

i

for some i. If for all such i we have Y({i, ψ∗
i })− OCS

i (ψ
∗
i ) = Y({i, ψ′

i})− OCS
i (ψ

′
i), that

implies if G′ is optimal, then G∗ must also be optimal, a contradiction. If, on the other
hand, for any i with ψ′

i ̸= ψ∗
i , we have Y({i, ψ∗

i }) − OCS
i (ψ

∗
i ) > Y({i, ψ′

i}) − OCS
i (ψ

′
i),

then clearly we can improve social value by changing the connector set of i from ψ′
i to ψ∗

i ,
implying that G′ is not socially optimal, a contradiction.

Note that if for one agent the net social value is negative for all nonempty connector sets,
the optimal connector set would be the empty set, guaranteeing zero net social value.

4.1 Example 2 (continued)

The example demonstrates the construction of a socially optimal network using net social
values of connector sets.

The net social value of the neighborhood formed by θ1 connecting to ψ1 = {θ2, θ3} is
2(θ1θ2 + θ1θ3) − OCS

1({θ2, θ3}). The output is 44 and the opportunity cost is 24 (as cal-
culated in Section 3.2.2), so the net value is 20. Using similar calculations, Table 1 below
reports the net social value of all neighborhoods formed by connecting each agent to all
possible connector sets for them, excluding any connector set involving more than two
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Net Social Value
ψi {θ1} {θ2} {θ3} {θ4} {θ1, θ2} {θ1, θ3} {θ1, θ4} {θ2, θ3} {θ2, θ4} {θ3, θ4} {∅}

Y({1, ψ1})− OCS
1 (ψ1) - 13 11 9 - - - 20 19 15 0

Y({2, ψ2})− OCS
2 (ψ2) 9 - 6 3 - 10 11 - - 4 0

Y({3, ψ3})− OCS
3 (ψ3) 7 6 - 1 5 - 5 - 2 - 0

Y({4, ψ4})− OCS
4 (ψ4) 1 2 0 - −4 −3 - 0 - - 0

Table 1: This shows the net social value of neighborhoods for Example 2. Highlighted cells

indicate the connector sets with highest net social value for each type. The corresponding neigh-

borhoods form the socially optimal network.

players.7 Using the maximum in each row (highlighted cells), we can construct the so-
cially optimal network (as in Figure 2).

4.2 Properties of the socially optimal network

Let us first comment on the existence and uniqueness of a socially optimal network for
any given profile of types. As noted in Section 2, the socially optimal network exists.
Further, uniqueness holds under weak additional restrictions on g as shown in the result
below.8 The proof is relegated to the appendix.

Proposition 1. Suppose for any θ ∈ Θ, the cross-partial derivative of g is non-zero. Then the
socially optimal network is generically unique.

In what follows, we assume that the cross-partial derivative of g is non-zero for all θ ∈ Θ.

The next condition is the same as the responsive social choice function definition in Berge-
mann and Morris (2009).

Definition 4. (Responsive Socially Optimal Network) The socially optimal network is re-
sponsive if for all i ∈ N, and all θ′i ̸= θi, there exists θ−i such that

ψ∗
i (θi, θ−i) ̸= ψ∗

i (θ
′
i , θ−i).

7Recall that high marginal cost for a third connection rules out private or social optimality of three links
for any agent.

8As stated earlier, g is assumed to be positive, strictly increasing and symmetric. The additional restric-
tion essentially rules out linear functions such as g(θi, θj) = θi + θj. It is easy to see that in this case, different
configurations could result in the same net value.
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Responsiveness requires that a change in the report of i changes the socially optimal net-
work allocation for i for some reports of other agents. This would, for example, fail if the
marginal costs are increasing but so low that the complete network is optimal for all types
of any agent in some sub-interval of the set of types. We assume that the socially optimal
network is responsive.

5 The mechanism

We now specify a direct mechanism that asks agents to report their types and specifies
an allocation that consists of a connector set for each agent and also specifies transfers for
any possible connector set.

As noted in the introduction, once an allocated network is formed, new information can
arise and allow for deviation opportunities. To make our implementation result robust
to such information discoveries after formation of the allocated network, we define an ad-
justment process under full information in Section 5.3, and define the concept of network
equilibrium.

