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Abstract

The paper talks about various forms of blocking by coalitions and how they

characterise equilibrium allocations in an economy consisting of both private

and club goods, where club goods are treated as articles of choice just like pri-

vate goods. Clubs in this framework are described by the characteristic of their

members and the local project the club endorses. We show that the set of core

allocations can be achieved even if one restrictis to coalitions of any sgiven size

between zero and measure of the grand coalition. We further introduce mixed

economy in our scenario and establish equivalence between core allocations of

such an economy with the core allocations of it’s associated continuum economy.

Equivalence between the set of equilibrium aloccations between these economies

for a restricted class of allocations helps us achieve core-equivalence in a mixed

economy for such restricted class of allocations. At the end we provide another

characterisation of club equilibrium in continuum economies by considering veto

power of the grand coalition in infinitely many economies obtained by perturba-

tion of initial endowments in the economy.
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1 Introduction

Clubs are discretionary groups set up by individuals to support social consumptions.

In recent years the term “clubs” has been broadened to incorporate organisations and

projects such as toll roads, private parks, satelliteus, television network connection, golf

clubs etc. Club goods stand roughly in the middle of the spectrum that ranges form

pure public to pure private goods. Club goods in sharp distinctionto public goods are

exclusive to only the members of the club. Individual members often willingly or un-

willingly imposes congestion cost on other members thereby adding to their disutility.

In such settings the club literature has mainly emphasized that individuals calculate

the marginal utility or disutility from joining a club and such optimising behavior

on behalf of individuals in terms determine the optimal sizes of the clubs in equilib-

rium. Seminal works in club literature ranging from that by Tiebout[29], Wiseman[31],

Buchanan[9] and others aimed at finding “optimal club sizes” . However, such findings

based on individual choices was possible because of the finite number of indiviiduals.

This coupled with the core “indivisible” nature of club projects rendered models devoid

of “perfect competition”.

Ellickson et al[12] first introduced a framework that tackled issues at both the fronts.

They adapt the continuum framework introduced by Aumann[2] by introducing clubs

and club memberships in parallel to a continuum of agents. Club sizes are limited

in our framework, so any particular club of a certain type (gyms, swimming pools,

libraries etc.) can only have finite number of members, although number of clubs for a

certain type may be large enough. Thus clubs are significant with respect to individuals

but infinitesimal with respect to the market. Each club is identified through the non-

Samuelson public project it provides and the characteristics of the members of the

club. Individuals acts as members to the clubs and are bestowed with some external

characteristics upon them. These characteristics are external since they are not only

observable to other agents but also affects other agents utilities. As clubs have limited

size compared to the market the externalities arising from such member charcacteristics

are internalised within the clubs. However, trading of private goods is not restricted

to within clubs as the number of private goods are more than one and individuals

are members to more than one club. The model becomes further robust from the
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parallel treatment of private goods and club memberships. Ever membership embodies

in itself a description of all relevant aspects such as the profile of charcteristics of other

members, members in question, purpose of the club and resources necessary to form

the club. The price for these memberships are contingent upon characteristics of the

member, characteristics of other members of the club and the club projects. Thus

prices for club memberships reflect the externalities within clubs.

Despite such paralell treatments there exists some fundamental differences between

club memberships and private goods. Prices of public goods are always positive but that

of memberships can be positive, negative or even zero. The other obvious difference

arises from the indivisble nature of club memberships as opposed to private goods

which are purely divisble in nature .The main difference between the two lies however

in the feasibility condition. Feasibility of private goods implies equality of demand and

supply. For club memberships, feasibility entails that given a particular proportion

of members for a particular club type, number of clubs of the given type should be

such that the proportion remains intact in the aggregate. They not only establish that

competitive equilibrium exists in their setup but also can be decentralised by means of

core allocations under some reasonable assumptions.

Since it’s inception general equilibrium studies have focused mainly on two avenues

of studying equilibrium in the economy. One is through the market economy and such

allocations are referred to as Walrasian Equilibria. The other avenue is that of the

set of allocations arrived through cooperative behaviour amongst the agents. We term

such set of allocations as the Core allocations. Edgeworth[11] in his seminal work con-

jectured that as the number of agents tends to infinity one can expect the set of core

allocations to merge with the set of Walrasian equilibrium allocations and was later

validated by Aumann in his paper Aumann[2] . Aumann claimed that with an infinite

number of agents the number of possible coalitions increases and also market power of

individual agents becomes negligible which guarantees the equivalence. Shitovitz[28]

in 1973 presented an opposition to Aumann’s framework and claimed that no market

is entirely competitive. To that extent he introduced a market with large traders and

called such economies as “mixed economies”. Shitovitz in his paper showed that unless

and until there exists atleast two large traders with similar initial endowments and

preferences the set of competitive equilibrium fails to converge to the set of core alloca-

tions. We prove an extension of the main result in Greenberg and Shitovitz[18]. Thus

we show that the core of a mixed club economy and that of an associated continuum

economy are equivalent. We adapt an assumption made by Basile et al[3] in order to

prove the same. Further establishment of equivalence between the set of equilibrium

allocations across the two economies helps us extend the core equivalence result in
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Ellickson et al[12] to the case of mixed economies.

In general forming coalitions require communication between individuals forming a

coalition, which however at times maybe quite costly. So charcterising core allocations

with respected to coalitions of certain sizes have been studied quite extensively in the

literature. Vind[30] added a very insightful remark to Aumann[2] by claiming that it is

sufficient for one to concentrate only on coalitions of a fixed size lying between zero and

size of the grand coalition to guarantee the equivalence between the set of equilibrium

allocations and core allocations. The finite dimensional version of this theorem is

guaranteed by the application of Lyapnov’s convexity theorem. However, immediate

extension of this result does not follow for infinite dimensional spaces. Work by Beloso

et al[21] extends the Vind’s theorem for economies where agents have myopic utility

functions and the commodity space is the space of bounded sequences l∞. Bhowmik and

Cao[6] provides an extension where the commodity space is an ordered Banach space

with non-empty positive cone. Later works by Bhowmik and Cao[6] and Bhowmik

and Graziano[8] further extends the literature where commodity space is a Banch

lattice with empty interior and economies with large agents and generalised coalitions

respectively. We extend the Vind’s theorem in the context of club economies where

despite the non-convexity of club memberships the use of finite dimensional Lyapnov’s

convexity theorem remains validated.

