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Abstract
We consider first-price auctions with independent and private valuations (IPVFPA)

with asymmetric valuation distributions as well as asymmetric supports. We first
show the existence of equilibrium in these auctions through a perturbation ap-
proach, thereby establishing that the limit of Bayesian Nash equilibria (BNE) of
such perturbed auctions is indeed the Bayesian Nash equilibrium (BNE) of the
limit IPVFPA with different supports. We then characterize this BNE and show
that the ε-equilibrium of the IPVFPAs with different supports is a BNE of an
IPVFPA with common support. We then provide a discussion of solution meth-
ods for computing the ε-BNE and go on to show some numerical examples of our
results.

1 Introduction
Consider a government auctioning off the rights to construct an airport terminal; or
consider a government auctioning off the rights to construct a high-speed rail corridor.
Both large and small firms might participate in such auctions. Symmetric auctions
abstract away from these real-life considerations. In the same spirit, it is implausible
that any asymmetry is only restricted to the distribution functions of valuations, and
does not extend to the support of such distributions. Indeed, there is no reason to
believe that in reality, the players’ distributions should have common support. Hence,
auctions with common supports of valuations are an abstraction of a more realistic
scenario wherein there may be asymmetry in both the distribution functions them-
selves and the supports of such distribution functions. In light of these arguments,
the existence and characterization of the Bayesian Nash Equilibrium (BNE) in auc-
tions with asymmetric supports assumes quite a bit of importance in Auction theory
literature.

∗Authors are immensely grateful to Professors Paulo Barelli and Srihari Govindan for advising this
research and for invaluable feedback and discussions.

§G V A Dharanan is grateful for the Summer Research Assistant Grant offered by University of
Rochester.

¶Authors are grateful to the participants in the theory reading group in University of Rochester
and to the participants in the PhD seminar series at University of New South Wales.

‖A major part of this research was completed when the authors were at the University of Rochester.
†School of Economics, University of New South Wales. Email: g.dharanan@student.unsw.edu.au.
‡Email: aellis256@gmail.com.

1



Equilibrium in Asymmetric Auctions

In this paper, we study a first-price auction with independent and private valu-
ations (IPVFPA) with asymmetric supports and no reserve price. We establish the
existence of a BNE and characterize the BNE in IPVFPA with asymmetric supports
using a perturbations approach. As a natural result of this approach, we show that
the ε-BNE of an IPVFPA with asymmetric supports is the BNE of an IPVFPA with
common support. In other words, any IPVFPA with asymmetric supports can be per-
turbed to get an IPVFPA with common supports, and the BNE of the perturbed game
is the ε-BNE of the original game. This allows us to compute the ε-BNE of IPVFPA
with asymmetric supports. We then discuss the need for and implement specialized
BVP solvers to compute such ε-BNE. Thus, we address three questions in IPVFPA
with asymmetric supports: existence, characterization, and implementation. In this
regard, our paper bridges an important gap in the application of Auction theory to
real-life scenarios.

The first-price sealed-bid auctions have been studied extensively in the literature,
beginning with Vickrey’s seminal paper (Vickrey, 1961). A cornerstone of this analy-
sis is the existence of a Bayesian Nash equilibrium (BNE) in which players’ bidding
functions are monotone in their types. Existence can be readily established for the
case where valuations are smoothly, independently, and identically distributed, as is
done by Milgrom and Weber, 1982. Outside of that restrictive setting, the task be-
comes more difficult, or as Vickrey, 1961 describes it, “the mathematics of a complete
treatment becomes intractable.”

Nonetheless, progress has been made in the scenarios where bidders’ valuations
are independent but not identically distributed. Lebrun, 1999 proves the existence of
a BNE in a setting with asymmetric valuation distributions with a common interval
of support. To accomplish this task, he characterizes the inverse bidding functions
associated with the BNE using a system of ordinary differential equations (ODE) with
separable boundary conditions. One of these boundary conditions specifies η, which is
the bid each player makes at the highest possible valuation. In equations, this means
that for each player i, βi(d) = η, αi(η) = d where [c, d] is the support of player i’s
valuation distribution, βi : [c, d] → [c, η] is player i’s bidding function and αi : [c, η] →
[c, d] is player i’s inverse bidding function. Lebrun, 1999 thus reduces the problem of
solving for the BNE in IPVFPA with common support to solving a system of first order
two-point Boundary Value Problem (BVP).

Lebrun, 2006 uses a sliding approach to show the existence of equilibrium in IPVFPA
with asymmetric supports and reserve price. However, this characterization technique
suffers from some major issues. Consider an auction when there are 3 players, and
their distributions of valuations are F1 = F2 = U [0, 10], F3 = U [0, 8]. Lebrun, 2006’s
characterization would compute some η and then specify that:

• α1(η) = α2(η) = α3(η) = 10;

• α3 is an affine function on [β3(8), η].

Notice that in the interval [0, β3(8)], we would have a system of ODE involving all the
3 players, and on the interval [β3(8), η], we would have an ODE system involving only
players 1 and 2. We obviously cannot solve the whole system in one shot. Indeed, we
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need β3(8), α1(β3(8)) and α2(β3(8)) to break down the system into two separate systems
of ODE and numerically solve them. However, there is no possible way of computing
even β3(8). Further, we have no way of computing α1(β3(8)) and α2(β3(8)) either. In
other words: we want to solve an ODE system, but we have no idea about the interval
over which we have to solve it, and we have no clue about the boundary values we need
to solve it. It suffices to say that we cannot numerically solve this problem.

Consequently, the whole approach of breaking down the ODE system into two or
more separate systems completely breaks down, and we are at a dead end with no
possibility of making any further inroads, and the whole exercise of computation of
{βi}i=1,2,3 goes out of the window. This situation arises because the characterization
of the BNE no longer remains a two-point BVP, but becomes an incompletely specified
or an ill-posed Differential Algebraic Equations (DAE) problem. We emphasize that
this scenario poses absolutely no problem in the existence of an analytic solution, but
it wreaks havoc while computing a numerical solution using a numerical ODE solver.
Thus, while Lebrun, 2006’s existence proof is a seminal contribution, his approach
does not allow for any progress in computation.

In light of the significant problems in the computation of BNE in auctions with
asymmetric supports, it seems logical to investigate the computation of BNE in auc-
tions with common support and use the BNE of auctions with common supports to
approximate the BNE of auctions with asymmetric supports. Naturally, this leads us
to the notion of ε-BNE. To that end, we use a perturbation approach to “approximate”
an IPVFPA with asymmetric supports with an IPVFPA with common supports. We
refer to such approximations as perturbations. However, the literature is silent on the
question of the relation between the BNE of the perturbed games and the BNE of the
original auction.

