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1. Introduction: 

In human history conflicts are often multi-front in nature. Conflicting parties are often 

engaged in multiple conflicts with different parties. A few examples of conflict structures 

where conflict parties have to deal with multiple rivals in different conflicts simultaneously 

include conflicts between a centre and its periphery; for instance, an empire fighting its 

enemies, conflicts among several rivals of similar power; for instance, the so - called peer-

polity interactions and conflicts among ideologically different communities, where members 

of different communities perceive each other as enemies. In all the above cases the 

outcome of conflict is shaped by the underlying structure of the interdependent conflictive 

relations. And hence conflicts in a network of conflicting agents, receiving sufficient 

attention from economists and social scientists at large, comes as no surprise. This paper 

tries to borrow from two different strands of conflict economics literature (i) the strand 

concerning the conflict of agents in fixed networks as in Franke and Ozturk (2015) and (ii) 

the other strand is the one dealing with endogenous alliance formation. Skaperdas (1998), 

Tan and Wang (1997) and Esteban and Sakovics (2003) have shown that in three-player 

models, parties have no incentive to form a two-player alliance against the third unless the 

formation of the alliance generates synergies which enhance the winning probability of the 

alliance. In this paper we introduce a much weaker notion of alliance, a priori rational 

transfers. 

 In this paper we don the hat of a policy maker. The next natural question which one might 

ask is what is (are) the policy variable(s) and objective(s) and what are the exogenous 

features of the structure. Before we try to address those questions let us imagine a simple 

two player contest. In any two - player contest, any unilateral transfer of fighting resources 

is clearly not rational. Why would I strengthen my opponent and weaken myself at the same 



time through an unilateral resource transfer? But this question does not have an obvious 

and trivial answer when we have more than two players engaged in a network of contests. 

Let us elucidate with the help of an example. If A and B are both fighting C (as depicted in 

the figure below) is it trivial that A does not have an incentive to provide B with an unilateral 

transfer? (We assume all contests are characterized by the Tullock (1980) contest success 

function). Not really. An unilateral transfer from A to B will make B more endowed which in 

turn will make C allocate more resources in fighting C which in turn reduces C’s resource 

allocation in his conflict with A. Therefore from A’s perspective there are two opposite 

effects. The transfer reduces his strength but at the same time reduces C’s allocation in the 

contest with A. And it is not obvious a priori which effect dominates and when. 

 

Let us consider a transfer of 1 unit of resource from B to A in the case depicted in the figure. 

The rent being contested over has a valuation of ‘1’ in both the contests. Without the 

transfer the equilibrium payoffs to A and B are given by 𝜋𝐴 = 0.196 and 𝜋𝐵 = 0.6507. With 

the transfer 𝜋𝐴 = 0.294 and 𝜋𝐵  = 0.657. Thus we see that it is rational for B to make a 

transfer of 1 unit of resource to A. In fact the transfer leads to an improvement for both A 

and B. We call such a transfer a “rational transfer”. This paper tries to characterize the 

possibility of such voluntary redistributions (via rational transfers) with in a subset of agents 

in a network of contests. Ofcourse that will depend on the conflict resource endowments of 

the agents and the nature of the network. So we try to inspect if a conflict-resource 

endowment vector is susceptible to such rational transfers. This paper also throws light on 

the post – conflict inequality or distributional implications of the pre - conflict – resource 

distribution in different network structures. We also inspect whether the inequality-

minmizing distribution can be endogenously achieved through rational transfers and the 

transfer – susceptibility / stability of the inequality pre- conflict-resource distribution in 

different networks. The last section of the paper delves into the relationship between pre-



conflict resource distribution and the resulting post-conflict distribution. The pre – conflict 

resources might be perceived as arms & ammunitions, and the post – conflict resource is 

that what the fight is happening over (for example land or ethnic dominance). So does an 

equitable distribution of arms a great way of ensuring post – conflict inequality. We show 

that it depends on the structure of the network. Finally the last section investigates the 

trade - off between conflict minimization and inequality for different network structures.  

2. Model 

Let S be the set of agents, who are engaged in a network of conflicts. This is represented by 

a weighted graph G = <V,E,W>, where V, the set of vertices denote the set of agents and the 

edge 𝑒𝑖𝑗  ∈ 𝐸 denotes that agent ‘i’ is contesting with agent j. W: E -> R denotes the weights 

associated with the edges. W(𝑒𝑖𝑗) =  𝑤𝑖𝑗   i.e the weight on the edge connecting agent i & j 

signifies the common valuation of the prize which the two agents are fighting over. Of 

course W(𝑒𝑖𝑗) = 0 if 𝑒𝑖𝑗  ∉ 𝐸. Also each agent i ∈ 𝑆 has conflict resource endowment 𝑋�̅�.  

Definitions:  

Transfer – susceptible endowment vector: Given a graph G, a conflict resource endowment 

vector {𝑋�̅�}𝑖 ∈𝑆 is called transfer susceptible if any unilateral transfer to an agent by another 

leads to a pareto improvement in payoffs for both.  

Transfer – resistant endowment vector: Given a graph G, a conflict resource endowment 

vector {𝑋�̅�}𝑖 ∈𝑆 is called transfer resistant if no unilateral transfer between any pair of agents 

is rational. 

Remark: We can possibly imagine a pure exchange economy as an analogue of this model. 

The “allocation” in an exchange economy is the conflict resource endowment vector in this 

case. The transfer-resistant conflict endowment vector is the counterpart for a pareto 

efficient allocation in an exchange economy. In a pure exchange economy we are interested 

in determining whether an allocation is pareto efficient or not, given the set of utility 

functions of the agents. In this case we are interested in the transfer susceptibility or transfer 

resistance of a conflict endowment vector given a network of contests. 

 

Types of Networks under consideration: 



In the conflict network literature, analysing general networks is still an open problem. So 

following Franke and Ozturk (2015), we focus our attention on two broad classes of 

networks namely, regular and complete bipartite. In the latter category we have especially 

focussed on star- shaped and linear networks. These categories as mentioned in Franke and 

Ozturk (2015) are “distinct with respect to their grade of asymmetry which endogenously 

induces heterogeneity on the agents (depending on their respective location in the 

network)”. But before we move on to the next section let us briefly recall the properties of 

the above-mentioned networks.  

Bipartite Graph:  A bipartite graph is a graph whose vertices can be divided into two disjoint 

sets U and V such that every edge of the graph connects a vertex in U with a vertex in V.  

Observation 1: The linear network (graph) and the star – shaped network qualify as bipartite 

graphs.  

