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Abstract

New technology adoption is driven by a troika – demand-pull, technology-push, and
institutions shaped by market and non-market forces. In technologically laggard
countries, often this process is slowed due to frictions arising from the fact that the
new technology has to replace an established older technology. In this paper, we
exploit the COVID-19 pandemic shock to examine how intra-organization technology
replacements occurred due to concurrent shifts in the demand and the supply side.
Specifically, we focus on the adoption of a high-end medical technology, Optical Coher-
ence Tomography Angiography (OCTA), by ophthalmologists to diagnose prevalent
eye diseases – replacing less costly and older technology OCT. We use novel Electronic
Medical Records (EMR) data from one of the largest eye-care hospital chains in India
that treats both non-paying and paying patients with a not-for-profit orientation. In a
difference-in-differences setup, we consider non-paying patients as the treatment group
and paying patients as the control group. We find that visual acuity among the pool
of non-paying patients worsened during lockdown. Demand-pull generated through
increased impairment propelled OCTA adoption by 21.6% points, predominantly facil-
itated through technology-push by young physicians. Higher adoption of OCTA, in
turn, contributed to improving the eyesight of the non-paying patients. Our results
go through various robustness checks and we conclude discussing the managerial and
policy implications of our findings.
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1 Introduction

How does the scissor of demand and supply affect the timing of technology adoption? As
Rosenberg (1972) famously noted – technology adoption can often be very slow and the rates
of acceptance vary widely. There are proximate reasons for this. Demand for technology may
be low due to lack of usage or a lack in perceived value of the technology, although the supply
can be there. Supply of technology may be low due to the time required to develop or borrow
the technology, while the demand can be there. Alternatively, the institutional ecosystem
may influence both demand and supply due to market and non-market factors. There is no
single answer to this question. Actors on both sides of the market may potentially play a
role. Prior evidence here provides a broad spectrum of possible mechanisms. One set of
extant research argues that the presence of economic incentives and profitability determines
the pace of technology adoption (Griliches, 1957). Another stream of work posits that the
extent of replacement of any technology depends on the characteristics of decision-makers,
their networks, and the interactions within this network (Rogers et al., 2014; Skinner &
Staiger, 2009). An answer to the above question will also shed light on an associated puzzle
– how managers and social planners can ensure that a given technology gets rapidly adopted.

Technology adoption is even more complex in a context like healthcare which is riddled
with high degree of uncertainty and information asymmetry (Arrow, 1978). In addition,
welfare consequences of technology adoption is often unclear given variation in organizational
ownership and competition dynamics (Gaynor & Vogt, 2003). Further, there are variations
in the mechanisms involved through which technology enhances welfare, be that, more
generally, in adoption of productivity-increasing technology in factories (Atkin et al., 2017;
Juhász et al., 2020; Macher et al., 2021) or hybrid seeds (Griliches, 1957; Munshi, 2004;
Suri, 2011) or use of fertilizer in farm (Duflo et al., 2008; Conley & Udry, 2010). Similar
phenomenon is seen in healthcare for example in adoption of telemedicine (Delana et al.,
2022), bed nets (Dupas, 2014), contraceptives (Munshi & Myaux, 2006), curative pills
(Miguel & Kremer, 2004) or menstrual aids (Oster & Thornton, 2009). Overall, there
is a large set of factors at play both on the demand and supply sides simultaneously in
technology adoption.

In this paper, we study how an expensive medical technology goes through enhanced
adoption by replacing existing older technology, in a setting with a not-for-profit orientation.
Our context should be of interest given recent work in health economics more broadly given
the welfare considerations of different business models of hospital systems predominantly
from US settings (Gaynor & Vogt, 2000; Gaynor & Town, 2011; Gaynor et al., 2015; Chandra
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et al., 2016). From a cost-benefit point of view, it may appear surprising that an expensive
technology replaces its less expensive version, seemingly without a profit motive – a theme
that goes against the basic economic principle of profit incentivizing technology adoption
(Acemoglu, 2002; Griliches, 1957). We demonstrate in our context that this may have
happened due to supply-side push factors where younger physicians who are well versed
in the new technology facilitate the replacement of the older technology preferred a priori
potentially by elder physicians.

Our empirical setting leverages unique data from India where we use novel EMR data
from one of the largest eyecare institutes based in Hyderabad - LV Prasad Eye Institute
(LVPEI). LVPEI, a World Health Organization (WHO) approved collaborating center follows
a cross-subsidization model with a not-for-profit orientation. It provides care at no cost to
the economically underprivileged (henceforth named as non-paying patients) but charges
from patients who can pay, adopting a cross-subsidization mechanism of later subsidizing the
care of the former. The EMR data comprise patient visit-level eye diagnostics information
of patients along with their demographic details. We can match physicians to every visit
of a patient to the hospital. The diagnostics data provides us with the nature of patients’
visual impairment and specific medical technology used for the patient. Demographic data
of patients helps us analyze the demand-side heterogeneity and physician’s data on age and
qualification helps us develop the relevant mechanisms driving technology adoption through
the supply side.

The specific technological replacement we are examining is Optical Coherence Tomog-
raphy Angiography (OCTA) vis-a-vis Optical Coherence Tomography (OCT) and other
scanning methods which do not use angiography. OCTA is a newer technology that produces
substantially more elaborate results and information about retina than OCT owing to the
implementation of angiography. LVPEI physicians had access to both types of the machines.
The sample period for our data is from October 2019 to December 2020 (see figure 1),
which includes a period of COVID-19 induced lockdown in India from April 2020 that
offers an exogenous shock in the form of movement restrictions – especially for non-paying
poorer patients who often have to travel far from villages to the city to access the hospitals
– for our identification strategy.1 We consider the category of non-paying patients as our
treatment group and categories of paying patients as our control group (payments may
differ based on the willingness of patients; we will explain this in more details in section
2.1). The reason for choosing non-paying category as the treated group is as follows. The

1We exploit additional data from the period of October 2017 to December 2018 for additional robustness
checks.
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pandemic caused disproportionate impact on the vulnerable population (Ceballos et al.,
2020; Miguel & Mobarak, 2021; Rönkkö et al., 2022). Since non-paying patients who were
typically low-income households who could not afford to visit the physicians as per their
needs, suffered comparatively more than the paying patients leading to comparatively worse
visual acuity. This relative worsening necessitates more elaborate treatment which in turn
generates a demand-pull. We posit that this mechanism provides an opportunity to replace
older technology. Using a difference-in-differences design, we have subsequently four sets of
findings.

First, we find that when non-paying patients visited the hospital after the strict lockdown
in India, they had significantly higher baseline visual impairment (or equivalently, reduced
visual acuity) than the paying cohort, on average. The reason for this increase in visual
impairment could be financial and also restrictions in movements during COVID-19 lockdown
combined with procrastinating behavior of non-paying patients considering eye-care as non-
emergency care.