It is a well-known result that games that are “close” might have equilibria that
are not “close”. Therefore, there is no a priori reason to expect that the BNE of the
perturbed games should give us any idea about the equilibria of the original auction.
Our first main contribution in this paper is that we show that as the perturbed games
converge to the limit auction1, the equilibria of the perturbed games converge to the
equilibrium of the original auction. This result states that the limit of the equilibria
is the equilibrium of the limit game. The entire computational exercise stands upon
this result. Subsequently, we use this result to show that the BNE of the perturbed
game is an ε-BNE of the original auction. Thus, the perturbation approach gives us
a natural way to relate the ε-BNE of an IPVFPA with asymmetric supports with the
BNE of IPVFPA with common supports.

Once the result relating the ε-BNE of an IPVFPA with asymmetric supports with
the BNE of IPVFPA with common supports is at hand, we focus on the computation
aspect of BNE in auctions with common supports. We first present a discussion on
numerical solvers that should be used for these two-point BVPs, and then we delve
into details of some examples. This discussion is important because of the prevalence
of two-point BVPs in Economic theory in general, and in Auction theory in particular.
This discussion and examples illustrate that numerically solving an ODE system with

1We formally define this convergence in Section 2

3



Equilibrium in Asymmetric Auctions

boundary conditions is far from a straightforward task, and demonstrate the need
to use specialized BVP solvers. We use Julia to simulate our numerical examples.
We also state the reasons for choosing Julia and mention other options available for
solving such kinds of problems.

The paper proceeds as follows. We first give a gist of the relevant literature. We
then introduce our model in section 2. We show the existence and characterization of
the BNE in Section 3. We subsequently present a discussion of numerical boundary
value solvers and some examples in Section 4. Section 5 concludes. Proofs of the claims
and the lemmas are included in the Appendix.

1.1 Literature
1.1.1 Literature on Auctions

The existence and characterization of a monotone BNE in symmetric auctions have
been studied quite extensively. Milgrom and Weber, 1982 is the classical reference.
Reny, 1999 and Barelli and Meneghel, 2013 establish a condition called Better Reply
Security which guarantees the existence of equilibrium in pure strategies for discon-
tinuous games. These results can be used to argue the existence of BNE in IPVFPA.

Seminal work on the existence of a monotone BNE in First Price Auctions is due
to Reny and Zamir, 2004. They establish a more general existence result for a setting
with interdependent valuations and affiliated signals. Their proof uses a sequence
of games with finite bidding sets and does not characterize the equilibrium directly.
This is an existence result, but not a characterization result, and hence, is silent on
the issue of computation.

Lebrun, 1999 and Lebrun, 2006 are references for characterization of BNE in IPVFPA
with symmetric and asymmetric supports of distributions respectively. Lebrun, 2006
comes closest to our paper in terms of characterization of BNE, but, as discussed be-
fore, this characterization suffers from some major issues.

1.1.2 Literature on ODE and other mathematical tools

Birkhoff and Rota, 1969 remains the classical reference for the theory of ODE. Soetaert
et al., 2012 contains a detailed exposition on Explicit Runge Kutta methods and New-
ton’s methods. These methods are well established in ODE literature. Ascher et al.,
1995 presents a detailed exposition on the issues arising in numerically solving the
BVPs. Cash and Singhal, 1982 first proposed the Mono Implicit Runge Kutta (MIRK)
methods for solving stiff two-point BVPs. Subsequently Cash and Wright, 1991 and
Cash, 1996 expounded upon the work of Cash and Singhal, 1982.

Barvı́nek et al., 1991 proposed an important result on the convergence of a sequence
of inverse functions. This result adds to the existing results on the convergence of a
sequence of functions.

4



Equilibrium in Asymmetric Auctions

2 The Model
We consider a sealed bid auction Γ in which a single indivisible item is up for sale to
n bidders, where 2 ≤ n < ∞. Bids are submitted simultaneously, with the highest
bidder receiving the item and paying a price equal to their bid. If multiple bidders tie
for the highest bid, a fair tie-breaking rule is used. There is no reserve price.

We denote by N := {1, 2, . . . , n} the set of bidders. Each bidder i ∈ N learns their
private valuation vi, which is distributed according to Fi, prior to bidding. The game
Γ and all its features are commonly known.

We follow assumptions of Lebrun, 2006:

A.1 For each i ∈ N , the support of Fi is the interval [ci, di].

A.2 The pdf of player i is locally bounded away from 0 in the interval (ci, di].

We note that Lebrun, 1999 implicitly assumes that for each i ∈ N , fi must be
differentiable in the interval (ci, di). Thus, the assumption A.2 strengthens to:

A.S fi is locally bounded away from 0 and is continuous and differentiable in the
interval (ci, di] for each player i.

We also assume that:

A.3
⋂
i∈N

(ci, di) ̸= ∅.

We define [c, d] :=
⋃
i∈N

[ci, di]. We define the extended pdf gi, by

gi(x) :=

{
fi(x) x ∈ [ci, di]

0 x ∈ [c, ci) ∪ (di, d]

As fi is locally bounded away from 0 in (ci, di], we can see that gi is only piece-wise
continuous and piece-wise differentiable on [c, d]. In fact, gi(x) is discontinuous at ci
and di (if ci ̸= c and di ̸= d). Consequently, we consider a sequence of continuous and
differentiable functions {gki }k≥1 with domain [c, d] that converge point-wise to gi and
satisfies

∫
[c,d]

gki (x)dx = 1. There are many such sequences and we need not specify
one. However, for ease of exposition, we choose such a sequence so that on the interval
[ci, di], |gki − fi| = 1

k
.

Let Γk denote an auction which is identical to Γ in setup, but with valuations of
players now distributed according to density functions {gki }ni=1 and distribution func-
tions {Gk

i }ni=1. We call Γk a perturbed game. Let {βki }ni=1 be the BNE of the perturbed
game Γk. Notice that as k → ∞, gki → gi and Gk

i → Gi. This is what we mean by
writing Γk → Γ or by writing Γk converges to Γ. We denote the respective inverse
bid functions by {αki }ni=1. Define ϕkli(v) := αkl (β

k
i (v)). Notice that {{βki }ni=1, {ϕkli}l ̸=i}k≥1

is a sequence of continuous monotonic functions. Therefore, by Helly’s selection the-
orem, it admits a point-wise convergent subsequence. By abuse of notation, we call
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this subsequence {{βki }ni=1}k≥1, {ϕkli}l ̸=i}k≥1. Let ⟨{βi}ni=1, {ϕli}l ̸=i⟩ be the point-wise limit
of this subsequence, i.e. {{βki }ni=1}k≥1, {ϕkli}l ̸=i}k≥1 → ⟨{βi}ni=1, {ϕli}l ̸=i⟩. We also define
following notation:

Xil(βi, βl, v, ε) := {vl ≥ c : βl(v) < βi(v) + ε}
Wil(βi, βl, v) := {vl ≥ c : βl(v) = βi(v)}
Zil(βi, βl, v) := {vl ≥ c : βl(v) ≤ βi(v)}

vl1 := sup(Xil(βi, βl, v, 0))

vl2 := sup(lim inf
k

(Xil(β
k
i , β

k
l , v, 0)))

vl3 := sup(lim sup
k

(Xil(β
k
i , β

k
l , v, 0)))

vl4 := sup(Wil(βi, βl, v))

3 Existence and Characterization
We have two main goals in this section. First, we show that a BNE exists in the limit
game Γ. To that end, we establish that the limit of the equilibria is the equilibrium of
the limit game. We formalize this result in Theorem 1. We then proceed to character-
ize the limit equilibrium, i.e., we show the continuity and piece-wise differentiability
of the equilibrium bidding strategies. Theorem 2 formalizes the continuity result, and
Theorem 3 and Lemma 6 formalize the piece-wise differentiability results. Subse-
quently, we show that the equilibrium strategy profile {βki }ni=1 forms an ε-equilibrium
of the limit game Γ. This result is formalized in Theorem 4. We provide proofs of
the theorems in the main text and state the claims and the proofs of lemmas in the
Appendix.

Lemma 1. For each player i, if the strategy profile {βi}ni=1 allows the player i to win
with a positive probability, then probability of the player i winning with a tie under the
strategy profile {βi}ni=1 is 0.

Lemma 1 is an analogue of the famous no tie in the winning bid condition. Here,
we have not yet established that {βi}ni=1 is indeed the equilibrium strategy profile,
therefore, we need to show that no tie holds for {βi}ni=1 without appealing to any kind
of better reply security or any of the other standard Auction theory arguments. The
crux of the proof is to establish that vl1 = vl2 = vl3 = vl4 ∀ l ∈ N \ {i};∀ i2. Lemma 1, and
the arguments used in the proof of Lemma 1 allow us to state the following corollary.

Corollary 1. For each player i, the payoff of the player i in the limit game under the
limiting strategies is equal to the limit of the equilibrium payoffs.

Having established Lemma 1 and Corollary 1, proving the existence of the BNE in
the limit game is fairly straightforward.

2Please see the appendix for the proof.
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Theorem 1. {βi}ni=1 is the BNE of the limit game.

Proof. Suppose not, and some player i has an incentive to deviate from βi to some
strategy γ3. Then, for a Gi-non-negligible set of valuations v of player i:

(v − γ(v))
∏
l ̸=1

Fl{vl ≥ c : βl(vl) < γ(v)} > (v − βi(v))
∏
l ̸=1

Fl{vl ≥ c : βl(vl) < βi(v)}

From Lemma 1 and associated claims4, for any such valuation v, ∃ Kv such that βki
is not a best response to {βkj }j ̸=i for any k > Kv. This is a contradiction.

Note: Here and hereafter, the notation {fk}k≥1 ⇒ f denotes that the sequence of
functions {fk}k≥1 converges uniformly to the function f .
Note: Here and hereafter, the moniker “almost everywhere” is supposed to mean “al-
most everywhere” with respect to the Lebesgue measure on R.

Now we want to establish regularity conditions on the equilibrium bidding func-
tions. The following lemma underlies our continuity result in Theorem 2, and we will
show piece-wise differentiability in Theorem 3.

Lemma 2. {βi}ni=1 is a continuous function almost everywhere. If βi is discontinuous,
then there exist a lower semi-continuous function and an upper semi-continuous func-
tions which disagree with βi only on the points of discontinuities. These functions are
also equilibrium strategies of player i.

For any player i, define vi := inf{v : ϕli(v) > max
l ̸=i

cl}. Notice that [vi, di] is the set
of valuations where player i has a positive probability of winning. Therefore, for any
v ∈ (vi, di], expected payoff (v − βi(v))

∏
j ̸=i

Fj(ϕji(v)) > 0.

Theorem 2. βi is continuous over the domain (vi, di].

Proof.
Lemma 3. For any ε > 0, v − βi(v) is bounded away from 0 on [vi + ε, d].

For any ε > 0, Lemma 3 implies that lim
k≥1

1
dβk

i
(v)

dv

is bounded above on the domain [vi+

ε, di],and hence lim
k≥1

dαk
i (b)

db
is uniformly bounded on the domain [βi(vi + ε), βi(di)]. Thus,

αki is Lipschitz continuous on [βi(vi + ε), βi(di)] ∀ k with some uniform Lipschitz con-
stant. This implies that αi is also Lipschitz continuous on the domain [βi(vi+ ε), βi(di)]
with the same Lipschitz constant. By Dini’s Theorem, it follows that {αki }k≥1 ⇒ αi

on [βi(vi + ε), βi(di)]. Furthermore, lim
k≥1

dβk
i (v)

dv
exists and is a.e. finite valued, which

3WLOG, we may take γ to be such that γ doesn’t win with a tie and has a positive probability of the
tie. This is so because then there is some deviation γ′ for player i which is slightly higher than γ and
has no tie, thus yielding better expected payoff to i.

4The associated claims appear in the proof of Lemma 1 in the Appendix.

7



Equilibrium in Asymmetric Auctions

we prove in the Appendix under Claim 8. It follows that αi is strictly monotonic on
[βi(vi+ ε), βi(di)]. Then Theorem 1 of Barvı́nek et al., 1991 implies that {βki }k≥1 ⇒ α−1

i .
However, since {βki }k≥1 → βi, the uniqueness property of limits in a Hausdorff space
implies that α−1

i = βi on the domain [vi + ε, di]. Further, since α−1
i is strictly monotone

and continuous (inverse of a strictly monotone and a continuous function), it follows
that βi is continuous and strictly monotone on the domain [vi + ε, di]. Letting ε→ 0, βi
is continuous and strictly monotone on the domain (vi, di].

Define vi := min{di, sup{v : ϕli(v) < min
j ̸=i

dj}}. Arguments from proof of Theorem 2
imply that if v ∈ (vi, vi), then ϕli(v) = αl(βi(v)) and is therefore a continuous function.
This is so because v ∈ (vi, vi) is a sufficient condition for ϕli(v) = αl(βi(v))

5. Define
the set Λi := {l ∈ N : ϕli(di) > dl}. For each l ∈ Λi, define vli := inf{v : ϕli(v) = dl}.
Define vji to be the jth lowest value among all such vli. Notice that vi = v1i . Define
Mj := {k : vki < vji } and define mj := #(N \ Mj). Notice that if v ∈ (vji , v

j+1
i ), Mj

represents the set of players who are beaten by player i with probability 1, while all
other players have a non-zero chance of beating player i.

