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Abstract

This study examines allocation of public goods in network with
incomplete information. We consider specialized equilibrium where
agents either make the entire contribution to provide a particular
good or free rides. We assume that the agents connected to others
via a social network receive some information regarding the chances
of whether neighbours specialize or not. This information is termed
as signals. We further assume that agents can observe the signals re-
ceived by their neighbours. Each agent is categorized as persuaded or
non-persauded based on whether they follow their neighbours’ signals
or their own signals. While an agent can observe its number of neigh-
bours, it cannot observe whether the neighbours are persuaded ot not.
On the basis of this incomplete information, agents decide whether to
contribute or not. We see that allocation of goods depends on the in-
formation received as well as on the network structure at equilibrium.
We also take examples of some specific signal structures and analyse
the the network structure which brings about allocation as well as ef-
ficient allocation of goods to each agent. Lastly, a comparison of the
welfare is made when agents cannot observe the signals of the neigh-
bours directly but can estimate them from a uniformly distributed
function.
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1 Introduction

This paper takes a look at allocation of public goods in network modelled
by Bramoulli and Kranton (2007) [1] in a different light. We look only into
specialized equilibrium of the model. Instead of simultaneously choosing the
level of contribution in the game to maximize payoff, agents acts upon signals
recived by an independent authority. This signal gives the probability of a
neighbour specializing at equilibrium. Each agent receives a private signal.
Agents can observe its own signal and can also observe the signals received
by their neighbours. An agent contributes only if it estimates that none of
the neighbours make any contribution towards the provision of goods. This
estimation is done differently by the agents based on the category they be-
long to. An agent can only follow its private signal (known as non-persuaded
agent) or it can only follows the neighbourhood signal (known as persuaded
agents). An agent is aware of its own category but not the category of its
neighbours. Hence, informaion about the network structure is incomplete.

The paper proceedes as follows: The first section deals with the model specifi-
cation which is followed by conditions for Bayesian Equilibrium of the model.
The relation of network structure with allocation as well as efficient alloca-
tion of goods is also mentioned in this section. The next section deals with
signal structures that make allocation of goods possible in equilibrium. After
that two special cases are taken: when all the agents of the model are only of
persuaded type or non-persuaded type and equilibirum conditions for allo-
cation is studied. Lastly, we make a comparison of the welfare of this model
when communication is restricted between the agents so that agents cannot
observe the private signals received by its neighbours.

2 The Model

• There are n agents N = {1, . . . , n} connected by a network. Agent
i′s neighbourhood is denoted by Ni. Every agent can see the number
of neighbours they are connected to but not the entire network. The
number of neighbours an agent is connected to is known as its degree
and is denoted by di. We assume that there are no isolated nodes in
the network.

• Similar to Bramouli and Kranton (2007) model [1], agent receives their
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benefit from own and neighbour’s effort according to a twice differ-
entiable strictly concave benefit function b(e). There is also a cost
associated with effort which is denoted by c. The total effort e∗ re-
quired for the good to be allocated is given by b′(e∗) = c, which is the
utility maximizing effort. Therefore, we can say that atleast e∗ effort is
required for the good to be allocated. We assign the value of b(e∗) = 1.
We further assume that 0 ≤ e∗, c ≤ 1, so that 0 ≤ ce∗ ≤ 1.

• Agents can chose efforts ei from the set {0, e∗}. That is we assume
that agents can either specialize or free ride. In this regard, we are
only considering the specilaized euilibrium that has been mentioned in
[1]. Therefore, the cost of effort will either be 0 or ce∗ depending on
whether or not the agent specialize.

• The total effort given by agent i’s neighbours are denoted by ēi. There-
fore, the total payoff that an agent recieves is equal to 1 if the good is
allocated (i.e ei+ ēi ≥ e∗) and equal to zero if the good is not allocated
(i.e ei + ēi < e∗).

• Each agent receives a signal si from a central agency which gives a
probability value that none of the neighbours would specialize in the
game i.e si = Pr(ēi = 0). The set of signal is denoted by S. Further,
we also assume that signals are informative which means that if si < sj,
then Pr(ēi = 0) < Pr(ēj = 0).

• Every agents receives a signal and since the neighbourhood is visible to
the agents, neighbours’ signals are also visible. However, there are some
agents that follow only the private signal that they receive and others
who follow only their nighbourhood signals. Let us call these types
as non-persuaded and persuaded agents as in agents who are either
persuaded by their neighbours or not. This categorization is similar to
the one carried out in the paper [2]. We denote the set of persuaded
agents as P and set of non-persuaded agents as P ′.

• We further assume that even though agents can see their neighbour’s
signals, they cannot observe their neighbour’s type. Therefore the net-
work structure that consists of degree and types of agents is not com-
plete information.
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3 Equilibrium

In this section, we talk about the game that the agents play and the type of
Equilibrium that the model achieves. Since, information about specialization
and the network is not perfect, we get a Bayesian Nash Equilibrium.

