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Abstract

Consider the following two period game with two risk neutral bid-
ders for the sale of one indivisible object. In period 1, a sealed bid
auction occurs. In period 2, the winner (and potential reseller) of the
auction may resell the object to the loser (buyer) via a single take-it-
or-leave-it offer. There is a fixed time delay between the two periods
which impacts the bidders’ valuations. In particular, the winner may
obtain some value from depleting the object, either by consuming it or
exploiting it, over the interim period and the loser may lose some value
by virtue of the object being depleted by the winner. Our main result
is that fixed time delays lead to asymmetric bid distributions. For a
special family of probability distributions, we show that the first-price
auction is revenue superior to the second-price auction.

JEL classification: D44, D82
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1 Introduction

Consider the sale of an indivisible object. Two risk neutral bidders, one
strong and one weak,1 with private values play the following two-period
game. In period 1, the original seller of the object conducts a sealed-bid
auction. In period 2, the winner (and potential reseller) of the object may
make a single take-it-or-leave-it offer to the loser (buyer). There is a fixed
time delay between the two periods which impacts the bidders’ valuations.
In particular, the winner may obtain some value from depleting the object,
either by consuming it or exploiting it, over the interim period and the loser
may lose some value by virtue of the object being depleted by the winner.

The characteristics of the object determine whether the object depletes.
The situation wherein the characteristics of the object do not change with
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1A bidder is strong (resp., weak) if he is more likely to get a higher (resp., lower) value
than the other bidder.
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time, for example, arts, artifacts, antiques, jewelries, etc., is called the one-
sided case. In this case, the loser does not lose any value in the interim
period. The complementary case wherein the characteristics of the object
change with time, for example, natural resources, spectrum licenses, used
cars, carbon emissions, livestock, etc., is called the two-sided case. In this
case, the loser loses some value in the interim period. In both the cases, the
winner obtains some value in the interim period.

Resale markets are forbidden usually for various objects such as emission
rights, spectrum licenses, oil drilling, etc. Nonetheless, resale still happens
indirectly via takeovers, mergers, etc. However, these indirect procedures
do not happen immediately after the object is won in an auction, it happens
with a time delay. Therefore, the winner may deplete the object by consum-
ing it for a short period of time before reselling it. For other objects such
as arts, artifacts, used cars, etc., it is natural to consider that the object is
resold with a time delay as is seen in the real world.

The inefficiency of the first-price auction leads to the origins of auctions
with resale literature. That is, as a lower valuation bidder may win the
object, he can gain by reselling the object to a higher valuation bidder. This
trade may increase efficiency. In the present paper, even if the object is
allocated efficiently, bidders can still have potential mutual gains, provided
that the object does not deplete and the bidders’ valuations are close to each
other. This is because the winner’s valuation may be more than the loser’s
valuation, but it may be the case that the winner’s reservation valuation is
less that the loser’ valuation.

Proposition 2 of this paper characterizes perfect Bayesian equilibria of
the first-price auction, presuming that equilibria exist. The necessary and
sufficient conditions are represented by a boundary value problem. The
first-order conditions of period 1 suggest that the “marginal utility” of a
bidder is inversely proportional to his opponent’s reverse hazard rate of bid.
Importantly, the marginal utility of a bidder depends both on the resale
price and the opponent’s inverse bid function.

The main result of this paper is that, with two risk neutral bidders,
the property of bid symmetrization2 does not hold whenever resale happens
after a fixed time delay (Theorem 1). Specifically, the weak bidder wins
the auction with a higher probability than the strong bidder, as long as
the object does not deplete over time. Moreover, the strong bidder wins
the auction with a higher probability than the weak bidder, as long as the
object depletes over time.

The intuitive idea of the above result is as follows. In the resale market,
the weak bidder is always a reseller and the strong bidder is always a buyer.
The marginal utility of the weak bidder comprises of the resale price and
the value obtained by consuming the object in the interim, net of the bid

2Bid symmetrization means that all the bidders win the auction with equal probability.
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payments. The marginal utility of the strong bidder comprises of the resale
price and the value lost in the interim, net of the bid payments.

If the object does not deplete over time, the marginal utility of the weak
bidder exceeds that of the strong bidder. This is because the strong bidder
does not lose any value in the interim. As a result, the weak bidder’s bid
distribution dominates the strong bidder’s bid distribution. If the object de-
pletes over time, the marginal utility of the strong bidder exceeds that of the
weak bidder. This is because the value obtained by the weak bidder in the
interim is more than the value lost by the strong bidder, which follows from
the fact that the weak bidder bids more aggressively than the strong bidder
(Corollary 2). As a result, the strong bidder’s bid distribution dominates
the weak bidder’s bid distribution.

We also compare the bid behavior of the present paper with two stan-
dard models in the literature: (a) resale without a time delay3 (Theorem
2), and (b) no resale4 (Theorem 3). In all the three aforementioned models,
the bid functions are characterized by two differential equations, which does
not allow us to directly compare the bid functions of any two models. Nev-
ertheless, we adopt an alternate approach by constructing “bid-equivalence
functions” which captures the relative bid behavior of a bidder. We show
that, in the one-sided case, the bid functions are more asymmetric when
resale happens after a fixed time delay than when resale happens without a
time delay, and in the two-sided case, the bid functions are less asymmetric
when resale happens after a fixed time delay than when resale happens with-
out a time delay. A key implication of Theorem 2 is that the bid functions
are more closer to each other when the object depletes as compared to when
the object does not deplete (Corollary 3).

Consider the second-price auction. Whenever resale happens without a
time delay, bidders bid their own values.5 Furthermore, the object is allo-
cated efficiently. As a result, bidders never resell the object. On the contrary,
whenever resale happens with a fixed time delay and the object does not
deplete, bid-your-own-value is not an equilibrium strategy. Furthermore,
bidders bid their own values as long as the object depletes (Theorem 4).

In particular, whenever the object does not deplete, the bidder who has
realized the lowest valuation has an incentive to bid more than his own
valuation, provided that the highest valuation bidder bids his valuation.
This is because the lowest valuation bidder can resell the object to the
highest valuation bidder in such a way that the highest valuation bidder
incurs a zero surplus, and the lowest valuation bidder can extract a positive
surplus by consuming the object in the interim.

For a special family of probability distributions and the two-sided case,
3See Hafalir and Krishna [4].
4See Lebrun [6]; Maskin and Riley [9].
5See Hafalir and Krishna [4].
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we derive closed-form bid functions and study some important character-
istics of equilibrium. We also show that the seller derives more expected
revenues from the first-price auction than from the second-price auction
(Theorem 5).

1.1 The literature

Auctions with resale has been substantially studied in Garratt and Tröger
[3]; Hafalir and Krishna [4, 5]; Lebrun [7, 8]; Cheng and Tan [2]; Cheng
[1]; and Virág [11, 12] among others. The literature has implicitly assumed
that resale happens immediately after the auction ends. However, it may
be possible that there is a time delay between the auction and resale. This
paper captures the bidding behavior when resale happens with a fixed time
delay.

Hafalir and Krishna [4] characterizes and proves the existence of a unique
equilibrium in the first-price auction by considering two risk neutral bidders.
They show that bid symmetrization holds, i.e., both the bidders win the
auction with equal probability. They also provide a general revenue ranking
between the first- and second-price auctions. Specifically, they show that
the first-price auction is revenue stronger to the second-price auction. Virág
[12] introduces reserve prices with two risk neutral bidders and shows that
bid symmetrization does not hold. They also show that the second-price
auction may produce more revenues for the seller than the first-price auc-
tion. Virág [11] considers more than two risk neutral bidders and provide
characterization and existence of equilibria. They also show that bid sym-
metrization does not hold. Specifically, the bidder with a stronger value
distribution produces a stronger bid distribution than the other bidders.

The outline of the paper is as follows. In section 2, we formalize the
model. In section 3, we characterize the equilibria. In section 4, we compare
the bid distributions. In section 5, we study other comparative results. In
section 6, we derive closed form solutions and compare expected revenues
between the first- and second-price auction for a special family of probability
distributions. In section 7, we conclude.

2 Economic environment

Let there be one indivisible object for sale via the first-price auction with
sealed bids. Denote the set of bidders by N = {s, w} where s is the “strong”
bidder and w is the “weak” bidder. Denote the value space by Ti = [0, ai] for
every i ∈ N where as > aw > 0. The values are private information and the
prior distributions of the random variables Ts, Tw are given by Fi : Ti → <+
for every i ∈ N . The prior distributions are statistically independent and
twice continuously differentiable, and their density functions, fs and fw, are
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strictly positive everywhere on the value space. Bidders and the seller are
assumed to be risk neutral.