Theorem 3. For each player i, the equilibrium bid function is differentiable in the
domain [vi, di] except possibly at points {vji }j∈Ji.

Proof.
Lemma 4. The functions ⟨βi, {ϕli}l ̸=i⟩ are differentiable on the domain (vi, vi) and are
solutions to the following IVP (initial value problem)6:

γi(vi) = βi(vi)

ψli(vi) = ϕli(vi)

dγi(v)

dv
= (n− 1)

fi(v)

Fi(v)

1
−(n−2)
v−γi(v) +

∑
j ̸=i

1
ψji(v)−γi(v)

dψli(v)

dv
=
fi(v)

Fi(v)

Fl(ψli(v))

fl(ψli(v))

−(n−2)
ψli−γi(v)

+
∑
j ̸=l

1
ψji(v)−γi(v)

−(n−2)
v−γi(v) +

∑
j ̸=i

1
ψji(v)−γi(v)

; l ̸= i

5If v > vi, then for the l such that βi(v) > dl, αl need not be β−1
l since βl need not be continuous or

strictly monotone in (dl, d].
6Readers may notice that this is actually a BVP with values given at upper end. However, for math-

ematical analyses, we need not worry about this difference, since the Picard’s existence and uniqueness
theorem holds when running the ODE in the reverse direction. Numerically solving this problem is a
different question entirely. Please see the next section for more discussion on numerical solving meth-
ods.
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Lemma 5. Given that mj > 2, in the domain (vji , v
j+1
i ), the functions {βi, {ϕki}k/∈Mj∪{i}}

are differentiable and solutions to the IVP:

γi(v
j
i ) = βi(v

j
i )

ψli(v
j
i ) = ϕli(v

j
i )

dγi(v)

dv
= (mj − 1)

fi(v)

Fi(v)

1
−(mj−2)

v−γi(v) +
∑

k/∈Mj∪{i}

1
ψki(v)−γi(v)

dψli(v)

dv
=
fi(v)

Fi(v)

Fl(ψli(v))

fl(ψli(v))

−(mj−2)

ψli−γi(v)
+

∑
k/∈Mj∪{l}

1
ψki(v)−γi(v)

−(mj−2)

v−γi(v) +
∑

k/∈Mj∪{i}

1
ψki(v)−γi(v)

Lemma 6. For each player i, there is a piece-wise differentiable, continuous bid func-
tion defined on the domain [ci, di]. This is an equilibrium strategy profile for the game.
Such an equilibrium strategy agrees with the limit of the equilibria in the set of valua-
tions where player i has a positive probability of winning the auction.

Theorems 1, 2 and 3 together imply that for any IPVFPA with non disjoint but
asymmetrical supports, there is an IPVFPA with common support whose BNE is the
ε-equilibrium for the original IPVFPA. The common support may be defined as the
union of all supports. We formalize this discussion as follows:

Theorem 4. For any ε > 0, there existsKε ∈ N such that for any k > Kε, the equilibrium
{βki }ni=1 of Γk is an ε-equilibrium of Γ.

Proof. Let ε > 0. Define Kε := ⌈2(d−η)
ε

⌉ + 17, where ⌈.⌉ denotes the ceiling function.
Then ∀ k > Kε, notice that ε > 2(d−η)

(k−1)
and that ∀ v ∈ [vi, di], 2(d−η)

k−1
≥ (v−βi(v))

k−1
+

(v−βk
i (v))

k−1
.

Further notice that 1
k−1

> 1
k
+ 1

k2
+ · · · + 1

kn−1 and that Gl(ϕli(v)), Gl(ϕ
k
li(v)) ≤ 1, and

finally, notice that:

|Gl(ϕ
k
li(v))−Gk

l (ϕ
k
li(v))| ≤

1

k

|Gl(ϕli(v))−Gk
l (ϕli(v))| ≤

1

k

Thus, after appropriate algebraic manipulations, we can write:
7η = lim

k→∞
ηk.
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(v − βi(v))

k − 1
≥ (v − βi(v))

[∏
l ̸=i

Gl(ϕli(v))−
∏
l ̸=i

Gk
l (ϕli(v))

]
(v − βki (v))

k − 1
≥ (v − βki (v))

[∏
l ̸=i

Gk
l (ϕ

k
li(v))−

∏
l ̸=i

Gl(ϕ
k
li(v))

]

Summing up these two equations, we get:

[
(v − βi(v))

∏
l ̸=i

Gl(ϕli(v))− (v − βki (v))
∏
l ̸=i

Gl(ϕ
k
li(v))

]
+[

(v − βki (v))
∏
l ̸=i

Gk
l (ϕ

k
li(v))− (v − βi(v))

∏
l ̸=i

Gk
l (ϕli(v))

]
< ε

For any player i, The term in the first square brackets is the loss in payoffs for the
player i when the strategy profile {βkj }nj=1 is played in the game Γ, and the term in the
second square brackets represents the loss in payoffs for the player iwhen the strategy
profile {βj}nj=1 is played in the game Γk. Both of these terms are non-negative. The
proof is complete.

Theorem 4 also allows us to state the following corollary.

Corollary 2. Any limit of ε-equilibria of Γ is the BNE of Γ.

Theorem 4 and Corollary 2 form the basis of our numerical simulations, which we
present in the next section.

4 Numerical Simulations
In light of Theorem 4, the computation of BNE of a general IPVFPA is effectively the
same problem as the computation of BNE in IPVFPA with common support. This is
effectively solving the two-point BVP a-la Lebrun, 1999. For sake of completeness, we
mention the ODE system along with the initial and the boundary conditions here:

dαi(b)

db
=

1

n− 1

Fi(αi(b))

fi(αi(b))

(
−(n− 2)

αi(b)− b
+
∑
l ̸=i

1

αl(b)− b

)

αi(c) = c;αi(η) = d; η ∈ [η1, η2]; ∀ i

η1 = d−max
j

{∫ d

c

∏
l ̸=j

Fl

({
F−1
j

(
Fl(v)

(
min
v≤w≤d

Fj(w)

Fl(w)

))}−1)
dv

}
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η2 = d−min
i

{∫ d

c

Fi(v)
n−1
∏
l ̸=i

min
v≤x≤d

Fl(x)

Fi(x)
dv

}
Observe that in symmetric cases, η1 = η2. For asymmetric cases, Lebrun, 2006 spec-
ifies that if there is some x > 0 such that Fi is strictly log-concave over the interval
(max

j
cj,max

j
cj + x) ∩ (ci, di) for each player i, then η1 = η2. This turns out to be the

condition of strictly decreasing reverse hazard rate. Fortunately, our examples sat-
isfy the conditions imposed by Lebrun, 2006, thereby allowing us to undertake the
computation without worrying about multiple η.

