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1 Introduction

Study of stochastic choice data is prevalent in analysis of economic decision-

making. The existing literature on this is rich and powerful (see Block and

Marschak, 1960; Luce and Suppes, 1965; Falmagne, 1978; Gul and Pesendorfer,

2006; Gul et al., 2014; Manzini and Mariotti, 2014; Aguiar et al., 2016). Sev-

eral models of decision-making have been proposed and analysed to explain the

variability in choice data. Additionally the literature of bounded rationality has

introduced effects of cognitive constraints such as limited attention (see Manzini

and Mariotti, 2014) or framing effects (see Rubinstein and Salant, 2012). Satisfic-

ing choice is one of the popular choice procedures (introduced by Simon (1955))

by which the decision-maker searches through available options until she finds a

“good enough” one where she stops and chooses that alternative.

Due to its simple but intuitive appeal, satisficing choice rule has been exten-

sively studied. However it has been observed that the model has less predictive

power as the identification of the underlying primitives is not easy (for a discussion

see Caplin et al. (2011)). In particular, it is impossible to identify if the under-

lying process is satisficing or utility maximization from a standard choice data.

Further, as Aguiar et al. (2016) points out, without any further restrictions any

stochastic choice data could be explained by a satisficing choice procedure. Thus

it is desirable to find a testable model that rationalizes the observed stochastic

choice by a satisficing process.
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In this paper we assume that the decision-maker has a given preference or-

dering and a satisficing level that is stochastic. It is possible to attribute such

stochasticity to variable aspiration levels as in the example of “satisficing with

perfect recall” illustrated in Rubinstein and Salant (2012). We assume that the

decision-maker encounters the alternatives in an order and this order could be

random. Examples of the situations where decision-makers face such ordered al-

ternatives or lists are aplenty. For instance the products on shopping portals or

in the supermarkets are organized in the form of lists. Further the menu cards in

the restaurants offer the items available in the form of lists. It is also usual that

such lists are variable or stochastic in nature. In any given list, the decision-maker

searches sequentially until an alternative is found which has utility above the sat-

isficing level. The decision-maker stops at that point and chooses that alternative.

If the entire list is searched and no satisficing alternative is found then the best

available option is chosen.

In line with the standard approach of revealed preference theory we assume

that the underlying preference and random satisficing level are unobservable. We

also assume that the realized list from which the choice is made is unobservable.

However the distribution of lists is known to the analyst. In our model the choice

is stochastic primarily because of two reasons: for a given list, the decision-maker

has random threshold alternative and further the list is stochastic. We focus

on two variants of random satisficing models which differ based on whether the

preference ordering in general depends on the menu (i.e. the set from which the

choice is made) or not. These models are called random satisficing model with

menu-dependent preferences (RSM-MP) and random satisficing model (RSM).

Our main aim in this paper is to understand if this simple setting allows us to

identify the underlying preference ordering from any choice data that is generated

by a random satisficing model. Our notion of identification is the following: If a

choice data has been generated by an RSM-MP or RSM model, if the underlying

preference is unique. We say that the model is generically identified if the under-

lying preference is unique for the choice data generated by almost1 any RSM-MP

or RSM model. Our main result in this paper is that we are able to generically

identify the model. We also provide comments on the general identification prob-

lem.

The closest to our paper is Aguiar et al. (2016), which identifies preference

1To be precise, we generically identify the model if we can show the uniqueness of the un-
derlying preference for any choice data generated by any preference ordering and almost any
random threshold function.

2



ordering only over the non-satisficing alternatives. Aguiar et al. (2016) however

does not assume that the distribution of the orders over the set of alternatives is

known to the analyst.