The mechanism imposes two weak restrictions on network adjustments. First, the fact
that agents can adjust network connections allows some scope for misreporting and then
correcting the consequence later. To prevent these trivial deviations, the transfer design
adds (arbitrarily small) fines in the transfers for any final choice of connector set that
deviates from the allocation.

The second restriction has to do with the adjustment process itself and is clarified in sec-
tion 5.3 after we specify the allocation and transfers.

5.1 The sequence of moves

Notation The mechanism is denoted by M. We use variables with a “hat” to denote
reports and report-based calculations. The sequence of moves is as follows.

1. The agents are asked to report types. Let θ̂ = (θ̂1, . . . , θ̂n) denote the vector of reports.

2. Given the report vector, the designer announces a connector set allocation for each
announced type and transfers for all possible connector sets associated with each agent.
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3. Agents form allocated connections. After allocated connections are formed, adjust-
ments are allowed take place. We specify the adjustment process and the network equi-
librium notion.

4. Given the neighborhoods formed by each agent in the network equilibrium, they re-
ceive transfers.

5.2 Connector set allocation and transfers

Given the report vector θ̂, the designer calculates

• the opportunity cost OĈS
i (ψi) for each i ∈ N, and each ψi ∈ Ψ(N\{i}) and

• the output each ψi would generate when connected to i, given by Ŷ({i, ψi}) =

∑j∈ψi
g(θ̂i, θ̂j).

Allocation of i The allocation of i is a connector set ψ̂∗
i such that

Ŷ({i, ψ∗
i })− OĈS

i (ψ
∗
i ) ⩾ Ŷ({i, ψi})− OĈS

i (ψi)

for any ψi ∈ Ψ(N\{i}). From Lemma 1, this is the socially optimal connector set of i as
calculated from the report vector θ̂.

Transfer to i The designer announces a function Ti : Θ × Ψ(N\{i}) 7→ ℜ for each agent
i ∈ N. That is, for any reported type profile, and for any connector set ψi of i, the function
specifies a real number.

The transfer to i for any connector set ψi is given by

Ti(ψi|θ̂)− 1(ψ̂∗
i )ε

where Ti(ψi|θ̂) is specified below and ε > 0 is a (possibly arbitrarily small) penalty for
deviations from the optimal connector set allocation: if ψi = ψ̂∗

i then the indicator variable
1(ψ̂∗

i ) = 0, and 1(ψ̂∗
i ) = 1 otherwise.

Given report θ̂, and given transfers, the payoff of agent i connecting to the connector set
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ψi is given by9

vi(ψi|θ, θ̂) =
Y({i, ψi})

2
− C(|ψi|) + Ti(ψi|θ̂)− 1(ψ̂∗

i )ε. (5.1)

Note that the payoff of i from connecting to any connector set ψi involves the true output
Y({i, ψi}) of the neighborhood {i, ψi}. The report vector affects only the transfers and
allocation specified by the mechanism.

Specifying the function Ti For any connector set ψi, the function Ti has two compo-
nents. The first component compensates i for the direct cost of connections in the set; the
second component is a “tax”: the agent is asked to pay an amount that corresponds to the
social opportunity cost (as calculated from reports) of the connector set. Ti is then given
by

Ti(ψi|θ̂) = C(|ψi|)−
OĈS

i (ψi)

2
.

Note that the opportunity cost of the connector set ψi is calculated from reports of agents
other than i, and the report of i plays no role in the calculation.

Finally, given report vector θ̂, the transfer-augmented payoff of agent i under mechanism
M from linking to the connector set ψi is given by equation (5.1), which can be rewritten
as

vi(ψi|θ, θ̂) =
1
2

(
Y({i, ψi})− OĈS

i (ψi)
)
− 1(ψ̂∗

i )ε. (5.2)

5.3 Network adjustments and network equilibrium

Finally we specify the network adjustment process starting from the allocated network
and the network equilibrium concept. As noted in the introduction, it seems plausible
that once the allocated network is formed, agents learn the types of their partners. Net-
work relations may also facilitate learning about types of agents beyond partners. Such
new information after the allocated network is formed might lead to link readjustments. To
ensure robustness to any such information discovery, we specify an adjustment process
under full information at the stage after the formation of the allocated network.

9The payoff depends on the neighborhood {i, ψi}. Since this is clear from the context, we economize by
abusing notation slightly and put ψi as the argument.
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The mechanism imposes two weak restrictions on network adjustments. First, as noted
in Section 5.2 above, the transfer design adds (arbitrarily small) fines for any final choice
of connector set that deviates from the allocation.