Definition 1 A strategy profile σ is pure strategy Bayesian Nash Equilibrium
of this game if for each agent i, σi maximizes the expected payoff of the agent
given strategies of other agents.

Probability that good is allocated is given by Pr(ei + ēi ≥ e∗) and the
probability that the good is not allocated is given by Pr(ei + ēi < e∗).

When an agent specialize, the good is allocated to the agent. However, when
the agent free rides, the good is allocated only if atleast one of its neighbour
specializes. Probability that atleast one of the neighbours specialize is given
by Pr(ēi ≥ e∗) and the probability none of the neighbour specialize is given
by Pr(ēi < e∗). Since, agents can only play specialisation or play zero;
Pr(ēi < e∗) = Pr(ēi = 0).

Each agent would try to maximize their utility. The expected utility of agent
i is given by: Probability that a good is allocated X (1− cei) + Probability
that a good is not allocated (−cei). ei can take the value 0 or e∗.

Therefore, expected utility of an agent playing effort equal to e∗:

Ue∗ = 1− ce∗

Since, the agent specialize, the good will be allocated to the agent and the
cost incurred by it is equal to ce∗. The expected utility of an agent playing
effort equal to 0 is given by:

U0 = Pr(ēi ≥ e∗)

Therefore, an agent i plays e∗, when

1− ce∗ ≥ Pr(ēi ≥ e∗)

=⇒ Pr(ēi < e∗) ≥ ce∗

=⇒ Pr(ēi = 0) ≥ ce∗
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3.1 Allocation of goods in equilibrium

Each agent receives a private signal si = Pr(ēi = 0) which is visible oly to
the neighbours. Since the values of c and e∗ as known to all, agents can
observe whether the signals received are greater or less than ce∗. The total
effort required for the allocation of the good is e = ei + ēi. Agents do not
know the value of ēi but can get an idea from the signal recieved. Recall
from earlier that the agent specialize when Pr(ēi = 0) ≥ ce∗. Therefore, for
an non-persuaded agent, this condition becomes:

si ≥ ce∗

So, non-persuaded agents at equilibrium free rides when 0 ≤ si < ce∗ and
specialize when ce∗ ≤ si ≤ 1.

Let bi = max
jεNi

sj. Therefore bi denotes the maximum value of neihbourhood

signal for an agent i. Therefore for a persuauded agent, Pr(ēi = 0) can take
the value 1 or zero when bi ≥ ce∗ or bi < ce∗ respectively. A persuauded
agent free rides when bi ≥ ce∗ because it beleives that atleast one of the
neighbours specialize in this case; and it specializes when bi < ce∗ beacuse it
belibves that none of the neihbours specialize in that case. These equilibrium
profile leads to our first proposition regarding the existence of Bayesian Nash
Equilibrium of the model.

Proposition 1 For any signal structure si ∈ S, Bayesian Nash Equibrium
of the model would exist as long as 0 ≤ si ≤ 1.

The proof of this is quite straight forward. 0 ≤ si ≤ 1 makes Pr(ēi) a prop-
erly defined distribution. Therefore, as long (0 ≤ si ≤ 1), we can see that
Bayesian Nash Equilibrium will always exists for the game.

One of the result of Bramoulli and Kranton (2007) [1] paper was that the
set of specialized agents form a maximal independent set in equilibrium.
However, unlike the paper of Bramoulli and Kranton, we see here the set of
specialized agents do not form a maximal independent set. In fact equilib-
rium is very trivially attained in this model. So, instead we focus on the
provision of good to all agents. However, before moving forward, we provide
the following definitions.

5



Definition 2 A dominating set D in a network is such that every vertex not
in D is adjacent to atleast one member of D.

Proposition 2 Under a signal structure, an equilibrium of the game will
allocate goods to every agent if and only if the set of specialist is a dominating
set.

Pr(ei + ēi ≥ e∗) = 1

=⇒ Pr(ei + ēi ≥ e∗|ei = 0).P r(ei = 0) + Pr(ei + ēi ≥ e∗|ei = e∗).P r(ei = e∗) = 1

=⇒ Pr(ei + ēi ≥ e∗|ei = 0).P r(ei = 0) + 1.P r(ei = e∗) = 1

=⇒ Pr(ei + ēi ≥ e∗|ei = 0).P r(ei = 0)− Pr(ei = 0) = 0

=⇒ Pr(ei = 0).[1− Pr(ei + ēi ≥ e∗|ei = 0)] = 0

=⇒ Pr(ei = 0).[1− Pr(ēi ≥ e∗|ei = 0)] = 0

Note: Pr(ei + ēi ≥ e∗|ei = e∗) = 1 since ei = e∗ ensures that the good is
allocated.