2 Definitions

2.1 Choice Data and the Satisficing Rule

Let X be a finite set of alternatives, with |X| ≥ 3. A menu is a nonempty subset

of X. Let X = 2X \ {∅} be the set of all menus. We consider a decision maker

(henceforth, DM) who chooses an alternative out of those in a given menu. We

assume that the DM has a strict, complete and transitive preference on X, denoted

by ≻, with its weak part ≿. Let P be the set of all such (strict) preferences on

X. For each menu A ∈ X , let ≻|A be the preference on A given by the restriction

of ≻ ∈ P . A (stochastic) choice function or a choice data p : X × X → [0, 1]

specifies a probability distribution over each menu A such that
∑

a∈A p(a,A) = 1

and p(b, A) = 0 for every b ∈ X \ A.
For a given menu A ∈ X , we assume that the DM encounters the alternatives

in A as a sequence or list. Let O be the set of linear orders in X. When linear

order O ∈ O represents the (deterministic) search order, “a O b” is interpreted

as alternative a appearing prior to b in the list of alternatives. We assume that

this order is fixed across all menus. When the DM follows the (deterministic)

satisficing rule in a menu A, she has a threshold t∗ ∈ X ∪ {∅} along with her

preference ≻ ∈ P in mind. This threshold specifies the satisficing set, the set of

alternatives weakly preferred to t∗, denoted by S(≻, t∗). When t∗ = ∅, we assume

that no alternative in X is satisficing under any preference. Thus, we have

S(≻, t∗) :=

{a ∈ X | a ≿ t∗} if t∗ ∈ X,

∅ if t∗ = ∅.
(1)

The satisficing rule chooses the first alternative among those in the satisficing set

according to the search order O in A. If she finds no alternative in A is in the

satisficing set, the satisficing rule chooses the most preferred alternative in A.2

For simplicity, let X̄ := X ∪ {∅}. Then, for each O ∈ O, each preference ≻ ∈ P
and each threshold t∗ ∈ X̄, the satisficing rule chooses the alternative from each

2Rubinstein and Salant (2012) call this rule the “perfect-recall satisficing.”
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menu A ∈ X given by

s(≻, t∗;O,A) :=

maxO
(
S(≻, t∗) ∩ A

)
if S(≻, t∗) ∩ A ̸= ∅,

max≻ A if S(≻, t∗) ∩ A = ∅.
(2)

2.2 Stochastic Search Order

In this paper, we consider a stochastic search order which remains the same

across menus (Aguiar et al., 2016). Let γ be a probability distribution on O.

For each A ∈ X , γ specifies the probability distribution over the search or-

ders in each menu A. For each a, b ∈ A, with a slight abuse of notations, let

γ(a, b) :=
∑

O∈{O′∈O |aO′b} γ(O) be the probability that a appears prior to b in the

menus containing both a and b. Note that this probability is independent of the

menus. We assume that the analyst is able to observe the stochastic search order,

but cannot observe the realized search order. Let Γ be the set of all stochastic

search orders. We say that γ ∈ Γ has a full support if for each a ∈ X, a is the first

alternative with a positive probability, i.e., there exists O ∈ O such that γ(O) > 0

and a O b for every b ∈ X \ {a}.3 Let Γfs ⊂ Γ be the set of all stochastic search

orders with a full support.

2.3 Random Satisficing Rule

We consider the random satisficing rule in which the DM has a random threshold

t : X̄ → [0, 1]. For each a ∈ X̄, t(a) is the probability that a is the threshold in

the satisficing behaviour. By definition,
∑

a∈X̄ t(a) = 1. Let T be the set of all

random thresholds. We assume that the stochastic search order and the random

threshold are distributed independently.

Given a stochastic search order γ ∈ Γ, for each preference ≻ ∈ P and each ran-

dom threshold t ∈ T , the random satisficing rule induces a stochastic choice func-

tion given by a convex combination of the deterministic satisficing rules weighted

by γ and t. For each menu A ∈ X and each a ∈ A, let σγ(a,A;≻, t) ∈ [0, 1] be the

probability that a is chosen by the random satisficing rule with random threshold

t in A under preference ≻, where
∑

a∈A σγ(a,A;≻, t) = 1 holds. Formally, we have

σγ(a,A;≻, t) :=
∑
O∈O

γ(O)
∑
t∗∈X̄

t(t∗)1{a = s(≻, t∗;O,A)}.