Proof: Consider any linear network with a finite number (say n) of vertices. We can certainly 

number the vertices from 1 to n with the left most vertex numbered 1. Now the set of all 

vertices of the network / graph can be divided into two disjoint sets U and V with U 

containing the odd – numbered vertices and V containing the even numbered vertices. And 

every edge in the graph connects a vertex in U to a vertex in V. Hence a linear graph is 

bipartite. For a star – shaped network the argument is trivial. We can simply put the central 

vertex in U and the peripheral vertices in V and thereby every edge connects the only vertex 

in U with the vertices in V, and thereby making the star-shaped graph bipartite.  

Regular Graph:  A regular graph is a graph where every vertex has the same number of 

neighbours i.e every vertex has the same degree.  

A regular graph with vertices of degree k is called a k – regular graph. Thus in a k-regular 

graph every vertex has k neighbours. The figure below shows all possible regular graphs 

with four vertices.  



 

Connected Graph: A graph is said to connected if there exists a path between every pair of 

vertices. 

Hence amongst the four – vertex regular graphs the 2- regular and 3 – regular graphs are 

connected, with the 2 – regular graph, which is a polygon (in this case a square) is the 

simplest (lowest degree) connected regular graph.  

Observation 2: All 1 – regular graphs and polygons are necessarily bipartite. 

Hence polygons with any finite number (n) of vertices are 2-regular, connected and 

bipartite. 

 

3. Transfer – resistance & Transfer susceptibility of allocations 

This section deals with inspecting the transfer-resistance and transfer – susceptibility of 

allocation of pre-conflict resources (i.e arms and ammunitions), in case of different 

networks. As mentioned in the previous section we will focus on bipartite networks 

(especially linear and star-shaped) and regular networks.  

Proposition 1: For a n – vertex linear network (with n>2) of equal edge-weights, there 

necessarily exists a conflict resource endowment vector which is transfer-susceptible. 

Proof: We will argue with the help of mathematical induction. Consider the following linear 

network (n=3), where the weights of the edges is = 1 (without loss of generality) i.e the 

common valuation of the prizes in both the contests are equal to 1. 

 

 



Each player j ∈ {𝐴, 𝐵, 𝐶} is endowed with 𝑋�̅� amount of resources. Without loss of generality 

𝑋𝐵
̅̅̅̅  > 𝑋𝐴

̅̅ ̅. C decides to allocate his resources in the two conflicts. Let us say that the resource 

allocated in the contest against k ∈ {𝐴, 𝐵}  is given by 𝑥𝑘𝑐. Thus C’s optimization problem is 

given by: 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒  𝜋𝐶 =  
𝑥𝐵𝑐

𝑥𝐵𝑐+𝑋𝐵̅̅ ̅̅  
  +  

𝑥𝐴𝑐

𝑥𝐴𝑐+𝑋𝐴̅̅ ̅̅  
  where 𝑥𝐵𝑐 +  𝑥𝐴𝑐 =  𝑋𝐶

̅̅̅̅   

In equilibrium 𝜋𝐵
∗ =  

𝑋𝐵̅̅ ̅̅ + √𝑋𝐴̅̅ ̅̅   𝑋𝐵̅̅ ̅̅

𝑋𝐴̅̅ ̅̅ + 𝑋𝐵̅̅ ̅̅ + 𝑋𝐶̅̅ ̅̅
 and 𝜋𝐴

∗ =  
𝑋𝐴̅̅ ̅̅ + √𝑋𝐴̅̅ ̅̅   𝑋𝐵̅̅ ̅̅

𝑋𝐴̅̅ ̅̅ + 𝑋𝐵̅̅ ̅̅ + 𝑋𝐶̅̅ ̅̅
. Now if there is a transfer of resource 

of amount 𝛿 from B to A, then how will the equilibrium payoffs change? 

Lemma 1:  

(i) If 𝑋𝐵
̅̅̅̅  < (3 + 2√2 ) 𝑋𝐴

̅̅ ̅ then no unilateral transfer from B to A is rational for B 

(ii) If 𝑋𝐵
̅̅̅̅  > (3 + 2√2 ) 𝑋𝐴

̅̅ ̅ then ∃ 𝛿∗ = 
𝑋𝐵̅̅ ̅̅ −(3 + 2√2 )𝑋𝐴̅̅ ̅̅

3 + 2√2
 < 𝑋𝐵

̅̅̅̅  ∋ 𝑓𝑜𝑟 any 𝛿 ∈ (0, 𝛿∗) there 

is a pareto improvement in the equilibrium payoffs of both A and B. 

 

Proof of Lemma 1: Let us say that if there is a transfer of 𝛿 from B to A then the equilibrium 

payoffs of B and A are given by 𝜋𝐵
∗(𝛿) 𝑎𝑛𝑑 𝜋𝐴

∗(𝛿) respectively. 

Clearly 𝜋𝐵
∗(𝛿) =  

𝑋𝐵̅̅ ̅̅ − 𝛿+ √( 𝑋𝐴̅̅ ̅̅ + 𝛿)( 𝑋𝐵̅̅ ̅̅ − 𝛿)

𝑋𝐴̅̅ ̅̅ + 𝑋𝐵̅̅ ̅̅ + 𝑋𝐶̅̅ ̅̅
. Hence 𝜋𝐵

∗(𝛿) −  𝜋𝐵
∗ = 

√( 𝑋𝐴̅̅ ̅̅ + 𝛿)( 𝑋𝐵̅̅ ̅̅ − 𝛿)− √𝑋𝐴̅̅ ̅̅   𝑋𝐵̅̅ ̅̅ − 𝛿 

𝑋𝐴̅̅ ̅̅ + 𝑋𝐵̅̅ ̅̅ + 𝑋𝐶̅̅ ̅̅
 

Define f(𝛿) = √( 𝑋𝐴
̅̅ ̅ +  𝛿)( 𝑋𝐵

̅̅̅̅ −  𝛿) −  √𝑋𝐴
̅̅ ̅  𝑋𝐵

̅̅̅̅ −  𝛿 

f(0) = 0, and f(𝑋𝐵
̅̅̅̅ ) < 0.  𝑓′(𝛿) = 

( 𝑋𝐵̅̅ ̅̅ − 𝛿)−( 𝑋𝐴̅̅ ̅̅ + 𝛿)

2 √( 𝑋𝐴̅̅ ̅̅ + 𝛿)( 𝑋𝐵̅̅ ̅̅ − 𝛿)
 – 1. Thus lim

𝛿→0
𝑓′(𝛿) > 0. Also 𝑓′(𝛿) = 0 at 

𝛿 = 
𝑋𝐵̅̅ ̅̅ −(3 + 2√2 )𝑋𝐴̅̅ ̅̅

3 + 2√2
=  𝛿∗. Thus f(𝛿) is necessarily positive for all 𝛿 <  𝛿∗.  