One special characteristation of Walrasian equilibrium allocations for an atomless

economy was posited by Hervés-Beloso and Moreno- Garćıa[20]. Instead of exercising

the veto power of infinitely many coalitions in a single economy they exercised the veto

power of the grand coalition in infinitely many peturbed economies. Such economies

were constructed by peturbing the initial endowments of a coalition of agents. The

choice of the size of such coalitions may be arbitrarily large, arbitrarily small or may

be of a fixed given size. Hervés-Beloso and Moreno- Garćıa showed that the set of

Walrasian equilibrium allocations are equivalent to those that are non dominated in

any of the peturbed economies. They referred to them as “Robustly Efficient” set

of allocations. Later, Bhowmik and Cao[7] in their paper developed the notion of

robustly efficient allocations for a mixed economy with an infinite dimension commodity

space. Graziano and Romaniello[17] in their paper showed that for an economy with

infinitely many public goods, characterising linear cost share equilibrium in terms of

non-dominated allocations in infinitely many peturbed economies does away with the

dependency on the cost distribution scheme, cost share function unlike core. This

followed from the fact that the grand coalition always contributed share of one to the

formation of public projects. Hervés-Beloso and Moreno- Garćıa in their seminal work

showed that the second welfare theorem follows directly from their main result and that
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the second welfare theorem fails to hold in clubs framework has been established in

Ellickson et al[12] . Thus, charcterising club equilibrium in terms of robustly efficient

allocation for club economies is not possible. Bhowmik and Kaur[4] attempts to find

an approximation for robustly efficient allocations by making a assumption that the

net trade in club memberships belong to the class of cosistent club memberships. They

show that set of club equilibrium is a subset of such an approximate class of robustly

efficient allocations under some stringent conditions. We basically attempt to find an

approximation for which we can show that the set of club equilibrium are a subset of

them without any such stringent conditions. The major difference in our approximate

notion with that of Bhowmik and Kaur[4] is that we do away with the assumption on

net trades of club membership. Furthermore, compared to Hervés-Beloso and Moreno-

Garćıa for an allocation to be dominated, it needs to be dominated in a sequence of

economies and not just one.

2 Economic Model

We assume that the set of agents for our economy is a positive, complete and finite

measure space. We denote it by (A,Σ, λ) with A as the set of agents, F as the corre-

sponding σ-algebra and λ the associated lebesgue measure.. We decompose A into two

parts. A0 is the atomless part or the set of small traders in the economy. A1 denotes

the other part which is the set of large traders. For any T ⊂ A1, and B ⊂ T either

λ (B) = 0 or λ (T \B) = 0. The atomic part is represented as union of a countable

collection of atoms. Such a collection is represented as {T1, T2, T3, · · · }. The economy

is said to be atomless if A = A0. Now let N denote the set of private commodities

. We assume that the commodities are perfectly divisible1.The space of private goods

is described the n-dimensional real valed space, i.e. RN . The consumption of private

commodities for each agent is encompassed by the non-negative orthrant RN
+ . Further-

more, let RN
++ denote the strictly positive elements of RN . For any two commodity

bundles x, y ∈ RN
+ , x ≥ y implies xi ≥ yi for all i, x > y implies that xi ≥ yi, however

x ̸= y and x >> y implies that xi > yi for each i. We denote ||x|| =
N∑

n=1

xn.

2.1 Clubs

Each potential member of a club, as in Ellickson et al[12] is bestowed with some external

characteristics. These characteristics are external in nature to the extent that they are

1Without loss of generality we assume that N also denotes the cardinality for the set commodities.
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observable to other members and also creates externality within clubs. Examples of

such characteristics can be sex, appearance, religion etc. To capture such externalities

we define a broad set of finite characteristics to which an agent may accrue from. Let

Ω denote the set of such characteristics. An element ω ∈ Ω denotes the characteristic

of an individual agent relevant for other members. Each club can be characterised by

the composition of its members where the composition is defined as what proportion of

the members belong to a given characteristic. For that we define, a map π : Ω → Z+,

Z+ being the set of non-negative integers. We identify the composition of a club with

such a map , and term it as profile of a club. Thus for any ω ∈ Ω the number π(ω)

denotes the number of individuals having characteristic ω. The total number of such

members is denoted by |π| =
∑

ω∈Ω π(ω).

Now each club endorses a public project (local to the club). Such projects are part

of finite set of club activities available to the profile of agents. Projects are part of

an abstract set as in Mas-Colell[23]. The set is abstarct in the sense that their does

not exist a common pre-defined ordering over these set of activities and ranking are

entirely subjective to individual members. We denote the set of such activities by Γ.

Activities are not traded and ranking amongst them maybe influenced by private goods

consumption. Now we define a club completely as a composition of its members and

activities. So a club is defined as a pair {C = (π, γ)}. Now club projects are to be

financed by members of the clubs only. In absence of notion of money in our model,

projects are to be financed collaboratively by members. Thus requirement of inputs to

such activities are denoted by inp (π, γ), a vector in RN
+ .

Club types in this framework is defined as a comboniation of the profile of the club

and the local project it endorses. Memberships in general grants right of admission

to individuals for clubs. So for an agent of external characteristic ω ∈ Ω, a club

membership is basically a triplet in the form of his own characteristic, the profile of the

club and the associated project of the club. We denote such a triplet by m = (ω, π, γ).

Now if and only if π(ω) ≥ 1, then only an agent of characteristic ω ∈ Ω will subscribe

to the club. The set of all club memberships is denoted by M . An agent may subscribe

to one or more clubs and also can purchase multiple memberships of one particular.

We define a map L : M → {0, 1, 2, . . . }, L (ω, π, γ) of a membership m = (ω, π, γ)

denotes the number of that membership being bought. We term the above defined

map as list. Now we denote the set of all such possible list by the following notation

:-

Lists = {L : L is a list } .

Let us now define all possible maps from the set M to the real line and denote it by
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RM . Now, it is obvious that memberships purchased are not only integer amounts

but also non-negative. Thus the set Lists are those maps from M → R for which the

range is restricted to the set of non-negative integers Z+

2.2 Club Economy

We now can complete the definition of our economy. The club economy is composed of

agents, their private goods consumption, their external characteristics and clubs. Each

agent posesses an initial endowmnent of priavte goods denoted by ea. Now it is quite

trivial that club goods has an embodied notion of excludability to them. Therefore

certain agents may be barred from certain clubs. Thus the possible set of lists for an

individual a ∈ A, denoted by Listsa, a strict subset of Lists. The entire consumption

set of an agent is hereafter denoted as Xa = XN
+ ×Listsa. Let ua : Xa → R denote the

utility of agent a ∈ A. As is obvious, agents derive utilities from both private goods

and club memberships.

We now state some assumptions and notions pertaining to our club economy E
which is mapping a 7→ (ωa, Xa, ea, ua) :

A.1 The utility function is continuous over private goods consumption.

A.2 The external characteristic mapping a 7→ ωa is measurable 2.

A.3 The endowment mapping a 7→ ea is an integrable function. Also, individual

endowments ea belong to the space XN
++.

A.4 The consumption correspondence of an agent denoted by a : A ⇒ Xa is a mea-

surable one.

A.5 The utility mapping (a, xa, la) 7→ ua(xa, la) is jointly measurable.

A.6 Given any consumption pair (xa, γa) , where γa is the club membership vector

for agent a, utility for the agent is strictly monotone in private goods . In other

words, ua (xa + ya, γa) > ua (xa, γa) whenever ya ∈ Pr(RN
+ \0)Xa.