3We follow the definition by Aguiar et al. (2016). Note that if γ has a full support, there may
be O ∈ O such that γ(O) = 0.
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We consider two models of random satisficing behaviour. In the second model,

the DM’s preference and the random threshold are fixed throughout all menus.

Definition 2.1 (RSM). A choice data p(a,A) has a random satisficing model

(RSM ) representation with stochastic search order γ ∈ Γ if there exist a preference

≻ ∈ P and a random threshold t ∈ T such that p(a,A) = σγ(a,A;≻, t) for every

menu A ∈ X and every alternative a ∈ A.

The second model is much more permissive, and allows the DM’s preference

and the random threshold to change depending on the menus she faces.

Definition 2.2 (RSM-MP). A choice data p(a,A) has a random satisficing model

with menu-dependent preferences (RSM-MP) representation with stochastic search

order γ ∈ Γ if for each menu A ∈ X , there exist a preference ≻ ∈ P and a random

threshold t ∈ T such that p(a,A) = σγ(a,A;≻, t) for every alternative a ∈ A.

2.4 Rationalisation and Identification

Suppose that the stochastic search order γ ∈ Γ is fixed. For each stochastic choice

function p(a,A) and each menu A ∈ X , we say that the DM’s preference ≻ ∈ P
rationalises p in menu A if there exists a random threshold t ∈ T such that the

random satisficing rule induces p when the menu is A, i.e. σγ(a,A;≻, t) = p(a,A)

for every a ∈ A. Let TA(p,≻) := {t ∈ T | σγ(a,A;≻, t) = p(a,A), ∀a ∈ A} be

the set of random thresholds which induce choice data p under preference ≻. By

definition, p is rationalised by ≻ in menu A if and only if TA(p,≻) is nonempty.

The DM’s preference ≻ ∈ P RSM-rationalises p if there exists a random threshold

t ∈ T fixed across all menus such that the random satisficing rule induces p, i.e.∩
A∈X TA(p,≻) ̸= ∅. For each stochastic choice function p(a,A) and each menu

A ∈ X , we say that the DM’s preference ≻ ∈ P uniquely rationalises p in menu

A if another preference ≻′ ∈ P rationalises p(a,A) in A, then ≻|A = ≻′|A. The

DM’s preference ≻ ∈ P uniquely RSM-rationalises p if no other preference RSM-

rationalises p.

The idea of identification of the models is that any choice data induced by

the random satisficing rule is uniquely rasionalised. If this property holds for

choice data induced from almost all random thresholds, we say that the model is

“generically” identified.

Definition 2.3 (Identification). Let γ ∈ Γ be a given stochastic search order.
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1. The RSM-MP is identified if for each menu A ∈ X , each preference ≻ ∈ P
and every random threshold t ∈ T , the preference ≻ uniquely rationalises

the choice data σγ(a,A;≻, t) induced in A by the random satisficing rule

under ≻.

2. The RSM is identified if for each preference ≻ ∈ P and every random

threshold t ∈ T , the preference ≻ uniquely RSM-rationalises the choice

data σγ(a,A;≻, t).

3. The RSM-MP is generically identified if for each menu A ∈ X , each prefer-

ence ≻ ∈ P and almost every random threshold t ∈ T (in the sense that the

following property holds except on a subset with Lebesgue measure zero in

T ), the preference ≻ uniquely rationlises the choice data σγ(a,A;≻, t) in A.

4. The RSM is generically identified if for each preference ≻ ∈ P and almost

every random threshold t ∈ T , the preference ≻ uniquely RSM-rationalises

the choice data σγ(a,A;≻, t).

Since RSM-MP is more permissive than RSM, if RSM-MP is (generically)

identified, then RSM is also (generically, resp.) identified.