Second, to characterize fully the network equilibrium after the specification of allocation
and transfers for each possible report profile, we need an additional restriction. After
misreports, the allocation might not be pairwise stable under full information, and agents
would adjust links in a pairwise manner (sever unprofitable links, join mutually benefi-
cial links). This process might lead to a cycle which does not converge to a pairwise stable
network. To be able to define the network equilibrium under all possible reports, we im-
pose the restriction that K rounds of adjustments are allowed, where K is a finite positive
integer (that can be arbitrarily large).10

Note that at the stage of network adjustments, the mechanism payoff from any connector
set for any agent is fixed since transfers for each connector set and allocations are already
specified. In other words, any change in ψi for i changes the payoff according to a fixed
menu, and has no implication for agents whose connector sets are not changing in the
process. Therefore there are no endogenous externalities at this stage.

5.3.1 Network adjustment process

The following definition of a pairwise improving path is adapted from Jackson and Watts
(2001). Starting from any network, a link that leads to gains by both agents (at least
one agent gains strictly) is added, and any agent unilaterally severs a link if this strictly
improves own payoff.

Let ψk
i denote the connector set of agent i in network Gk.

Definition 5. A pairwise improving path from a network G to network G′ is a finite sequence of
networks G0, . . . , GT where G0 = G and GT = G′ such that for any k ∈ {0, . . . , T − 1} either

i. Gk+1 = Gk − ij for some ij such that vi(ψ
k
i \{j}|θ, θ̂) > vi(ψ

k
i |θ, θ̂), or

ii. Gk+1 = Gk + ij for some ij such that vi(ψ
k
i ∪{j}|θ, θ̂) > vi(ψ

k
i |θ, θ̂) and vj(ψ

k
j ∪{i}|θ, θ̂) ⩾

vj(ψ
k
j |θ, θ̂).

10This restriction is not required under an alternative stronger condition on link adjustment. We show
this in the appendix.
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The next result follows immediately.

Lemma 2. A network is PWS-FI if and only if no pairwise improving path can emanate from it.

Proof. Suppose no pairwise improving path can start from a network G. This implies that
for any pair i, j ∈ N such that ij ∈ G, the network G − ij does not satisfies condition (i) in
Definition 5 above and for any pair i, j ∈ N such that ij /∈ G, the network G + ij does not
satisfies condition (ii) above. Since this is true for any pair i, j, it also coincides with the
Definition 1 of PWS-FI, thus G must be PWS-FI. Suppose now that G was PWS-FI. Then
by definition no pair i, j ∈ N such that ij ∈ G can gain from severing their connection and
no pair i, j ∈ N such that ij /∈ G can both gain from connecting (with strict gain for at least
one of the agents). This means that there is no link ij such that G + ij or G − ij can satisfy,
respectively, conditions (i) or (ii) of Definition 5. Thus, no pairwise improving path can
emanate from a PSW-FI network.

5.3.2 Network equilibrium

As noted the start of section 5.3, we impose the following restriction. The mechanism
allows K rounds of pairwise adjustments where K is any finite (possibly arbitrarily large)
number.

We now define the network equilibrium given any profile of types θ and after any profile
of reports θ̂. Let G0 denote the allocated network formed by the connector set allocations
ψ0

i for i ∈ {1, . . . , N} in period 0 (allocation stage). Let Gk denote the network where
G0, . . . , Gk is a pairwise improving path.

Definition 6. (Network Equilibrium) Under the mechanism M and given any K > 0, a
network G is an equilibrium network under any (θ, θ̂) if either

• G = Gk for 0 ⩽ k < K and G is PWS-FI, or

• G = GK.

Remark 1. (Network restrictions under the mechanism) As the above specifications make
clear, two relatively weak restrictions are imposed by the mechanism on network adjustments
starting from the allocated network: a fine (can be arbitrarily small) for deviating from the alloca-
tion, which prevents trivial deviations (say report high type then sever links) and a finite number
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of periods (can be arbitrarily large) allowed for adjustment in a pairwise fashion, which allows
us to characterize the network equilibrium following any vector of reports (and consequent trans-
fers/allocation) by ruling out cycles.