2One must note that the mapping is not a correspondence as agents can posses only one external

characteristic.
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2.3 States , Club Consistency and Transfers

Now we state the definition of club consistency. In everyday life , club memberships

are indivisible and hence the need for a consistency requirement. Clubs in our frame-

work are such that there sizes are limited and they have no market power.Therefore,

juxtaposed to continuum of agents in our model, the above requirement translates to

club sizes being finite. Since clubs are composed of members, individual memberships

to clubs must be bounded and finite.3 All these basically makes clubs infinitesimal

relative to the society. Also, external characteristics as stated earlier inflicts external-

ities, but such externalities are confined within the clubs, thereby enabling the model

to remain competitive.

Any states in the above defined economy E , as noted earlier is basically a pair. For

any agent a ∈ A the first entry denotes the amount of private good consumption and

the second the membership vector for the individual. Any such pair (xa, γa) is said to

be feasible if (xa, γa) ∈ Xa. In standard general equilibrium model social feasibility

just requires market clearance for private goods. However, in clubs framework in

addition consistency is required in terms of matching of agents. To model consistency

we basically decompose a club by the proportion of members the club holds for each

ω ∈ Ω. Then when we aggregate over similar club types and check if the proportion

remains intact or not.

Definition 2.1. Given an aggregate membership vector γ ∈ RM , if for each club type

(κ, υ), there exists a number ψ (κ, υ) ∈ Z+\ {0} such that

γ (ω, π, γ) = ψ (π, γ) π(ω)

For all ω ∈ Ω .Then we call such a vector γ consistent.

Therefore, for any coalition B, a subscription or a choice function denoted

by γ : B → Lists is consistent if the corresponding aggregate subscription vector

γB =
∫
B
γadµ(a) in RM is consistent. Such vectors form a subspace of RM and are

strictly restricted to the positive orthant of RM . The subspace is written as :

C ons =
{
γ ∈ RM : γ is consistent

}
Now, we will define conditions under which a state is feasible to the society as a

whole. Over and above the already defined conditions of consistency and individual

feasibility, private goods need to achieve clearance. This is guaranteed by material

3All these restrictions on club sizes and individual memberships to be bounded along with finite

number of public goods makes the choices finite dimensional as pointed by [12]
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balance. One part of material balance is basically inputs to club activities or projects

for each agent a ∈ A. We define the allocation rule as in [12] and it takes the form given

by 1
|π|inp (π, γ). We assume that any allocation rule defined as above is measurable

with respect to the agents space.

Definition 2.2. A state (x, γ) is feasible for a set B ∈ A such that λ (B) > 0 if it

abides by the following conditions:

� Individual Feasibility: (xa, γa) ∈ Xa for each a ∈ B,

� Material Balance:∫
B

xadλ(a) +

∫
B

∑
(ω,π,γ)

1

|π|
inp (π, γ) la (ω, π, γ) dλ(a) =

∫
B

eadλ(a),

� Consistency: γB is consistent.

If the coalition B = A then we simply call it feasible.

Definition 2.3. We say that q ∈ RM is a pure transfer if q ∈ T rans , where

T rans =
{
q ∈ RM : q.γ = 0 for each γ ∈ C ons

}
.

Thus for each club type (π, γ) and q ∈ T rans,
∑

ω∈Ω π(ω)q (ω, π, γ) = 0.

2.4 Equilibrium and Optimality

In this chapter we shall layout some definitions. As in every general equilibrium model

we shall begin with Pareto optimality and then outline the co-operative behavior of the

individuals. While doing so, we shall resort to both strong and weak notions of such

concepts. After refining the objection mechanism to a two step objection, counter-

objection one we will highlight one of the main concepts in our framework by defining

the bargaining set.

Definition 2.4. A club equilibrium consists of a feasible state (x, γ) and prices (p, q) ∈
RN

+ × RM , p ̸= 0, such that :

� Budget Feasibility for Individuals : For almost all a ∈ A,

(p, q).(xa, γa) = p.xa + q.γa ≤ p.ea
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� Optimisation: For almost all a ∈ A,

(x′a, γ
′
a) ∈ Xa and

ua (x
′
a, γ

′
a) > ua (xa, γa) ⇒ p.x′a + q.γ′a > p.ea.

� Budget Balance for Club types : For each (π, γ) ∈ Clubs,∑
ω∈Ω

π(ω)q (ω, π, γ) = p.inp (π, γ) .

→ A club quasi-equilibrium satisfies the first, third condition as a club equilibrium

and instead of the second condition it satisfies :

� Quasi-Optimisation: For almost all a ∈ A,

(x′a, γ
′
a) ∈ Xa and

ua (x
′
a, γ

′
a) > ua (xa, γa) ⇒ p.x′a + q.γ′a ≥ p.ea.

Definition 2.5. A pure-transfer club equilibrium consists of a feasible state (x, γ) and

prices (p, q) ∈ RN
+ × RM , p ̸= 0, such that :

� Budget Feasibility for Individuals : For almost all a ∈ A,

p.xa +
∑

(ω,π,γ)

p.
1

|π|
inp (π, γ) la (ω, π, γ) + q.γa ≤ p.ea

� Optimisation: For almost all a ∈ A,

(x′a, γ
′
a) ∈ Xa and

ua (x
′
a, γ

′
a) > ua (xa, γa) ⇒ p.x′a +

∑
(ω,π,γ)

p.
1

|π|
inp (π, γ) l′a (ω, π, γ) + q.γ′a > p.ea.

� Pure Transfers : q ∈ T rans.

Definition 2.6. A feasible state (x, γ) of the economy E is said to be :

(i) weakly Pareto optimal if there does not another feasible state (x′, γ′) such

that ua (x
′
a, γ

′
a) > ua (xa, γa) for almost all a ∈ A.
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(ii) strongly Pareto optimal if there does not exist another feasible state (x′, γ′)

such that ua (x
′, γ′) ≥ ua (x, γ) for almost all a ∈ A and ua (x

′
a, γ

′
a) > ua (xa, γa)

for some A′ ⊂ A such that λ (A′) > 0.

Definition 2.7. : A feasible state (x, γ) of the economy E is said to be :

(i) weakly objected if there exists some coalition B ⊂ A, λ (B′) > 0 and a feasible

state (x′, γ′) associated with B such that ua (x
′
a, γ

′
a) > ua (xa, γa) for almost all

a ∈ B.

(ii) strongly objected if there exists some coalition B ⊂ A, λ (B) > 0 and a feasible

state (x′, γ′) associated with B such that ua (x
′
a, γ

′
a) ≥ ua (xa, γa) for almost all

a ∈ B and ua (x
′
a, γ

′
a) > ua (xa, γa) for all agents in some positive measure subset

B′ of B.

A feasible state (x, γ) is said to be in the weak core of the economy E if it is not

weakly objected. A feasible state (x, γ) is similarly said to be in the strong core of

the economy E if it is not strongly objected.