Second, this increase in visual impairment triggered a demand-side pull at the hospital,
resulting in increased adoption of advanced technology (OCTA) for non-paying patients
(OCTA machines are technologically more sophisticated than other prevailing options like
OCT among others; we provide more details in section 2.2). Compared to a similar but less
advanced existing technology (OCT), we find a 21.6% points increase in adoption of OCTA
for non-paying patients post-pandemic.

Third, we investigate mechanisms that facilitate this technology adoption. We find that
the risk of contracting COVID-19 and subsequent complexities arriving out of it for older
people ensured that young physicians (or ophthalmologists with age less than 50) were
more available in the hospitals. Additionally, from empirical and anecdotal evidence, we
find that the adoption of OCTA decreased with the increase in physicians’ age. Combining
these two, we infer that the increased presence of young physicians post-lockdown and
higher adoption of advanced technology by younger physicians were likely channels that
enabled a technology-push in our empirical context. This is in line with the sparse literature
on demand management in healthcare that suggests how hospitals leverage their scarce
resources for optimal use in response to variations in patient demand (Jack & Powers, 2004,
2009; Bjarnadottir et al., 2018).

Fourth, the adoption of OCTA turns out ultimately to be beneficial for non-paying
patients. In triple difference estimates, we find that post-pandemic eyesight of non-paying
patients significantly improves from the first visit to last visit after using OCTA, pointing
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to potential welfare gains from technology adoption in our setup. Thus, we infer that
organizations can direct technology adoption to match the increased demand, even in
settings with a social (rather than a for-profit) motive and can generate welfare.

We conduct multiple robustness and placebo tests to ensure the validity of our results.
First, after matching the treatment and control group based on covariates using coarsened
exact matching, we find that all our estimates improve in magnitude and significance.
Second, our findings are robust to an alternate control group comprising general paying
patients (rather than all paying patients taken together as control) who are much closer in
demographics to non-paying patients in our treatment group. Third, we tested also for a
placebo treatment before the actual treatment by keeping the month-on-month variation
the same but changing the year of treatment to two years before COVID-19. We find that
all estimates come out to be insignificant in this placebo test and overall add strength to
our identification strategy.

Our study contributes to the literature in primarily three ways. First, we draw attention
to the literature on technological change as we explore that the direction of technology
adoption in our case is not being driven by necessarily profit incentives. This is not obvious as
there is enough evidence on the other extreme showing hospitals using different mechanisms
to generate more and more profit (Oh et al., 2018; Adelino et al., 2021; Freeman et al., 2017;
Kuntz et al., 2015). Second, our findings extend prior work on determinants of technology
adoption in healthcare (Denis et al., 2002; Oh et al., 2005; Bonair & Persson, 1996; Roback
et al., 2007) by showing how the ecosystem of LVPEI and heterogeneous actors (physicians
in our case) played an influencing role in the adoption of expensive technology for the needy.
Third, we also advance the technology-push and demand-pull literature and further prior
work herein (Arthur, 2007; Di Stefano et al., 2012; Nemet, 2009) by showing that both
technology-push and demand-pull play equally important roles as they interact to further
innovation, especially in developing economy contexts like India.

Our work also relates to health technology diffusion broadly and particularly during
pandemics as has been investigated in some recent work (Lin, 2019; Doyle et al., 2019; Dosi
& Soete, 2022; Adbi et al., 2022) though work is sparse here from a developing world setting
(Adhvaryu, 2014).

The rest of the paper is structured as follows. Section 2 discusses the institutional and
healthcare technology context of our study. In section 3, we report the related literature
and build our hypotheses. Section 4 outlines the data and methodology. In section 5, we
present the research findings and mechanisms involved, followed by robustness checks in
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section 6. Finally, in section 7, we conclude and discuss managerial and policy implications
of our study.

2 Context

2.1 Institutional Context – LVPEI a Not-For-Profit Eye Hospital

System

LVPEI, a WHO collaborating institute since 2002, follows a three-tier eye care model that
includes 176 primary vision centers that provide primary care in the districts and villages of
four states in India - Telangana, Andhra Pradesh, Odisha, and Karnataka. These primary
centers are linked to 18 secondary eye care centers, which are linked to LVPEI tertiary
centers in cities - Hyderabad, Vijayawada, Visakhapatnam, and Bhubaneswar (Das et al.,
2020). LVPEI uses an economic cross-subsidy platform, wherein paying patients have a
graded fee structure for the same clinical care and can avail of additional non-clinical services
for a higher fee.

Underprivileged people who hold the below poverty line card issued by the government
of India do not have to pay anything for the check-up and are classified as non-paying
patients. Within paying category, there are three kinds of classification. The first category
is named general paying; patients in this category pay the bare minimum fees of INR
350 (≈ USD 4.43).2 The second category is named supporter; these patients are provided
dedicated outpatient check-in and registration area, special waiting lounges on each floor,
and special care for in-patients at a fee of INR 650 (≈ USD 8.23). The third category is
of Sight-Savers; patients in this category get an air-conditioned aesthetic waiting hall, a
dedicated appointment system, and lesser wait times for appointments at a fee of INR 2100
(≈ USD 26.60).

2.2 Healthcare Technology Context – OCTA

Optical Coherence Tomography (OCT) (Huang et al., 1991) has been considered a major
technological development in the diagnosis, treatment, and follow-up of retinal diseases
(Cuenca et al., 2020) in the ophthalmologic context. Owing to its high resolution and quick
pace at which it informs about the retinal state, OCT provides appropriate information
about retinal degeneration. Research and improvement based on OCT techniques allowed

21 USD = INR 78.95 as accessed on 3rd August 2022.
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the development of OCT Angiography (OCTA) (Makita et al., 2006) to visualize retinal
blood vessels in patients. Building on OCT principles, OCTA provides depth-resolved
images of blood flow in the retina and choroid in much larger detail as compared to the
older forms of imaging (Spaide et al., 2018). OCTA was introduced commercially in 2015.3

In comparison to other existing technologies like Fluorescein Angiography (FA) or
Indocyanine Green Angiography (ICGA), OCTA is fast, non-invasive, and allows improved
and accurate visualization of microvascular changes (De Carlo et al., 2015). These OCTA
features and others have been shown to predict disease progression (de Oliveira Dias et al.,
2018; Heiferman & Fawzi, 2019; Sun et al., 2019). The predictive capacity of OCTA, as
well as its ability to detect subclinical pathologic changes in a non-invasive way (Bailey
et al., 2019; Heiferman & Fawzi, 2019), makes it ideally suited for monitoring and diagnostic
imaging (Hormel et al., 2021). OCTA efficiently evaluates common ophthalmologic diseases
such as diabetic retinopathy, artery and vein occlusions, age-related macular degeneration
(AMD), and glaucoma (De Carlo et al., 2015).