The game is played in two periods. Period 1 is the bid period where the
seller conducts the first-price auction. Period 2 is the resale period where
bid period’s winner may resell the object to the loser via a single take-it-or-
leave-it offer.6 The game ends after period 2 and there is no further resale
of the object.7 There is a fixed time delay between period 1 and period 2,
which is exogenously given. This time delay impacts bidders’ valuations of
the object, which may deplete the object.

In particular, the reseller consumes the object in the interim, and obtains
a fraction αR of his realized value. The loser loses a fraction αB of his realized
value, as the object is being consumed by the reseller. Note that αR ∈ (0, 1)
and αB ∈ [0, 1). Formally, the payoffs of the bidders are as follows.
(A) If a bidder with value t wins the object by bidding b in period 1 and

is able to resell in period 2 for a price p, then his utility is αRt+ p− b.
In this case, αRt is the value generated from the object during the
interim period.

(B) If a bidder with value t wins the object by bidding b in period 1 and
is not able to resell in period 2, then his utility is t− b.

(C) If a bidder with value t loses the object by bidding b in period 1 and is
able to purchase in period 2 for a price p, then his utility is (1−αB)t−p.
In this case, αBt is the value lost during the interim period.

(D) If a bidder with value t loses the object by bidding b in period 1 and
is not able to purchase in period 2, then his utility is 0.

The characteristics of the object determines whether the object depletes.
The case wherein the characteristics of the object does not change over time
is called the one-sided case. In this case, αR > 0 and αB = 0, i.e., the loser
does not lose any value in the interim. The complementary case wherein the
characteristics of the object change with time is called the two-sided case.
In this case, αR = αB ≡ α > 0, i.e., the loser loses value in the interim.

Assumptions

(A1) Fs dominates Fw in terms of reverse hazard rate;
(A2) The hazard rate of bidder s, fs/(1− Fs), is non-decreasing in value;
(A3) For every ρ > 0 and for every t ∈ Tw, Fw(ρt)/fw(ρt) = ρFw(t)/fw(t);
(A4) Either αR > αB = 0 or αR = αB;
(A5) (1− αR)as > (1− αB)aw.

The first assumption says that bidder s is more likely to get a greater
6In the literature, this is known as the monopoly mechanism.
7Losing bids are not revealed after period 1. So, in period 2, the winner does not know

the realized value of loser.
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value than bidder w.8 For this reason, bidder s is called the strong bidder
and bidder w is called the weak bidder. The second assumption confirms
uniqueness of the resale price in equilibria. The third assumption restricts
the family of distribution functions. The fourth assumption describes the
two cases, i.e., the one-sided case and two-sided case. The fifth assumption
is a parametric condition which is required to characterize the equilibria.
Note that (A5) implies (1− αB)as > (1− αR)aw as as > aw and αR ≥ αB.

3 Equilibria

Direction of resale

Let the bid and inverse bid functions be denoted by βi and φi respectively.
We restrict ourselves to the family of strictly increasing and continuous bid
functions. It is verified in Lemma B.2 that φs(0) = φw(0) = 0, φs(b̄) = as
and φw(b̄) = aw for some b̄ > 0. Therefore, βi : [0, ai] → [0, b̄] and φi :
[0, b̄] → [0, ai] for every i ∈ N . In order to establish the direction of resale
and perhaps to simplify the analysis, we claim the following properties.
(A) If bidder w wins the auction with bid b and (1 − αB)φs(b) > (1 −

αR)φw(b), then he makes a resale offer.
(B) If bidder s wins the auction with bid b and (1 − αR)φs(b) > (1 −

αB)φw(b), then he does not make a resale offer.
To see this, first consider property (A) and bidder w with value tw.

Suppose he bids b and wins the object. Then it must be true that tw =
φw(b). Therefore, (1 − αB)φs(b) > (1 − αR)φw(b) implies (1 − αR)tw <
(1− αB)φs ◦ φ−1

w (tw). Since he wins, it must be true that b > φ−1
s (ts). This

implies (1−αB)ts < (1−αB)φs ◦φ−1
w (tw). Therefore, with a strictly positive

probability, (1− αR)tw < (1− αB)ts and thus there are returns from resale
if bidder w makes a resale offer.

Now, consider property (B) and bidder s with value ts. Suppose he bids
b and wins the object. Then it must be true that ts = φs(b). Therefore,
(1 − αR)φs(b) > (1 − αB)φw(b) implies (1 − αR)ts > (1 − αB)φw ◦ φ−1

s (ts).
Since he wins, it must be true that b > φ−1

w (tw). This implies (1− αB)tw <
(1−αB)φw ◦φ−1

s (ts). Therefore, with probability 1, (1−αR)ts > (1−αB)tw
and thus there are no returns from resale if bidder s makes a resale offer.

As a starting point, we assume that (1− αR)φs(b) > (1− αB)φw(b) for
every b. It is important to note that (1−αR)φs(b) > (1−αB)φw(b) implies
(1 − αB)φs(b) > (1 − αR)φw(b). Later we shall prove the assumption as a
Proposition.

8Fs is said to dominate Fw in terms of reverse hazard rate if

Fs(t)
fs(t)

<
Fw(t)
fw(t)

for every t ∈ (0, aw).
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As a result, if resale happens in period 2, then the direction of resale has
to be from bidder w to bidder s.

The game is solved by backward induction.

Resale period

From the above discussion, it is clear that bidder s does not have any
optimization problem in the resale period. For the ease of notation, let
z = 1/(1−αB). Consider bidder w with value tw. Since bidder w is finding
the optimum resale price in the resale period, it must be the case that he has
won the auction. Suppose bidder w wins by bidding b. Then it must be true
that b > φ−1

s (Ts), or equivalently, Ts < φs(b). Bidder w’s offer is rejected if
Ts < zp conditional on the event that Ts < φs(b). In this case, the object is
retained with him which gives him a utility of tw − b. Bidder w’s offer, p, is
accepted if Ts > zp conditional on the event that Ts < φs(b). In this case,
he gets a utility of p + αRtw − b where αRtw is the utility obtained from
consuming the object during the interim period. Therefore the optimization
problem of bidder w is

max
p

Pr(Ts < zp|Ts < φs(b))(tw − b) + Pr(Ts > zp|Ts < φs(b))(p+ αRtw − b).

The optimization problem can be rewritten as

max
p

Fs(zp)
Fs ◦ φs(b)

(tw − b) + Fs ◦ φs(b)− Fs(zp)
Fs ◦ φs(b)

(p+ αRtw − b).

This is equivalent to solving the following problem

max
p
Fs(zp)(tw − b) + [Fs ◦ φs(b)− Fs(zp)](p+ αRtw − b).

The first-order necessary condition gives

(1− αR)tw = p− Fs ◦ φs(b)− Fs(zp)
zfs(zp)

. (1)

From (A2), it can be shown that the right-hand side of (1) is strictly increas-
ing in p9 and therefore the equation can be read as some monotone function
which equals a constant term. Thus a unique value of p exists which satis-
fies (1). Furthermore, (A2) guarantees that the unique solution of (1) is the
maximum.10

9The proof of this claim is given in Appendix B (Lemma B.2).
10The proof of this claim is given in Appendix B (Lemma B.3).
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Bid period

Let the optimum value of resale price be denoted as p(tw, b). From (1), it
follows that p(tw, b) is strictly increasing in tw and b. Furthermore, (1 −
αB)φs(b) > p(tw, b) > (1 − αR)tw. Let bidder w with value tw bid b and
bidder s bid according to his bid function. Bidder w wins if b > φ−1

s (Ts),
or equivalently, Ts < φs(b). If he wins, then he makes a resale offer. His
offer is rejected by bidder s if p > (1 − αB)Ts, or equivalently, Ts < zp. In
this case, the object remains with bidder w incurring him a utility of tw− b.
On the other hand, his offer is accepted if p < (1 − αB)Ts, or equivalently
Ts > zp. In this case, bidder w incurs a utility of p+ αRtw − b, where αRtw
is the value he gets from consuming the object during the interim period.
Therefore the expected utility function of bidder w is

Uw(tw, p(tw, b), b) =Fs(zp(tw, b))(tw − b)+
[Fs ◦ φs(b)− Fs(zp(tw, b))](p(tw, b) + αRtw − b).