Remark 2. (Alternative adjustment process) Suppose the designer is able to impose a stronger
restriction on the adjustment process: starting from the allocation, any link severance must also be
mutually agreed upon to be allowed by the designer. In this case, a network equilibrium exists un-
der any report profile without requiring the K-rounds restriction. We show this in Appendix A.2.

From the definition of network equilibrium we know that under any vector of types θ and
reports θ̂, the equilibrium network exists and is given by Gk for some k ∈ {0, 1, . . . , K}.
This proves the following result.

Lemma 3. Let ΓS(θ, θ̂|M) be the set of equilibrium networks that can arise under the mechanism
M given type profile θ and report profile θ̂. This set is non-empty for any θ and θ̂.

6 Ex post network implementation

6.1 Definitions

Next, we need a notion of equilibrium at the reporting stage. Note the difference between
this and the network equilibrium notion. After reporting, agents form the allocated net-
work, and having formed a network, they can uncover information and act on it. So any
network adjustments are under full information. However, at the reporting stage agents
only know own type so any reporting stage equilibrium is under incomplete information.

6.1.1 Ex post incentive compatibility at the reporting stage

As clarified in the previous section, after any profile of reports and formation of conse-
quent allocated network, agents arrive at some equilibrium network. Given such network
equilibria after any profile of reports, we consider incentives at the reporting stage.

Following the definition of Bergemann and Morris (2005), we say that M is (strict) ex
post incentive compatible if for any θ, and given any choice of equilibrium network after

22



each report profile (and consequent transfers/allocation), truthful reporting is (strictly)
optimal if others report truthfully.

Let ΓS(θ, θ̂i, θ̂−i|M) be the set of equilibrium networks that can arise under the mecha-
nism M given type profile θ and report profile θ̂. From Lemma 3, the set is non-empty.

Let G be the network formed by the connector set allocations under mechanism M. We
say that G is allocated under M.

Recall that the payoff of agent i from the connector set ψi, given θ and the report vector
θ̂, under mechanism M is vi(ψi|θ, θ̂) given by equation (5.2). In what follows, it helps
to also explicitly refer to the payoff arising under a specific network that forms after any
profile of types and reports, so we include the relevant network as an argument in the
payoff function.

Definition 7. (Strict ex post incentive compatibility) Suppose θ̂i ̸= θi. Consider G ∈
ΓS(θ, θ|M) with associated connector set ψi for i and Ĝ ∈ ΓS(θ, θ̂i, θ−i|M) with associated
connector set ψ̂i for i. M is strict ex post incentive compatible if for any choice of (G, Ĝ) the
following holds for all i ∈ N and all θ ∈ Θ

vi(ψi|θ, θ, G) > vi(ψ̂i|θ, (θ̂i, θ−i), Ĝ)

for any θ̂i ̸= θi.

6.1.2 Strict ex post network implementation

Definition 8. (Strict Ex Post Network Implementation) A network G is strict ex post im-
plemented under mechanism M if the following conditions hold:

• M is strict ex post incentive compatible.

• Given truthful reporting, G is allocated under M, and G is PWS-FI.
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6.2 Result on Implementation

Proposition 2. For any θ ∈ Θ, the socially optimal network G∗(θ) is strict ex post implemented
under M.

Proof: The proof proceeds through the following lemmas.

Lemma 4. For any θ ∈ Θ, given truthful reporting, the allocated network is G∗(θ) and it is
PWS-FI.

Proof: Given the report vector, the mechanism specifies that the designer calculates the
socially optimal neighborhood for i. Therefore, under truthful reporting G∗(θ) is allo-
cated. Let us now show that G∗(θ) is PWS-FI.

From condition (4.1), we know that for any agent i, the connector set ψ∗
i under the socially

optimal network satisfies

Y({i, ψ∗
i })− OCS

i (ψ
∗
i ) > Y({i, ψi})− OCS

i (ψi)

for any ψi ∈ Ψ(N\{i}) such that ψi ̸= ψ∗
i . The strict inequality follows from the assump-

tion that g has non-zero cross partials and Proposition 1.

Since all agents report truthfully, the calculated opportunity cost of any connector set is
the same as the true opportunity cost, and G∗(θ) is allocated. From equation (5.2), the
payoff of any agent i by setting ψi = ψ∗

i is

1
2
(Y({i, ψ∗

i })− OCS
i (ψ

∗
i )).