Therefore, either of the conditions Pr(ei = 0) = 0 i.e Pr(ei = e∗) = 1 or
Pr(ēi ≥ e∗|ei = 0) = 1 needs to be satisfied for allocation of goods to all
agents. Let D be the set of specialized agents. We need to prove that set
D needs to be dominating in order to provide goods to every agent. From
the condition of allocation of goods, we see that either an agents needs to
specialize (i.e belong to set D) or else if it free rides, it should have at least
one neighbours who specilaize (i.e the agent should be connected to atleast
one agent in set D). Therefore, under provision of goods, D must be a
dominating set.

Now we come to the other part of the proof. Let the dominating set denoted
by D be the set of specilaized agents. We know that for agent i who is
in the dominating set, ei = e∗ i.e Pr(ei = e∗) = 1. Any agent i who
is not in dominating set, ei = 0 must be connected to atleast one agent
from D i.e must have atleast one neighbour who specilaizes, which means
Pr(ēi ≥ e∗|ei = 0) = 1. This proofs that when a set of specialized agents
forms a dominating set, provision of goods is ensured. In the model of [1],
equilibrium would automatically allocate goods to every agent. However, this
is not true in this model. Allocation of goods would depend on the signal
structure as well as the network structure which we pursue further.
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3.2 Efficient allocation of goods

This can be treated as welfare. Among the equilibrium which allocates the
good to every agent, we consider the efficient allocations where our cost
is minimized. Efficient allocation of goods takes place when there is welfare
maximization in equilibrium. For this, firstly we give the defination of welfare
and then find the conditions under which welfare is maximized in equilibrium.

Definition 3 A dominating set D in a network is minimal dominating set
when D is not a proper subset of any other dominating set

The expected welfare of the model is as follows:

n∑
i=1

[(1− cei)Pr(ei + ēi ≥ e∗) + (−cei)Pr(ei + ēi < e∗)]

=⇒
n∑
i=1

[Pr(ei + ēi ≥ e∗)− cei]

The maximum value of Pr(ei + ēi ≥ e∗) for every agent is 1 which occurs
when every individual is allocated the good. Since ce∗ ≤ 1, the welfare is
maximized when Pr(ei + ēi ≥ e∗) = 1. Therefore, in order to maximize
welfare the cost needs to be minimized. If every individual can access the
good, then the benefit that every individual receives is 1. For the entire
network, the total benefit would be equal to n. The cost incurred by the agent
would be equal to ce∗ when the agent specialize and zero when they free ride.
Welfare of the model when good is provided to every agent is n−ce∗(number
of agents specialising at equilibrium). Therefore to minimize the cost, we
need to minimize the number of agents specialising at equilibrium such that
goods are allocated to every individual. Given any network structure
under any signal structure, welfare maximization takes place when
the set of specilaized agents form a minimal dominating set.

4 Bayesian game in a dyad

Consider two agents with index i and j be called by their respective index.
They are connected via a dyad as per the three following cases. We assume
that agents do not know before hand whether others are persuaded or not:
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• Let si, sj > ce∗. There are three scenarios that can happen here:

1. if i, j ∈ P , then ei = ej = 0.

2. if i, j ∈ P ′, then ei = ej = e∗.

3. if i ∈ P and j ∈ P ′, then ei = 0 (because i thinks that j will play
e∗) and ej = e∗.

In this case, equilibrium is achieved in all three scenarios (1,2,3). Allo-
cation of goods happen in scenario 2 and 3.

• Let si, sj < ce∗. There are three scenarios that can happen here:

1. if i, j ∈ P , then ei = ej = e∗.

2. if i, j ∈ P ′, then ei = ej = 0.

3. if i ∈ P and j ∈ P ′, then ei = e∗ and ej = 0.

In this case, equilibrium is achieved in all three scenarios (1,2,3). Allo-
cation of goods happen in scenario 1 and 3.

• Let si > ce∗ and sj < ce∗. There are three scenarios that can happen
here:

1. if i, j ∈ P , then ei = e∗ and ej = 0.

2. if i, j ∈ P ′, then ei = e∗ and ej = 0.

3. This scenario can be divided into two parts:

- if i ∈ P and j ∈ P ′, then ei = e∗ and ej = 0.

- if i ∈ P ′ and j ∈ P , then ei = e∗ and ej = 0.

In this case, equilibrium is achieved in all three scenarios (1,2,3). Al-
location of goods happens in all three scenarios. We also see that in
this particular case, the categorization of agents in persauded and non-
persuaded is not required to reach equilibrium.
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5 Signal Structure and Allocation

In this section we see how allocation of goods is possible under some condi-
tions. However, before proceeding further, we need to define the following
with respect to any network.

Definition 4 A set of vertices D in a graph is an independent set if no two
vertices in the D are linked.

Definition 5 A maximal independent set D in a network is defined as an
independent set such that it is not a proper subset of any other independent
set.

As mentioned before, a central agency is responsible for sending signals to the
individuals. We assume that the network structure is visible to this agency
but the position of P and P ′ is not. The signals are a function of network
structure. On this basis, we have the following propositions.

Proposition 3 For any network with no isolated nodes, when the set of
agents receiving signals greater than ce∗ forms a maximal independent set,
then the equilibrium allocates goods to every agent.