4.1 Discussion of Solvers for the ODE system
We have a first order two-point BVP with separable boundary conditions. It seems
tempting to drop the boundary condition αi(c) = c and just tackle this as an IVP with
condition αi(η) = d, and run the ODE system in the reverse direction by executing a
change of variables. This temptation turns out to be a grave sin, as we now discuss.

In reality, this problem is a two-point BVP. Therefore, the numerical value com-
puted at any point x ∈ (c, η) depends upon boundary conditions at both c and η. IVP
solvers do not take this fact into account and use only one boundary condition. An ad-
ditional challenge to executing a change of variables and tackling this problem as an
IVP arises from the fact that our ODE system might face a problem of stiffness. This
means that dαi(b)

db
may change rapidly in some zones compared to other zones. The stiff-

ness problem makes the traditional IVP solvers like RK45, RK23, etc. quite unstable
because of endogenous step selection. The first problem, combined with the stiffness
makes the problem unsolvable by using an IVP solver. Unfortunately, the very same
issues which prevent the problem from getting solved as an IVP plague the shooting
methods as well.

Thus, we are constrained to use a specialized BVP solver which relies upon an im-
plicit Runge Kutta (IRK) method, which can tackle both of these problems in one shot.
Such classes of Runge Kutta methods divide the interval [c, η] into a finite number of
mesh points c ≤ x0 < x1 < · · · < xn ≤ η, and generate a set of nonlinear equations
using all of these mesh points simultaneously8. These methods then use the nonlin-
ear equations generated using all of these mesh points and the Jacobian (evaluated
at all the mesh points) to generate a solution (at all the mesh points). Subsequently,
the solutions at the mesh points are interpolated by some smooth polynomial func-
tions. Thus, the resultant solution is a continuous piece-wise polynomial. For a more
detailed discussion of these issues, we refer the interested readers to Soetaert et al.,
2012 and Ascher et al., 1995.

We use the MIRK 4 algorithm proposed by Cash and Wright, 1991 and Cash, 1996.
MIRK 4 (Mono Implicit Runge Kutta of Order 4) is an IRK method, which uses the
Lobatto scheme (c = x0, xn = η). This algorithm is implementable in R, MATLAB,

8In contrast, the explicit Runge Kutta (ERK) methods solve a set linear equation at a particular
mesh point xi using only the mesh points x0, x1 · · · , xi.
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and Julia. This algorithm is implementable under the library bvpSolve in R (Mazzia
et al., 2014); under the package bvp4c in MATLAB (Cash et al., 2013); and under
the package DifferentialEquations.jl in Julia (Rackauckas and Nie, 2017). We use
Julia to implement this solver for two major reasons. First, Julia’s compiler is much
faster than R’s. Second, Julia is open-source. Julia uses Newton’s methods to solve
the equations generated at the mesh points and to find the interpolating polynomials.

4.2 Examples
4.2.1 Example 1

Let N = 3, c1 = c2 = c3 = 0, d1 = d2 = 10, d3 = 8. F1 = F2 = U [0, 10], F3 = U [0, 8]. We
approximate g3 as follows:

gk3(x) =


k−1
8k

x ∈ [0, 8)

P (x) x ∈ [8, z]
1

10k
x ∈ [z, 10]

Here, P (x) is a third degree polynomial of the form P (t) = A
∫
(t−8)(t−z)dt+B, where

1. P (8) = k−1
8k

2. P (z) = 1
10k

3.
z∫
8

P (x)dx = z
10k

First two conditions follow from continuity of g3(x), while the last condition ensures
that g3(x) is a valid density function. By construction, we are assured about two things:

• gk3(x) is continuously differentiable;

• P (x) > 0. This is so because by construction, P (x) is a cubic polynomial with
local maxima 8 and local minima z and is strictly monotone decreasing. Writing
down the derivative of P (x) makes this evident.

We set k = 10 directly instead of ε and solve for P (x) and z using Newton’s method in
Julia. We compute P (x) ≈ 0.053361x3−1.14726x2+12.3666816x−35.5595, and z ≈ 9.561.
Thus, gk3 becomes:

g103 (x) =


9
80

x ∈ [0, 8)

0.053361x3 − 1.14726x2 + 12.3666816x− 35.5595 x ∈ [8, 9.561]
1

100
x ∈ [9.561, 10]

The inverse bid functions for players 1 and 3 in this example are shown below9:
9Player 2 is identical to player 1, and has the same inverse bid function. Therefore, we omit the

inverse bid function for player 2.
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4.2.2 Example 2

Let N = 3, c1 = c2 = c3 = 0, d1 = d2 = 10, and d3 = 8. F1(x) = F2(x) =
x2

100
, F3 = U [0, 8].

Here again, since the distribution for player 3 is the same as in previous example, we
use the same approximation, viz.

g103 (x) =


9
80

x ∈ [0, 8)

0.053361x3 − 1.14726x2 + 12.3666816x− 35.5595 x ∈ [8, 9.561]
1

100
x ∈ [9.561, 10]

The inverse bid functions for players 1 and 3 in this example are10:

4.2.3 Example 3

Let N = 3, c1 = c2 = 0, d1 = d2 = 10, c3 = 2 and d3 = 8. F1 = F2 = U [0, 10], F3 = U [2, 8].
We again follow the same broad steps: first, we approximate the density of player 3 by
using the following distribution:

10Player 2’s inverse bid function omitted for exact same reason as example 1.
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gk3(x) =



1
10k

x ∈ [0, z1)

P1(x) x ∈ [z1, 2]
k−1
6k

x ∈ (2, 8)

P2(x) v ∈ [8, z2]
1

10k
x ∈ (z2, 10]

Here, P1(t) and P2(t) are third degree polynomials of the forms P1(t) = A1

∫
(t− z)(t−

2)dt+B1 and P2(t) = A2

∫
(t− 8)(t− z)dt+B2, where

1. P1(z1) =
k−1
10k

2. P1(2) =
k−1
6k

3. P2(8) =
k−1
6k

4. P2(z) =
1

10k

5.
z1∫
0

P1(x)dx+
z2∫
8

P2(x)dx = z2−z1
10k

First four conditions again follow from continuity of g3(x), while the last condition
ensures that g3(x) is a valid density function. However, notice that determining P1(x),
P2(x), z1 and z2 involve finding out 6 variables, viz. A1, A2, B1, B2, z1 and z2. But we
only have 5 non linear equations. Thus, we impose A1 +A2 = 0 to get the 6th equation,
so that we can solve our system of nonlinear equations. Again, by construction, we
do not need to worry about differentiablility of g3(x), or about P1(x) ≤ 0 or P2(x) ≤ 0,
because of the same logic as in the first example. We set k = 10 and solve for P1(x),
P2(x), z1 and z2 using Newton’s method in Julia. We compute P1(x) ≈ −3.557x3 +
19.0691x2−33.53746x+19.45963; P2(x) ≈ 3.557x3−87.654635x2+719.53016x−1967.399617;
z1 ≈ 1.57143 and z2 ≈ 8.42857. Thus, gk3 becomes:

g103 (x) =



1
100

x ∈ [0, 1.57143)