3 Vind’s Theorem

Vind remarked that while considering allocations outside the core one can consider

blocking by coalitions of any size between zero and the grand coalition. This includes

blocking by coalitions of arbitrarily large sizes, thus emphasizing that core outcomes

can be charcterised also as an outcome of a majority voting rule. The applicability of

the Lyapnov’s convexity theorem remains validated by Cons being a linear subspace.

Before we move on to the main theorem we present a lemma which will be useful in

proving the main theorem for this section.

Lemma 3.1. Let (f, l) and (g, l′) be two states of E such that ua (ga, l
′
a) > ua (fa, la) λ-

a.e. on S for some coalition S. Then given any 0 < α < 1 there is a state (h, l′′) such

that

(i) ua (ha, l
′′
a) > ua (fa, la) µ-a.e. on S;

(ii)
∫
S
hadλ =

∫
S
(αga + (1− α)fa)dλ; and

(iii)
∫
S
l′′adλ =

∫
S
(αl′a + (1− α)la)dλ.
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Proof. Consider a vector measure λ : ΣS → RN+1 × RM such that

λ(R) :=

{(
λ(R),

∫
R

(ga − fa)dλ,

∫
R

(l′a − la)dλ

)
: R ∈ ΣS

}
.

Pick any α ∈ (0, 1). In view of Lyapunov’s Convexity theorem, there exits a sub-

coalition R of S such that

(a) λ(R) = αλ(S);

(b)
∫
R
(ga − fa)dλ = α

∫
S
(ga − fa)dλ; and

(c)
∫
R
(l′a − la) dλ = α

∫
S
(l′a − la)dλ.

It follows from the continuity and measurability of utilities that there exists a function

g̃ : S → RN
+ and some z ∈ RN

+ \ {0} such that ua (g̃a, l
′
a) > ua (fa, la) λ-a.e. on R and∫

R

g̃adλ =

∫
R

gadλ− z.

Finally, define h : S → RN
+ and l′′ : S → RM by letting

ha :=

{
g̃a if a ∈ R ;

fa +
z

λ(S\R)
if a ∈ S \R ,

and

l′′a :=

{
l′a if a ∈ R ;

la if a ∈ S \R .

From Assumption A.7, it follows directly that ua (ha, l
′′
a) > ua (fa, la) λ-a.e. on S.

Further, in the presence of (a) and (b), we can readily verify that∫
S

hadλ =

∫
S

(αga + (1− α)fa) dλ

and ∫
S

l′′adλ =

∫
S

(αl′a + (1− α)la) dλ.

This completes the proof.

Now we present the main theorem for this section. The only private good version

of this theorem was proposed by [30].

Theorem 3.2. Let (f, l) be a feasible state not belonging to the weak core of the club

economy E . Then for any 0 < ε < λ (A), there exist a coalition R such that λ (R) = ε

and (f, l) is blocked by R.

12



Proof. Suppose that (f, l) is a feasible state not belonging to the weak core of E . Thus,

there exist a coalition S and a state (g, l′) such that

(i) ua (ga, l
′
a) > ua (fa, la) λ-a.e. on S;

(ii)
∫
S
gadλ+

∫
S
τ (l′a) dλ =

∫
S
eadλ; and

(iii)
∫
S
l′adλ ∈ Cons.

Take any ε ∈ (0, λ(S)). Choose some α ∈ (0, 1) such that ε = αλ(S). By the Lyapunov

convexity theorem, there exist sub-coalition B of S such that λ(B) = αλ(S) and∫
B

[ga + τ (l′a)− ea] dλ = α

∫
S

[ga + τ (l′a)− ea] dλ = 0.

Consequently, (f, l) is blocked by B whose measure is ε. Next, let λ (S) < ε < λ (A).

Let δ ∈ (0, 1) be an element such that

δ = 1− ϵ− λ (S)

λ (A \ S)
.

By the continuity and measurability of utility functions, we can choose a function

g̃ : S → RN
+ such that ua(g̃a, l

′
a) > ua(fa, la) λ-a.e. on S and∫

S

g̃adλ =

∫
S

gadλ− z.

By Lemma 3.1, there exists some state (h, l′′) such that

(iv) ua (ha, l
′′
a) > ua (fa, la);

(v)
∫
S
hadλ =

∫
S
(δg̃a + (1− δ) fa) dλ; and

(vi)
∫
S
l′′adλ =

∫
S
(δl′a + (1− δ) la) dλ.

Another use of Lyapunov’s convexity theorem ensures the existence of a sub-coalition

C of A \ S such that

(vii) λ (C) = (1− δ)λ (A \ S);

(viii)
∫
C
[fa + τ (la)− ea]dλ = (1− δ)

∫
A\S[fa + τ (la)− ea]dλ; and

(ix)
∫
C
ladλ = (1− δ)

∫
A\S ladλ.

13



Lastly, let us define R := S ∪ C and a state (y, ψ) : A→ RN
+ × RM such that

(ya, ψa) =

(ha, l
′′
a) , if a ∈ S,(

fa +
zδ

λ(C)
, la

)
, otherwise.

It follows that λ(R) = ε. By Assumption A.7, ua (ha, l
′′
a) > ua (fa, la) λ-a.e. on R. In

the presence of (vi) and (ix), it can readily verified that∫
R

ψadλ(a) = δ

∫
S

l′adλ+ (1− δ)

∫
A

ladλ.

Since
∫
S
l′adλ ∈ Cons and

∫
A
ladλ ∈ Cons we have

∫
R
ψadλ(a) ∈ Cons. Furthermore,

using (ii), (v) and (viii), we deduce that∫
R

yadλ+

∫
R

τ(ψa)dλ−
∫
R

eadλ = 0.

Therefore, we have a coalition R that blocks the state (f, l) through the state (y, ψ).

4 Interpretation via continuum economy

Before we prove our next theorem we need to introduce the associated continuum

economy E ∗ to our mixed economy E . We associate with the set of large agents

A1, an atomless positive measure space
(
A∗

1,Σ
∗
A1
, λ∗A1

)
such that A0 ∩ A∗

1 = ∅ and

λ (A1) = λ∗ (A∗
1). For every large agent Tn there exists a one-to-one correspondence

with a measurable subset T ∗
n such that λ(Tn) = λ∗(T ∗

n). Thus A∗
1 =

⋃
{Tn : n ≥ 1}.

We basically identify the interval [λ(A0), λ(A1)] with A
∗
1 which is union of countably

many disjoint intervals T ∗
n where T ∗

1 = (λ(A0), λ(A1)) and for any n ∈ N, T ∗
n =[

λ(A0) + λ
(⋃n−1

i=1 Ti
)
, λ(A0) + λ (

⋃n
i=1 Ti)

]
. We then define A∗ = A0 ∪ A∗

1 and the

associated σ-algebra as the direct sum of the two σ- algebras i.e.