Since ψi = ψ∗
i , and the allocation is also ψ∗

i , 1(ψ∗
i ) = 0 implying that the last term in

equation (5.2) is zero. Therefore individual and social payoffs coincide, and given truthful
reporting, ψ∗

i maximizes the payoff of i. Since the socially optimal network is unique, the
maximization is strict.

It follows that given truthful reporting, i has no incentive to deviate from the connector
set allocation by forming a neighborhood other than {i, ψ∗

i }. In particular this implies that
there is no incentive to deviate by either forming a link with an agent not in the allocation
or by severing a link with an agent in the allocation. Therefore the allocated network
G∗(θ) is PWS-FI for any θ ∈ Θ.

24



The next result shows that the payoff of any agent i from any given connector set is unaf-
fected by the report of i.

Lemma 5. Consider any report vector θ̂. For any i ∈ N, given any connector set ψi ∈ Ψ(N\{i}),
the payoff vi(ψi|θ, θ̂) of i from connecting to ψi does not depend on θ̂i.

Proof: From equation (5.2),

vi(ψi|θ, θ̂) =
1
2
(Y({i, ψi})− OĈS

i (ψi))− 1(ψ̂∗
i )ε.

Note that Y({i, ψi})/2 = ∑j∈ψi
g(θi, θj). In other words, the output depends on true types

of the agent and partners, irrespective of what any agent may report. Next, consider the
tax term, OĈS

i (ψi). The rearrangement cost of ψi is calculated excluding i, and does not
depend on either the report or the true type of i. The opportunity cost simply adds link
costs to rearrangement cost, therefore the same applies to the opportunity cost. Finally,
for any given ψi, 1(ψ̂∗

i ) is either 1 or 0, and this does not depend on the report of i.

The next result established that M is strict ex post incentive compatible.

Lemma 6. Under the specified mechanism M, for any type profile θ, if other agents report truth-
fully, truthful reporting is the unique best response of an agent.

Proof: From Lemma 4, under report profile (θi, θ−i) the connector set allocation for i is
the true socially optimal ψ∗

i . In this case the payoff of i given by 1
2(Y({i, ψ∗

i })−OCS
i (ψ

∗
i )).

Further, since G∗ is the unique socially optimal network,

Y({i, ψ∗
i })− OCS

i (ψ
∗
i ) > Y({i, ψi})− OCS

i (ψi) (6.1)

for any ψi ∈ Ψ(N\{i}) such that ψi ̸= ψ∗
i .

Now suppose agents other than i report θ−i, but i reports θ̂i ̸= θi. Let ψ̂∗
i be the connector

set allocation under report profile (θ̂i, θ−i). From the assumption that the socially optimal
network is responsive (section 4.2), ψ̂∗

i can be different from ψ∗
i allocated under report

profile (θi, θ−i).

From Lemma 5 above, we know that the report of i does not affect the payoff of i from
any given ψi. Since opportunity cost of any ψi depends on the reports of agents other
than i, and since other agents report truthfully, we have OĈS

i (ψi) = OCS
i (ψi). Therefore,
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from any report profile (θ̂i, θ−i), given allocation ψ̂∗
i , the payoff of i after any adjustments

is bounded above by

max
ψi∈Ψ(N\{i})

1
2

(
Y({i, ψi})− OCS

i (ψi)
)
− 1(ψ̂∗

i )ε

If this is maximized at ψi = ψ̂∗
i , and the neighborhood {i, ψ̂∗

i } is part of a Network Equi-
librium (Definition 6), 1(ψ̂∗

i ) = 0, implying the last term is zero. But from equation (6.1),
the payoff is strictly lower than that from ψ∗

i . If this is maximized after adjustments at a
ψ′

i ̸= ψ̂∗
i , and {i, ψ′

i} is part of a Network Equilibrium, 1(ψ̂∗
i ) = 1. Therefore the upper

bound of payoff i after adjustments is lower than the payoff from ψ∗
i by at least ε.

Therefore, when others report truthfully, if agent i misreports and receives an allocation
ψ̂∗

i ̸= ψ∗
i , this leads to a strictly lower payoff for i compared to truthtelling. Since ψ̂∗

i

can be different from ψ∗
i as noted above, misreporting is strictly suboptimal for i if others

report truthfully.