𝜋𝐴
∗(𝛿) =  

𝑋𝐴̅̅ ̅̅ + 𝛿+ √( 𝑋𝐴̅̅ ̅̅ + 𝛿)( 𝑋𝐵̅̅ ̅̅ − 𝛿)

𝑋𝐴̅̅ ̅̅ + 𝑋𝐵̅̅ ̅̅ + 𝑋𝐶̅̅ ̅̅
 . And 𝜋𝐴

∗(𝛿) −  𝜋𝐴
∗ = 

√( 𝑋𝐴̅̅ ̅̅ + 𝛿)( 𝑋𝐵̅̅ ̅̅ − 𝛿)− √𝑋𝐴̅̅ ̅̅   𝑋𝐵̅̅ ̅̅ + 𝛿 

𝑋𝐴̅̅ ̅̅ + 𝑋𝐵̅̅ ̅̅ + 𝑋𝐶̅̅ ̅̅
 

Define g(𝛿) = √( 𝑋𝐴
̅̅ ̅ +  𝛿)( 𝑋𝐵

̅̅̅̅ −  𝛿) −  √𝑋𝐴
̅̅ ̅  𝑋𝐵

̅̅̅̅ +  𝛿 = f(𝛿) + 2𝛿 

g(0) = 0 and g(𝑋𝐵
̅̅̅̅ ) > 0. Also lim

𝛿→0
𝑔′(𝛿) =  lim

𝛿→0
𝑓′(𝛿) + 2 > 0. 

𝑔′(𝛿) = 
( 𝑋𝐵̅̅ ̅̅ − 𝛿)−( 𝑋𝐴̅̅ ̅̅ + 𝛿)

2 √( 𝑋𝐴̅̅ ̅̅ + 𝛿)( 𝑋𝐵̅̅ ̅̅ − 𝛿)
 + 1. And 𝑔′(𝛿) = 0 𝑎𝑡 𝛿 =  

𝑋𝐵̅̅ ̅̅ −(3− 2√2 )𝑋𝐴̅̅ ̅̅

3− 2√2
 = 𝛿∗∗ > 𝛿∗. Thus we can 

infer that g(𝛿) > 0 for any 𝛿 ∈ (0, 𝛿∗∗).Thus for any 𝛿 < min{𝛿∗ , 𝛿∗∗} = 𝛿∗ , 𝜋𝐵
∗(𝛿) >  𝜋𝐵

∗ 



and 𝜋𝐴
∗(𝛿) >  𝜋𝐴

∗, which implies that a transfer of 𝛿 from B to A leads to a pareto 

improvement for both A and B. 

Thus we can infer that for all endowment vectors �̅�  ⊆ 𝑅+
3   satisfying the condition in 

Lemma 1 (ii), ∃ 𝛿 > 0 which when unilaterally transferred by B to A leads to a pareto 

improvement in their equilibrium payoffs i.e endowment vectors satisfying the condition(s) 

in Lemma 1(ii) are transfer-susceptible. 

Proof of Proposition:  Let’s assume that for an equal edge-weight linear network with n-1 

agents there exists a transfer-susceptible conflict – resource endowment vector given by 

�̅� = (𝑋1
̅̅ ̅ , 𝑋2

̅̅ ̅, 𝑋3
̅̅ ̅, 𝑋4

̅̅ ̅ , … … … . . 𝑋𝑛−1
̅̅ ̅̅ ̅̅  ) where it is rational for agent i to make an unilateral 

transfer to agent j where i,j ∈ {2,3, … . . 𝑛 − 1}.  

And let’s say given �̅� = (𝑋1
̅̅ ̅ , 𝑋2

̅̅ ̅, 𝑋3
̅̅ ̅, 𝑋4

̅̅ ̅ , … … … . . 𝑋𝑛−1
̅̅ ̅̅ ̅̅  )  the equilibrium conflict allocations 

are given by {𝑥𝑖 ,𝑖−1
∗ , 𝑥𝑖 ,𝑖+1

∗  }𝑖=2
𝑛−2 where 𝑥𝑖 ,𝑖−1

∗ +   𝑥𝑖 ,𝑖+1
∗  =  𝑋�̅� . Now imagine an equal edge-

weight linear network with n agents and the conflict resource endowment vector is given by 

�̃� = (𝑋1
̅̅ ̅ , 𝑋2

̅̅ ̅, 𝑋3
̅̅ ̅, 𝑋4

̅̅ ̅ , … … … . . 𝑋𝑛−1
̅̅ ̅̅ ̅̅  , 𝑋𝑛

̅̅̅̅  ). Now for any conflict allocation vector 

{𝑥𝑛−1,𝑛−2 , 𝑥𝑛−1,𝑛  } where 𝑥𝑛−1,𝑛−2 +   𝑥𝑛−1,𝑛 =  𝑋𝑛−1
̅̅ ̅̅ ̅̅  , payoff of agent 𝐴𝑛−1 is given by 

 𝜋𝑛−1 = 
𝑥𝑛−1,𝑛

𝑥𝑛−1,𝑛+ 𝑋𝑛̅̅ ̅̅  
 + 

𝑋𝑛−1̅̅ ̅̅ ̅̅ ̅ − 𝑥𝑛−1,𝑛

𝑋𝑛−1̅̅ ̅̅ ̅̅ ̅ − 𝑥𝑛−1,𝑛+ 𝑥𝑛−2,𝑛−1
 . Thus  lim

𝑥𝑛−1,𝑛→0

𝜕𝜋𝑛−1

𝜕𝑥𝑛−1,𝑛
=

1

 𝑋𝑛̅̅ ̅̅  
 - 

𝑥𝑛−2,𝑛−1

(𝑋𝑛−1
̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝑥𝑛−2,𝑛−1)2.       

Hence lim
𝑥𝑛−1,𝑛→0

𝜕𝜋𝑛−1

𝜕𝑥𝑛−1,𝑛
< 0 if 𝑋𝑛

̅̅̅̅  is large enough. Thus if 𝑋𝑛
̅̅̅̅  is large enough we are back to 

same equilibrium which we had in the previous case. And since the endowments of the first 

‘n-1’ agents are the same in �̃� and �̅�, we can safely conclude that �̃� is transfer – susceptible. 