−3.557x3 + 19.0691x2 − 33.53746x+ 19.45963 x ∈ [1.57143, 2]
9
60

x ∈ (2, 8)

3.557x3 − 87.654635x2 + 719.53016x− 1967.399617 v ∈ [8, 8.42857]
1

100
x ∈ (8.42857, 10]

The inverse bid functions for players 1 and 3 in this example are11:
11Player 2’s inverse bid function omitted for exact same reason as example 1.
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5 Conclusion
We identify some major issues in the equilibrium characterization of Lebrun, 2006 for
IPVFPA the asymmetric supports and provide a computationally feasible alternative
characterization. In section 2, we present a perturbation technique that naturally ex-
tends Lebrun, 1999’s result to the asymmetric support setting. In section 3 we use
our perturbation method to prove the existence of a BNE in Theorem 1. We proceed to
characterize the BNE in Theorems 2 (continuity result) and 3 (piece-wise differentia-
bility result). Theorem 4 forms the important link between the ε-BNE of an IPVFPA
with asymmetric supports and the BNE of the perturbed games with common sup-
port. This theorem forms the bedrock of our computation of the ε-BNE of an IPVFPA
with asymmetric supports. Our proof of Theorem 2 rests on a novel theorem due to
Barvı́nek et al., 1991, and this method of proof adds an important tool to the arsenal
of Auction theorists. In section 4, we first discuss the important yet understated issue
of numerically computing the ε-BNE for the IPVFPA with asymmetric supports. We
state our reasons for using Julia and present the readers with some alternative op-
tions to undertake such computations. We then present some examples to illustrate
the implementation of our characterization of the ε-BNE.

Some other theoretical questions remain. How crucial is the differentiability as-
sumption on fi? Lebrun, 1999’s original result fails in the absence of this assumption.
Would the monotonicity of inverse bid functions hold in the absence of this assump-
tion? Is it possible to relax this assumption to Lipschitz continuity of fi, or is this
assumption indispensable? We conjecture that this assumption is dispensable and
that the perturbation approach could support our conjecture. And then there is the
question of η. Recall that in a setting with common support, η is the bid that each
player bids when the player’s valuation hits the upper extremity. Lebrun, 1999 shows
a way to compute η, and allows a possibility of multiple η’s. In Section 4, we mention
these multiple η′s as contained in the interval [η1, η2]. Lebrun, 2006 provides some
weak conditions which guarantee the uniqueness of η. For relatively simple cases, for
instance, symmetric cases, this value of η comes out to be unique, or η1 = η2. However,
the question remains as to what happens when η1 ̸= η2. It is pertinent to mention
that there is absolutely no a priori reason as to why players should coordinate on a
particular η. Distributions with strictly decreasing reverse hazard rates, while simple
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to analyze and common enough, are by no means universal. In such auctions, how do
players select η? Moreover, what implications, if any, does it have for computation?
We hope to see at least some of these questions answered in the future.

Appendix
A. Proof of Lemma 1
Proof. Suppose not. Consider a scenario wherein player i wins the auction, but ties
with L− 1 players. By an abuse of notation, we denote by L the set of players who tie
with i. For any ε > 0, note that Xij(βi, βj, v, ε) ⊇ Wij(βi, βj, v) ∪Xij(βi, βj, v, 0) for every
ε > 0. If ε is chosen small enough, and if player i bids βi(v) + ε instead of βi(v), then:

(v − βi(v)− ε)
∏
j ̸=i

Fj(Xij(βi, βj, v, ε))

−(v−βi(v))

[∏
j ̸=i

Fj(Xij(βi, βj, v, 0))+
1

L

∏
l∈L

Fl(Wil(βi, βl, v))
∏

j∈N\({i}∪L)

Fj(Xij(βi, βj, v, 0))

]
≥ 0

(1)

If v > βi(v), it is always possible to find an ε such that the above inequality is strict.
Claim 1. If v = βi(v) and a player i wins with positive probability, then there is a
profitable deviation for the player i.

Proof. Suppose player i wins the auction, but has to bid his valuation to do so. Then,
consider the situation that

∏
j ̸=i

Fj(Xij(βi, βj, v, 0)) > 0. Since Fj << µ, where µ is the

Lebesgue measure, therefore, ∃ ε such that
∏
j ̸=i

Fj(Xij(βi, βj, v,−ε)) > 0. This implies

that there is a profitable deviation.
The only other case is that L ̸= ∅, while

∏
j ̸=i

Fj(Xij(βi, βj, v, 0)) = 0. In this situation,

bidding slightly below the valuation yields the same payoff, viz. 0. Therefore, bidding
β′(v) < β(v) is a profitable deviation for player i.

Claim 2. If a player i has a valuation v, then the limit of payoffs in the perturbed games
exists and is equal to (v − βi(v))

∏
j ̸=i

Fj(Zij(βi, βj, v))

Proof. Suppose vl ∈ lim sup
k

Xil(β
k
i , β

k
l , v, 0). Then, there is some subsequence {βkml (vl)}m≥1

such that βkml (vl) < βkmi (v) ∀ m ≥ 1. Since {βkl (vl)}k≥1 → βl(vl), this implies that
vl ∈ Zil(βi, βl, v). In turn, this implies that:
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lim sup
k

Fl(Xil(β
k
i , β

k
l , v, 0)) ≤ Fl(lim sup

k
Xil(β

k
i , β

k
l , v, 0)) ≤ Fl(Zil(βi, βl, v)) (2)

lim inf
k

Fl(Xil(β
k
i , β

k
l , v, 0)) ≥ Fl(lim inf

k
Xil(β

k
i , β

k
l , v, 0)) ≥ Fl(Xil(βi, βl, v, 0)) (3)

Notice that since Gk
l (Xil(β

k
i , β

k
l , v, 0)) = Fl(Xil(β

k
i , β

k
l , v, 0)) +O( 1

k
), the above two sets of

inequalities imply the following:

Fl(Xil(βi, βl, v, 0)) ≤ lim inf
k

Gk
l (Xil(β

k
i , β

k
l , v, 0)) ≤ lim sup

k
Gk
l (Xil(β

k
i , β

k
l , v, 0)) ≤ Fl(Zil(βi, βl, v))