Σ∗ =
{
C ∪D : C ∩D = ∅, C ∈ ΣA0 , D ∈ Σ∗

A1

}
and the associated measure λ∗ : Σ∗ → R+ such that for any C ∈ Σ∗ :

λ(C∗) = λA0(C ∩ A0) + λ∗A1
(C ∩ A∗

1)

Thus the measure space (A∗,Σ∗, λ∗) is obtained. Also, each individual small agent

a ∈ T has the same characteristics that of the large agent T . Thus for every a ∈ T ∗
n

we define
e∗a = ea; u∗a = ua; if a ∈ A0

e∗a = en = e(Tn); u∗a = un = u(Tn); if a ∈ T ∗
n , n ≥ 1

14



Now given any allocation (f, l) ∈ E we define an allocation (f ∗, l∗) = Ξ((f, l)) for the

associated continuum economy E ∗ as :

(f ∗
a , l

∗
a) =

{
(fa, la), if a ∈ A0 ;

(f(Tn), l(Tn)), if a ∈ T ∗
n , n ≥ 1.

Similarly, given any allocation (f ∗, l∗) in E ∗ we define the corresponding allocation

(f, l) = φ(f ∗, l∗) for E as:

(fa, la) =

{
(f ∗

a , l
∗
a), if a ∈ A0 ;(

1
λ∗(T ∗

n)

∫
T ∗
n
f ∗
adλ

∗, 1
λ∗(T ∗

n)

∫
T ∗
n
l∗adλ

∗
)
, if a = Tn, n ≥ 1.

Lemma 4.1. Let E be a mixed club economy. Suppose that R is a coalition containing

all large agents and that for t, s ∈ R we have (i) ut = us; (ii) e(t) = e(s). Assume

further that λ (R \ A1) > 0. Let (f, l) be a state of E belonging to C (E ) such that

(f̃R, l̃R) :=

(
1

λ(R)

∫
R

fadλ,
1

λ(R)

∫
R

ladλ

)
exists. Then ua(fa, la) = ua(f̃R, l̃R) µ-a.e on R.

Proof. We first assume that uR and e(R) the common values of ua and e(a), respec-

tively. Define

B :=
{
a ∈ R : uR(f̃R, l̃R) > uR(fa, la)

}
and

C :=
{
a ∈ R : uR(f̃R, l̃R) < uR(fa, la)

}
.

Recognized that B and C are Σ-measurable sets. We shall complete the proof by

showing that none of these sets has positive measure. To this end, we first assume

that λ(B) > 0. By the continuity of ũR, there exist a sub-coalition D of B and some

z ∈ RN
+ \ {0} such that

uR(f̃R − z, l̃R) > uR(fa, la)

for all a ∈ D. Define r0 ∈ (0, 1] by letting r0 :=
λ(D)
λ(R)

. By Lyapnov’s convexity theorem,

there exists a sub-coalition E of A \R such that

(i)
∫
E
(fa − ea)dλ = r0

∫
A\R(fa − ea)dλ; and

(ii)
∫
E
ladλ = r0

∫
A\R ladλ.
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Let S := D ∪ E. Define g : A→ RN
+ by

ga :=


f̃R − z, a ∈ D;

fa +
zλ(D)
λ(E)

, otherwise.

It is claimed that (f, l) is blocked by S via (g, l). To see this, first note that∫
S

ladλ = r0

∫
A

ladλ ∈ Cons.

As a consequence of this, we have∫
S

τ(la)dλ = r0

∫
A

τ(la)dλ.

As
∫
D
(f̃R − e(R))dλ = r0

∫
R
(f̃R − e(R))dλ, it is just routine to verify that∫

S

(ga + τ(la)− ea)dλ = r0

∫
A

(fa + τ(la)− ea)dλ = 0.

Therefore, (f, l) /∈ C (E ), which leads to a contradiction. Thus, we conclude that

λ(B) = 0, which means that uR(f̃R, l̃R) < uR(fa, la) λ-a.e. on R. We now assume that

λ(C) > 0. By Jensen’s inequality, one obtains

uR

(
1

λ(C)

∫
C

(f, l)dλ

)
> uR(f̃R, l̃R)

and

uR

(
1

λ(R \ C)

∫
R\C

(f, l)dλ

)
> uR(f̃R, l̃R).

Let α = λ(C)
λ(R)

. By Lemma 5.28 in Aliprantis and Border (2005), one has

uR(f̃R, l̃R) = uR

(
α

λ(C)

∫
C

(f, l)dλ+
1− α

λ(R \ C)

∫
R\C

(f, l)dλ

)
> uR(f̃R, l̃R),

which is a contradiction. Therefore, we have λ(C) = 0. Hence, we conclude that

ua(fa, la) = ua(f̃R, l̃R) µ-a.e on R
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We now present the main theorem for this section. Denote by C ∗(E ∗) the core of

the continuum economy. The following theorem is an extension of Proposition 6 of

Basil et al[3] to the case of impure public goods.

Following from the competitiveness assumption embodied in the model the number

of possible club types are finite .Also, the number of club memberships one particular

individual can buy of all types combined is bounded above by a finite number M .

So the number of possible combinations of membership demand that one individual

can choose from is finite. Thus, the mapping from the set of agents to the set of

possible demand vectors for club memberships is a many to one mapping. Thus we can

partition the set the agents based on the above reasoning into finitely many disjoint

sets {K1, K2, · · · , Kl} such that λ (Kj) > 0 for all j = 1, 2, · · · , l.

Theorem 4.2. Let E be a mixed club economy. Suppose that R is a coalition containing

all large agents and that for t, s ∈ R we have (i) ut = us; (ii) e(t) = e(s). Assume

further that λ (R \ A1) > 0. Let (f, l) be a state of E belonging to C (E ) such that

(f̃R, l̃R) :=

(
1

λ(R)

∫
R

fadλ,
1

λ(R)

∫
R

ladλ

)
exists. Then (f ∗, l∗) ∈ C (E ∗), where (f ∗, l∗) := Ξ((f, l)).

Proof. Let (f, l) ∈ C (E ). We show that (f ∗, l∗) ∈ C (E ∗). Suppose this is not true,

i.e, (f ∗, l∗) /∈ C (E ∗). Thus, there exists a coalition S ∈ Σ∗ and a state (g, γ) such that∫
S∩A∗

0

(ga − ea + τ (γa)) dλ
∗ +

∫
S∩A∗

1

(ga − ea + τ (γa)) dλ
∗ = 0 (4.1)

If λ∗ (S ∩ A∗
1) = 0 then we immediately arrive at a contradiction. So we assume that

λ∗ (S ∩ A∗
1) > 0, and note that γ only takes finitely many values.4 Let the range of γ

be {γ1, · · · , γl}. For each 1 ≤ j ≤ l, define Kj := {a ∈ A∗ : γa = γj}. Notice that Kj

is Σ∗-measurable for all 1 ≤ j ≤ l. Define

J := {j : 1 ≤ j ≤ l and λ∗(S ∩ A∗
1 ∩Kj) > 0}.

For each j ∈ J, denote Fj := S ∩ A∗
1 ∩Kj. Consequently, we have

S ∩ A∗
1 =

⋃
{Fj : j ∈ J} .