Let the set of agents receiving signals greater than ce∗ be denoted by D. Any
maximal independent set is also a dominating as well as an independent set.
If we show that agents in D specilaizes and agents in N − D free rides, by
Proposition 2, it implies allocation of goods to every agent.

Since D is independent, for any agent i in D (i.e any agent receiving si > ce∗),
Ni ∩D = ∅. This means that the maximum signal from its neighbour is less
than ce∗. Therefore for any agent i ∈ D in the population, Pr(si > ce∗, bi >
ce∗) = 0. Since, Pr(si > e∗) = Pr(si > ce∗, bi < ce∗) + Pr(si > ce∗, bi > ce∗)
this further implies,

Pr(si > e∗) = Pr(si > ce∗, bi < ce∗) (1)

Further, since D is dominant, any agent i in N − D i.e any agent i with
si < ce∗ must be linked to atleast one agent in D i.e an agent with si > ce∗.
It means for agent i, bi has to be greater than ce∗. This implies that for any
agent Pr(si < ce∗, bi < ce∗) = 0.
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Since, Pr(si < ce∗) = Pr(si < ce∗, bi < ce∗) + Pr(si < ce∗, bi > ce∗) this
further implies,

Pr(si < e∗) = Pr(si < ce∗, bi > ce∗) (2)

Similarly, using Pr(bi < ce∗) = Pr(si < ce∗, bi < ce∗)+Pr(si > ce∗, bi < ce∗)
and the fact that D is dominant (which implies Pr(si < ce∗, bi < ce∗) = 0),
we get

Pr(bi < e∗) = Pr(si > ce∗, bi < ce∗) (3)

Using Equation 1, for any agent i ∈ D, we need to prove that it specializes
i.e., Pr(ei = e∗|i ∈ D) = 1. Therefore,

Pr(ei = e∗|i ∈ D)

=Pr(ei = e∗|si > ce∗, bi < ce∗) [By using Equation 1]

An agent i specializes if it belongs to P and si > ce∗ or if i belongs to set P ′

and bi < ce∗. Therefore the above expression becomes

Pr(i ∈ P ) + Pr(i ∈ P ′)
= 1

Therefore, an agent which belongs to set D specializes. This proves one part
of the proposition.

Using relation 2, for any agent in the set N−D, we get Pr(si < e∗) = Pr(si <
ce∗, bi > ce∗) = 1. Next, we need to prove that Pr(ei = 0|i ∈ N −D) = 1 to
show that agents receiving signals less than ce∗ free rides.

Pr(ei = 0|i ∈ N −D)

=Pr(ei = 0|si < ce∗, bi > ce∗) [By using Equation 2]

An agent i belonging to set P free rides because private signal si < ce∗

induces i ∈ P to play 0. Similarly, an agent i belonging to set P ′ free rides
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because bi > 0 induces i ∈ P ′ to play 0. Therefore the above expression
becomes,

Pr(i ∈ P ) + Pr(i ∈ P ′)
= 1

This implies, an agent which belongs to set N −D free rides. This completes
the proof.
Since N −D is dominated by D, it can be said that for any agent in N −D,
Pr(ēi ≥ e∗|ei = 0) = 1. This satisfies the condition of the allocation of goods
i.e either Pr(ei = e∗) = 1 or Pr(ēi ≥ e∗|ei = 0) = 1.

Since maximal independent set is also a minimal dominating set, it implies
that equilibrium in any network under this signal structure maximizes the
welfare as well.

Here the set of specialized agents form a maximal independent set. This is
similar to the result in [1]. Since, there exists a maximal independent set
for every network, therefore, there exists atleast one signal structure which
ensures allocation of goods to every agent. However, this is not an if and
only if scenario like mentioned in [1]. The following example demonstrates
this.

Example

Consider a star network. It has two different maximal independent set :
one which consists of only the centre and other with only the peripheries.
Without any loss of generality, let us assume that the centre receives signal
greater than ce∗ and all the peripheries receive signal less than ce∗. This
satisfies the condition of Proposition 3.
For the centre i, si > ce∗ and bi < ce∗. So,

Pr(ei = e∗) = Pr(i ∈ P ) + Pr(i ∈ P ′) = 1

For any periphery j, si < ce∗ and bi > ce∗. So,

Pr(ei = 0) = Pr(i ∈ P ) + Pr(i ∈ P ′) = 1
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So, we see that taking a star as an example that good is allocated to every
agent when condition of Proposition 3 is satisfied.
However, note that this is not an if and only if condition. Allocation can
occur in the same network but under some other signal structure. For ex-
ample, when all agent of the same network is of type P ′, then even under
the signal structure where every agent receives signal greater than ce∗, goods
are allocated to everyone. Even so this is the only signal specification where
allocation is guaranteed under any given network structure. In fact, we prove
the statement next.

Proposition 4 When the agents receiving signal greater than ce∗ is not a
maximal independent set, then there exist a network structure where alloca-
tion do not take place.