Maximizing w.r.t. b and using the fact that, in equilibrium, tw = φw(b), we
have the following first-order differential equation11

Fs ◦ φs(b)
DFs ◦ φs(b)

= p(φw(b), b)− b+ αRφw(b). (2)

Let bidder s with value ts bid b and bidder w bid according to his inverse
bid function. Bidder s wins if b > φ−1

w (Tw), or equivalently, Tw < φw(b). If
he wins, then he does not make a resale offer and incurs a utility of ts − b.
Bidder s loses if b < φ−1

w (Tw), or equivalently, Tw > φw(b). If he loses, he
has an option of purchasing the object in the resale market. He accepts the
offer if (1− αB)ts > p and gets a utility of (1− αB)ts − p where αBts is the
value lost between the two periods. He rejects the offer if (1 − αB)ts < p.
Therefore the expected utility function of bidder s is

Us(ts, p(φw(b), b), b) = Fw ◦ φw(b)(ts − b)+∫ aw

φw(b)
max{(1− αB)ts − p(ω, φ−1

w (ω)), 0}fw(ω)dω.

Maximizing w.r.t. b and using the fact that, in equilibrium, ts = φs(b),
we have the following first-order differential equation12

Fw ◦ φw(b)
DFw ◦ φw(b) = p(φw(b), b)− b+ αBφs(b). (3)

11Envelope theorem has been used to obtain (2).
12Leibniz integral rule has been used to obtain (3).
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Proposition 1. Let the triple (φs, φw, p) be a perfect Bayesian equilibrium
and let Assumptions (A1)-(A5) hold. Then,

(1− αR)φs(b) > (1− αB)φw(b)

for every b ∈ (0, b̄].

The above result ensures that bidder s is always a buyer in period 2.
Two immediate corollaries are as follows.

Corollary 1. Let the primitives of Proposition 1 be satisfied. Then

(1− αB)φs(b) > (1− αR)φw(b)

for every b ∈ (0, b̄].

The above result ensures that bidder w is always a reseller in period 2.

Corollary 2. Let the primitives of Proposition 1 be satisfied. Then, bidder
w bids more aggressively than bidder s.

The above result states that, in both the one- and two-sided cases, bidder
w bids more aggressively than bidder s.

The following result characterizes the equilibria.

Proposition 2. Let Assumptions (A1)-(A5) be satisfied. A triple (φs, φw, p)
is a perfect Bayesian equilibrium if and only if it solves the following Dirich-
let problem

Fs ◦ φs(b)
DFs ◦ φs(b)

= p(φw(b), b)− b+ αRφw(b)

Fw ◦ φw(b)
DFw ◦ φw(b) = p(φw(b), b)− b+ αBφs(b)

(1− αR)φw(b) = p(φw(b), b)− Fs ◦ φs(b)− Fs(zp(φw(b), b))
zfs(zp(φw(b), b))

φs(0) = φw(0) = 0, φs(b̄) = as and φw(b̄) = aw for some b̄ > 0.

(4)

The above result provides the necessary and sufficient conditions of the
equilibria. It says that if a profile of measurable functions is known to be an
equilibrium profile, then it must solve the Dirichlet problem given by (4). In
addition, if any profile of measurable functions solves the Dirichlet problem
given by (4), then it must be the case that it is an equilibrium profile. To
establish sufficiency, we show that unilateral deviations are not desirable for
both the bidders.

Few Remarks are as follows.

Remark 1. In the two-sided case, Assumption (A3) is not necessary to
characterize the equilibria and deriving other properties.
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Remark 2. When resale happens after a fixed time delay and the object
does not deplete, the object may be resold even if it is allocated efficiently. In
particular, if the valuations are close enough and the highest valuation bidder
wins, then he has an incentive to resell the object to the lowest valuation
bidder.

4 Bid distributions

It is well-known that bidder s produces a stronger bid distribution than
bidder w when there are no resale markets (see Maskin and Riley [9]; Lebrun
[6]), and both the bidders produce same bid distribution when resale happens
without a delay (see Hafalir and Krishna [4]). In the following result, we
show that fixed time delays lead to asymmetric bid distributions.

Theorem 1. Let the triple (φs, φw, p) be a perfect Bayesian equilibrium and
let Assumptions (A1)-(A5) hold.
(A) If αB = 0 and αR > 0, then Fw ◦φw(b) < Fs◦φs(b) for every b ∈ (0, b̄).
(B) If αB = αR ≡ α, then Fs ◦ φs(b) < Fw ◦ φw(b) for every b ∈ (0, b̄).

Part (A) says that, in the one-sided case, the bid distribution function
of bidder w first-order stochastically dominates that of bidder s. In other
words, bidder w has higher chances of winning the object than bidder s. Part
(B) says that, in the two-sided case, the bid distribution function of bidder s
first-order stochastically dominates that of bidder w. In other words, bidder
s has higher chances of winning the object than bidder w.

The intuition of the above result is as follows. Consider bidder w with
value tw. Suppose he wins by bidding b and loses if he reduces the bid by
a small margin ε > 0. His utility, uw : <2

+ → <+, when he bids b − ε is
uw(φw(b−ε), b−ε) = 0. This is because if he loses then he cannot buy in the
resale market. If he bids b, then he is able to resell the object in period 213

and incurs a utility of uw(φw(b), b) = p(φw(b), b)−b+αRφw(b). The change in
utility is ∆w = uw(φw(b), b)−uw(φw(b−ε), b−ε) = p(φw(b), b)−b+αRφw(b).
In particular, ∆w comprises of two terms: the first term, p(φw(b), b)− b, is
the earning from payments, and the second term, αRφw(b), is the valuation
obtained from the object.

Now, consider bidder s with value ts. Suppose he wins by bidding b and
loses if he reduces the bid by a small margin ε > 0. His utility, us : <2

+ → <+,
when he bids b is us(φs(b), b) = φs(b) − b. This is because if he wins then
he does not resell the object in period 2. If he bids b − ε, then he is able

13The reason that bidder w is able to resell is as follows. As bidder w loses with b − ε
and wins with b, it must be the case that bidder s bids between b − ε and b. Then, the
realized value of bidder s lies between φs(b− ε) and φs(b). As (1−αB)φs(c) > p(φw(b), b)
for every c ∈ (b− ε, b), bidder s accepts the resale offer.
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to buy the object in period 214 and incurs a utility of us(φs(b− ε), b− ε) =
(1− αB)φs(b− ε)− p(φw(b), b). The change in utility is ∆s = us(φs(b), b)−
us(φs(b − ε), b − ε) which approximately equals p(φw(b), b) − b + αBφs(b).
In particular, ∆s comprises of two terms: the first term, p(φw(b), b) − b, is
the earning on payments, and the second term, αBφs(b), is the valuation
obtained from the object.

The first-order differential equation for bidder w may be rewritten as

lim
ε↓0

[∫ b
b−ε Dφs(y)fs ◦ φs(y)dy

εFs ◦ φs(b)

]−1
= ∆w.

The above equation may be interpreted as the inverse of reverse hazard rate
of bid for bidder s equals change in utility for bidder w. For a given ε > 0,
the first-order condition for bidder w may be rewritten as[

εDφs(b)fs ◦ φs(b)
Fs ◦ φs(b)

]−1
= ∆w

ε
. (5)

Since
∫ b
b−ε Dφs(y)fs ◦ φs(y)dy ≈ εDφs(b)fs ◦ φs(b), the left hand side is in-

terpreted as the inverse of the probability that bidder s bids at least b − ε
given that his bid does not exceed b. The right hand side is the marginal
utility of bidder w.

Similarly, the first-order differential equation for bidder s may be rewrit-
ten as

lim
ε↓0

[∫ b
b−ε Dφw(y)fw ◦ φw(y)dy

εFw ◦ φw(b)

]−1
= ∆s.

The above equation may be interpreted as the inverse of reverse hazard rate
of bid for bidder w equals change in utility for bidder s. For a given ε > 0,
the first-order condition for bidder s may be rewritten as[

εDφw(b)fw ◦ φw(b)
Fw ◦ φw(b)

]−1
= ∆s

ε
. (6)

Since
∫ b
b−ε Dφw(y)fw ◦ φw(y)dy ≈ εDφw(b)fw ◦ φw(b), the left hand side is

interpreted as the inverse of the probability that bidder w bids at least b− ε
given that his bid does not exceed b. The right hand side is the marginal
utility of bidder s.