4It follows from the fact that there an uniform upper bound M on the number of club memberships

that each agent can have.
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Thus, from equation (4.1) we have∫
S∩A∗

0

(ga − ea + τ (γa)) dλ
∗ +

∑
j∈J

λ∗ (Fj)
(
gj − ea + τ

(
γj
))
dλ∗ = 0, (4.2)

where gj :=
1

λ∗(Fj)

∫
Fj
gadλ

∗. We denote by G ⊆ A0, the coalition R \ A1.

Case 1. λ∗ (S ∩ A∗
1) ≤ λ (G). In this case, we can choose a sub-coalition G1 of G

such that λ (G1) = λ∗ (F1). Since λ∗ (R ∩ A∗
1 \ F1) ≤ λ (G \G1), we can analogously

choose another sub-coalition G2 ⊆ (G \G1) such that λ (G2) = λ∗ (F2). Continuing

this way, for each j ≥ 2, we can choose a sub-coalition Gj ⊆ G \ (G1 ∪G2, · · · ∪Gj−1)

such that λ (Gj) = λ∗ (Fj). Thus, Equation (4.2) boils down to∫
S∩A0

(ga − ea + τ (γa)) dλ+
∑
j∈J

λ (Gj)
(
gj − ea + τ

(
γj
))
dλ = 0 (4.3)

Case 2. λ∗ (S ∩ A∗
1) > λ (G). In this case, we first choose α ∈ (0, 1] such that

λ(G) = αλ∗ (S ∩ A∗
1). As in Case 1, there is a partition {Ĝj : j ∈ J} of G such that

λ(Ĝj) = αλ∗(Fj) for all j ∈ I. Applying the Lyapunov convexity theorem, we can find

a sub-coalition E of S ∩ A0 such that∫
E

(ga − ea + τ (γa)) dλ = α

∫
S∩A0

(ga − ea + τ (γa)) dλ

and ∫
E

γadλ = α

∫
S∩A0

γadλ.

Thus, it follows from (4.2) that∫
E

(ga − ea + τ (γa)) dλ+
∑
j∈J

λ(Ĝj)
(
gj − ea + τ

(
γj
))
dλ = 0. (4.4)

Therefore, by Equation (4.3) and Equation (4.4), there exist a coalition B0 ⊆ S ∩ A0

and a sequence {G̃j : j ∈ J} ⊆ ΣA0 of pairwise disjoint coalitions such that∫
B0

(ga − ea + τ (γa)) dλ+
∑
j∈J

λ(G̃j)
(
gj − ea + τ

(
γj
))
dλ = 0. (4.5)

Define G0 =
⋃
{G̃j : j ∈ J} and (g̃, γ̃a) : G0 → RN

+ ×RM
+ by letting (g̃a, γ̃a) = (gj, γ

j), if

a ∈ G̃j. By Lemma 4.1, we have ua(g̃a, γ̃a) > ua(fa, la) λ-a.e. onG0. If λ (B0 ∩G0) = 0,
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then is evident from Equation (4.5) that B0∪G0 blocks (f, l) via (h, l̂), which is defined

as

(ha, l̂a) :=


(g̃a, γ̃a) , if a ∈ G0;

(ga, γa) , otherwise.

This is a contradiction. Thus, we assume that λ (B0 ∩G0) ̸= 0. We define a measurable

set C := (B0 \ G0) ∪ (G0 \ B0). By the Lyapunov convexity theorem, there is some

C0 ∈ ΣC such that∫
C0

(ha − ea + τ(l̂a))dλ =
1

2

∫
C

(ha − ea + τ(l̂a))dλ

and ∫
C0

l̂adλ =
1

2

∫
C

l̂adλ.

By Lemma 3.1, there a state (φ, l′′) such that∫
B0∩G0

φadλ =
1

2

∫
B0∩G0

(ga + g̃a)dλ

and ∫
B0∩G0

l′′dλ =
1

2

∫
B0∩G0

(γa + γ̃a)dλ.

It follows that ∫
B0∩G0

τ(l′′)dλ =
1

2

∫
B0∩G0

(τ(γa) + τ(γ̃a))dλ.

Therefore, we conclude that∫
B0∩G0

(φa − ea + τ (l′′a)) dλ =
1

2

∫
B0∩G0

(ga + g̃a − 2ea + τ (γa) + τ(γ̃a))) dλ.

In view of above, we can re-write Equation (4.5) as follows∫
C0

(ha − ea + τ(l̂a))dλ+

∫
B0∩G0

(φa − ea + τ (l′′a)) dλ = 0 (4.6)

It can be readily verified that∫
C0

l̂adλ+

∫
B0∩G0

l′′adλ =
1

2

∫
B0

γadλ+
1

2

∑
j∈J

λ(G̃i)γ
j,
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which is equal to 
1
2

∫
S
γadλ

∗, if λ∗ (S ∩ A∗
1) ≤ λ (G) ;

α
2

∫
S
γadλ

∗, otherwise.

This belongs to Cons. Therefore, (f, l) is blocked by C0∪ (B0∩G0) via the state (y, ξ),

where (y, ξ) is defined by

(ya, ξa) :=


(
ha, l̂a

)
, if a ∈ C0;

(φa, l
′′
a) , otherwise.

This completes the proof.

Theorem 4.3. Let E be a mixed club economy and (f ∗, l∗) be a state of the associated

continuum economy E ∗ such that φ(f ∗, l∗) exists. Then given that (f ∗, l∗) ∈ C (E ∗) we

have (f, l) := φ(f ∗, l∗) belongs to C (E ).

Proof. Let (f ∗, l∗) ∈ C (E ∗). On the contrary, let us assume that (f, l) := φ(f ∗, l∗) /∈
C (E ). Then there exist a coalition S and a state (y, µ) such that:

(i)
∫
S
yadλ+

∫
S
τ(µa)dλ =

∫
S
eadλ;

(ii) ua (ya, µa) > ua (fa, la) for each a ∈ S; and

(iii)
∫
S
µadλ ∈ Cons.

We define (y∗, µ∗) := Ξ(y, µ) and S∗ := (S ∩ A0) ∪
⋃
{T ∗

i : Ti ∈ S}. It is claimed that

(f ∗, l∗) is blocked by S∗ via (g∗, µ∗). Indeed, for all a ∈ T ∗
i with Ti ∈ S, we have

ua(y
∗
a, µ

∗
a) = uTi

(yTi
, µTi

) > uTi
(fTi

, lTi
) ≥ 1

λ∗(T ∗
i )

∫
T ∗
i

uTi
(f ∗

a , l
∗
a)dλ

∗.

Pick an arbitrary Ti ∈ S. By Lemma 4.1 to an atomless economy E with A1 = ∅
with R ∩ A0 = T ∗

i , we have ua(f
∗
a , l

∗
a) is µ-a.e. constant on A∗

i . This implies that

ua(y
∗
a, µ

∗
a) > ua(f

∗
a , l

∗
a) λ-a.e. on T ∗

i . Therefore, (f ∗, l∗) is blocked by S∗ via (y∗, µ∗),

which leads to a contradiction. Hence, our supposition was wrong and (f, l) belongs

to C (E ).