 

Proposition 2: For a n – vertex star-shaped network of equal edge-weights, there necessarily 

exists a resource allocation vector where an unilateral transfer is rational. 



Proof:  We will argue with the help of mathematical induction. Consider the following 

network (n=4), where the weights of the edges is = 1 (without loss of generality). 

 

The conflict resource endowment vector is given by �̅� = (𝑋𝐴
̅̅ ̅ , 𝑋𝐵

̅̅̅̅ , 𝑋𝐶
̅̅̅̅ , 𝑋𝐷

̅̅ ̅̅  ). Payoff of A is 

given by 𝜋𝐴 =  
𝑥𝐴𝐵

𝑥𝐴𝐵+𝑋𝐵̅̅ ̅̅  
 + 

𝑥𝐴𝐶

𝑥𝐴𝐶+𝑋𝐶̅̅ ̅̅  
+  

𝑥𝐴𝐷

𝑥𝐴𝐷+𝑋𝐷̅̅ ̅̅  
  where 𝑥𝐴𝐵 +  𝑥𝐴𝐶 +  𝑥𝐴𝐷 = 𝑋𝐴

̅̅ ̅.  In equilibrium: 

𝜋𝐵
∗ =  

𝑋𝐵̅̅ ̅̅ + √𝑋𝐶̅̅ ̅̅   𝑋𝐵̅̅ ̅̅  +  √𝑋𝐷̅̅ ̅̅   𝑋𝐵̅̅ ̅̅

𝑋𝐴̅̅ ̅̅ + 𝑋𝐵̅̅ ̅̅ + 𝑋𝐶̅̅ ̅̅ + 𝑋𝐷̅̅ ̅̅
 . Now let’s say there is a unilateral transfer 𝛿 from B to D, and 

then the equilibrium payoff of B is given by 𝜋𝐵
∗(𝛿).  

Now   𝜋𝐵
∗ − 𝜋𝐵

∗(𝛿) =  
𝛿+ √𝑋𝐶̅̅ ̅̅   𝑋𝐵̅̅ ̅̅  − √𝑋𝐶̅̅ ̅̅   .(𝑋𝐵̅̅ ̅̅ − 𝛿)+  √𝑋𝐷̅̅ ̅̅   𝑋𝐵̅̅ ̅̅ − √(𝑋𝐷

̅̅ ̅̅ ̅̅  + 𝛿)( 𝑋𝐵̅̅ ̅̅ − 𝛿)

𝑋𝐴̅̅ ̅̅ + 𝑋𝐵̅̅ ̅̅ + 𝑋𝐶̅̅ ̅̅ + 𝑋𝐷̅̅ ̅̅
  = f(𝛿) 

f(0) = 0 & f(𝑋𝐵
̅̅̅̅ ) > 0. Also 𝑓′(𝛿) = 

1+ √ 
𝑋𝐶
̅̅̅̅ ̅

(𝑋𝐵̅̅ ̅̅ ̅− 𝛿)
 .  

1

2
  −   

1

2
  .  

1

√(𝑋𝐷
̅̅ ̅̅ ̅̅  + 𝛿)( 𝑋𝐵̅̅ ̅̅ ̅− 𝛿)

.  (𝑋𝐵̅̅ ̅̅  − 𝑋𝐷̅̅ ̅̅ +  2(𝛿))  

𝑋𝐴̅̅ ̅̅ + 𝑋𝐵̅̅ ̅̅ + 𝑋𝐶̅̅ ̅̅ + 𝑋𝐷̅̅ ̅̅
   

Thus lim
𝛿→0

𝑓′(𝛿)  =  

1+ √ 
𝑋𝐶
̅̅̅̅ ̅

 𝑋𝐵̅̅ ̅̅ ̅ .  
1

2
  −   

1

2
  .  

1

√(𝑋𝐷
̅̅ ̅̅ ̅̅ )( 𝑋𝐵̅̅ ̅̅ ̅)

.  (𝑋𝐵̅̅ ̅̅  − 𝑋𝐷̅̅ ̅̅ )  

𝑋𝐴̅̅ ̅̅ + 𝑋𝐵̅̅ ̅̅ + 𝑋𝐶̅̅ ̅̅ + 𝑋𝐷̅̅ ̅̅
    

= 
1

2

𝑋𝐴̅̅ ̅̅ + 𝑋𝐵̅̅ ̅̅ + 𝑋𝐶̅̅ ̅̅ + 𝑋𝐷̅̅ ̅̅
 [ √ 

𝑋𝐶̅̅ ̅̅

 𝑋𝐵̅̅ ̅̅
   +  √ 

𝑋𝐷̅̅ ̅̅

 𝑋𝐵̅̅ ̅̅
  - √ 

𝑋𝐵̅̅ ̅̅

 𝑋𝐷̅̅ ̅̅
  + 2] =  

1

2

𝑋𝐴̅̅ ̅̅ + 𝑋𝐵̅̅ ̅̅ + 𝑋𝐶̅̅ ̅̅ + 𝑋𝐷̅̅ ̅̅
 [ √ 

𝑋𝐶̅̅ ̅̅

 𝑋𝐵̅̅ ̅̅
  -  { √ 

𝑋𝐵̅̅ ̅̅

 𝑋𝐷̅̅ ̅̅
  - √ 

𝑋𝐷̅̅ ̅̅

 𝑋𝐷̅̅ ̅̅
  - 2}]   

It clearly follows that lim
𝛿→0

𝑓′(𝛿) < 0  if 

 𝑋𝐵
̅̅̅̅ > (3 + 2√2) 𝑋𝐷

̅̅ ̅̅    &    𝑋𝐶
̅̅̅̅   <  𝑋𝐵

̅̅̅̅  [√ 
𝑋𝐵̅̅ ̅̅

 𝑋𝐷̅̅ ̅̅
  −  √ 

𝑋𝐷̅̅ ̅̅

 𝑋𝐷̅̅ ̅̅
  −  2]2                                                   (C1) 

Also   𝜋𝐷
∗(𝛿) −    𝜋𝐷

∗ = 
𝛿+ √𝑋𝐶̅̅ ̅̅  (  𝑋𝐷̅̅ ̅̅   + 𝛿)  − √𝑋𝐶̅̅ ̅̅    𝑋𝐷̅̅ ̅̅  −  √𝑋𝐷̅̅ ̅̅   𝑋𝐵̅̅ ̅̅ + √(𝑋𝐷

̅̅ ̅̅ ̅̅  + 𝛿)( 𝑋𝐵̅̅ ̅̅ − 𝛿)

𝑋𝐴̅̅ ̅̅ + 𝑋𝐵̅̅ ̅̅ + 𝑋𝐶̅̅ ̅̅ + 𝑋𝐷̅̅ ̅̅
  = g(𝛿) 



Clearly g(0) = 0 & 𝑔′(𝛿) > 0  if C1 holds.  Thus we can infer that for all endowment vectors 

�̅�  ⊆ 𝑅++
4   satisfying C1, ∃ 𝛿 > 0 which when unilaterally transferred by B to D leads to 

improvement in their equilibrium payoffs of both B and D i.e endowment vectors satisfying 

C1 are transfer-susceptible. 