Proof of Proposition 2 (completed): Lemma 4 and Lemma 6 together show that under
the mechanism, G∗ satisfies the conditions for strict ex post implementation (Definition 8).
This completes the proof.

6.3 Budget balance

We show that the transfers required for strict ex post implementation of the socially op-
timal network generate a budget surplus. The budget deficit for the socially optimal
connector set ψ∗

i is given by

D(ψ∗
i ) = C(|ψ∗

i |)−
1
2

OCS
i (ψ

∗
i ). (6.2)

Note that since the socially optimal network is being strict ex post implemented, G∗(θ) is
allocated and also PWS-FI. This implies that any fines are out-of-equilibrium and there-
fore do not apply to budget calculations.

Proposition 3. Strict ex post implementation of the socially optimal network generates a budget
surplus:

∑
i∈N

D(ψ∗
i ) ⩽ 0

where strict inequality holds if marginal costs of link formation are increasing, and equality holds
if marginal costs are constant.
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Proof: Recall, from section 3.2, that Gψi ≡ (G−i|ψi)
∗ ∪ {i, ψi}. With ψi = ψ∗

i , Gψi is simply
the optimal network G∗. The degree of i is then di(G∗), given by |ψ∗

i |. Since throughout
this proof we only refer to the socially optimal network, we simply refer to the degree of
an agent i as di.

From equation (3.1),

OCS
i (ψ

∗
i ) = C(di) + ∑

j∈ψ∗
i

MCdj + RCi(ψ
∗
i ).

It follows that

∑
i∈N

D(ψ∗
i ) =

1
2 ∑

i∈N

C(di)− ∑
j∈ψ∗

i

MCdj − RCi(ψ
∗
i )

 .

Since RCi(ψ
∗
i ) ⩾ 0, we have

− ∑
i∈N

RCi(ψ
∗
i ). ⩽ 0

Note that if marginal costs are constant, rearrangement costs are zero since forming a link
does not have any impact on the costs of forming other links.

Next, consider the term ∑i∈N

(
C(di)− ∑j∈ψ∗

i
MCdj

)
. Note that MCdj appears once for

each i such that j ∈ ψ∗
i . Therefore, in the overall sum, MCdj appears dj times. This implies

∑
i∈N

 ∑
j∈ψ∗

i

MCdj

 = ∑
j∈N

djMCdj = ∑
i∈N

di MCdi .

Let ACi ≡ C(di)/di. Then

∑
i∈N

C(di)− ∑
j∈ψ∗

i

MCdj

 = ∑
i∈N

(
di ACi − di MCdi

)
= ∑

i∈N
di
(

ACi − MCdi

)
⩽ 0.

where the last inequality follows from the fact that ACi is the average link cost for i and
MCdi is the highest marginal link cost incurred by i. Given that marginal costs of link
formation are increasing, ACi − MCdi ⩽ 0, with strict inequality if costs are not constant.
This completes the proof.
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6.4 Constant marginal cost of link formation

As noted at the outset, a constant marginal cost is a simple special case of increasing
marginal costs. Recall from equation (3.1) that the opportunity cost of i connecting to a
connector set ψi is given by

OCS
i (ψi) = C(|ψi|) + ∑

j∈ψi

MCdj(Gψi )
+ RCi(ψi).

Suppose that marginal cost of link formation is constant, given by c > 0. In this case
adding a link does not change the marginal cost calculation for any other link, that is, no
externalities arise from the formation of a link. This implies there is no rearrangement
cost (the third term above is zero). Further, each of the first two terms simplify to c|ψi|,
implying that OCS

i (ψi) = 2c|ψi|. Since the opportunity cost of a connector set scales up
by its cardinality, we can simply consider the incentive to form individual links, where
each link has the opportunity cost 2c. In this case whether a link should be part of an
optimal network is independent of other links.

The fact that under a constant marginal cost the units of analysis can be simplified from
the elements of the set of connector sets to individual links allows further characterization
of the socially optimal network. While we omit the formal proof, it is easy to see that if
a link between θi and θj is part of a socially optimal network, then so is a link between
θi and any other type higher than θj. This implies that any non-empty socially optimal
network is a connected nested split graph where the neighborhoods of lower types are
nested in that of higher types.