(4)
and consequently:

(v − βi(v))
∏
j ̸=i

Fj(Xij(βi, βj, v, 0)) ≤ lim inf
k

(v − βki (v))
∏
j ̸=i

Gk
j (Xil(β

k
i , β

k
l , v, 0))

≤ lim sup
k

(v − βki (v))
∏
j ̸=i

Gk
j (Xil(β

k
i , β

k
l , v, 0)) ≤ (v − βi(v))

∏
j ̸=i

Fj(Zij(βi, βj, v))
(5)

Thus, (v − βi(v))
∏
j ̸=i

Fj(Zij(βi, βj, v)) is an upper bound for the limit of payoffs. Note

that ∀ ε > 0, since βk is a BNE for the perturbed game,

(v − βki (v)− ε)
∏
j ̸=i

Gk
j (Xij(β

k
i , β

k
j , v, ε)) ≤ (v − βki (v))

∏
j ̸=i

Gk
j (Xij(β

k
i , β

k
j , v, 0))

=⇒ (v − βi(v)− ε)
∏
j ̸=i

Fj((Xij(βi, βj, v, ε))) ≤ (v − βi(v))
∏
j ̸=i

Fj(Zij(βi, βj, v))

The first term in the last inequality follows from the fact that if player i had bid βki + ε
along the sequence of perturbed games, while other players retained their bidding
strategy βkl , then the lim inf of player i’s payoffs under the bidding functions βi + ε
should be at least as much as (v − βi(v)− ε)

∏
j ̸=i

Fj((Xij(βi, βj, v, ε))). This is so because

βki → βi. Further, notice that :

(v − βi(v))
∏
j ̸=i

Fj((Xij(βi, βj, v, ε))) ≥ (v − βi(v))
∏
j ̸=i

Fj(Zij(βi, βj, v))

Finally, we let ε→ 0. Sandwich theorem of limits completes the proof.

Claim 3. Under the positive probability of a player iwinning, βi(v) < v and βl(ϕli(v)) =
βi(v) < ϕli(v).

Proof. For the first part of the proof, suppose not. Then from Claim 2, the limit of
payoffs is 0. From Claim 1, there is a profitable deviation in bidding βi− ε in the limit
game which yields a strictly positive payoff. Using equation 5, this implies that for any
such valuation v, ∃ Kv such that βki is not a best response to {βkj }j ̸=i for any k > Kv.
This is a contradiction. Arguing analogously for player l, we arrive at the second part
of the claim.
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Suppose that there is a winning bid b = βi(v) for some valuation v of player iwhich is
tied with positive probability. Let L be the set of those players who tie with i. For each
player l ∈ L, a tie in the winning bid in the limit game implies that Fl(Wil(βi, βl, v)) > 0,
which in turn implies that βl(vl) is constant at bid b = βi(v). Thus, to show that a tie
happens with 0 probability, all we need to show is that Fl(Zil(βi, βl, v)\Xil(βi, βl, v, 0)) =
0. We show this in the next three claims.
Claim 4. Fl(Zil(βi, βl, v) \ lim sup

k
Xil(β

k
i , β

k
l , v, 0)) = 0

Proof. Follows from Claim 2.

Claim 5. Fl(lim sup
k

(Xil(β
k
i , β

k
l , v, 0))) = Fl(lim inf

k
(Xil(β

k
i , β

k
l , v, 0))).

Proof. Suppose not. Then a necessary condition for the supposition to hold would be
that vl3 > vl2. Note thatXil(β

k
i , β

k
l , v, 0) = [c, ϕkli(v)). Suppose that x ∈ lim sup

k
(Xil(β

k
i , β

k
l , v, 0))\

lim inf
k

(Xil(β
k
i , β

k
l , v, 0)). Then, x < ϕkli(v) i.o. In the limit, this implies that x ≤ ϕli(v).

Further, since x /∈ lim inf
k

(Xil(β
k
i , β

k
l , v, 0)), there is some subsequence such that βkml (x) ≥

βkmi (v). At the limit, this implies that x ≥ ϕli(v). Thus, lim sup
k

(Xil(β
k
i , β

k
l , v, 0)) \

lim inf
k

(Xil(β
k
i , β

k
l , v, 0)) = {ϕli(v)}, and hence, vl3 = vl2 = ϕli(v).

Claim 6. Fl(lim inf
k

Xil(β
k
i , β

k
l , v, 0) \Xil(βi, βl, v, 0)) = 0

Proof. Suppose not. Then vl1 < vl2. This in turn implies that βl(vl) = βi(v) ∀ vl ∈ (vl1, v
l
2).

By Dini’s theorem, βkl ⇒ βl over (vl1, v
l
2). Choose ε > 0 to be small enough.

Case 1: v is a continuity point of βi:
Let x < v be such that βi(x) ∈ (βi(v)−ε, βi(v)− ε

2
). WLOG, there is someKε such that

∀ k > Kε, sup
vl∈(vl1,vl2)

|βi(v)− βkl (vl)| < ε
4

and |βi(v)− βki (v)| < ε
4
. For player i with valuation

x, bidding βki (x) + ε beats the set of players l with valuations vl ∈ Zil(βi, βl, v). This
implies that for k large enough:

(x− βki (x)− ε)
∏
j ̸=i

Gk
j (Xij(β

k
i , β

k
j , x, ε)) > (x− βki (x))

∏
j ̸=i

Gk
j (Xij(β

k
i , β

k
j , x, ε))

Case 2: v is a discontinuity point of βi:
Define xk = sup{y : βki (y) < βki (v) − ε

2
}. Note that xk < v ∀ k ≥ 1 and that {xk}k≥1

is a convergent sequence. Analogous arguments as for Case 1 hold for xk with k large
enough.

Thus, in both cases, we get a contradiction to βki being an equilibrium strategy for
player i in Γk.
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B. Proof of Lemma 2
Proof. If βi is discontinuous, let V = {v1, v2 · · · } be the enumeration of points of dis-
continuity of βi12. Then, for ε small enough, define Uε :=

⋃
n≥1

B ε
2n
(vn) \ {vn}. Uε is an

open set and βi is a continuous function on [c, d] \Uε. By Tietze extension theorem, let
γi be the continuous extension of βi on [c, d]. WLOG, γi ̸= βi on Uε and γi is monoton-
ically increasing. Let {vm}m≥1 be a sequence of continuity points of βi in (vn − ε

2n
, vn)

converging to vn, where vn ∈ V . Then:

(vm− γi(vm))
∏
l ̸=1

Fl{vl ≥ c : βl(vl) < γi(vm)} ≤ (vm− βi(vm))
∏
l ̸=1

Fl{vl ≥ c : βl(vl) < βi(vm)}

Suppose lim inf
m

βi(vm) := βix(v) < βi(v). Then:

(v − β(v))
∏
l ̸=1

Fl{vl ≥ c : βl(vl) < β(v)} ≤ (v − βix(v))
∏
l ̸=1

Fl{vl ≥ c : βl(vl) < βix(v)}

Above equation is valid since Πi(v) := (v − βi(v))
∏
l ̸=1

Fl{vl ≥ c : βl(vl) < βi(v)} is a

continuous function of v if βi is continuous, where continuity follows from the fact that
all {βl}l ̸=i are monotonically increasing and can only have jump discontinuities.