Since OCTA technology is concerned with detecting the state of the retina, we concentrate
our study on the two most common retinal disorders, Diabetic Macular Edema (DME)
and Branch Retinal Vein Occlusion (BRVO) (Jaulim et al., 2013). DME is amongst the
prominent causes of visual impairment in patients suffering from diabetes mellitus. DME
occurs mainly because of disruption of the blood-retinal barrier, which leads to increased
accumulation of liquid within the intraretinal layers of the macula (Bhagat et al., 2009).
BRVO is essentially blockage of at least one branch of the central retinal vein, which runs
through the optic nerve.4 BRVO is the most common among the three types of retinal vein
occlusions (Jaulim et al., 2013) and is more common in patients with diabetes, high blood
pressure, and atherosclerosis.

Apart from being the most common retinal disorders, these are the two most prevalent
diseases for which OCTA/OCT technology is used in LVPEI. It is useful here to also
remember that India is well acknowledged as the diabetes capital of the world. Thus, there
is a broader health policy implication of our study, given that retina disorders resulting from
diabetes and allocative conversations about health technology are at the center of universal
health coverage debates given the rising burden of diabetic retinopathy in India (Burton
et al., 2021). Optimal delivery models explored here globally apply in terms of health
system lessons not just in India but many other related economies like Brazil, Indonesia,

3https://www.laserfocusworld.com/biooptics/bioimaging/optical-coherence-
tomography/article/14191316/zeiss-receives-fda-approval-for-oct-angiography-technology

4https://www.willseye.org/branch-retinal-vein-occlusion-brvo
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Bangladesh or South Africa.

3 Theoretical Background and Hypotheses

In this section, we integrate relevant insights from previous research to develop our hypotheses
regarding how technology got adopted and replaced older technology for non-paying patients,
eventually improving their health outcomes.

The Government of India imposed one of the strictest lockdown globally to prevent the
spread of COVID-19 starting 24th March 2020.5 COVID-19-induced lockdown impacted
the demographic and clinical presentation of patients with ocular disorders in India (Das &
Narayanan, 2020). There is recent literature on how COVID-19 caused disproportionate
impact on the vulnerable population in developing countries (Miguel & Mobarak, 2021;
Rönkkö et al., 2022; Ceballos et al., 2020; Kansiime et al., 2021). In terms of impact
on eye care, it has been studied that restricted movement during lockdown meant many
could not go out for eye check-ups. People with irregular incomes (non-paying patients in
our case) were busy fulfilling basic necessities potentially keeping eye-care on low priority.
This delay or suspension in eye-care caused significant and rapid vision impairment to
irreversible blindness to many (Toro et al., 2021) and particularly to those belonging to the
less privileged and poor.This leads to our first hypothesis:

Hypothesis 1 Visual acuity of non-paying patients, worsened compared to paying patients
when measured on their first visit to the hospital post COVID-19 lockdown announcement.

Does this sudden change in visual impairment cause a demand-pull inducing technological
replacement at LVPEI? Many believe that beneficial innovation will sell itself, and obvious
benefits of the creative idea will be realized by the users and cause innovation to diffuse
quickly. However, that’s not always the case. Most innovation, in fact diffuse at an
unimaginably slow rate (Rogers et al., 2014). Comin & Hobijn (2010) reveal that, on
average, countries took 45 years to adopt technology after their invention and recent work
here also shows the role of overconfidence and perception biases causing frictions (Comin
et al., 2022).

This slow adoption is puzzling because new technology can significantly boost the
productivity of a firm (Juhász et al., 2020; Giorcelli, 2019; Bloom et al., 2013; Syverson,
2011). As per Atkin et al. (2017), an important reason for the lack of adoption is a

5https://covidtracker.bsg.ox.ac.uk/stringency-scatter

8



misalignment of incentives within firms, given the important role of complementary assets
and influencers (Adhvaryu, 2014; Teece, 1986). There are two forces affecting equilibrium
levels of technology diffusion: the price effect and the market size effect. Acemoglu (2002)
argues that the price effect encourages innovations directed at factors that are in short
supply; on the contrary, the market size effect leads to technical change preferring factors
rich in supply (Acemoglu & Linn, 2004).

More generally, there is an active literature on technology adoption in agriculture, where
technology use measures are more readily available (Foster & Rosenzweig, 2010; Munshi,
2004; Bandiera & Rasul, 2006; Conley & Udry, 2010; Duflo et al., 2008; Suri, 2011; Beaman
et al., 2014; Emerick et al., 2016). On the contrary, adopting health technology is a complex
process (Silva & Viana, 2011). For example, it is difficult to originate an economic model
explaining decades of lag in the usage of X-rays for fractures in the early twentieth century
(Howell & Harden, 1995) or why it took more than a century for the British Navy to mandate
the use of lemons in the sailors’ diets when they were aware that limes prevented scurvy
(Berwick, 2003).

Three sets of determinants play a crucial role in technology adoption in health care -
characteristics of the technology, actors in the process, and structure of the environment.
(Davis, 1989; Cutler & McClellan, 1996; Denis et al., 2002; Rogers, 2002; Oh et al., 2005;
Bonair & Persson, 1996; Roback et al., 2007). In healthcare technology, adoption lies as
a trade-off between exploitation and experimentation which depends on the physicians’
diagnostic skill (Currie & MacLeod, 2020). Physicians who reported high social participation
in the medical community adopted earlier (Skinner & Staiger, 2009; Coleman et al., 1957).

Most research on innovations in health care is focused on individual physicians; less is
known about the determinants of innovations in larger health care organizations (Fleuren
et al., 2004; Gaynor & Vogt, 2000). Few prominent studies that focus on hospitals and
technology adoption are, e.g., by Skinner & Staiger (2015) who find that hospitals rapidly
adopting cost-effective innovations had substantially better outcomes for their patients. Lin
et al. (2021) & Gaynor & Town (2011) examined the relationship between hospital market
competition and the diffusion of health technologies, relatedly some also explore the role of
organizational ownership herein (Gaynor & Vogt, 2003).

Building upon this existing literature, our work specifically highlights how advanced
technology in a large-scale not-for-profit oriented eye hospital replaces the older technology
due to a demand shock. Therefore, we propose the following hypothesis:

Hypothesis 2 Adoption of advanced technology (OCTA) increased for the non-paying
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patients compared to paying patients post COVID-19 lockdown announcement – mainly to
attend to the former group’s worse-off visual impairment.