3 Preliminary

3.1 Equivalent Thresholds

The random satisficing rules with distinct preferences or distinct thresholds can

induce the same choice data. In this subsection, we characterise such cases.

There are two cases in which the (non-random) satisficing rules induce the

same choice data. First, by the definition (2), the outcome given by the satisficing

rule depends on the satisficing set (1), rather than the threshold, as well as the

preference, and if the satisficing set has a nonempty intersection with the menu,

the outcome depends only on the satisficing set. For example, if the threshold t∗

is the worst alternative according to a preference ≻, the satisficing set is X, and

the satisficing rule picks up the first alternative in the list. This behaviour does

not depend on the DM’s preference itself, but on the fact the satisficing set is the

entire set of alternatives. Second, the most-preferred alternative, say, a∗ in menu

A is chosen both when the threshold is a∗ with the satisficing set being {a∗}, and
when the satisficing set is empty.

For each menu A ∈ X , each preference ≻ ∈ P and each threshold t∗ ∈ X̄, let
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a revised threshold be

τ(t∗;≻, A) :=


t∗ if t∗ ∈ A,

min≻{a ∈ A | a ≻ t∗} if t∗ ∈ X \ A and {a ∈ A | a ≻ t∗} ̸= ∅,

max≻ A if t∗ = ∅ or {a ∈ A | a ≻ t∗} = ∅.

As an abuse of the notation, for a random threshold t ∈ T , let τ(t;≻, A) the

random threshold defined accordingly. Note that, for each t ∈ T , each ≻ ∈ P and

each A ∈ X , the support of τ(t;≻, A) is a subset of A. Then, the observations in

the last paragraph shows that the random satisficing rule induces the same choice

date with random thresholds t and τ(t;≻, A).

Lemma 3.1. For each stochastic search order γ ∈ Γ, each preference ≻ ∈ P, each

menu A ∈ X , and each random threshold t, t′ ∈ T , if τ(t;≻, A) = τ(t′;≻, A), then

σγ(a,A;≻, t) = σγ(a,A;≻, t′) for each a ∈ A.

When the stochastic search order γ has a full support, it is straightforward to

see that the converse is also true.

Lemma 3.2. For each stochastic search order γ ∈ Γfs, each preference ≻ ∈ P,

each menu A ∈ X , and each random threshold t, t′ ∈ T , if σγ(a,A;≻, t) =

σγ(a,A;≻, t′) for each a ∈ A, then τ(t;≻, A) = τ(t′;≻, A).

Given these results, we say that two random thresholds t, t′ ∈ T are equivalent

under preference ≻ ∈ P in menu A if τ(t;≻, A) = τ(t′;≻, A).

3.2 Virtual Satisficing Set

We observe that the outcome induced by the satisficing rule depends on the sat-

isficing set with an exception that the empty satisficing set and the singleton

satisficing set lead to the same alternative. Under any stochastic search order, the

analyst can never distinguish the DM with no satisfactory alternative from the

one with a single satisfactory alternative which is the most preferred in the menu.

For each menu A ∈ X , each preference ≻ and each threshold t∗ ∈ X̄, we say

that a nonempty subset S̃A(≻, t∗) of A is the virtual satisficing set in A if

S̃A(≻, t∗) =

S(≻, t∗) ∩ A if S(≻, t∗) ∩ A ̸= ∅,

{max≻ A} if S(≻, t∗) ∩ A = ∅.
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When the satisficing set S(≻, t∗), defined in (1), has a nonempty intersection with

A, the virtual satisficing set is the same as the satisficing set in A. When there

is no intersection, we let the virtual satisficing set be the singleton for the sake

of convenience. Since this replacement does not affect the observed satisficing

behaviour, the virtual satisficing set simplifies and helps our analysis.