Let’s assume that for an equal edge-weight star with n-1 agents (with agent 1 is at the 

‘centre’, without loss of generality) there exists a transfer-susceptible conflict – resource 

endowment vector given by �̅� = (𝑋1
̅̅ ̅ , 𝑋2

̅̅ ̅, 𝑋3
̅̅ ̅, 𝑋4

̅̅ ̅ , … … … . . 𝑋𝑛−1
̅̅ ̅̅ ̅̅  ) where it is rational for 

agent i to make an unilateral transfer to agent j where i,j ∈ {2,3, … . . 𝑛 − 1}.  

       

Let us say that the equilibrium allocations to conflict by agent 1 is given by 𝑥1
∗ = (𝑥1,2

∗  

,𝑥1,3
∗  , 𝑥1,4

∗  , … . 𝑥1,𝑛−1
∗ ). Now imagine an equal edge-weight star with n agents again with 1 at 

the centre (without loss of generality) and the conflict resource endowment vector is given 

by �̃� = (𝑋1
̅̅ ̅ , 𝑋2

̅̅ ̅, 𝑋3
̅̅ ̅, 𝑋4

̅̅ ̅ , … … … . . 𝑋𝑛−1
̅̅ ̅̅ ̅̅  , 𝑋𝑛

̅̅̅̅  ). Now given any resource allocation vector 𝑥1 =

(𝑥1,2, 𝑥1,3, … . . 𝑥1,𝑛) chosen by agent 1, his payoff is given by 𝜋1 = ∑
𝑥1,𝑗

𝑥1,𝑗+ 𝑋𝑗̅̅ ̅
𝑛
𝑗=2  , where 

∑ 𝑥1,𝑗
𝑛
𝑗=2  = 𝑋1

̅̅ ̅. Therefore  lim
𝑥1,𝑛→0

𝜕𝜋1

𝜕𝑥1,𝑛
 = 

1

𝑋𝑛̅̅ ̅̅
  -  ∑

𝑋𝑗̅̅ ̅

(𝑥1,𝑗+ 𝑋𝑗̅̅ ̅)2
𝑛−1
𝑗=2  < 0 if 𝑋𝑛

̅̅̅̅  is large enough. Thus 

𝑥1,𝑛 > 0 does not constitute an equilibrium. Therefore in this case the equilibrium allocation 

vector of agent 1 is given by (𝑥1,2
∗  ,𝑥1,3

∗  , 𝑥1,4
∗  , … . 𝑥1,𝑛−1

∗ , 0), which in turn implies that it will 

be rational for agent i to make an unilateral transfer to agent j where i,j ∈ {2,3, . . 𝑛 − 1}. 

Thus we have proven that �̃� is transfer-susceptible. 

 



Proposition 3: A polygon having all edges (but one) of equal weights and one edge with a 

“high enough” weight, ensures the existence of a transfer-susceptible resource endowment 

vector. 

 

Consider the following allocation (𝑋𝐴
̅̅ ̅ , 𝑋𝐵

̅̅̅̅ , 𝑋𝐶
̅̅̅̅ ) = (R,R,0). Also let’s say the weights of the 

edges of the graph are given as follows: w(A-B) = 1, w(A-C) = 1 & w(B-C) = w.  

In this scenario the equilibrium payoffs are given by 𝜋𝐴
∗ = 3/2, 𝜋𝐵

∗ = w + ½, 𝜋𝐶
∗ = 0.  

Now if A makes an unilateral transfer of 𝛿 to C, the resource allocation vector will be given 

by  (R - 𝛿,R, 𝛿). 

Now 𝜋𝐵 = 
𝑥𝐵𝐴

𝑥𝐵𝐴+𝑥𝐴𝐵 
 . 1 +  

𝑅− 𝑥𝐵𝐴

𝑅− 𝑥𝐵𝐴+𝑥𝐶𝐵 
 . w & 𝜋𝐶  = 

𝑥𝐶𝐴

𝑥𝐶𝐴+𝑥𝐴𝐶 
 . 1 +  

𝑅− 𝑥𝐶𝐴

𝑅− 𝑥𝐶𝐴+𝑥𝐵𝐶 
 . w 

𝜕𝜋𝐵

𝜕𝑥𝐵𝐴
 = 

𝑥𝐴𝐵

(𝑥𝐵𝐴+𝑥𝐴𝐵)2  - 
𝑥𝐶𝐵

(𝑅− 𝑥𝐵𝐴+𝑥𝐶𝐵)2 . w &  
𝜕𝜋𝐶

𝜕𝑥𝐶𝐴
 = 

𝑥𝐴𝐶

(𝑥𝐶𝐴+𝑥𝐴𝐶)2  - 
𝑥𝐵𝐶

(𝑅− 𝑥𝐶𝐴+𝑥𝐵𝐶)2 . w   

Thus ∃ �̈� > 0 ∋  ∀ 𝑤 >  �̈�, lim
𝑥𝐵𝐴→0

𝜕𝜋𝐵

𝜕𝑥𝐵𝐴
 < 0 & lim

𝑥𝐶𝐴→0

𝜕𝜋𝐶

𝜕𝑥𝐶𝐴
 < 0. Thus in equilibrium 𝜋𝐴

∗ = 2 > 3/2 

if 𝑤 >  �̈�. Also 𝜋𝐶
∗ > 0. Thus we see that an unilateral transfer from A to C in the above 

network leads to a pareto improvement for A and C.  

Now consider any polygon with n-sides and no diagonals.  