Sometimes diffusion does not occur either because health professionals do not adopt the
innovation or because of insufficiency in financial resources made available to implement
the innovation (Fleuren et al., 2004). A debate emerged in the 1960s and 1970s about
whether the rate and direction of technological change have been more heavily influenced
by changes in market demand (demand-pull) or by advances in science and technology
(technology-push) (Nemet, 2009).

Proponents of technology-push point to the role that science and technology play in
developing technological innovations and adapting to the changing attributes of the industry
structure (Di Stefano et al., 2012; Dosi, 1982; Bush et al., 1945). Demand-pull, on the
contrary, points to changes in market conditions that create opportunities for firms to
invest in innovation to satisfy unmet needs (Nemet, 2009; Griliches, 1957; Schmookler, 1962,
2013; Von Hippel, 1976; Opar, 2008). The debate eventually reached a sort of stalemate in
the eighties (Di Stefano et al., 2012). Mowery & Rosenberg (1979) in their critique came
forth to state that both demand and supply-side influences are crucial to understanding
the innovation process. A clearer balance between demand-pull and technology-push has
seemingly now been reached from both an empirical as well as a more micro standpoint
(Di Stefano et al., 2012; Pavitt, 1984). Arthur (2007) went further to state that it is not
only a fact that both factors contribute, but they also interact.

We wish to empirically test the setting to understand the joint effect of demand-pull
and technology-push. In Hypothesis 1 & 2, we have already conjectured how the increase in
visual impairment for non-paying patients may have created a demand-pull for technology
adoption and replacement. To understand the mechanism of technology-push that followed
we examine the pivotal role of younger physicians during the pandemic-induced lockdown in
India to facilitate technology replacement; we document the role of complementary agents
reminiscent of prior work in innovation (Teece, 1986). This leads to our third hypothesis:

Hypothesis 3 The higher presence of young physicians during the COVID-19 lockdown in
hospital sites led to higher degree of utilization of OCTA.

After establishing the role of technology-push and demand-pull in adopting technology,
a final question remains unanswered. Was the adoption and replacement of older technology
with newer one (OCTA) welfare enhancing?
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There is a wide literature that evaluates benefits to users from new technology and
the studies cover a wide range of product markets including automobiles (Petrin, 2002;
Fershtman & Gandal, 1998), cellular phones (Hausman, 1999), computers (Bresnahan,
1986), cement (Macher et al., 2021), hybrid seeds (Griliches, 1957; Munshi, 2004; Suri,
2011), telecommunications services (Hausman et al., 1997) and fertilizers (Duflo et al., 2008;
Conley & Udry, 2010).

In healthcare, the classic work in the adoption of medical technology is by Trajtenberg
(1989) who estimated social gains from the adoption of CT scanners. More recent work also
finds how technology attenuates racial biases in healthcare delivery (Ganju et al., 2020).
There are also extant studies showing how technology adoption in healthcare was beneficial
for e.g. adoption of telemedicine (Delana et al., 2022), menstrual aids (Oster & Thornton,
2009), bed nets (Dupas, 2014), curative pills (Miguel & Kremer, 2004) or contraceptives
(Munshi & Myaux, 2006).

We contribute to the existing literature by understanding how in our non-profit organi-
zation, adopting new technology to replace the older one benefited non-paying patients who
otherwise may not have been able to afford its cost. This leads to our last hypothesis:

Hypothesis 4 Adopting OCTA over existing technologies (OCT and others) post COVID-
19 lockdown announcement resulted in higher visual acuity for non-paying patients in
comparison to the paying patients.

A broad pictorial representation of our study building on the above hypotheses is shown
in figure 2. This figure summarizes all hypotheses (H1 to H4) along with the flow of research.
In the next sections, we will evaluate these hypotheses empirically.

4 Data & Empirical Strategy

4.1 Data and Variables

Our patient data was retrieved using the information captured through the EMR system
eyeSmart across the three-tier eye care network of LVPEI. The study was approved by
LVPEI’s IRB with the reference number LEC-BHR-R-09-20-507. A standardized consent
form was filled out by the patient or their parents/guardians at the time of registration for
electronic data privacy.

We specifically focus on the retina department of LVPEI, where OCTA technology is
conspicuously used. Our focus is on two major diseases, Diabetic Macular Edema (DME)
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and Branch Retinal Vein Occlusion (BRVO), for which OCTA is prominently used.
Our baseline sample from EMR6 comprises 2316 visits of 1076 patients attended by 47

physicians pre and post COVID-19 lockdown announcement in India. As shown in figure 1,
we use data from October 2019 to December 2020, with April 2020 as the cutoff month just
when the COVID-19-induced lockdown started in India.7 We have visit level data on patient
category, age, gender, home location, technology used during the visit, attending physician’s
name, and patient visual impairment in his/her first and last visits. Physician-specific data
obtained from LVPEI comprises physicians’ age and qualifications. Using the attending
physician’s name available in visit level data we merged information on physician’s age and
qualification.

To analyze the factors responsible for technology adoption, we generate three response
variables. First, demand-side changes are captured through a response variable generated
using the visual impairment of the patient diagnosed in the first visit. We convert the Best
Corrected Visual Acuity (BCVA) noted by physicians into a standardized LogMAR scale
for our analysis.8 Second, to identify the adoption of technology, we generate an indicator
variable to capture if OCTA was used in a visit compared to older available technology.
Third, to measure the health outcome we obtain the difference in visual impairment in the
first and last visit using LogMAR scale. Finally, we also generate another indicator variable
to identify non-paying category of patients. Descriptions of all variables are provided in
table 1. Summary statistics of the variables are presented in table 2.

As we follow a difference-in-differences approach, we show separate mean values for the
treatment and control group pre- and post-the-shock. We can see in table 2 that for non-
paying patients (Treated Group), there is an increase in visual impairment post-pandemic
(1.044 to 1.159); on the contrary, there is a decrease in visual impairment for paying patients
(0.842 to 0.757). This indicates that the eyesight of the non-paying category was more
affected due to lockdown as compared to the paying cohort. A similar pattern is visible
in the mean values of OCTA usage, where it increases for non-paying patients (0.065 to
0.087) and decreases for paying patients (0.107 to 0.073). This shows higher likelihood of
adoption of OCTA for non-paying people post-pandemic. We also see a decrease in change

6The use of EMRs in health economics has been pointed out by a large body of extant literature –
Rodriguez Llorian & Mason (2021); Dranove et al. (2015); Lin (2019); Susan & Stern (2002); Miller & Tucker
(2011); Lee et al. (2013); Hydari et al. (2019); Angst et al. (2010); Ransbotham et al. (2021); Bhargava &
Mishra (2014); Miller & Tucker (2009); Atasoy et al. (2021).