Let D be the set of agents receiving sinal greater than ce∗. Since D is not
maximal independent then D is either not independent or not dominant. In
this proof, we take these two conditions and show that there exist atleast
one network structure where allocation does not take place.

• Case 1 : When D is not independent, then there exist atleast two
agents in D who are connected. Keeping every aspects of the network
same, we just allow two agents in D to be linked. Let those agents be
i and j such that {i, j} belong to set P . Since {i, j} ∈ D, si, sj > ce∗

and i, j are connected, then bi, bj > ce∗. Therefore, both agents i and
j free rides and allocation does not take place.

• Case 2 : Assume D is not dominant. Keeping every aspects of the
network same, we just allow one agent in N - D who is not connected
to any agent in D. Let that agent be i and belong to P ′. For agent
i, si < ce∗ and bi < ce∗ since it is not connected to any agent in D.
Therefore, agent i free rides and allocation does not take place.

Combining Proposition 3 and Proposition 4, we can say that given any net-
work structure, allocation of goods is guaranteed if and only if agents receive-
ing signals greater than ce∗ forms a maximal independent set. This signal
structure further leads to welfare maximising equilibrium.

Next we look at another signal structure such that if there is a common
neighbour between two agents i, j then si = sj. We look at the equilibrium
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profile of the model with this signal structure. However, before that we proof
two lemmas.

Lemma 1 For a network with no isolated nodes receiving signals si such
that 0 ≤ si ≤ ce∗, all agents belonging to set P specializes and all agents
belonging to set P ′ free rides.

Since all agents receives signals 0 ≤ si ≤ ce∗, for every agent si < ce∗ and
bi < ce∗ which implies Pr(si > ce∗, bi < ce∗) = Pr(si > ce∗, bi > ce∗) =
Pr(si < ce∗, bi > ce∗) = 0.
Therefore, for any agent i,

Pr(si < ce∗, bi < ce∗) = 1 (4)

In order to prove this lemma, we need to show that Pr(ei = e∗|i ∈ P ) = 1
and Pr(ei = 0|i ∈ P ′) = 1. For any agent in P, we have:

Pr(ei = e∗|i ∈ P )

=Pr(bi < ce∗) using equilibrium condition

=Pr(si < ce∗, bi < ce∗) since Pr(si > ce∗, bi < ce∗) = 0

=1 using Equation 4

Similarly, for any agent in P ′, we have:

Pr(ei = 0|i ∈ P ′)
=Pr(si < ce∗) using equilibrium condition

=Pr(si < ce∗, bi < ce∗) since Pr(si < ce∗, bi > ce∗) = 0

=1 using Equation 4

Therefore, all the agents belonging to P specializes when 0 ≤ si ≤ ce∗ and
agents belonging to P ′ free rides.

Lemma 2 For a network with no isolated nodes receiving signals si such
that ce∗ ≤ si ≤ 1, all agents belonging to set P ′ specializes and all agents
belonging to set P free rides.

Since all agents receive signals ce∗ ≤ si ≤ 1, for every agent si > ce∗ and
bi > ce∗ which implies Pr(si < ce∗, bi < ce∗) = Pr(si < ce∗, bi > ce∗) =
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Pr(si > ce∗, bi < ce∗) = 0.
Therefore, for any agent i,

Pr(si > ce∗, bi > ce∗) = 1 (5)

In order to prove this lemma, we need to show that Pr(ei = e∗|i ∈ P ′) = 1
and Pr(ei = 0|i ∈ P ) = 1. For any agent in P ′, we have:

Pr(ei = e∗|i ∈ P ′)
=Pr(si > ce∗) using equilibrium condition

=Pr(si > ce∗, bi > ce∗) since Pr(si > ce∗, bi < ce∗) = 0

=1 using Equation 5

Similarly, for any agent in P, we have:

Pr(ei = 0|i ∈ P )

=Pr(bi > ce∗) using equilibrium condition

=Pr(si > ce∗, bi > ce∗) since Pr(si < ce∗, bi > ce∗) = 0

=1 using Equation 5

Therefore, all the agents belonging to P ′ specializes when 0 ≤ si ≤ ce∗ and
agents belonging to P free rides.

Proposition 5 When the signal structure of the model is such that all neigh-
bours of any agent recieves the same signal, at equilibrium a network with no
isolated nodes consists only of one or more of the following components:

• a component where every agent belonging to set P specializes, whereas
every agent of P ′ free rides.

• a component where every agent belonging to set P ′ specializes, whereas
every agent of P free rides.

• a component where the goods is allocated to every agent.

When the signal structure is as mentioned in the proposition, there are only
three categories of components possible in the network. To understand this,
let us take an agent i in the network which receives a signal less than ce∗.
There are two possibilities now :
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1. All j ∈ Ni receive signals less than ce∗. Since i ∈ Nj, all agents in Nj

also receive the same signal as i which will be less than ce∗. In this
case, all agents connected to i receives signal less than ce∗. This implies
the entire componenent which includes agent i would receive signal less
tha ce∗.