In the one-sided case, from (5) and (6), the marginal utility of bidder
w exceeds that of bidder s. Therefore, the probability that bidder s bids
very close to the winning bid is less than the probability that bidder w bids

14The reason that bidder s is able to buy is as follows. As bidder s loses with b − ε
and wins with b, it must be the case that bidder w bids between b − ε and b. Then,
the realized value of bidder w lies between φw(b − ε) and φw(b), and his resale offer lies
between p(φw(b − ε), b − ε) and p(φw(b), b). As p(φw(c), c) > (1 − αR)φs(b − ε) for every
c ∈ (b− ε, b), bidder s accepts the resale offer.
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very close to the winning bid. In other words, the marginal probability of
winning is more for bidder w than bidder s. As a result, bidder w produces
a stronger bid distribution than bidder s.

In the two-sided case, from (5) and (6), the marginal utility of bidder s
exceeds that of bidder w. Therefore, the marginal probability of winning is
more for bidder s than bidder w. As a result, bidder s produces a stronger
bid distribution than bidder w.

5 Comparative results

In this section, we study a number of comparative results. Our aim is to
determine the impact of fixed time delays on the bid behavior. We do so
by comparing the bid behavior in our model with two standard models in
the literature, i.e., (1) resale without a delay, and (2) no resale. Given the
asymmetric structure of differential equations in our model, (1), and (2),
it becomes difficult to compare the bid functions between any two models.
Nonetheless, it is possible to compare the relative bid functions of our model
with (1) and (2) via a “bid-equivalence function”. Furthermore, we compare
the bid behavior of our model with the standard symmetric auctions model
(see, Riley and Samuelson [10]).

Let Ψs : Tw → Ts be defined as Ψs(t) := φs ◦ φ−1
w (t). The function Ψs

may be called a bid-equivalence function. Given a value t of bidder w, Ψs(t)
may be interpreted as the value required by bidder s such that the bids of
both the bidders are equal.

In the Hafalir and Krishna [4] (H-K) model where resale happens without
a delay, let the bid-equivalence function of bidder s be denoted by Θs. The
following result compares the bid-equivalence functions of our model and
the H-K model.

Theorem 2. Let Ψs be the bid-equivalence function of bidder s when resale
happens with a fixed time delay. Let Θs be the bid-equivalence function of
bidder s when resale takes place without a delay.
(A) If αB = 0 and αR > 0, then Ψs(t) > Θs(t) for every t ∈ (0, aw).
(B) If αB = αR ≡ α, then Ψs(t) < Θs(t) for every t ∈ (0, aw).

Part (A) tells that, in the one-sided case, the bid functions are more
asymmetric when resale happens with a fixed time delay than when it hap-
pens without a delay. In other words, fixed time delays increase bidder w’s
aggression against bidder s. Part (B) tells that, in the two-sided case, the
bid functions are less asymmetric when resale happens with a fixed time
delay than when it happens without a delay. In other words, fixed time
delays decrease bidder w’s aggression against bidder s.

A key implication of the above result is given in the following Corollary.
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Corollary 3. The bid functions are more asymmetric in the one-sided case
than they are in the two-sided case.

Let Λs be the bid-equivalence function of bidder s when there are no
resale markets. This model has been studied in Maskin and Riley [9] and
Lebrun [6] (M-R-L). In the following result, we compare the bid-equivalence
functions of our model with the M-R-L model.

Theorem 3. Let Ψs be the bid-equivalence function of bidder s when resale
happens after a fixed time delay. Let Λs be the bid-equivalence function of
bidder s when there are no resale markets. If αB = 0 and αR > 0, then

Ψs(t) > Λs(t)

for every t ∈ (0, aw).

The above result states that, in the one-sided case, the bid functions are
more asymmetric when resale happens with a fixed time delay than when
there are no resale markets. In other words, bidder w’s aggression against
bidder s is more when there are resale markets with a fixed time delay.

In the next two results, we compare bid functions of our model with the
standard symmetric auctions without resale model.

Proposition 3. Let (φs, φw, p) be a perfect Bayesian equilibrium when resale
happens after a fixed time delay. Let (µs, µs) be a symmetric Bayesian equi-
librium when there are no resale markets. Let Fs(0) > 0. Let αB = αR ≡ α.
Then φs(b) > µs(b) for every b ∈ (0, b̄].

The above result conveys that bidder s bids more aggressively if he has
an opponent of his own kind and there are no resale markets than if his
opponent is bidder w and there are resale markets after a fixed time delay.

Proposition 4. Let (φs, φw, p) be a perfect Bayesian equilibrium when resale
happens after a fixed time delay. Let (µw, µw) be a symmetric Bayesian
equilibrium when there are no resale markets. Let Fw(0) > 0. Let αB =
αR ≡ α. Then φw(b) < µw(b) for every b ∈ (0, µ−1

w (aw)].

The above result conveys that bidder w bids less aggressively if he has
an opponent of his own kind and there are no resale markets than if his
opponent is bidder s and there are resale markets after a fixed time delay.

6 Revenues

In this section, we analyze the second-price auction for the one- and two-
sided cases. For the first-price auction and the two-sided case, we derive
closed-form solutions by considering a special family of probability distri-
butions, and study important properties of equilibrium. Furthermore, we
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compare seller’s ex-ante expected revenues between the first- and second-
price auctions.

It is well-known that, in second-price auctions without resale, bid-your-
own-value is a weakly dominant strategy for every bidder.15 Unfortunately,
the result does not extend when resale opportunities are introduced. Nonethe-
less, bid-your-your-value still remains an equilibrium strategy when resale
happens without a delay. In the following result, we show that if resale hap-
pens after a fixed time delay, then bid-your-own-value is not an equilibrium
strategy in the one-sided case whereas bid-your-own-value is an equilibrium
strategy in the two-sided case.

Theorem 4. Let the auction format be the second-price auction.
(A) If αB = 0 and αR > 0, then there does not exists any equilibrium such

that bidders bid their own value.
(B) If αB = αR ≡ α, then bid-your-own-value is an equilibrium strategy

for every bidder.

When resale happens without a delay, the second-price auction allocates
the object allocated efficiently. As a result, the game never reaches the resale
period. This result extends when resale happens with a fixed time delay and
the object depletes.

When the object does not deplete, bid-your-own-value is not an equilib-
rium. In particular, the lowest valuation bidder always has an incentive to
bid more than his valuation. To understand this idea, suppose the highest
valuation bidder bids his valuation. If the lowest valuation bidder also bids
his valuation, then the highest valuation bidder wins. If the valuations are
close to each other, then the highest valuation bidder has an incentive to
resell the object; otherwise not. If he resells, then he extracts all the surplus
from the lowest valuation bidder, as the losing bid gives him information
about the exact value of the lowest valuation bidder. In either case, the
lowest valuation bidder gets a utility of zero.

The lowest valuation bidder can extract a positive surplus by increas-
ing his bid above the highest valuation bidder. This is because the lowest
valuation bidder gets a positive surplus by consuming the object in the in-
terim period, and covers his payments by reselling the object to the highest
valuation bidder.

The highest valuation bidder may have an incentive to bid less than his
valuation. This case is discussed in the proof of Theorem 4.

For the rest of this section, assume that αR = αB ≡ α. Let F be the
family of probability distributions of the form

Fi(t) =
(
t

ai

) 1
τi

15The result is true for both symmetric and asymmetric cases.
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where τi > 0 for every i ∈ N . The collection F is called the family of power
distributions where 1/τi reflects the power of bidder i. We assume τs = 1,
i.e., Fs follows uniform distribution. Therefore, τw reflects the relative power
of bidder s, i.e., greater the value of τw, stronger is bidder s.

Proposition 5. Let Fs, Fw ∈ F such that τw > τs = 1. Let α > (τw −
1)/(τw + 3) and as(3α+ 1 + τwα− τw) = aw(3α− 1 + τwα+ τw). Then the
closed-form solution of (φs, φw, p) is given by

φs(b) = (τw + 3)α+ τw − 1
2α b, φw(b) = (τw + 3)α+ 1− τw

2α b,

p(φw(b), b) = (τw + 3)(1− α)
2 b.

(7)

Few observations are as follows. First, fixing the values of α and aw,
an increase in τw increases as and φs and decreases φw. That is, as the
degree of asymmetry in probability distribution increases, bidder w bids
more aggressively and bidder s bids less aggressively. Put differently, a
higher degree of asymmetry in probability distributions asymmetrizes the
bid functions. Second, fixing the values of τw and aw, an increase in α
decreases as and φs and increases φw. That is, a higher rate at which
bidder’s value changes due to a delay in resale and a decrease in the degree
of asymmetry in probability distributions reduces the degree of asymmetry
of the bid functions.