7We also do a placebo test for the period October 2017 to December 2018.
8The logMar scale was developed by National Vision Research Institute of Australia in 1976 and it is ac-

cepted worldwide among the opthalmologic community. See https://www.nidek-intl.com/visual_acuity.html
for a mapping between visual acuity measured by distance and the logMAR scale.
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in visual impairment for non-paying patients post-pandemic (-0.124 to -0.265) indicating
improvement in vision.9

Overall, a comparison of the mean values shown in summary statistics aligns with our
hypotheses that OCTA usage replacing older technologies is facilitated by an exogenous
shock and generates welfare for non-paying patients. These summary statistics are of
course non-parametric not controlling for several other sources of observed and unobserved
heterogeneity. To account for this, we turn to a systematic regression analysis building on
difference-in-differences design presented below.

4.2 Specification for Examining Visual Impairment (H1)

We begin our analysis by evaluating Hypothesis 1. We estimate the average treatment effect
of the pandemic on the visual impairment of the non-paying category compared with the
paying patients. We follow the below-mentioned difference-in-differences (DID) specification

Visual_Impairmentp =G(β0 + β1NonPayingp + β2Covidt

+ β3NonPayingp ×Covidt + θp + δt + ϵ)
(1)

In this analysis, we observe a pooled cross-section of individual patients p in a month
t. The outcome of interest is visual impairment measured on the patient’s first visit to
the hospital. Given the ordered nature of the dependent variable, we use the ordered
logistic function G(.) for our estimation approach. The main coefficient of interest is β3. It
estimates the post- minus pre-pandemic visual impairment of the treated group (non-paying
patients) relative to the control group (paying patients). We add variables for patient’s age,
gender, and location in the regression equation to control for patient-specific heterogeneity,
represented by θp. We also control for month-specific unobserved heterogeneity through
month dummies (δt). We report robust standard errors clustered at patient level.

By comparing the post- versus pre-pandemic change in visual impairment in the treated
group relative to the control group, the DID approach provides causal estimates based on
the “parallel trends” assumption, which implies that in the absence of the shock, outcomes
for the non-paying and paying patients groups would have followed parallel trajectories over
time. To establish the parallel trend assumption, we check for the existence of pre-trends

9Although there is a decrease in visual impairment for paying patients, the magnitude of change is
comparatively small.
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following (Angrist & Pischke, 2008). The below-mentioned model is used to estimate the
interaction coefficient using an event study design.

Visual_Impairmentp =G(β0 + β1NonPayingp + β2Montht

+
∑

βt(NonPayingp ×Montht) + θp + δt + ϵ)
(2)

Montht varies from November, 2019 to December, 2020 (October, 2019, the first time
point, is taken as the base).

4.3 Specification to Examine the Adoption of OCTA (H2 & H3)

Next, we use the following fixed effects specification on panel data to estimate the adoption
of OCTA for non-paying patients as mentioned in Hypothesis 2 and Hypothesis 3:

OCTApt =β0 + β1NonPayingp + β2Covidt

+ β3NonPayingp ×Covidt + θp + δt + γd + ϵpt
(3)

The unit of analysis is patient-time, with the unit of observation being patient p
administered in month t. The outcome of interest is the likelihood of adoption of OCTA. The
main coefficient of interest is β3, i.e., the coefficient of the interaction term NonPaying×Covid.
It estimates the post-minus pre-pandemic change in the adoption of OCTA in the treated
group (non-paying patients) relative to the control group (paying patients). We control for
time-invariant patient-specific and month-specific heterogeneity by including patient fixed
effects (θp) and month fixed effects (δt) in regression analysis. Since the decision to use
a technology lies majorly with physicians, we add a physician dummy variable (γd) that
controls for physician-specific variations. We use the logit model and ordinary least squares
(OLS) method to estimate the coefficients and report robust standard errors clustered at
the patient level.

To check for the existence of pre-trends in OCTA adoption, we use the below-mentioned
equation to generate interaction coefficients using an event-study design.

OCTApt = β0+β1NonPayingp + β2Montht

+
∑

βt(NonPayingp ×Montht) + θp + δt + γd + ϵpt
(4)
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Montht varies from November, 2019 to December, 2020 (October, 2019, the first time
point, is taken as the base).

4.4 Specification to Evaluate Vision Outcome (H4)

To analyze the vision outcome of non-paying after they were treated with OCTA in
Hypothesis 4, we employ a triple difference specification as shown below:

ChangeInVisualImpairmentp =G(β0 + β1NonPayingp ×OCTA×Covidt

+ β2NonPayingp ×OCTA+ β3NonPayingp ×Covidt

+ β4OCTA×Covidt + β5NonPayingp + β6OCTA

+ β7Covidt + θp + δt + γd + ϵ)

(5)

We analyze a pooled cross-section of individual patients p in a month t. The outcome of
interest is Change in Visual Impairment of a patient from the first to the last visit. Similar
to equation 1, G(.) is an ordered logistic function. The main coefficient of interest is β1 i.e.,
the coefficient of the interaction term NonPaying ×OCTA× Covid. It estimates change
in visual impairment of non-paying patients for whom OCTA was applied post-pandemic
lockdown in India. We add variables for patient’s age, gender, and location in the regression
equation to control for patient-specific heterogeneity, represented in equation 5 by θp. We
also control for time-invariant month-specific heterogeneity through month dummies (δm).
Since we are interested in changes in visual impairment after OCTA application and the
decision to use a technology lies majorly with physicians, we add a physician dummy variable
that controls for physician-specific variations. We report robust standard errors clustered at
patient level.

5 Empirical Findings

5.1 Impact of COVID-19 on Visual Impairment of Non-Paying

Patients (H1)

Table 3 presents the results of the regression analyses to test Hypothesis 1 by estimating
equation 1. Column (1) shows the baseline estimation without any controls. In column
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(2), we introduce patient-level controls like age, gender, and location in which the patient
lives. In column (3), along with patient controls, we add a month dummy to account for
month-specific unobserved heterogeneity.

Results in table 3 show how the pandemic worsened the visual acuity of non-paying
patients. Findings in column (1) - column (3) reveal that the coefficient of the interaction
term NonPaying × Covid is positive and significant (β = 0.564 in column (3)) indicating
the increase in visual impairment post COVID-19 induced lockdown. The difference-in-
differences generated causal estimate keeps all the three paying categories (General Paying,
Supporter, and Sight-Saver) as the control group.10 With all controls in column (3), we
find that odds of non-paying patients being in a higher visual impairment scale (as per
LogMAR) increases by 56.4% post-pandemic as compared to paying patients holding the
other variables in the model constant.