2. All j ∈ Ni receive signals greater than ce∗. Since i ∈ Nj, all agents inNj

receive the same signal as i which will be less than ce∗. Therefore in this
case, if an agents receives signal less than ce∗, all its neighbours receive
signal greater than ce∗ and all its neighbours of neighbours receive
signal less than ce∗ and so on. This continues for all agents connected to
agent i. Therefore, all agents receiving signal greater than ce∗ forms an
independent as well as dominant set in this component. This implies, all
agents receiving signal greater than ce∗ forms a maximal independent
set. It is also to note that agents receiving signal less than ce∗ also
forms a maximal independent set. However for the purpose of our
proof, we require only the agents receiving signals greater than ce∗ to
be a maximal independent set.

Similarly, if we take an agent who receives signal greater than ce∗ and repeat
the process, we get either a component where all agents receive signal greater
than ce∗ or a component where set of agents receiving signal greater than
ce∗ forms a maximal independent set. Now we can categorize all possible
components of the network as follows :

• Category 1 : All agents in the component receive signals less than ce∗.

• Category 2 : All agents in the component receive signals greater than
ce∗.

• Category 3 : All agents receiving signal greater than ce∗ in the compo-
nent forms a maximal independent set.

Any agent in the model will fall under any one of the categories. Using
Lemma 1 we know, when all agents of a component receives signals less than
ce∗ (component of Category 1), the agents of type P would specialize and
agents of type P ′ would free ride. Similarly, using Lemma 2, when all agents
of a component receive signals greater than ce∗ (component of Category 2),
the agents of type P ′ would specialize and agents of type P would free ride.
Finally in the component of Category 3, agents recieving signals greater than
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ce∗ forms a maximal independent set. Using Proposition 3 we can say that
goods are allocated to all the agents in this component.

Example

Once again consider a star network. When all the periphery receive the
same signals, according to Proposition 5, there are only three possibilites at
equilibrium. One being all the agents of the star receive signals greater ce∗.
In which case agents belonging to set P ′ specializes. In the second case, all
agents receives signals less than ce∗ in which case only the agents belonging
to set P specialize. In both the cases, allocation of goods is not ensured.
However, the last case where agents receiving signals greater than ce∗ forms
a maximal independent set, allocation of goods is ensured in equilibrium.

6 Population with only one type of agent

So far we have assumed that the agent is not aware of the entire network
structure i.e., the position of persuaded or non-persuaded agents.In this sec-
tion, we take two special cases of the network :

• Where all agents in the network belongs to set P.

• Where all agents in the network belongs to set P’.

Proposition 6 When all the agents in a network with no isolated nodes are
of persuaded type, allocation in equilibrium is possible if and only if set of
agents receiving signals greater than ce∗ forms an independent set.

Since this is an if and if condition, we have to first prove that allocation
implies that set of agents receiving signals greater than ce∗ forms an inde-
pendent set. Then we need to prove when set of agents receiving signals
greater than ce∗ forms an independent set, it implies allocation.

Lets assume that set of agents receiving signals greater than ce∗ not be an
independent set. Therefore there exist atleast one agent i such that si > ce∗

and who is linked to atleast another agent with signal greater than ce∗. This
means for this agent i, bi > ce∗. This induces this agent to free ride since
it is of type P . However, since agent i itself has signal greater than ce∗, for
any neighbour of i, say j, the condition bj > ce∗ holds true. This induces
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all its neighbour to free ride. Therefore allocation of goods for all agents is
not possible. This proofs that allocation of goods implies that set of agents
receiving signals greater than ce∗ form an independent set. Now, we proceed
to the next part of the proof i.e when set of agents receiving signals greater
than ce∗ forms an independent set, it implies allocation of goods to all agents.

Since, any agent i such that si > ce∗ are independent, Pr(si > e∗, bi > ce∗) =
0. Since,

Pr(si > ce∗) = Pr(si > ce∗, bi < ce∗) + Pr(si > ce∗, bi > ce∗and

Pr(bi < ce∗) = Pr(si < ce∗, bi < ce∗) + Pr(si > ce∗, bi < ce∗)

Using the independence condition, we get

Pr(si > e∗) = Pr(si > ce∗, bi < ce∗) (6)

In order to prove allocation, we need to prove that the set of specialized
agents forms a dominating set. Let the set of specialized agents be denoted
by D. Since all agents are of type P , an agent specializes if and only if bi < ce∗,
i.e.

Pr(ei = e∗) = 1

=⇒ Pr(bi < ce∗) = 1

=⇒ Pr(si < ce∗, bi < ce∗) + Pr(si > ce∗, bi < ce∗) = 1

This means that for an agent to specialize,

Pr(si < ce∗, bi < ce∗) + Pr(si > ce∗, bi < ce∗) = 1 (7)

We note that the probability values take one or zero, which means that
an agent i ∈ D either satisfies the conditions si < ce∗, bi < ce∗ or si >
ce∗, bi < ce∗. This further implies that an agent in N − D must satisfy
the condition si < ce∗, bi > ce∗. This is because independence requires
Pr(si > ce∗, bi > ce∗) = 0.
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For allocation, set D needs to be dominating, which means that any agent
j ∈ N −D should be connected to atleast one agent in D.