The bid distributions are as follows.

Fs ◦ φs(b) = (τw + 3)α+ τw − 1
2αas

b, Fw ◦ φw(b) =
[(τw + 3)α+ 1− τw

2αaw
b

] 1
τw

.

It may be verified that Fs ◦ φs(b) < Fw ◦ φw(b) for every b ∈ (0, b̄).
The following Lemma gives us explicit expressions for expected revenues

in the first- and second-price auctions.

Lemma 1. Let the primitives of Proposition 5 be satisfied and let aw = 1.
Then the seller’s ex-ante expected revenues in the first- and second-price
auctions are given by

RI(α, τw) = 2α(1 + τw)
(2τw + 1)(3α+ 1 + τwα− τw) and

RII(α, τw) = 1
τw + 1 −

3α+ 1 + τwα− τw
2(2τw + 1)(3α− 1 + τwα+ τw)

(8)

respectively.

In the following result, we compare expected revenues between the two
auction formats.
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Theorem 5. Let Fs, Fw ∈ F such that τw > τs = 1. Let α > (τw−1)/(τw+
3), aw = 1, and as(3α + 1 + τwα − τw) = 3α − 1 + τwα + τw. Then the
first-price auction is revenue superior to the second-price auction.

To prove the above result, we first argue that as α ↑ 1, the difference
between the revenues in the first- and second-price auctions is positive. We
then argue that this difference increases as the value of α decreases.

We conclude this section by a numerical example.

Example 1. Let α = 3/5, aw = 1, as = 2 and τw = 2. Then φs(b) = 10
3 b,

φw(b) = 5
3b and p(φw(b), b) = b. The seller’s expected revenues in the first-

and second-price auction are 9/25 and 17/60 respectively.

7 Conclusion

In this paper, we have considered that resale in auctions happens after a
fixed time delay which impacts the bidders’ valuations. To the best of our
knowledge, this is the first attempt to consider time delays in auctions with
resale. We have shown that inclusions of fixed time delays in auctions with
resale lead to the failure of bid symmetrization property. In particular, if
the object does not deplete, then the bidder with a weaker value distribution
wins more often, and if the object depletes, then the bidder with a stronger
value distribution wins more often. We have also studied the impact of
fixed time delays on the bid behavior. For a special family of probabil-
ity distributions, we have derived closed-form solution of bid functions and
shown that the first-price auction generates more expected revenues than
the second-price auction, as long as the object depletes.

A Appendix A: Proofs

Proof of Proposition 1. As (1− αR)φs(b̄) = (1− αR)as > (1− αB)aw =
(1− αB)φw(b̄), it follows that there exists ε > 0 such that (1− αR)φs(b) >
(1 − αB)φw(b) for every b ∈ (b̄ − ε, b̄]. We show that the two inverse bid
functions never cross each other. We show by contradiction. Suppose, if
possible, there exists b∗ > 0 such that (1−αR)φs(b∗) = (1−αB)φw(b∗)16 and
(1−αR)φs(b) > (1−αB)φw(b) for every b ∈ (b∗, b̄]. Let k = (1−αR)/(1−αB).

16Under this scenario, the direction of trade is discussed in Lemma B.4.
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Then k ≤ 1. So, from (2) and (3), we have

(1− αB)φ′w(b∗) = Fw ◦ φw(b∗)
fw ◦ φw(b∗)

1− αB
p(φw(b∗), b∗)− b∗ + αBφs(b∗)

≥ Fw ◦ φw(b∗)
fw ◦ φw(b∗)

1− αB
p(φw(b∗), b∗)− b∗ + αRφw(b∗)

= Fw ◦ [kφs(b∗)]
fw ◦ [kφs(b∗)]

1− αB
p(φw(b∗), b∗)− b∗ + αRφw(b∗)

= Fw ◦ φs(b∗)
fw ◦ φs(b∗)

k(1− αB)
p(φw(b∗), b∗)− b∗ + αRφw(b∗)

>
Fs ◦ φs(b∗)
fs ◦ φs(b∗)

1− αR
p(φw(b∗), b∗)− b∗ + αRφw(b∗)

= (1− αR)φ′s(b∗).

The second step follows from the fact that αBφs(b∗) ≤ αRφw(b∗), the fourth
step follows from assumption (A3), and the fifth step follows from assump-
tion (A1). Therefore there exists δ > 0 such that (1−αB)φw(b∗+ δ) > (1−
αR)φs(b∗+δ), which is a contradiction. Hence (1−αB)φs(b) > (1−αR)φw(b)
for every b ∈ (0, b̄]. �

Proof of Proposition 2. The necessity of equilibria has already been es-
tablished in the main body of the paper. We establish the sufficiency of
equilibria. Suppose (φs, φw, p) solves the Dirichlet problem. Let bidder w
with value tw overbids to c such that φw(c) > tw. Then, it must be the case
that p(φw(c), c) > p(tw, c). Differentiating (3), we have

DcUw(tw, p(tw, c), c) = DcFs ◦ φs(c)[p(tw, c)− c+ αRtw]− Fs ◦ φs(c)
< DcFs ◦ φs(c)[p(φw(c), c)− c+ αRφw(c)]− Fs ◦ φs(c)
= 0 = DcUw(φw(c), p(φw(c), c), c).

Therefore, overbidding is not optimum for bidder w. Let bidder w with
value tw underbids to c such that φw(c) < tw. Then, it must be the case
that p(φw(c), c) < p(tw, c). Differentiating (3), we have

DcUw(tw, p(tw, c), c) = DcFs ◦ φs(c)[p(tw, c)− c+ αRtw]− Fs ◦ φs(c)
> DcFs ◦ φs(c)[p(φw(c), c)− c+ αRφw(c)]− Fs ◦ φs(c)
= 0 = DcUw(φw(c), p(φw(c), c), c).

Therefore underbidding is also not optimum for bidder w.
Let bidder s with value ts overbids to c such that φs(c) > ts. Differenti-

ating (3), we have

DcUs(ts, p(φw(c), c), c) = DcFw ◦ φw(c)(ts − c)− Fw ◦ φw(c)
−max{(1− αB)ts − p(φw(c), c), 0}DcFw ◦ φw(c)

17



Using the fact that max{(1−αB)ts−p(φw(c), c), 0} ≥ (1−αB)ts−p(φw(c), c),
we have

DcUs(ts, p(φw(c), c), c) ≤ DcFw ◦ φw(c)[p(φw(c), c)− c+ αBts]− Fw ◦ φw(c)
< DcFw ◦ φw(c)[p(φw(c), c)− c+ αBφs(c)]− Fw ◦ φw(c)
= 0 = DcUs(φs(c), p(φw(c), c), c).

Therefore, overbidding is not optimum for bidder s. Let bidder s with value
ts underbids to c such that φs(c) < ts. Differentiating (3), we have

DcUs(ts, p(φw(c), c), c) = DcFw ◦ φw(c)(ts − c)− Fw ◦ φw(c)
−max{(1− αB)ts − p(φw(c), c), 0}DcFw ◦ φw(c)

Using the fact that (1− αB)φs(c) > p(φw(c), c), we have

DcUs(ts, p(φw(c), c), c) = DcFw ◦ φw(c)[p(φw(c), c)− c+ αBts]− Fw ◦ φw(c)
> DcFw ◦ φw(c)[p(φw(c), c)− c+ αBφs(c)]− Fw ◦ φw(c)
= 0 = DcUs(φs(c), p(φw(c), c), c).

Therefore underbidding is also not optimum for bidder s. Thus (φs, φw, p)
is an equilibrium profile. �

Proof of Theorem 1. We first show (A). Suppose αB = 0 and αR > 0.
Then, from (3), we have

Fs ◦ φs(b)
DFs ◦ φs(b)

= p(φw(b), b)− b+ αRφw(b) > p(φw(b), b)− b = Fw ◦ φw(b)
DFw ◦ φw(b) .

This implies

D
[
Fw ◦ φw(b)
Fs ◦ φs(b)

]
> 0.

As Fs ◦ φs(b̄) = Fw ◦ φw(b̄) = 1 and the above inequality holds, the desired
result follows. We now show (B). Suppose αB = αR ≡ α. Then, from (3),
we have

Fs ◦ φs(b)
DFs ◦ φs(b)

= p(φw(b), b)− b+ αRφw(b)

< p(φw(b), b)− b+ αBφs(b)

= Fw ◦ φw(b)
DFw ◦ φw(b) .