If the above expression holds with strict inequality, we have a contradiction to
βi being an equilibrium strategy. Hence, the only possible case is that βi yields the
same payoff as a lower semi-continuous function which disagrees with βi only on its
points of discontinuities. By analogous arguments, we can also define an upper semi-
continuous function which disagrees with βi only on its points of discontinuities.

C. Proofs in Support of Theorem 2
Claim 7. lim

k≥1

dβk
i (v)

dv
exists and is a.e. finite valued.

Proof. The first part of the claim is immediate from the expression of dβk
i (v)

dv
:

dβki (v)

dv
= (n− 1)

gki (v)

Gk
i (v)

1
−(n−2)

v−βk
i (v)

+
∑
j ̸=i

1
ϕkji(v)−βk

i (v)

For the second part of the claim, suppose not and that there is some set X ⊆ [c, d]

such that µ(X) > 0 and lim
k≥1

dβk
i (v)

dv
= ∞ on X. Then, by monotonicity of integration and

Fatou’s Lemma:

d− c > lim
k≥1

(βki (d)− βki (c)) ≥ lim
k≥1

∫
X

dβki (v)

dv
dµ ≥

∫
X

lim
k≥1

dβki (v)

dv
dµ = ∞

This is a contradiction.
12V can be finite
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Proof of Lemma 3

Proof. Suppose not. Then there is a sequence {vm}m≥1 such that {vm−βi(vm)}m≥1 → 0.
Let v′ = lim

m→∞
vm. Observe that {vm}m≥1 has a monotonically decreasing subsequence13.

Passing on to this subsequence if necessary, notice that lim
vm→v′

(vm−βi(vm))
∏
j ̸=i

Fj(ϕji(vm)) =

0, i.e. the limit of payoffs is 0. Thus, if βi is replaced by β̂i which differs from βi only at
v′ and is upper semi-continuous at v′, Lemma 2 implies that β̂i is also a pure strategy
equilibrium of player i. But β̂i yields a payoff of 0. This is a contradiction to βi being
an equilibrium strategy.

D. Proofs in Support of Theorem 3
Proof of Lemma 4

Proof. In the domain (vi, vi), bidding βi(v) is player i’s best response to other players
playing βk. Further, ∀ k ̸= i, βk is strictly monotonic and continuous, and hence,
invertible in this domain. Further, βi(v) is the local maximizer of (v − b)

∏
j ̸=i

Fj(β
−1
j (b))

and i’s maximized expected payoff in this scenario is (v − βi(v))
∏
j ̸=i

Fj(ϕji(v)).

Notice that the above argument is equivalent to arguing that given any bid b ∈
(βi(vi), βi(vi)), and given the inverse bid functions αj of players j ̸= i, optimal inverse
bid function of player i is αi. This is so because in this domain, αj = β−1

j ∀ j ̸= i, and
ϕji(v) = αj(βi(v)).

Since {αi}i∈N is Lipschitz, therefore it is absolutely continuous and of bounded vari-
ation. Thus, almost everywhere in the given domain:

d ln

(
(αi(b)− b)

∏
j ̸=i

Fj(αj(b))

)
db

= 0

Arguing analogously for other players j ̸= i, almost everywhere14:

dαj(b)

db
=

1

n− 1

Fj(αj(b))

fj(αj(b))

(
−(n− 2)

αj(b)− b
+
∑
l ̸=j

1

αl(b)− b

)
Notice that Lipschitz and hence absolutely continuous nature of {αi}i∈N implies αi(b′)−
αi(b) =

∫ b′
b

(
dαi

db

)
db ∀ b, b′ ∈ (βi(vi), βi(vi)) , and hence {αi}i/∈Mj

indeed solves the system
of DE obtained. Since αj(b) − b is bounded away from 0, and since fj is differentiable
in the domain (vi, vi), the RHS of the above system is Lipschitz continuous. We impose
the boundary conditions obtained by values of {αi}i∈N at {βi(vi), βi(vi)}. Therefore,
the solution to the system must be continuously differentiable and unique by Picard’s
existence theorem.

13To see this, notice that there is some M such that for all m > M , βi(vm) > βi(v
′).

14The qualifier a.e. follows from the fact that αi, βi, {ϕki}k/∈Mj∪{i} are almost everywhere differen-
tiable as a result of their strict monotonicity.
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Claim 8. dαi

db
> 0 ∀ b ∈ (βi(vi + ε), βi(vi)).

Proof. Suppose not and let V := {b : dαi

db
= 0}. Invertibility and strict monotonicity

of αi imply that V cannot contain an interval, while continuity of dαi

db
implies that V

cannot be dense in (βi(vi+ε), βi(vi)). Therefore, if there is some µ > 0 such that dαi

db
= 0

at βi(vi − µ), it must always be possible to find µ̂ < µ such that dαi

db
> 0 at βi(vi − µ̂).

Lemma A2-2 of Lebrun, 1999 provides a contradiction and V = ∅.

A simple change of variables, substituting βi = α−1
i and ϕli = αl(α

−1
i ) on the domain

(vi + ε, vi) with given boundary conditions and letting ε→ 0 completes the proof.

Proof of Lemma 5

Proof. The proof is similar to the proof of Lemma 4, with following modifications.
Firstly, Fm(ϕmi(v)) = 1 ⇐⇒ m ∈ Mj, thus, players m ∈ Mj drop out of the expression
for payoff functions for players not in Mj. Secondly, Claim 8 is appropriately modified
to hold for the domain (βi(v

j
i ), βi(v

j+1
i )), and for players not in Mj. The rest of the proof

is analogous and has been omitted.

E. Proofs from Final Discussion
Proof of Lemma 6

Proof. Theorems 2 and 3 show that the lemma is true for v ≥ vi. Notice that if v < vi,
then the expected payoff of the player i is 0. Thus, in the interval [ci, vi], replacing the
bid function βi with an affine function β̃i(v) := βi(ci) +

v−ci
vi

(βi(vi) − βi(ci)) is also an
equilibrium strategy for each player15. Notice that this affine function is dominated
by the 45 degree line.
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