Now, each agent j in N −D has sj < ce∗, which means it should be linked
to atleast one agent with si > ce∗ to prove dominance. Using Equation 6,
we get, for all j in N −D, ∃(k ∈ Nj) such that:

∃(k ∈ Nj) such that Pr(sk > ce∗) = 1

Using independence condition,

=⇒ ∃(k ∈ Nj) such that Pr(sk > ce∗, bk < ce∗) = 1

From condition 7, we get

=⇒ (∃k ∈ Nj) such that Pr(k ∈ D) = 1

Therefore, the set of specilaized agents is a dominating set. Thus proving
that allocation of good takes place when the set of agents with si > ce∗ is an
independent set.

Proposition 7 When all the agents in a network with no isolated nodes are
of non-persuaded type, allocation in equilibrium is possible if and only if set
of agents receiving signals greater than ce∗ form a dominant set.

Since this is an if and if condition, there are two parts of the proof. First we
prove that under the given conditions, dominance implies allocation. Then
we prove that allocation implies dominance.

1. Let the set of agents with signals greater than ce∗ be called D. For any
agent i ∈ D, we have the following :

Pr(si > ce∗|i ∈ P ′) = 1

=⇒ Pr(ei = e∗) = 1

This shows all agents in D specialize. Since D is a dominating set, this
further implies that allocation takes place in this equilibrium.
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2. Let the set of specialized agents be D which means set of free riders is
N − D. We assume allocation which implies that D is a dominating
set. We just need prove that all agents in D receive signals greater
than ce∗ and all agents in N −D receive signals less than ce∗. For any
agent j ∈ N −D, we have the following :

Pr(ej = 0|j ∈ P ′) = 1

Using equilibirum condition,

=⇒ Pr(sj < ce∗) = 1

This means all agents in N −D receive signals less than ce∗. Since D
is a dominating set; all j ∈ N − D must be connected to atleast one
agent in D i.e.,

∃(k ∈ Nj) such that Pr(k ∈ D) = 1

Since all agents in D specialize

=⇒ ∃(k ∈ Nj) such that Pr(ek = e∗|k ∈ D) = 1

Using equilibirum condition,

=⇒ (∃k ∈ Nj) such that Pr(sk > ce∗|k ∈ D) = 1

This shows that all the agents in set D receive signals greater than ce∗.

7 No communication with neighbours

In this section, we assume that each agent receives a private signal si =
Pr(ēi = 0) which is not visible to the neighbours. In this sense, we restrict
communication between neighbours. We find the equilibrium condition of
this model and compare it with our previous model.

For a non-persuaded individual this condition is still the same i.e:

si ≥ ce∗
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Now, coming to the neighbours’ signals and how it affects the action played by
an individual. Even though agents do not know the signals of the neighbours,
we can formulate the probability values of the neighbourhood effort.Pr(bi <
ce∗) gives the probability that no neighbour plays e∗. Whereas, 1− Pr(bi <
ce∗) = Pr(bi > ce∗) gives the probability that atleast one of the neighbours
plays e∗. For a persuaded individual this condition becomes:

Pr(bi > ce∗) ≥ ce∗

Therefore, non-persuaded agents at equilibrium free rides when 0 ≤ si < ce∗

and specialize when ce∗ ≤ si ≤ 1. However, persuaded agents at equilibrium
free rides when 0 ≤ Pr(bi > ce∗) < ce∗ and specialize when ce∗ ≤ Pr(bi >
ce∗) ≤ 1.

We no longer assume the probability values to be zero or one but depends
on the distribution of the neighbourhood signals. We assume that the neigh-
bour’s signals are distributed uniformly within the range of 0 to 1. We know
Pr(bi ≥ ce∗) = 1 − Pr(bi < ce∗). When the maximum value of signals of
neighbours is less then ce∗, it means that all the values of signals of neigh-
bours are less than ce∗.

Since each signal is assumed to be distibuted uniformly from the range of
0 to 1, Pr(bi < ce∗) = ce∗. So, for an agent i of degree di, with maximum
neighbour signal bi,

Pr(bi < ce∗) = (ce∗)di

Agent i of non-persuaded type plays e∗ when:

Pr(bi ≥ ce∗) ≥ ce∗

=⇒ 1− (ce∗)di ≥ ce∗

=⇒ ln(1− ce∗) ≥ d.ln(ce∗)

=⇒ d ≤ ln(1− ce∗)
ln(ce∗)

Let us call d∗ = ln(1−ce∗)
ln(ce∗)

. Therefore agent i specialize when di ≤ d∗ and free
rides otherwise. It is assumed that agents can see the neighours.
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The condition for allocation of goods and welfare maximization remains the
same as previous model i.e., good is allocated to every agent when the set
of specialized agents form a dominating set and welfare is maximized at
equilibrium when the set of specialized agents form a minimal dominating
set. We have the following propositions which compares the model where
communication is allowed with the model where no communication takes
place.