This implies

D
[
Fs ◦ φs(b)
Fw ◦ φw(b)

]
> 0.

As Fs ◦ φs(b̄) = Fw ◦ φw(b̄) = 1 and the above inequality holds, the desired
result follows. �
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Proof of Theorem 2. For a given t, we have Ψs(t) = φs ◦ φ−1
w (t). Differ-

entiating w.r.t. t and using (4), we have

DΨs(t) = Fs ◦Ψs(t)
fs ◦Ψs(t)

fw(t)
Fw(t)

p(t, φ−1
w (t))− φ−1

w (t) + αBΨs(t)
p(t, φ−1

w (t))− φ−1
w (t) + αRt

. (9)

From H-K model, we have

DΘs(t) = Fs ◦Θs(t)
fs ◦Θs(t)

fw(t)
Fw(t) .

Note that Ψs(aw) = Θs(aw) = as. We first show (A). Suppose αB = 0 and
αR > 0. Then, from (9), we have

DΨs(t) <
Fs ◦Ψs(t)
fs ◦Ψs(t)

fw(t)
Fw(t) .

As DΨs(aw) < fw(aw)/fs(as) = DΘs(aw), it follows there exists ε > 0 such
that Ψs(t) > Θs(t) for every t ∈ (aw − ε, aw). We show that the two bid-
equivalence functions never cross each other. We show by contradiction.
Suppose there exists t∗ > 0 such that Ψs(t∗) = Θs(t∗) and Ψs(t) > Θs(t) for
every t ∈ (t∗, aw). Then, we have

DΨs(t∗) <
Fs ◦Ψs(t∗)
fs ◦Ψs(t∗)

fw(t∗)
Fw(t∗)

= Fs ◦Θs(t∗)
fs ◦Θs(t∗)

fw(t∗)
Fw(t∗)

= DΘs(t∗).

Therefore there exists δ > 0 such that Ψs(t∗ + δ) < Θs(t∗ + δ), which is a
contradiction. Hence Ψs(t) > Θs(t) for every t ∈ (0, aw).

We now show (B). Suppose αB = αR ≡ α. Then, from (9) and the fact
that Ψs(t) > t (this follows from Corollary 2), we have

DΨs(t) >
Fs ◦Ψs(t)
fs ◦Ψs(t)

fw(t)
Fw(t) .

As DΨs(aw) > fw(aw)/fs(as) = DΘs(aw), it follows there exists ε > 0 such
that Ψs(t) < Θs(t) for every t ∈ (aw − ε, aw). We show that the two bid-
equivalence functions never cross each other. We show by contradiction.
Suppose there exists t∗ > 0 such that Ψs(t∗) = Θs(t∗) and Ψs(t) < Θs(t) for
every t ∈ (t∗, aw). Then, we have

DΨs(t∗) >
Fs ◦Ψs(t∗)
fs ◦Ψs(t∗)

fw(t∗)
Fw(t∗)

= Fs ◦Θs(t∗)
fs ◦Θs(t∗)

fw(t∗)
Fw(t∗)

= DΘs(t∗).
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Therefore there exists δ > 0 such that Ψs(t∗ + δ) > Θs(t∗ + δ), which is a
contradiction. Hence Ψs(t) < Θs(t) for every t ∈ (0, aw). �

Proof of Theorem 3. When there are no resale markets, let the inverse
bid functions be denoted by γs and γw. The characterization of equilibria is

Dγw(b) = Fw ◦ γw(b)
fw ◦ γw(b)

1
γs(b)− b

Dγs(b) = Fs ◦ γs(b)
fs ◦ γs(b)

1
γw(b)− b

The above characterization can be found in Lebrun [6] and Maskin and Riley
[9].

Use the above characterization to obtain

DΛs(t) = Fs ◦ Λs(t)
fs ◦ Λs(t)

fw(t)
Fw(t)

Λs(t)− γ−1
w (t)

t− γ−1
w (t)

.

Note that Ψs(aw) = Θs(aw) = as and Λs(t) > t (Maskin and Riley [9],
Proposition 3.5). As DΨs(aw) < fw(aw)/fs(as) < DΛs(aw), it follows there
exists ε > 0 such that Ψs(t) > Λs(t) for every t ∈ (aw − ε, aw). We show
that the two bid-equivalence functions never cross each other. We show by
contradiction. Suppose there exists t∗ > 0 such that Ψs(t∗) = Λs(t∗) and
Ψs(t) > Θs(t) for every t ∈ (t∗, aw). Then, we have

DΨ(t∗) < Fs ◦Ψs(t∗)
fs ◦Ψs(t∗)

fw(t∗)
Fw(t∗)

= Fs ◦ Λs(t∗)
fs ◦ Λs(t∗)

fw(t∗)
Fw(t∗)

<
Fs ◦ Λs(t∗)
fs ◦ Λs(t∗)

fw(t∗)
Fw(t∗)

Λs(t∗)− γ−1
w (t∗)

t− γ−1
w (t∗)

= DΛs(t∗).

Therefore there exists δ > 0 such that Ψs(t∗ + δ) < Λs(t∗ + δ), which is a
contradiction. Hence Ψs(t) > Λs(t) for every t ∈ (0, aw). �

Proof of Proposition 3. We prove in two steps. In step 1, we show that
φs > µs in the neighborhood of 0. In step 2, we show that the two functions
do not intersect.

When bidders are symmetric with the probability distribution pair (Fs, Fs),
the equilibria is characterized as

Dµs(b) = Fs ◦ µs(b)
fs ◦ µs(b)

1
µs(b)− b

µs(0) = 0, µs(b̄s) = as for some b̄s > 0.
(10)
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By contradiction, we show that φs > µs in the neighborhood of 0. Sup-
pose there exists ε > 0 such that φs(b) ≤ µs(b) for every b ∈ (0, ε). Then,
from (4) and (10), we have

Fs ◦ φs(b)
DFs ◦ φs(b)

= p(φw(b), b)− b+ αφw(b)

< (1− α)φs(b)− b+ αφs(b)
= φs(b)− b
≤ µs(b)− b

= Fs ◦ µs(b)
DFs ◦ µs(b)

.

This implies

D
[
Fs ◦ φs(b)
Fs ◦ µs(b)

]
> 0.

Since φs(0) = µs(0) = 0, Fs(0) > 0 and the above fact holds, it follows that
φs(b) > µs(b) for every b ∈ (0, ε). Therefore, φs > µs in the neighborhood
of 0.

By contradiction, we now show that the two functions do not intersect.
Suppose there exists b∗ > 0 such that φs(b∗) = µs(b∗) and φs(b) > µs(b) for
every b ∈ (0, b∗). Then, from (4) and (10), we have

φ′s(b∗) = Fs ◦ φs(b∗)
fs ◦ φs(b∗)

1
p(φw(b∗), b∗)− b∗ + αφw(b∗)

>
Fs ◦ φs(b∗)
fs ◦ φs(b∗)

1
p(φw(b∗), b∗)− b∗ + αφs(b∗)

>
Fs ◦ φs(b∗)
fs ◦ φs(b∗)

1
(1− α)φs(b∗)− b∗ + αφs(b∗)

= Fs ◦ φs(b∗)
fs ◦ φs(b∗)

1
φs(b∗)− b∗

= Fs ◦ µs(b∗)
fs ◦ µs(b∗)

1
µs(b∗)− b∗

= µ′s(b∗).

Thus there exists δ > 0 such that φs(b∗ − δ) < µs(b∗ − δ), a contradiction.
Hence φs(b) > µs(b) for every b ∈ (0, b̄].

�

Proof of Proposition 4. We prove in two steps. In step 1, we show that
φw < µw in the neighborhood of 0. In step 2, we show that the two functions
do not intersect.
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When bidders are symmetric with the probability distribution pair (Fw, Fw),
the equilibria is characterized as

Dµw(b) = Fw ◦ µw(b)
fw ◦ µw(b)

1
µw(b)− b

µw(0) = 0, µw(b̄w) = as for some b̄w > 0.
(11)

By contradiction, we show that φw < µw in the neighborhood of 0.
Suppose there exists ε > 0 such that φw(b) ≥ µw(b) for every b ∈ (0, ε).
Then, from (4) and (11), we have

Fw ◦ φw(b)
DFw ◦ φw(b) = p(φw(b), b)− b+ αφs(b)

> (1− α)φw(b)− b+ αφw(b)
= φw(b)− b
≥ µw(b)− b

= Fw ◦ µw(b)
DFw ◦ µw(b) .