7 Conclusion

We implement a social choice function that takes the form of a productive network formed
by agents with privately known productivity types and convex cost of link formation. The
latter gives rise to endogenous externalities across the entire network, and the impact
could be negative on some agents and positive for yet others. Such externalities imply
that networks stable under private incentives may not maximize social value, creating
scope for a mechanism to implement the socially optimal network. The first question
towards design of incentives is to calculate the externality or “rearrangement cost.” With
convex cost, the relevant unit for such calculation is any connector set of an agent, which
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is a subset of other agents. The rearrangement cost of a connector set ψi of i then shows
how the value of optimal arrangement of agents other than i changes when i is connected
to ψi. Adding direct link costs to the rearrangement cost, we obtain the social opportunity
cost for each connector set of an agent. Crucially, this allows deriving optimal network
connections from net values of neighborhoods, where each neighborhood is an agent
connected to a particular connector set. This formulation proves critical in setting up
incentives.

The mechanism uses the opportunity cost calculated from reports of agents to construct
transfers, and gives a network allocation to each agent that is simply the connector set of
each agent associated with the calculated optimal network.

In the context of network implementation, there is an additional problem that does not
arise in standard mechanisms. Once the allocated network is formed, it is reasonable to
assume that agents learn the types of their partners. This might lead them to sever links
allocated based on reports, but subsequently turn out to be suboptimal under further
information generated in the network. The network might enable agents to also learn
types of others beyond their partners, giving rise to further opportunities for deviation
from the allocated network. To ensure that our implementation is robust to such network-
generated information, we consider the equilibrium notion of pairwise stability under
full information (PWS-FI), and require that any implemented network arising through
the allocation or from further pairwise adjustments satisfies PWS-FI.

Given PWS-FI network outcome after specification of allocation and transfers following
any reports, we then show that at the reporting stage, the mechanism is strict ex post
incentive compatible: for any profile of types, truthful reporting is a strict mutual best
response. Accordingly we define the notion of strict ex post implementation of a network
as ex post incentive compatibility at the reporting stage and formation of PWS-FI network
once the transfers and allocations are specified given reports. Ex post implementation is
similar to Bergemann and Morris (2005, 2009) and implements in a detail-free manner.
However, our implementation through a direct mechanism is partial rather than full im-
plementation (Bergemann and Morris, 2009, Ollár and Penta, 2017). Whether reasonable
network restrictions allow ex post full implementation of the socially optimal network in
convex cost environments is a question we hope to address in future research.
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A Appendix

A.1 Proof of Proposition 1

We prove by induction. Note that n ⩾ 3. First, consider n = 3. Without loss of generality
rename the agents so that the types are θ1 > θ2 > θ3.

The socially optimal network can have one, two or three links. If there is only one link, it
must be between θ1 and θ2, since any other combination would have the same total cost
but lower output. The two-link optimal network must have the links between θ1, θ2 and
θ1, θ3 (any other combination produces a lower output without changing total cost). The
only three-link network is the complete network.

Suppose the optimal network is not unique. Then at least any two structures of the above
must have the same net social value. But the total value of the optimal one-link structure
does not depend on θ3 while it does for the other two optimal structures, so the optimal
one-link structure can generate same total value as any of the other optimal structures
only with probability 0 (i.e., for a specific value of θ3).

So suppose the total value generated by the optimal two-link and three-link networks
is the same. Then it must be that the link between θ2, θ3 generates 0 net social value,
2g(θ2, θ3) − 2MC2 = 0 (no rearrangement cost here as we are just adding links at each
stage). But this is non-generic. Therefore with n = 3 we have a generically unique social
optimal network.

Now suppose we have a generically unique socially optimal network for n = k. Consider
n = k + 1. Let i denote the k + 1-th agent being added.

Start from the optimal network under k players. Connect i to some neighborhood {i, ψi}.
Note that ∑j∈ψi

g(θi, θj) is the marginal gross social value added by the presence of agent
i linked to ψi.

Now suppose there are two socially optimal networks with associated neighborhoods
{i, ψi} and {i, ψ̃i} for all i. Note that for the two optimal networks to be different, there
must be some agents for which these neighborhoods are not identical. So, without loss of
generality, suppose ψi ̸= ψ̃i, that is, there is at least one agent s such that s ∈ ψi but s ̸∈ ψ̃i.