Proposition 8 When the signals’ range is from 0 to ce∗ in a network with
no isolated nodes, if allocation takes place in equilibrium with no communi-
cation, then allocation also takes place in equilibrium with communication.
This further implies that welfare of the model is always greater when com-
munication is not allowed with the neighbours.

1. Equilibrium with communication : When every agent receives sig-
nal from 0 to ce∗, using Lemma 1, we can say that all agents belonging
to P specialize and all agents belong to P ′ free rides. This means under
allocation, we require P or a subset of P to be a dominating set.

2. Equilibrium with no communication : When every agent receives
signal from 0 to ce∗, using equilibrium condition, we can say that all
agents belonging to P but with degree less than d∗ specialize and all
other agents free rides. This means the set of specialized agents (say
D) is a subset of P . Under allocation, D is a dominating set.

If there is allocation with no communication, a subset of P dominates in equi-
librium. This ensures allocation in the equilibrium with no communication
as well since D ⊆ P . Next, we compare the welfare in both scenarios.

1. Welfare with communication : The welfare of the model is equal
to n− ce∗P̃ , where P̃ is the number of elements in P .

2. Welfare with no communication : The welfare of the model is
equal to n− ce∗D̃ where D̃ is the number of elements in D.

Since, D ⊆ P , we can say that welfare with no communication is always
greater than welfare with communication.

Proposition 9 When the signals’ range is from ce∗ to 1 in a network with
no isolated nodes, if allocation takes place in equilibrium with communica-
tion, then allocation also takes place in equilibrium with no communication.
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This further implies that welfare of the model is always greater when com-
munication is allowed with the neighbours.

1. Equilibrium with communication : When every agent receives sig-
nal from ce∗ to 1, using Lemma 2, we can say that all agents belonging
to P ′ specialize and all agents belong to P free rides. This means under
allocation, P ′ is a dominating set.

2. Equilibrium with no communication : When every agent receives
signal from ce∗ to 1, using equilibrium condition, we can say that all
agents belonging to P but with degree greater than d∗ free rides and
all other agents specialize. This means P ′ is a subset of the set of
specialized agents (say D). Under allocation, we require D or a subset
of D to be a dominating set.

If there is allocation with communication, P ′ dominates in equilibrium. This
ensures allocation in the equilibrium with no communication as well since
P ′ ⊆ D. Next, we compare the welfare in both scenarios.

1. Welfare with communication : The welfare of the model is equal
to n− ce∗P̃ ′, where P̃ ′ is the number of elements in P ′.

2. Welfare with no communication : The welfare of the model is
equal to n− ce∗D̃ where D̃ is the number of elements in D.

Since, P ′ ⊆ D, we can say that welfare with communication is always greater
than welfare with no communication.

8 Conclusion

This paper is a modification over the Bramoulli and Kranton (2007) model.
The main result of the model is that at specialized equilibrium, the set of
agents specialising forms a maximal independent set. This equilibrium also
ensures allocation of goods to every agent. Our model introduces additional
information in the form of signals which gives the probability that no neigh-
bour makes any effort.

We find that as long as the value of signals comes from a deterministic prob-
abilit distribution, equilibrium would exist in the model under any signal
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structure and network structure. However, allocation of goods to every agent
depends on the network structure. Particularly, when the set of agents re-
ceiving signals greater than ce∗ forms a maximal independent set, then under
any network structure, allocation of goods take place at equilibrium. In line
with Bramoulli and Kranton (2007), the set of specialised agents in this case
also forms a maximal independent set. However, unlike Bramoulli and Kran-
ton (2007), this is not the only possible case for allocation of goods.

Next, we take two particular cases of the model. One with the entire popula-
tion being persuaded type and another with all agents being non-persuaded
type. We see when all the agents in a network with no isolated nodes are
of persuaded type, allocation in equilibrium is possible if and only if set of
agents receiving signals greater than ce∗ forms an independent set; and when
they are of non-persuaded type, allocation in equilibrium is possible if and
only if set of agents receiving signals greater than ce∗ form a dominant set.
Therefore, when it is known that all agents are of a particular type, network
structure can help determine whether allocation takes place or not.

Lastly, we analyse the case when communication between the neighbours are
restricted, i.e agents do not get to know the neighbours’ private signals. We
assume that agents believe that neighbour’s signals follow an uniform distri-
bution from the range of 0 to 1. In this case, we go on to find the equilibrium
profile of the model and compare with the equilibrium of the case where com-
munication between the neighbours is allowed. We find that welfare of the
model is always greater when communication is allowed with the neighbours
when private signals range from ce∗ to 1 and always less when private signals
range from 0 to ce∗.

References
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