This implies

D
[
Fw ◦ µw(b)
Fw ◦ φw(b)

]
> 0.

Since φw(0) = µw(0) = 0, Fw(0) > 0 and the above fact holds, it follows that
φw(b) < µw(b) for every b ∈ (0, ε). Therefore, φw > µw in the neighborhood
of 0.

By contradiction, we now show that the two functions do not intersect.
Suppose there exists b∗ > 0 such that φw(b∗) = µw(b∗) and φw(b) < µw(b)
for every b ∈ (0, b∗). Then, from (4) and (11), we have

φ′w(b∗) = Fw ◦ φw(b∗)
fw ◦ φw(b∗)

1
p(φw(b∗), b∗)− b∗ + αφs(b∗)

<
Fw ◦ φw(b∗)
fw ◦ φw(b∗)

1
φw(b∗)− b∗

= Fw ◦ µw(b∗)
fw ◦ µw(b∗)

1
µw(b∗)− b∗

= µ′w(b∗).

Thus there exists δ > 0 such that φw(b∗ − δ) > µw(b∗ − δ), a contradiction.
Hence φw(b) < µw(b) for every b ∈ (0, µ−1

w (aw)]. �

Proof of 4. We first show (A). We show by contradiction. Without loss
of generality, fix bidder w with value tw who follows truth-telling strategy.
Let (1 − αR)tw < (1 − αR)ts < tw < ts. If bidder s follows truth-telling
strategy, then his optimal choice is to resell which gives him a utility of
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αRts + tw − tw = αRts. We show that underbidding is desirable for bidder
s. Suppose bidder s with value ts underbids to bs such that (1 − αR)tw <
bs < (1 − αR)ts < tw < ts. Then bidder s loses in period 1. If bidder w
resells in period 2, then his utility is αRtw + bs − bs = αRtw. If bidder w
does not resell in period 2, then his utility is tw− bs. Therefore it is optimal
for bidder w to resell which incurs bidder s a utility of ts− bs > αRts. Thus
deviation is desirable.

We now show (B). Without loss of generality, fix bidder w with value tw
who follows truth-telling strategy. Suppose bidder s with value ts underbids
to bs such that bs < ts. There can be two potential cases—Case 1: tw < ts
and Case 2: tw > ts. In case 1, if bidder s follows truth-telling strategy,
then his utility is ts − tw > 0. In case 2, if bidder s follows truth-telling
strategy, then his utility is 0. We show that underbidding is not desirable
for bidder s.

Consider Case 1. There can be two potential sub-cases—Case 1.1: tw <
bs < ts and Case 1.2: bs < tw < ts. Consider Case 1.1. Then bidder s wins
in period 1. If he resells in period 2, then his utility is αts+(1−α)tw− tw =
α(ts − tw). If he does not resell in period 2, then his utility is ts − tw.
Therefore it is optimal for bidder s not to resell which incurs him a utility
of ts − tw. Hence deviation from ts is not desirable in this case.

Consider case 1.2. Then bidder s loses in period 1. If bidder w resells
in period 2, then his utility is αtw + (1− α)bs − bs = α(tw − bs). If he does
not resell in period 2, then his utility is tw − bs. Therefore it is optimal for
bidder w not to resell which incurs bidder s a utility of 0. Hence deviation
from ts is not desirable in this case.

Consider case 2. Then bs < ts < tw implies that bidder s loses in period
1. If bidder w resells in period 2, then his utility is αtw + (1 − α)bs − bs =
α(tw − bs). If he does not resell in period 2, then his utility is tw − bs.
Therefore it is optimal for bidder w not to resell which incurs bidder s a
utility of 0. Hence deviation from ts is not desirable in this case.

Now, suppose bidder s with value ts overbids to bs such that bs > ts.
There can be two potential cases—Case 1: tw < ts and Case 2: tw > ts. In
case 1, if bidder s follows truth-telling strategy, then his utility is ts−tw > 0.
In case 2, if bidder s follows truth-telling strategy, then his utility is 0. We
show that overbidding is not desirable for bidder s. Consider case 1. Then
tw < ts < bs implies that bidder s wins in period 1. If he resells in period
2, then his utility is αts + (1− α)tw − tw = α(ts − tw). If he does not resell
in period 2, then his utility is ts − tw. Therefore it is optimal for bidder s
not to resell which incurs him a utility of ts − tw. Hence deviation from ts
is not desirable in this case.

Consider case 2. There can be two potential sub-cases—Case 2.1: tw >
bs > ts and Case 2.2: bs > tw > ts. Consider case 2.1. Then bidder s loses
in period 1. If bidder w resells in period 2, then his utility is αtw + (1 −
α)bs − bs = α(tw − bs). If he does not resell in period 2, then his utility is
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tw−bs. Therefore it is optimal for bidder w not to resell which incurs bidder
s a utility of 0. Hence deviation from ts is not desirable in this case.

Consider case 2.2. Then bidder s wins in period 1. If he resells in period
2, then his utility is αts + (1− α)tw − tw = α(ts − tw). If he does not resell
in period 2, then his utility is ts− tw. Therefore it is optimal for bidder s is
to resell which incurs him a utility of α(ts − tw) < 0. Hence deviation from
ts is not desirable in this case. �

Proof of Proposition 5. We can rewrite (4) as

φ′s(b) = φs(b)
p(φw(b), b)− b+ αφs(b)

φ′w(b) = τwφw(b)
p(φw(b), b)− b+ αφw(b)

(1− α)φw(b) = p(φw(b), b)− φs(b)− zp(φw(b), b)
z

.

Let φs(b) = φ̄sb, φw(b) = φ̄wb and p(φw(b), b) = p̄b. Then, from the above
system of equations, we have

p̄ = 2− αφ̄w = 1 + τw − αφ̄s, φ̄s + φ̄w = 2zp̄.

Solving the above equations, we get the desired result. �

Proof of Lemma 1. The seller’s expected revenues in the first-price auc-
tion are

RI =
∫ b̄

0
bFw ◦ φw(b)Fs ◦ φs(db) +

∫ b̄

0
bFs ◦ φs(b)Fw ◦ φw(db)

The first term is the expected revenue generated from bidder w and the
second term is the expected revenue generated from bidder s. Using the
expressions of inverse bid functions from Proposition 5, we have

RI =
∫ b̄

0

3α+ ατw + τw − 1
2αas

1
τw

(3α+ ατw + 1− τw
2α

) 1
τw

b1+ 1
τw db

+
∫ b̄

0

(3α+ ατw + 1− τw
2α

) 1
τw 3α+ ατw + τw − 1

2αas
b1+ 1

τw db

= 3α+ ατw + τw − 1
2αas

(3α+ ατw + 1− τw
2α

) 1
τw
(

1 + 1
τw

)∫ b̄

0
b1+ 1

τw db

= 1 + τw
2τw + 1

3α+ ατw + τw − 1
2αas

(3α+ ατw + 1− τw
2α

) 1
τw

b̄
2τw+1
τw

Using the value of b̄ = (3α+ ατw + 1− τw)/(2α) and the fact that

3α+ ατw + 1− τw
2α = 3α+ ατw + τw − 1

2αas
,
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we have

RI = 1 + τw
2τw + 1

3α+ ατw + 1− τw
2α

(3α+ ατw + 1− τw
2α

) 1
τw

(3α+ ατw + 1− τw
2α

) 2τw+1
τw

= 1 + τw
2τw + 1

2α
3α+ ατw + 1− τw

.

The seller’s expected revenues in the second-price auction are

RII =
∫ 1

0
[1− Fs(t)][1− Fw(t)]dt

=
∫ 1

0

(
1− t

as

)
(1− t

1
τw )dt

=
∫ 1

0

(
1− t

1
τw − t

as
+ t

1+τw
τw

as

)
dt

= 1
1 + τw

− 1
2as(2τw + 1)

= 1
1 + τw

− 3α+ 1 + ατw − τw
2(2τw + 1)(3α− 1 + ατw + τw) .

�

Proof of Theorem 5. Let ∆(α, τw) := RI(α, τw) − RII(α, τw). We show
in two steps. In step 1, we show that ∆(1, τw) > 0. In step 2, we show that
Dα∆(α, τw) < 0 for every α < 1.

From (8), we have

RI(1, τw) = 1 + τw
2(2τw + 1) , RII(1, τw) = 2τw

(2τw + 1)(τw + 1) .

This implies

∆(1, τw) = 1 + τw
2(2τw + 1) −

2τw
(2τw + 1)(τw + 1)

= (τw − 1)2

2(2τw + 1)(τw + 1) > 0.