 

Let’s say w(𝐴𝑖 − 𝐴𝑖+1) = 1 ∀𝑖 = 1,2 … . 𝑛 − 2  & w(𝐴𝑛−1 − 𝐴𝑛) = w. Given this graph 

consider the conflict resource endowment vector (R,R,R….R,0). Clearly in equilibrium 



 𝜋𝑛−1
∗ = 0. Given this, following a similar argument as above ∃ �̌� > 0 ∋  ∀ 𝑤 >  �̌�,  an 

unilateral transfer from 𝐴𝑛−2 to 𝐴𝑛 will lead to a pareto improvement for both agents, 

which in turn makes the conflict resource endowment vector (R,R,R….R,0) transfer – 

susceptible. Thus we see that for a polygon (with vertices representing the contesting 

agents) with all equal weighted & one high-weighted edge, there must exist a transfer-

susceptible resource endowment vector.   

 

Corollary: If any graph G contains a equal weight star or a linear network or a one-high -

weight polygon as a subgraph, there will exist a transfer-susceptible conflict-resource 

endowment.  

 

Proposition 4: For any 1-regular network with n agents, any allocation is transfer resistant. 

Proof: The proof is trivial. Any 1 – regular graph is simply a set of disjoint pairs of vertices. So 

every agent has exactly one opponent i.e we have a bunch of independent two player 

contests. Hence the result follows.  

 

4. Allocations, Transfers & Inequality 

The Herfindahl-Hirschman Index (HHI) is a commonly accepted measure of wealth 

concentration and inequality. It is calculated by squaring the share of each agent competing in 

a system and then summing the resulting numbers. Thus for a system with n agents, HHI = 

∑ 𝑠𝑗
2𝑛

𝑗=1   =  
1

𝑊2 ∑ 𝜋𝑗
2𝑛

𝑗=1  ≡  ∑ 𝜋𝑗
2𝑛

𝑗=1 . So a higher HHI would mean higher wealth 

concentration. Thus a low HHI is desirable. 

Now we ask three important questions.  

i) Given an allocation, is a rational transfer “HHI – improving” (decreases HHI) or 

“HHI – exacerbating” (increases HHI)?  

ii) Given a network & a fixed amount of total-advertising budget, is the HHI – 

minimizing allocation transfer – susceptible or transfer-resistant? 



iii) Does there exist an allocation, given which, a rational transfer will result in the 

HHI-minimizing allocation? 

In this section we’ll try to answer these questions for the simplest network we know of, the 

three - node - linear network with equal weights (=1). 

 

Without loss of generality 𝑋𝐵
̅̅̅̅  ≥ 𝑋𝐴

̅̅ ̅.  Let’s also assume that the total amount of resources is 

fixed i.e 𝑋𝐵
̅̅̅̅  + 𝑋𝐴

̅̅ ̅ +  𝑋𝐶
̅̅̅̅  = T.  

Given the network the HHI =  𝜋𝐴
2 +  𝜋𝐵

2 +  𝜋𝐶
2 = 𝜋𝐴

2 +  𝜋𝐵
2  + (2 −  𝜋𝐵 −  𝜋𝐴)2 

 

Proposition 5: For a three - node - linear network with equal weights (=1) 

i. A rational transfer can be “HHI exacerbating”. There exist allocations which are 

susceptible to HHI – exacerbating transfers. 

ii. The HHI minimizing allocation is “transfer – resistant” 

iii. There does not exist a “transfer – susceptible” allocation, where a rational 

transfer will lead to the HHI minimizing allocation. 

 

Proof:  Let us say after a transfer of 𝛿 from B to A increases the payoff of B & A by ∆1 & ∆2 

respectively i.e 𝜋�̃� = 𝜋𝐵 + ∆1  and  𝜋�̃� = 𝜋𝐴 + ∆2 where 𝜋�̃� denote the payoff after the transfer 

has happened. 

Hence ∆𝐻𝐻𝐼 = [𝜋�̃�
2 +  𝜋�̃�

2
 + (2 −  𝜋�̃� −  𝜋�̃�)2]  -  [𝜋𝐴

2 +  𝜋𝐵
2 + (2 − 𝜋𝐵 −  𝜋𝐴)2] 

= ∆1 [2𝜋𝐵 +  𝜋𝐴 – 1] + ∆2 [2𝜋𝐴 +  𝜋𝐵 – 1] + ∆1
2
 + ∆2

2
 + ∆1. ∆2 

By Proposition 1 in equilibrium 

𝜋𝐵
∗ =  

𝑋𝐵̅̅ ̅̅ + √𝑋𝐴̅̅ ̅̅   𝑋𝐵̅̅ ̅̅

𝑋𝐴̅̅ ̅̅ + 𝑋𝐵̅̅ ̅̅ + 𝑋𝐶̅̅ ̅̅
 and 𝜋𝐴

∗ =  
𝑋𝐴̅̅ ̅̅ + √𝑋𝐴̅̅ ̅̅   𝑋𝐵̅̅ ̅̅

𝑋𝐴̅̅ ̅̅ + 𝑋𝐵̅̅ ̅̅ + 𝑋𝐶̅̅ ̅̅
 

∴ ∆𝐻𝐻𝐼 = ∆1 [ 
(2√ 𝑋𝐵̅̅ ̅̅ +√𝑋𝐴̅̅ ̅̅    )(√𝑋𝐴̅̅ ̅̅   + √ 𝑋𝐵̅̅ ̅̅ ) 

𝑋𝐵̅̅ ̅̅  + 𝑋𝐴̅̅ ̅̅ + 𝑋𝐶̅̅ ̅̅
–  - 1] + ∆2 [

(2√ 𝑋𝐵̅̅ ̅̅ +√𝑋𝐴̅̅ ̅̅    )(√𝑋𝐴̅̅ ̅̅   + √ 𝑋𝐵̅̅ ̅̅ ) 

𝑋𝐵̅̅ ̅̅  + 𝑋𝐴̅̅ ̅̅ + 𝑋𝐶̅̅ ̅̅
 – 1] + ∆1

2
 + 

∆2
2
 + ∆1. ∆2 



If (√𝑋𝐴
̅̅ ̅  +  √ 𝑋𝐵

̅̅̅̅  ) . min {2√ 𝑋𝐵
̅̅̅̅ + √𝑋𝐴

̅̅ ̅   , 2√ 𝑋𝐴
̅̅ ̅ + √𝑋𝐵

̅̅̅̅    } > 𝑋𝐵
̅̅̅̅  + 𝑋𝐴

̅̅ ̅ +  𝑋𝐶
̅̅̅̅  , then 

 ∆𝐻𝐻𝐼 > 0.  Since 𝑋𝐵
̅̅̅̅  ≥  𝑋𝐴

̅̅ ̅ , min {2√ 𝑋𝐵
̅̅̅̅ + √𝑋𝐴

̅̅ ̅   , 2√ 𝑋𝐴
̅̅ ̅ + √𝑋𝐵

̅̅̅̅    } = 2√ 𝑋𝐴
̅̅ ̅ + √𝑋𝐵

̅̅̅̅    

∴ (√𝑋𝐴
̅̅ ̅  +  √ 𝑋𝐵

̅̅̅̅  ) min {2√ 𝑋𝐵
̅̅̅̅ + √𝑋𝐴

̅̅ ̅   , 2√ 𝑋𝐴
̅̅ ̅ + √𝑋𝐵

̅̅̅̅    } > 𝑋𝐵
̅̅̅̅  + 𝑋𝐴

̅̅ ̅ +  𝑋𝐶
̅̅̅̅    

implies  𝑋𝐴
̅̅ ̅ + 3√𝑋𝐴

̅̅ ̅  𝑋𝐵
̅̅̅̅  > 𝑋𝐶

̅̅̅̅ . 