Therefore, we establish that under our assumption that there exists a positive mea-

surable subset of negligible agents representing the atomic sector, the core of the mixed
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economy and that of the associated continuum economy are equivalent. Now we shall

try and replicate the core equivalence theorem for the mixed economy E . But, be-

fore that we shall show the set of equilibrium allocations are equialent. The following

theorem summarizes that.

Theorem 4.4. W (E ∗) is equivalent to W (E ) i.e.

(i) (f, l) ∈ W (E ) =⇒ (f ∗, l∗) = Ξ(f, l) ∈ W (E ∗);

(ii) (f ∗, l∗) ∈ W (E ∗) =⇒ (f, l) = φ(f ∗, l∗) ∈ W (E ).

Proof. Let (f, l) ∈ W (E ) corresponding to equilibrium prices (p, q). Thus we can infer

that ua(fa, la) ≥ ua(za, µa) for all (za, µa) ∈ Ba(p, q, ea). No we define the correspond-

ing continuum economy allocation (f ∗, l∗) = Ξ(f, l). For every a ∈ T ∗
n , and n ≥ 1

the endowments and preferences are same as that of Tn and for the small agents the

endowments and preferences are same as that in E . Thus one can automatically claim

that (f ∗, l∗) ∈ W (E ∗).

Let (f ∗, l∗) ∈ W (E ∗) for the price system (p, q), which implies that (f ∗
a , l

∗
a) is the

maximal element in individual a’s budget set for λ-a.e. on A∗. Now since individual

agents in each of T ∗
n , n ≥ 1 are endowed with the same preference their demand must be

indifferent to each other implying ua(f
∗
a , l

∗
a) = ua′(f

∗
a′ , l

∗
a′) for all a, a

′ ∈ T ∗
n ;n ≥ 1. Now

from the quasi-concavity of the utility function we can say that for any a = Tn we have

that un(f, l) ≥ ua(f
∗
a , l

∗
a); a ∈ T ∗

n , where (f, l) = φ(f ∗, l∗). Again since preference of Tn
are similar to that of any non-negligible agent in T ∗

n we can say that (f, l) ∈ DTn(p, q, en)

for all n ≥ 1. Thus (f, l) ∈ W (E ).

Combining theorem 4.2 and theorem 4.4 one can establsih the equivalence between

the set of core allocations and equilibrium allocations in the mixed economy E .

Theorem 4.5. Let E be a mixed club economy. Suppose that R is a coalition containing

all large agents and that for t, s ∈ R we have (i) ut = us; (ii) e(t) = e(s). Assume

further that λ (R \ A1) > 0. Let (f, l) be a state of E belonging to C (E ) such that

(f̃R, l̃R) :=

(
1

λ(R)

∫
R

fadλ,
1

λ(R)

∫
R

ladλ

)
exists. Then the set of Walrasian equilibrium allocations coincides with that of the core

of the economy.

Proof. One side of the proof is quite immediate as W (E ) ⊆ C (E ) from the first fun-

damental theorem. Now for the other side let (f, l) ∈ C (E ). Then from theorem 4.2
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we can say (f ∗, l∗) = Ξ((f, l)) belongs to C (E ∗). Now from theorem 5.1 of Ellickson

et al[12], we can infer that (f ∗, l∗) belongs to W (E ∗). Thus from theorem 4.4 we can

infer that (f, l) = φ(f ∗, l∗) belongs to W (E ). This completes the proof.

5 Approximate Robust Efficiency

In this section we drop the assumption on consistency of net trade of club memberships

adapted by Bhowmik and Kaur and introduce a new notion of robust efficiency.To

begin with, we assume that while considering blocking we assume that the final club

consumption and the initial one over a certain subset of agents is consistent. We present

the definitions and the results below.

Definition 5.1. A state (f, l) is said to be dominated by a state (g, γ) in an economy

E (S,B, f, l, α) if

(i) ua (ga, γa) > ua (fa, la)µ a.e. on A;

(ii)
∫
A
gadλ+

∫
A
τ (γa) dλ =

∫
A
e (S, f, α) dλ+

∫
B
τ (la) dλ; and

(iii)
∫
A
γadλ,

∫
B
ladλ ∈ Cons.

A state (f, l) is termed as robustly efficient if it is not dominated by any other state.

Definition 5.2. A state (f, l) is said to be sequentially ε-dominated if there exist a

sequences {E (Sn, Bn, f, l, αn) : n ≥ 1} of economies and a sequence {(gn, γn) : n ≥ 1}
of states such that (f, l) is dominated by (gn, γn) in E (Sn, Bn, f, l, αn) and the following

conditions are satisfied:

(i) there is a coalition R such that ua (h
n
a , γ

n
a ) > ua (fa, la) for all h

n
a ∈ gna + B (0, ε)

with a ∈ R and n ≥ 1; and

(ii) IBn = ISn and λ (Bi
n) ≥ αn.λ (S

i
n) for all n ≥ 1 and i ∈ ISn ; and

(iii) {(αn, λ (Bn)) : n ≥ 1} converges to (0, 0).

A state (f, l) is called ε-robustly efficient if it is not sequentially ε-dominated. Fur-

thermore, an allocation (f, l) is said to be approximate robustly efficient if it is

ε-robustly efficient for all ε > 0.
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If we denote by REε(E ) the set of ε-robustly efficient states and R̃E(E ) the set of

robustly efficient states then {REε(E ) : ε > 0} is accending sequence and satisfying

R̃E(E ) =
⋂

{REε(E ) : ε > 0} .

Theorem 5.3. Let (f, l) be a feasible allocation. Then (f, l) is a club equilibrium

allocation if and only if it is approximate robustly efficient allocation, where utility

from any allocation pair of the form (0a, γa) ∈ Xa is assumed to be zero, for all a ∈ A.

Proof. Assume that (f, l) is a club equilibrium allocation. Let (p, q) be a corresponding

equilibrium price. Without loss of generality, we assume that ∥p∥ = 1. Suppose by the

way of contradiction that (f, l) is not an ε-robustly effecient allocation for some ε > 0.

This implies that there exist there exist a sequences {E (Sn, Bn, f, l, αn) : n ≥ 1} of

economies and a sequence {(gn, γn) : n ≥ 1} of allocations such that (f, l) is dominated

by (gn, γn) in E (Sn, Bn, f, l, αn), which means

(i) ua (g
n
a , γ

n
a ) > ua (fa, la)µ a.e. on A;

(ii)
∫
A
gnadλ+

∫
A
τ (γna ) dλ =

∫
A
e (Sn, f, αn) dλ+

∫
Bn
τ (la) dλ; and

(iii)
∫
A
γnadλ,

∫
B
ladλ ∈ Cons.

In addition, the following conditions are satisfied:

(iv) there is a coalition R such that ua (h
n
a , γ

n
a ) > ua (fa, la) for all h

n
a ∈ gna + B (0, ε)

with a ∈ R and n ≥ 1; and

(v) IBn = ISn and λ (Bi
n) ≥ αnλ (S

i
n) for all n ≥ 1 and i ∈ ISn ; and

(vi) {(αn, λ (Bn)) : n ≥ 1} converges to (0, 0).