Fix any α < 1. From (8), we have

∆(α, τw) = 2α(1 + τw)
(2τw + 1)(3α+ 1 + τwα− τw) + 3α+ 1 + τwα− τw

2(2τw + 1)(3α− 1 + τwα+ τw)

− 1
τw + 1 .
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The first-order derivative w.r.t. α gives

Dα∆(α, τw) = τw − 1
2τw + 1

[ 3 + τw
(3α− 1 + τwα+ τw)2 −

2(1 + τw)
(3α+ 1 + τwα− τw)2

]
<

τw − 1
2τw + 1

[ 3 + τw
(3α+ 1 + τwα− τw)2 −

2(1 + τw)
(3α+ 1 + τwα− τw)2

]
= −(τw − 1)2

(3α+ 1 + τwα− τw)2

< 0.

Therefore, ∆(α, τw) > 0 for every α < 1. �

B Appendix B: Lemmas

Lemma B.1. φs(0) = φw(0) = 0 and there exists b̄ > 0 such that φs(b̄) = as
and φw(b̄) = aw.

Proof. We show φ−1
s (0) = φ−1

w (0) = 0. We show in two steps. In step 1,
we show φ−1

s (0) = φ−1
w (0). In step 2, we show φ−1

s (0) = φ−1
w (0) = 0.

We begin by showing φ−1
s (0) = φ−1

w (0). For contradiction, without loss
of generality, assume φ−1

w (0) > φ−1
s (0). Consider bidder w with value 0. If

he wins, then he will try to resell at price p such that p > φ−1
w (0)− αR.0 >

φ−1
s (0). Consider bidder s with value zp where z = 1/(1 − αB). If he

accepts the offer, then his utility is (1 − αB)zp − p = 0. Therefore, he is
indifferent between accepting and not accepting the offer which gives him
a utility of 0. However, if he deviates from his bid to φ−1

w (0) + ε such that
0 < ε < p − φ−1

w (0), then it is profitable for him as he now gets a utility of
zp− φ−1

w (0)− ε > 0. Thus, φ−1
s (0) = φ−1

w (0).
We now show φ−1

s (0) = φ−1
w (0) = 0. For contradiction, assume that

φ−1
s (0) = φ−1

w (0) > 0. Without loss of generality, consider bidder w with
value 0. If he wins, then he will make a resale offer of p such that p >
φ−1
w (0) − αR.0 > 0; otherwise the object remains with him which gives a

utility of 0 − φ−1
w (0) < 0. Also, if he wins, then it must be the case that

φ−1
w (0) ≥ φ−1

s (ts), or, equivalently ts ≤ φs◦φ−1
w (0). Since φ−1

s (0) = φ−1
w (0), it

follows that ts = 0. This implies that the offer is not accepted by bidder s as
his utility would have been (1−αB).0−p < 0. On the other hand, if bidder w
loses the auction, then it must be the case that ts ≥ φs◦φ−1

w (0) = 0. If bidder
s makes a resale offer, then the resale price p is such that p > (1−αR)ts ≥ 0.
Therefore, the offer will not be accepted by bidder w which gives him a
utility of 0. Thus, the expected utility of bidder w is negative. Hence,
φ−1
s (0) = φ−1

w (0) = 0.
We show φ−1

s (as) = φ−1
w (aw) ≡ b̄. For contradiction, without loss of

generality, assume that φ−1
w (aw) > φ−1

s (as). Consider bidder w with value
aw. Then, he wins with certainty. If he resells, then the resale price p is
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such that p > (1 − αR)aw. If his offer is accepted, then he gets a utility
of αRaw + p − φ−1

w (aw). For a small enough ε > 0, a small downward
deviation from φ−1

w (aw) to φ−1
w (aw)−ε still guarantees his win, but increases

his utility. If his offer is rejected or he does not make a resale offer, then the
object remains with him and gives a utility of aw−φ−1

w (aw). Again, a small
downward deviation is desirable. Therefore, φ−1

s (as) = φ−1
w (aw) ≡ b̄. �

Lemma B.2. Suppose Assumption (A2) is satisfied. Then

zfs(zp)
Fs ◦ φs(b)− Fs(zp)

is non-decreasing in p.

Proof. Let p, q ∈ <++ such that p > q. From assumption A2, it follows
that

fs(p)
1− Fs(p)

≥ fs(q)
1− Fs(q)

,

or, equivalently

fs(zp)[1− Fs(zq)] ≥ fs(zq)[1− Fs(zp)].

We show
fs(zp)

Fs ◦ φs(b)− Fs(zp)
≥ fs(zq)
Fs ◦ φs(b)− Fs(zq)

,

or, equivalently

fs(zp)[Fs ◦ φs(b)− Fs(zq)] ≥ fs(zq)[Fs ◦ φs(b)− Fs(zp)].

We consider two cases. Case 1: fs(p) > fs(q) and Case 2: fs(p) ≤ fs(q).
Consider case 1. This implies fs(zp) > fs(zq). Since Fs ◦ φs(b) − Fs(zq) >
Fs ◦ φs(zp)− Fs(zp), the result follows.

Now consider case 2. This implies fs(zp) ≤ fs(zq). Let

A := fs(zp)[Fs ◦ φs(b)− Fs(zq)]− fs(zq)[Fs ◦ φs(b)− Fs(zp)].

Then (d/dFs ◦φs(b))A = fs(zp)−fs(zq) ≤ 0. Since Fs ◦φs(b) < 1, it follows
that

A ≥ fs(zp)[1− Fs(zq)]− fs(zq)[1− Fs(zp)] ≥ 0.

�

Lemma B.3. Suppose Assumption (A2) is satisfied. Then the unique value
p that solves (1) is the maximum.
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Proof. We have

DpUw(tw, p, b) = −zfs(zp)
[
p− (1− αR)tw −

Fs ◦ φs(b)− Fs(zp)
zfs(zp)

]
.

In equilibrium DpUw(tw, p, b) = 0. The second-order derivative is

D2
ppUw(tw, p, b) = −z2f ′s(zp)

[
p− (1− αR)tw −

Fs ◦ φs(b)− Fs(zp)
zfs(zp)

]
−

zfs(zp)Dp

[
p− (1− αR)tw −

Fs ◦ φs(b)− Fs(zp)
zfs(zp)

]
= −zfs(zp) + zfs(zp)Dp

[
Fs ◦ φs(b)− Fs(zp)

zfs(zp)

]
< 0.

�

Lemma B.4. Suppose, for some b∗ > 0, (1− αR)φs(b∗) = (1− αB)φw(b∗).
Then (2) and (3) are satisfied.

Proof. First, let us consider the one-sided case. The equality is equivalent
to (1−αR)φs(b∗) = φw(b∗). Suppose bidder s with value ts wins the auction
by bidding b∗. Then ts = φs(b∗) and b∗ > φ−1

w (tw). This implies tw <
φw ◦ φ−1

s (ts) = (1 − αR)ts. Hence there are no gains from trade if bidder s
makes a resale offer. Now, suppose bidder w with value tw wins the auction
by bidding b∗. Note that (1 − αR)φs(b∗) = φw(b∗) implies φs(b∗) > (1 −
αR)φw(b∗). We have tw = φw(b∗) and b∗ > φ−1

s (ts). This implies ts < φs ◦
φ−1
w (tw) and (1−αR)tw < φs ◦φ−1

w (tw). Therefore, with positive probability,
(1−αR)tw < ts. Hence there are gains from trade if bidder s makes a resale
offer. In this case, bidder w makes a resale offer of p(φw(b∗), b∗) such that
φs(b∗) > p(φw(b∗), b∗) > (1− αR)φw(b∗).

Second, let us consider the two-sided-case. The equality is equivalent to
φs(b∗) = φw(b∗). Suppose bidder s with value ts wins the auction by bidding
b∗. Then ts = φs(b∗) and b∗ > φ−1

w (tw). This implies tw < φw ◦φ−1
s (ts) = ts.

Hence there are no gains from trade if bidder s makes a resale offer. Suppose
bidder w with value tw wins the auction by bidding b∗. Then tw = φw(b∗)
and b∗ > φ−1

s (ts). This implies ts < φs ◦ φ−1
w (tw) = tw. Hence there are

no gains from trade if bidder w makes a resale offer. In this case, without
loss of generality, we assume that whoever wins shall make a resale offer of
p(φw(b∗), b∗) = (1− α)φs(b∗) = (1− α)φw(b∗). �
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