Since we have a unique socially optimal network for n = k, but two socially optimal net-
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works for n = k + 1, it must be that the marginal net social value added by the inclusion
of the k + 1-th agent is same across the neighborhoods,

∑
j∈ψi

g(θi, θj)− OCS
i (ψi) = ∑

j∈ψ̃i

g(θi, θj)− OCS
i (ψ̃i)

which implies

∑
j∈ψi

g(θi, θj)− ∑
j∈ψ̃i

g(θi, θj) = OCS
i (ψi)− OCS

i (ψ̃i) (A.1)

The right hand side is independent of θi. Therefore, for the above to hold generically, we
need the left hand side to be invariant with respect to θi, that is

∑
j∈ψi

∂g(θi, θj)

∂θi
= ∑

j∈ψ̃i

∂g(θi, θj)

∂θi

As noted above, since ψi ̸= ψ̃i, there is s ∈ ψi such that s ̸∈ ψ̃i. Since the cross partial of g is
not zero, any change in θs would therefore change the left hand side, breaking the above
equality. In other words, the above equality is non-generic, implying that condition A.1
does not hold generically.

Therefore if generic uniqueness of optimal network is true for n = k then it is true for
n = k + 1. Since this is true for n = 3, it is true for all n > 3 as well.

A.2 Alternative adjustment process and network equilibrium

In Remark 2 in Section 5.3, we noted that an alternative adjustment process can be spec-
ified which places a greater constraint on link severance but does not require a limit on
adjustment rounds. We specify the details below for this case.

Starting from the allocated network, consider an alternative adjustment process. Both
formation and severance now requires mutual consent. Thus, implicit in the process is
an enforcement of allocated links by the designer that is stronger than the other case
analyzed in the paper.

We define a strong PWS-FI as follows.
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Definition 9. A network G is Strong Pairwise Stable under Full Information (Strong PWS-FI)
if the following conditions hold

(i) If types θi and θj are linked, vi(ψi|θ, θ̂) > vi(ψi\{j}|θ, θ̂) and vj(ψj|θ, θ̂) ⩾ vj(ψj\{i}|θ, θ̂),
and

(ii) If types θi and θj are not linked, then vi(ψi\{j}|θ, θ̂) > vi(ψi|θ, θ̂) and vj(ψj\{i}|θ, θ̂) ⩾

vj(ψj|θ, θ̂).

A strong pairwise improving path is defined as follows.

Definition 10. A strong pairwise improving path from a network G to network G′ is a finite
sequence of networks G1, . . . , GT where G1 = G and GT = G′ such that for any k ∈ {1, . . . , T −
1} either

i. Gk+1 = Gk − ij for some ij such that vi(ψ
k
i \{j}|θ, θ̂) > vi(ψ

k
i |θ, θ̂) and vj(ψj\{i}|θ, θ̂) ⩾

vj(ψj|θ, θ̂), or

ii. Gk+1 = Gk + ij for some ij such that vi(ψ
k
i ∪ {j}|θ, θ̂) > vi(ψ

k
i |θ, θ̂) and vj(ψ

k
j ∪ {i}|θ, θ̂) ⩾

vj(ψ
k
j |θ, θ̂).

The next result follows. Essentially, the stronger adjustment process precludes cycles,
so that starting from any allocated network not already Strong PWS-FI, the adjustment
process converges to a Strong PWS-FI in a finite number of periods.

Proposition 4. Under mechanism M, given any profile of types and reports (θ, θ̂), a Strong
PWS-FI exists.

Proof. Consider a network G allocated by M under (θ, θ̂). If there are no strong pairwise
improving paths emanating from G, G must be Strong PWS-FI. Suppose there exists at
least one improving path from G. Let us show that we reach a Strong PWS-FI after M ≥ 1
iterations of strong pairwise improving adjustments, where M is a finite integer. The
proof is immediate if a cycle does not arise. To see a cycle is not possible, suppose on the
contrary that we have an improving cycle. Let G ≡ G0. It must be that there is a sequence
of networks such that Gk−1, Gk, G0 is a strong pairwise improving path for k ⩾ 1. Since
a strong pairwise improvement is a Pareto improvement for the agents involved, with
strict improvement for at least one agent, and does not affect payoffs of any other agents,
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we have V(G0) < . . . < V(Gk) < V(G0) which is a contradiction. This completes the
proof.

Definition 11. (Network Equilibrium) Under the mechanism M a network G is an equilib-
rium under any (θ, θ̂) if G is Strong PWS-FI.
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