For each i ∈ IS, there is a sub-coalition Cn of Bn such that λ(Ci
n) = αnλ(S

i
n) for all

n ≥ 1. Thus, we have ∫
Bn

ladλ− αn

∫
Sn

ladλ =

∫
Bn\Cn

ladλ.

Since {λ (Bn) : n ≥ 1} converges to 0, we have {q ·
∫
Bn\Cn

ladλ : n ≥ 1} converges to 0.

Let n0 ≥ 1 be an integer such that

q ·
∫
Bn0\Cn0

ladλ <
ελ (R)

2N
.
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Letting

δ :=
2q

λ (R)

∫
Bn0\Cn0

ladλ,

we note that δ < ε
2N

. It follows that z0 := (δ, · · · , δ) ∈ B (0, ε). Thus we consider

h̃ : A→ RN
+ such that

h̃a =


gn0
a − z0, if a ∈ R;

gn0
a ; otherwise .

As a consequence, we have ∫
A

h̃adλ =

∫
A

gn0
a dλ− λ(R)z0.

It follows from (i) and (iv) that

p · h̃a + q · γn0
a > p · ea ≥ p · fa + q · la

λ-a.e. on A. Consequently,∫
Sn0

(
p · h̃a + q · γn0

a

)
dλ >

∫
Sn0

p · e (Sn0 , f, αn0) dλ+ αn0

∫
Sn0

q · ladλ,

which further implies that∫
A

(
p · h̃a + q · γn0

a

)
dλ >

∫
A

p · e (Sn0 , f, αn0) dλ+ αn0

∫
Sn0

q · ladλ.

This immediately yields that∫
A

(p · gn0
a + q · γn0

a ) dλ− λ(R)δ >

∫
A

p · e (Sn0 , f, αn0) dλ+ αn0

∫
Sn0

q · ladλ,

which is equivalent to∫
A

(p · gn0
a + q · γn0

a ) dλ >

∫
A

p · e (Sn0 , f, αn0) dλ+ αn0

∫
Sn0

q · ladλ+ λ(R)δ.

Thus we have that∫
A

(p · gn0
a + q · γn0

a ) dλ >

∫
A

p · e (Sn0 , f, αn0) dλ+

∫
Bn0

q · ladλ. (5.1)
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In view of (iii), we have∫
A

p · [τ(γn0
a )− τ(la)]dλ =

∫
A

q · [γn0
a − la]dλ.

Thus, it follows from (ii) that∫
A

(p · gn0
a + q · γn0

a ) dλ =

∫
A

p · e (Sn0 , f, αn0) dλ+

∫
Bn0

q · ladλ.

This contradicts (5.1).

Remark 5.4.

The converse of the above theorem however fails to hold. As already pointed out earlier

dominating an allocation requires it to be dominated to in a sequence of economies

compared to only one in Hervés-Beloso and Moreno-Garćıa. Thus the notion of blocking

is much weaker in our case compared to the original definition of robust efficiency.

Thus, the set of allocations that can be blocked reduces yielding that our class of

approximate robustly efficient allocations is a super set of the set of robustly efficient

set of allocations and hence a super-set of the club equilibrium allocations.

Remark 5.5.

As the sequence {αn}n≥1 tends towards zero, the set of agents over which the initial club

consumption is assumed to be consistent gets smaller and smaller. Thus, asymptotically

again our consistency condition for blocking kind of tends towards where only the final

consumption of club membership needs to be consistent as the one defined in Ellickson

et al[12].

6 Conclusion

We provide some further concluding remarks to our analysis done in this paper and

also posit a few possible extensions to our work in this section.

Remark 6.1. The paper by Ellickson et al[12] was one of the seminal works in club

literature that focused on building a competitive model of club economy and not remain

restricted on determining the optimal club sizes. They extend Aumann’s[2] result of

the classical core equivalence theorem to their setting. Vind[30] later characterised

the core of a continuum economy as in Aumann’s framework by restricting the size

of coalitions to any arbitrary size greater than zero and less than the grand coalition.

In section 3 we provide a similar charcterisation of the core in line with Vind. This
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further strengths the decentralisation of equilibrium further in two ways. First, forming

large coalitions can be costly as it requires establishing communication between large

number of agents. Thus even if one concentrates in such cases to coalitons of small

sizes one can still guarantee the equivalence result in Ellickson et al[12]. Secondly, by

concentrating on a class of colaitions
{
D ⊂ A : λ(D) > λ(A)

2

}
, it can be inferred that

core allocations can also be cahracterised as outcomes from a majority voting rule.

Remark 6.2. Bhowmik and Kaur[4] in their work provided a first ever charcteri-

sation of club equilibrium in terms of robustly efficient allocations. Hervés-Beloso

and Moreno-Garćıa[20] in their seminal work in 2008 first introduced such allocations.

Since, the set of core allocations are equivalent to the set of competitive allocations,

robustly efficient allocations provided another charcterisation of the core. As pointed

by Ellickson et al in their work, such charcterisation fails to hold. Thus Bhowmik

and Kaur showed that only under stringent conditions can equilibrium allocations be

arobustly efficient allocation. We departed from any such stringent assumption and

established in the previous section that for a weaker version of ronustly efficient alloca-

tions, namely “ϵ-robustly efficient allocations” each club equilibrium allocation can be

supported as an ϵ-robustly efficient allocation. However, as emphasized in Remark 5.4

our notion of blocking is much weaker comapred to that of Hervés-Beloso and Moreno-

Garćıa the reverse inclusion stands not true. Thus, one important extension to our

work can be finding a notion of robust efficiency in between that of approximate ro-

bust efficiency and ϵ-robust efficiency such that the equivalence result of Hervés-Beloso

and Moreno-Garćıa can be established.

Remark 6.3. Shitovitz[28] in his paper conjectured that the core of an economy with

large traders coincides with the set of equilibrium allocation only when there exist

atleast two agents of similar characteristics. Now even with such set of large traders

our equivalence result holds only for a special class of allocations. Given an associated

continuum economy to our mixed economy, we restrict ourselves to allocations in the

continuum economy for which the average consumption bundle is defined. We show

that for these restricted allocations the set of equiibrium allocations in the continuum

economy is equivalent to the set of equilibrium allocations of the mixed economy. We

also establish the main result in Greenberg and Shitovitz[18] only under assumptions

adapted from Basile et al[3]. The finite possible club types in such contexts helps

us partition agents in such a way that memberships are constant over each partition

which further enables defining average consumption. Thus given a core allocation of

the mixed economy, by our Theorem 4.2 we can claim that it belongs to the core of

the continuum economy. By the core equivalence theorem of Ellickson et al[12] one can
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infer that such an allocation is an equilibrium allocation of the continuum economy.

Further Theorem 4.4 enables us to conclude that the corresponding mixed economy

allocation belongs to the set of equilibrium allocations of the economy.
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