In column (1) of table 4, we show interaction coefficients using equation 2. We look
for insignificant coefficients in the pre-shock period from November 2019 to March 2020
to signify the absence of pre-trends. We find no significant difference in the non-paying
(treatment) and paying (control) group till March 2020. The shift in the estimated coefficient
from May 2020 onward is quite evident.11 Thus, indicating the increase in visual impairment
for non-paying patients post-pandemic induced lockdown in India.

5.2 Adoption of OCTA for Non-Paying Patients Post-Lockdown

(H2)

Table 5 reports the results testing Hypothesis 2 using equation 3. We do a two-level analysis
of the adoption of OCTA technology. First, in column (1) - column (3), we compare OCTA
with all other technologies. Second, in column (4) - column (6) we do a more conservative
analysis comparing OCTA only with OCT, the technology over which the OCTA brought
advancements. Also, since the dependent variable is binary, we use the panel logit model in
column (1) and column (4).12 In all other columns we apply ordinary least square method.
Robust errors are clustered at patient level in all columns.

Results in table 5 estimate change in the likelihood of adoption of advanced technology
OCTA post-pandemic. We would refer to column (3) and column (6) for interpretation as

10In robustness check in section 6.2, we show that results hold if we keep only general paying as a control
group.

11Interaction coefficient for April is dropped because of very few observations due to mobility restrictions
caused by the lockdown.

12We use XTLOGIT command in STATA.
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these models are most conservative with full controls and patient and month fixed effects.
Column (3), where we compare OCTA with all other technologies, shows a positive and
significant interaction coefficient (β = 0.097), indicating that the pandemic caused an
increase in likelihood of adoption of OCTA for non-paying patients as compared to paying
patients. Similarly, findings in column (6), where we compare OCTA with OCT, also indicate
a positive and significant interaction coefficient (β = 0.216). Thus, adoption of OCTA
technology increased by 21.6% points over OCT for non-paying patients post-pandemic
compared to paying patients.

In column (2) of table 4, we show interaction coefficients using equation 4. We look
for insignificant coefficients in the pre-treatment period from November, 2019 to March
2020 to signify the absence of pre-trends. We find that except for December 2019, there
is no significant difference in the non-paying (treatment) and paying (control) group till
March, 2020. We can see the shift in the estimated coefficient after the strict lockdown
starts opening from June 2020. Thus, indicating the increase in adoption of OCTA for
non-paying patients post-pandemic.

5.3 Mechanism - Physician Heterogeneity (H3)

We have found that higher visual impairment was diagnosed amongst non-paying patients
after COVID-19, followed by the adoption of advanced technology for these patients. In
this section, we explore the mechanisms catalyzing this technology adoption process and
discuss findings related to Hypothesis 3. Since the mechanisms are related to physician-
level heterogeneity, it is important to understand the different types of patient-physician
decision-making models.

Prior work seems to suggest that there are four models of patient-physician decision-
making in vogue - paternalistic decision-making, interpretative decision-making, shared
decision-making and informed decision-making (Wirtz et al., 2006). In the paternalistic
model, the physician chooses the treatment after assessing information about the disease of
the patient, the treatment options, and the likelihood of outcomes. In the interpretative
model (Emanuel & Emanuel, 1992), the physician decides about a treatment plan but takes
the preferences of the patient into consideration. Shared decision-making refers to the
involvement of both physicians and patients where both parties take steps to participate in
the process of treatment decision-making (Charles et al., 1997). Finally, in the informed
decision-making model patients decide on their own after the physician reveals benefits,
risks, and alternative treatment options.
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The non-paying patients are more likely to be guided by a paternalistic decision-making
approach because of the following reasons. Non-paying patients, because of poor economic
conditions and unavailability of information and knowledge resources, are more likely to
be dependent on physicians to decide for them. Moreover, since OCTA is an advanced
technology, it would be difficult even for the knowledgeable patients to get involved in
decision-making. Thus, most decision-making about using OCTA would be likely driven by
physicians and hence follow a paternalistic approach. Given this high involvement of the
physicians in the decision-making, we study the heterogeneity of physicians based on age and
qualification (See Iversen & Ma (2022)). Figure 3 shows the distribution of 47 physicians in
our sample by age. Nine physicians are over the age of 50. Due to comorbidities involved,
old age people were at higher risk during the COVID-19 pandemic (Lebrasseur et al., 2021).
For our analysis we consider physicians below age 50 to be young physicians and greater
than or equal to 50 to be old.

We evaluate our Hypothesis 3 and analyze the differential adoption of OCTA by young
and old physicians in table 6. In all specifications, we apply patient and month-fixed effects
and show robust standard errors clustered at the patient level. Column (1) indicates that
the likelihood of adoption of OCTA decreases as the age of physician increases. Column
(2) - column (4) are sub-sample analysis using equation 3. In column (2), we see that for a
sample of young physicians with age less than 50, the probability of applying OCTA for
a non-paying patient is 8.8% points higher after COVID-19 than for paying patients. An
insignificant coefficient in column (3) for old physicians justifies that the adoption of OCTA
was driven by young physicians.

In another analysis, we divide physicians in our sample based on five different qualifica-
tions they possess in Ophthalmology (See figure 4). From the pie chart, 23% of physicians
hold either a Diploma in National Board (DNB) or a super specialty degree (Fellow) in India.
We consider physicians with DNB or Fellow degrees to be holding higher qualifications.
We check if qualification holds a bearing in physician decision-making in table 7 and find
support. In all specifications, we apply patient and month-fixed effects.

Column (1) indicates that, in general, the likelihood of adoption of OCTA decreases
with increasing qualification. This is in sync with table 6 as generally, qualification increases
with age. Column (2) and column (3) are sub-sample analyses done using equation 3. In
column (2), we see the probability of OCTA adoption for non-paying patients by physicians
with basic qualifications13 increases by 10.9% points post-pandemic. In column (3), the

13Diploma in Ophthalmic Medicine & Surgery (DOMS) or Master of Surgery (MS)
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interaction coefficient becomes indifferent for physicians with high qualifications.
Overall, we unearth two basic findings while unpacking heterogeneity conditional on a

paternalistic approach. First, since OCTA is relatively modern technology, old physicians
are probably not aware or reluctant to apply it to patients (Iversen & Ma, 2022). Second,
the health risks involved during COVID-19 meant older physicians were less available to
see the patients. Thus, as young physicians are more prone to use OCTA for patients with
DME or BRVO disease and because they are also more available in the hospital, we see an
increase in adoption of expensive yet advanced technology for patients in higher need.