Moreover by Proposition 1 𝑋𝐵
̅̅̅̅  > (3 + 2√2 ) 𝑋𝐴

̅̅ ̅  ensures transfer – susceptibility of the 

allocation. Hence if 𝑋𝐴
̅̅ ̅ + 3√𝑋𝐴

̅̅ ̅  𝑋𝐵
̅̅̅̅  > 𝑋𝐶

̅̅̅̅   &  𝑋𝐵
̅̅̅̅  > (3 + 2√2 ) 𝑋𝐴

̅̅ ̅ ensures that the allocation 

(𝑋𝐴
̅̅ ̅ , 𝑋𝐵

̅̅̅̅  , 𝑋𝐶
̅̅̅̅  ) susceptible to a HHI – exacerbating rational transfer. 

In equilibrium  

HHI =   
1

𝑇2 [(√𝑋𝐴
̅̅ ̅  +  √ 𝑋𝐵

̅̅̅̅ )2(𝑋𝐴
̅̅ ̅ +  𝑋𝐵

̅̅̅̅ ) + (√𝑋𝐴
̅̅ ̅  +  √ 𝑋𝐵

̅̅̅̅ ) √𝑋𝐴
̅̅ ̅  𝑋𝐵

̅̅̅̅   -  2 T (√𝑋𝐴
̅̅ ̅  +  √ 𝑋𝐵

̅̅̅̅ )2 

] 

Thus  arg 𝑚𝑖𝑛𝑋𝐴̅̅ ̅̅  ,   𝑋𝐵̅̅ ̅̅   HHI  = (𝑋𝐴
̅̅ ̅∗

 , 𝑋𝐵
̅̅̅̅ ∗

)  = (𝑥∗, 𝑥∗). The HHI minimizing allocation is such 

that A & B have the same amount of resources. 

Now as we saw in Lemma 1, if there is a transfer of 𝛿 from B to A then the equilibrium 

payoffs of B and A are given by 𝜋𝐵
∗(𝛿) 𝑎𝑛𝑑 𝜋𝐴

∗(𝛿) respectively. 

Clearly 𝜋𝐵
∗(𝛿) =  

𝑋𝐵̅̅ ̅̅ − 𝛿+ √( 𝑋𝐴̅̅ ̅̅ + 𝛿)( 𝑋𝐵̅̅ ̅̅ − 𝛿)

𝑋𝐴̅̅ ̅̅ + 𝑋𝐵̅̅ ̅̅ + 𝑋𝐶̅̅ ̅̅
. Hence 𝜋𝐵

∗(𝛿) −  𝜋𝐵
∗ = 

√( 𝑋𝐴̅̅ ̅̅ + 𝛿)( 𝑋𝐵̅̅ ̅̅ − 𝛿)− √𝑋𝐴̅̅ ̅̅   𝑋𝐵̅̅ ̅̅ − 𝛿 

𝑋𝐴̅̅ ̅̅ + 𝑋𝐵̅̅ ̅̅ + 𝑋𝐶̅̅ ̅̅
 

Define f(𝛿) = √( 𝑋𝐴
̅̅ ̅ +  𝛿)( 𝑋𝐵

̅̅̅̅ −  𝛿) −  √𝑋𝐴
̅̅ ̅  𝑋𝐵

̅̅̅̅ −  𝛿 

f(0) = 0, and f(𝑋𝐵
̅̅̅̅ ) < 0.  𝑓′(𝛿) = 

( 𝑋𝐵̅̅ ̅̅ − 𝛿)−( 𝑋𝐴̅̅ ̅̅ + 𝛿)

2 √( 𝑋𝐴̅̅ ̅̅ + 𝛿)( 𝑋𝐵̅̅ ̅̅ − 𝛿)
 – 1. Thus lim

𝛿→0
𝑓′(𝛿) > 0 

Also 𝑓′(
𝑋𝐵̅̅ ̅̅ − 𝑋𝐴̅̅ ̅̅

2
) = – 1 < 0. Thus the optimal transfer for B, given by 𝛿𝑜𝑝𝑡𝑖𝑚𝑎𝑙  ∈ (0,

𝑋𝐵̅̅ ̅̅ − 𝑋𝐴̅̅ ̅̅

2
 ). 

Hence after transfer 𝑋𝐵
̅̅̅̅  ≠ 𝑋𝐴

̅̅ ̅. 

Hence it’s clearly proved that for any transfer-susceptible allocation, the rational transfer will 

never lead to the HHI minimizing allocation. 

Also by Lemma 1 since in the HHI minimizing allocation 𝑋𝐵
̅̅̅̅ ∗

  =  𝑋𝐴
̅̅ ̅∗

 < (3 + 2√2 ) 𝑋𝐴
̅̅ ̅∗

 no 

rational transfer is possible. 



 

5. Pre – conflict & Post – conflict Inequality 

In this section we try to investigate the relationship between inequality in the pre-conflict 

arms distribution to that of the post – conflict inequality in the distribution of the resources 

which were being fought over. An off-hand conclusion would be that the two should go hand 

in hand. Higher the inequality in distribution of arms & ammunitions, higher should be the 

post – conflict inequality. But that is not necessarily the case because there is another factor 

at play, the network structure. We will aim to drive home this point by using two special 

kinds of bipartite graphs, namely star-shaped and linear. Let us consider four agent networks 

as shown below. 