As an abuse of the notation, for each random threshold t ∈ T , S̃A(≻, t) be the

probability distribution of the virtual satisficing sets. By Lemmas 3.1 and 3.2, we

have the following observations.

Lemma 3.3. For each stochastic search order γ ∈ Γ, each preference ≻ ∈ P, each

menu A ∈ X , and each random threshold t, t′ ∈ T , if S̃A(≻, t) = S̃A(≻, t′), then

σγ(a,A;≻, t) = σγ(a,A;≻, t′) for each a ∈ A.

Lemma 3.4. For each stochastic search order γ ∈ Γfs, each preference ≻ ∈ P,

each menu A ∈ X , and each random threshold t, t′ ∈ T , if σγ(a,A;≻, t) =

σγ(a,A;≻, t′) for each a ∈ A, then S̃A(≻, t) = S̃A(≻, t′).

4 Identification in Random Satisficing Rule

4.1 Stochastic Search Order with a Full Support

In this section, we assume that the given stochastic search order has a full support:

γ ∈ Γfs.

Proposition 4.1. For each γ ∈ Γfs, RSM-MP is generically identified.

Proof of Proposition 4.1. Fix any menu A ∈ X . Since γ ∈ Γfs, it is clear that for

each t∗ ∈ X and each a ∈ X, σγ(a,A;≻, t∗) > 0 if and only if a ≿ t∗. This implies

that the |X| stochastic choice functions in {σγ(·, A;≻, t∗) | t∗ ∈ X} constitute

vertices of a nondegenerate (|X|−1)-dimensional simplex. For each preference ≻ ∈
P and each menu A ∈ X , let P̄ γ(≻;A) := {σγ(·, A;≻, t) | t ∈ T } be this simplex,

i.e., the convex hull of |X| stochastic choice functions in {σγ(·, A;≻, t∗) | t∗ ∈ X}.
By Lemma 3.1, P̄ γ(≻;A) is the set of choice data induced by the random satisficing

model with some random thresholds under ≻. Consider two distinct preferences

≻,≻′ ∈ P such that ≻ ̸= ≻′. Then there exists t∗ ∈ X such that neither {a ∈
A | a ≿ t∗} ⊆ {a ∈ A | a ≿′ t∗} nor {a ∈ A | a ≿ t∗} ⊇ {a ∈ A | a ≿′ t∗}. For

such t∗, by Lemma 3.2, σγ(·, A;≻, t∗) ̸∈ P̄ γ(≻′;A) and σγ(·, A;≻′, t∗) ̸∈ P̄ γ(≻;A).

Therefore, two distinct simplices P̄ γ(≻;A) and P̄ γ(≻′;A) do not share at least

a vertex, and P̄ γ(≻′;A) has no intersection with the interior of P̄ γ(≻;A). Since
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this holds for each pair of distinct preferences ≻,≻′ ∈ P , if p is in the interior of

P̄ γ(≻;A), ≻ uniquely rationalises p in A. Since the interior of P̄ γ(≻;A) is induced

by all random thresholds t ∈ T such that t(t∗) > 0 for every t∗ ∈ X̄, RSM-MP is

generically identified.

Proposition 4.1 states identification in a generic sense. It is, however, of interest

what happens in “non-generic” cases. The observations in Section 3 show that the

satisficing behaviour just depends on the virtual satisficing set, and thus if there

are multiple preference-thresholds pairs that generate the same virtual satisficing

set, the model cannot be identified. By Lemma 3.4, this natural limitation is the

only reason for non-identification under the stochastic search order with a full

support. This is formally stated as follows.

Proposition 4.2. For each γ ∈ Γfs, each menu A ∈ X and each preference

≻,≻′ ∈ P, if both ≻ and ≻′ rationalise the same choice data p in A, then for each

random threshold t ∈ TA(p,≻), there exists t′ ∈ TA(p,≻′) such that τ(t;≻, A) =

τ(t;≻′, A) and S̃A(t;≻, A) = S̃A(t′;≻′, A).
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