We also interviewed physicians to check consistency of these findings with their ex-
periences. A common statement made by all physicians interviewed, irrespective of age,
was – “physicians at LVPEI don’t differentiate between paying and non-paying patients”.
A young physician mentioned – “adoption of OCTA can bring better health outcomes for
patients with retinal disorders”. Another young physician said – “I would always use OCTA
for a BRVO patient. Though it takes more time than OCT, the outcome with OCTA is
more comprehensive.” In contrast to these views old physicians wished to stick with older
technologies like OCT. In our talk with the older physicians, one of them mentioned that –
“since OCTA is a time-taking procedure, I generally prefer to stick to OCT as it covers most
of the issues for DME patients”. Overall, our interactions with physicians reinforces our
empirical findings that hint a penchant of young physicians to use advanced technologies
like OCTA and thus provide strength to the mechanism that presence of young physicians
acted as catalyst in adoption of OCTA.

5.4 Improvement in the Vision of Non-Paying Patients after OCTA

Use (H4)

In table 8 we estimate Hypothesis 4 using equation 5. In this triple difference estimate, we
analyze how the visual acuity of the non-paying patients improved with the adoption of
OCTA after COVID-19. Like table 5, we do a two-level analysis. In columns (1) and (2),
we take the full sample and compare the adoption of OCTA with all other technologies.
Secondly, we do a subsample analysis in columns (3) and (4) to identify the effect on change
in impairment after adopting OCTA compared with OCT. In all models we control for patient
age, gender and district location. We also control for physician and time heterogeneity using
physician and month dummy.

We use columns (2) and (4) for interpretation as we apply all controls in these models.
Triple interaction coefficient of NonPaying×OCTA×Covid in column (2) is negative and
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significant (β = -1.361). In a more specific estimate where we compare OCTA with OCT in
column (4), we find the same coefficient negative and significant (β = -2.524). Thus, the
odds of being in a higher visual impairment scale (as per logMAR) would decrease by 252%
for non-paying patients treated with OCTA post-pandemic. The results, therefore, indicate
that along with the increase in technology adoption and replacement of OCT with OCTA
driven by demand-pull and technology-push facilitated by young physicians, the net effect
was potentially welfare-enhancing improving the health outcome of the patients most in
need.

6 Robustness

6.1 Coarsened Exact Matching (CEM)

In all our specifications till now, the treatment group comprises non-paying patients and
the control group chosen are the patients in paying category. A systematic difference in
the income levels of the two groups can be a cause of concern which may cause bias in the
estimation. To mitigate this concern, we use coarsened Exact Matching, CEM in short (Iacus
et al., 2012). CEM is a method for estimating causal effects by bringing down imbalance
in covariates between treated and control groups (Blackwell et al., 2009). In reducing
the imbalance, CEM generates matching weights which are then used in the regression.
Few observations drop out from the estimation as they receive zero weight owing to the
unavailability of proper match.

Compared to other existing matching methods, CEM possesses improved statistical
properties. These advantages of the CEM method have led to frequent usage of this method
in multiple recent studies (see, e.g., Wang & Zheng (2022); Fry (2021); Chen et al. (2022))
as a means for robustness test for difference-in-differences estimates where the choice of
control groups may influence the resulting estimates. We match the treatment (non-paying
patients) and control (paying patients) based on age, gender, and location of their home.
Estimates generated by CEM on coarsened data are shown in table 9. Although there is a
small drop in the number of observations, all the interaction coefficients (DID in columns
(1) to (3) and Triple difference in columns (4) and (5)) have improved both in magnitude
and significance. Thus, the results from the matching technique help in strengthening our
causal inference.
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6.2 Alternate Control Group

The control group in all specifications as of now has been patients in paying category. But as
explained in section 2.1, within the paying category, there are three sub-identifications used
in LVPEI. The general paying category that pays the bare minimum amount ideally comes
closest to non-paying category patients in terms of demographic and income parameters.
This motivated us to generate a specification where we keep only general paying patients as
the control group and drop the observations with the other two paying categories. Estimates
generated using this alternative specification are shown in table 10.

Interaction coefficient NonPaying × Covid as shown in column (1) indicates that odds
of being in a higher visual impairment scale for non-paying patients increase by 57%
compared to general paying patients post-pandemic. Similarly, we see that likelihood of
OCTA adoption for non-paying patients as compared to General paying patients increases
by 8.3% points and 20.1% points, taking all technologies and OCT as base in column (2)
and column (3), respectively. Lastly, while the coefficient in column (4) is insignificant, the
triple interaction coefficient in column (5) indicates that the adoption of OCTA over OCT
improved the vision of non-paying patients compared to general paying patients. These
results also help us establish that baseline estimation shown in table 3, table 5 and table 8
are not completely driven by extreme values of the other two types of patients (Supporters
and Sight-Savers) in the control group.

6.3 Placebo Test with 2017-18 Sample

As shown in figure 1 our timeline is from October 2019 to December 2020, with the COVID-
19 shock coming in April 2020. In this exercise, we replicate all our estimations with a
changed timeline exactly two years before, from October 2017 to December 2018, with an
alternate placebo treatment from April 2018.14 Estimations are shown in table 11. As we
can see that all interaction coefficients in all estimations are insignificant. Thus, by keeping
a similar time trend month-on-month, a placebo treatment two years before doesn’t cause
changes. This analysis helps us establish the exogenous nature of COVID-19 shock and the
effects caused by it and also helps in ruling out existing pre-trends (if any).

14We didn’t choose a one-year before timeline from October 2018 to December 2019 for placebo test as
it would have an overlap with the original timeline.
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7 Discussion & Conclusion

There has been a significant surge in the usage of technology post-pandemic, especially in
healthcare (Barnes, 2020; Fan et al., 2022). It is thus becoming increasingly important to
understand technology adoption in healthcare and the mechanisms involved therein. Some
studies have catered to technology adoption driven by users and have dealt with hurdles
underlying this demand-side mechanism (Dupas, 2014; Munshi & Myaux, 2006; Miguel &
Kremer, 2004; Oster & Thornton, 2009). Findings suggest that even among the potential
technology adopters, there can be a considerable delay between initial acquaintance and
actual adoption (Berwick, 2003; Juhász et al., 2020) and, ironically, often those who would
benefit most are generally the last to adopt technology (Skinner & Staiger, 2009; Havens &
Rogers, 1961).

Similarly, there are studies that attribute the supply side for the technology adoption i.e.
physicians (Currie & MacLeod, 2020; Coleman et al., 1957; Skinner & Staiger, 2009) and
hospitals (Gaynor & Vogt, 2000; Lin et al., 2021; Fleuren et al., 2004; Skinner & Staiger, 2015).
Proponents of technology-push indicate the role played by science & technology, actors,
and their networks in technology diffusion. There also exists literature that promulgates
the idea that for technology adoption to happen, both demand-pull and supply-push are
important and should work in harmony (Di Stefano et al., 2012; Pavitt, 1984; Arthur, 2007;
Mowery & Rosenberg, 1979).