 

The four agents are A, B, C and D. All the edges have equal weight i.e the valuation of the 

prize being fought over by any two agents is the same (=1 without loss of generality).  Now 

let us say agent j is endowed with 𝑋𝑗 amount of conflict resource (i.e the pre-conflict arms & 

ammunitions). So the pre-conflict resource share of agent j is given by 𝑠𝑗 = 
𝑋𝑗

∑ 𝑋𝑖𝑖 ∈{𝐴,𝐵,𝐶,𝐷}
 . And 

therefore the pre-conflict HHI = ∑ 𝑠𝑗
2

𝑗 ∈{𝐴,𝐵,𝐶,𝐷} . Now given a network and a pre-conflict 

allocation {𝑋𝑗}
𝑗 ∈{𝐴,𝐵,𝐶,𝐷}

 let the equilibrium payoffs of agents j is given by 𝜋𝑗
∗. Then the 

 post-conflict HHI = ∑ (𝜋𝑗
∗)

2

𝑗 ∈{𝐴,𝐵,𝐶,𝐷} . Now we proceed to ask the next natural question, 

which is whether a pre-conflict HHI minimizing allocation will induce a post-conflict HHI 

minimizing payoff. We formalize the idea with the help of the following definitions. 

 



 Feasible Allocation: Given that the total amount of pre-conflict resource (i.e arms & 

ammunitions) is = �̅� , an allocation {Xj}j ∈{A,B,C,D}
 is said to feasible if ∑ Xjj ∈{A,B,C,D}  = 

�̅� 

 Post conflict HHI minimizing allocation: A feasible allocation {Xj}j ∈{A,B,C,D}
 is said to 

be the post conflict HHI minimizing allocation if 

            {Xj}j ∈{A,B,C,D}
  =      𝑝𝑜𝑠𝑡 − 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝐻𝐻𝐼 

{Xj}j ∈{A,B,C,D}

arg max
 

 Pre conflict HHI minimizing allocation: A feasible allocation {Xj}j ∈{A,B,C,D}
 is said to 

be the post conflict HHI minimizing allocation if 

 {Xj}j ∈{A,B,C,D}
  =      𝑝𝑟𝑒 − 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝐻𝐻𝐼 

{Xj}j ∈{A,B,C,D}

arg max
 

 Pre-conflict & Post-conflict Equivalence:  Any given network is said to satisfy the 

pre-conflict & post-conflict equivalence condition if the Post - conflict HHI 

minimizing allocation is the same as the Post - conflict HHI minimizing allocation. 

 

Proposition 6: 

i. A four - agent star-shaped network with equal weights (=1) satisfies the Pre-

conflict & Post-conflict Equivalence condition 

ii. A four - agent linear network with equal weights (=1) does not satisfy the Pre-

conflict & Post-conflict Equivalence condition. 

iii. In a four - agent linear network with equal weights (=1) the Post – conflict HHI 

minimizing allocation, allocates higher resources to the agents with lower degree 

i.e the terminal nodes. 

iv. A regular graph need not satisfy the Pre-conflict & Post-conflict Equivalence 

condition, but a regular connected graph necessarily does. 

 

Proof:  Let us say the total pre-conflict resources (i.e arms & ammunitions) in the system is �̅� 

𝑎𝑛𝑑 consider a feasible allocation {Xj}j ∈{A,B,C,D}
 i.e ∑ Xjj ∈{A,B,C,D}  = �̅�. Consider the four-

agent star-shaped network with A as the central node. Now consider the feasible allocation 



Xj =  
�̅�

4
 ∀ j ∈ {A, B, C, D}. Now A is engaged in three simultaneous conflicts with B, C and D. 

Let us say that the resource allocated by A for the conflict with i is given by 𝑋𝐴,𝑖. Therefore 

A’s optimization problem is given by:  

Maximize ∑
𝑋𝐴,𝑖

𝑋𝐴,𝑖+
�̅�

4
 

𝑖 ∈{B,C,D}   such that  ∑ XA,ii ∈{B,C,D}  = 
�̅�

4
 ………. (A1) 

The solution to (A1) is given by XA,i
∗
 = 

�̅�

12
 ∀ i ∈ {B, C, D}. Hence 𝜋𝑗

∗ =  ¾ ∀ j ∈ {A, B, C, D}. 

Thus in this case the pre-conflict HHI minimizer (i.e Xj =  
�̅�

4
 ∀ j ∈ {A, B, C, D}) leads to post 

conflict HHI minimization since the resulting 𝜋𝑗
∗ =  ¾ ∀ j ∈ {A, B, C, D}. Thus we infer that 

the four agent star – shaped network with equal edge weights (=1) satisfies the Pre-conflict & 

Post-conflict Equivalence condition. 

Now consider the four – agent linear network with equal edge-weights (=1) as shown in the 

figure above. Consider the following feasible pre – conflict allocation: XA = XD =  
9�̅�

32
 and 

XB = XC =  
7�̅�

32
 . Let us say the resources invested by player j fighting player i is given by 𝑋𝑗,𝑖. 

A and D are faced with only one opponent namely B and C respectively. Therefore 

𝑋𝐴,𝐵 = 
9�̅�

32
 and XD,C =  

9�̅�

32
. B and C are faced with two simultaneous conflicts.  

B’s optimization problem is given by: 

𝑚𝑎𝑥𝑋𝐵,𝐴,𝑋𝐵,𝐶
   

𝑋𝐵,𝐴

𝑋𝐵,𝐴+ 𝑋𝐴,𝐵
 + 

𝑋𝐵,𝐶

𝑋𝐵,𝐶+ 𝑋𝐶,𝐵
 such that 𝑋𝐵,𝐴 + 𝑋𝐵,𝐶  = 

7�̅�

32
 

C’s optimization problem is given by: 

𝑚𝑎𝑥𝑋𝐶,𝐵,𝑋𝐶,𝐷
   

𝑋𝐶,𝐵

𝑋𝐶,𝐵+ 𝑋𝐵,𝐶
 + 

𝑋𝐶,𝐷

𝑋𝐶,𝐷+ 𝑋𝐷,𝐶
 such that 𝑋𝐶.𝐵 + 𝑋𝐶,𝐷  = 

7�̅�

32
 

The equilibrium payoffs are given by 𝜋𝑗
∗ =  ¾ ∀ j ∈ {A, B, C, D}. Thus we infer that the pre – 

conflict allocation (XA = XD =  
9�̅�

32
 and XB = XC =  

7�̅�

32
) is the post – conflict HHI minimizing 

allocation. Thus in this case the pre-conflict HHI minimizing allocation (Xj =  
�̅�

4
 ∀ j ∈

{A, B, C, D}) is not the post-conflict HHI minimizer. Thus we conclude that the four-agent 

linear network with equal edge-weight does not satisfy the Pre-conflict & Post-conflict 

Equivalence condition. 
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