However, there exists a gap in understanding the role that interaction of demand-pull
and technology-push play in organization-level technology adoption, especially in developing
economies and whether such adoption is welfare enhancing or not.

In this paper, we address this gap using a unique organizational dataset of LVPEI, a
WHO-approved, not-for-profit eye-care institute that cares for both paying and non-paying
patients. COVID-19 pandemic disrupted the regular income flow for many in the non-paying
cohort, which caused them to procrastinate their otherwise essential eye procedures. We
find that compared to paying patients, the visual acuity of non-paying patients worsened
when these patients first visited LVPEI post lockdown announcement. The severity of
the visual impairment reflects the severity of the ocular disease and the need to provide
immediate care.

We find that demand-pull generated because of increased visual impairment directed the
technology adoption trajectory and increased the adoption of costly yet advanced technology
for non-paying patients. The technology-push was mostly driven by young physicians
who were comparatively more available during the pandemic and were more comfortable
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with the new technology. This increased technology adoption eventually led to improved
visual acuity for non-paying patients. Thus, we observe that in our not-for-profit setting,
timely alignment of demand-pull and technology-push helped in technology adoption and
replacement of medical technology that positively impacted health outcomes of patients
who otherwise could not even pay for regular eye checkups. This study, therefore, draws
towards practical implications where organizations can help in mitigating the reluctance to
technology adoption and administering the benefits realization.

From the service provider perspective, an important question that can be raised here
is: Is it sustainable in the long run? Research has shown that hospital choices change in
the wake of financial shocks (Adelino et al., 2021) and increased workload (Freeman et al.,
2017; Kuntz et al., 2015). The scale at which LVPEI works now makes it possible to serve
the non-paying category with the best technology, but what if LVPEI wants to expand
tomorrow? There exists literature specifically in healthcare settings discussing costs and
benefits connected with serving different types of customers with different levels of service
(Chan et al., 2019). It may be important for LVPEI to establish boundaries while expanding
as technologies like OCTA are expensive, and categorization of who will pay and how much
on behalf of non-paying patients may change at larger scale. Further, there may also be
variations in the complexity of ophthalmic technology even within LVPEI for other eye
conditions that require careful investigation in future work.

Another point to be noted is that here we have focused on intra-organization adoption
of technology. Inter-organization diffusion will presumably have different forms of friction
which may inhibit the spread of the technology or at least affect the pace we observed within
the focal organization. Thus characterizing additional frictions would be of interest from a
policy perspective.

These are important themes that need deeper analysis, and there is much more that can
be done by future researchers in this space of technology adoption in healthcare, specifically
its interaction with profit-making incentives or lack thereof. Our work presents one step
towards understanding the joint effect of demand- and supply-side influences.
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Figure 1: Timeline of the Study. The treatment group comprises non-paying patients,
and the control group is all categories of paying patients. The study period is from October
2019 to December 2020. ‘Covid’ indicates months from April 2020 onwards.

Figure 2: Pictorial Representation of Study. This figure shows how COVID-19 affected
the cohorts of patients and physicians and the interaction that causes technology adoption.
The figure, in a way also represents the flow of research. In the pictorial representation, we
also indicate summary of all the hypotheses (H1 to H4).
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Figure 3: Physician Heterogeneity by Age. The y-axis shows different age brackets,
and the x-axis indicates the number of physicians in that age bracket in our sample.

Table 1: Variable Description

Dependent Variables Definition and Construction

Visual Impairment Measured using LogMAR scale between -0.3 to 3; -0.3 refers
to mild to no visual impairment and 3 refers to blindness

OCTA Coded as 1 if the technology used for diagnosis is OCTA, 0
if any other technology is used

Change in Visual Impairment Difference between Visual Impairment diagnosed in first
and last visit

Independent Variables Definition and Construction

Non-Paying Coded as 1 if the category of patient is non-paying, 0 for
other categories - general paying, supporter, and sight saver

Covid Coded as 1 if the visit is after April 2020, 0 otherwise
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Figure 4: Physician Heterogeneity by Qualification. Pie chart shows the distribution
of physicians’ qualifications in our sample. We consider DNB and Fellow to be highly
qualified and physicians with DOMS and MS to have basic qualifications.
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Table 2: Summary Statistics

The table shows the number of observations, mean and standard deviation separately for non-paying and paying patients from October 2019 to
December 2020 – with a split at April 2020 indicating pre- and post-treatment periods.

Non-Paying Paying

October 2019 to March 2020 N Mean Std. Dev. October 2019 to March 2020 N Mean Std. Dev.

Visual Impairment in First Visit 84 1.044 0.846 Visual Impairment in First Visit 652 0.842 0.761
OCTA 274 0.065 0.248 OCTA 1077 0.107 0.310
Change in Visual Impairment 87 -0.124 0.679 Change in Visual Impairment 314 -0.146 0.718
OCT 274 0.580 0.494 OCT 1077 0.465 0.499
Patient Age 274 56.565 9.517 Patient Age 1077 59.412 10.010
Female 274 0.317 0.466 Female 1077 0.364 0.481

April 2020 to December 2020 N Mean Std. Dev. April 2020 to December 2020 N Mean Std. Dev.

Visual Impairment in First Visit 85 1.159 0.921 Visual Impairment in First Visit 571 0.757 0.761
OCTA 217 0.087 0.283 OCTA 748 0.073 0.261
Change in Visual Impairment 83 -0.265 0.740 Change in Visual Impairment 301 -0.239 0.712
OCT 217 0.483 0.500 OCT 748 0.446 0.497
Patient Age 217 54.847 10.427 Patient Age 748 56.877 9.709
Female 217 0.345 0.476 Female 748 0.332 0.471



Table 3: Change in Visual Impairment for Non-Paying Patients after COVID-19 Lockdown

DV: Visual Impairment (1) (2) (3)

Non-Paying × Covid 0.484* 0.603** 0.564**
[0.281] [0.281] [0.285]

Non-Paying 0.462** 0.340* 0.363*
[0.196] [0.200] [0.202]

Covid -0.262*** -0.137 -0.251*
[0.102] [0.103] [0.130]

Patient Controls No Yes Yes
Observations 1,392 1,392 1,392

Month Dummy No No Yes

Notes: The dependent variable in all columns is Visual Impairment. Across model specifications, we see that the interaction

term is positive and statistically significant. Thus, visual impairment increased significantly post COVID-19 for Non-Paying

patients. The time horizon is October 2019 to December 2020. The constant term is included but not reported. Robust

standard errors clustered at patient level are presented in the parenthesis.‘***’,‘**’,‘*’ indicate significance at the 1%, 5% and

10% respectively.
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Table 4: Event Study Pre-Trend Analysis

(1) (2)
Visual Impairment OCTA vs. OCT

Non-Paying × Nov 2019 -0.008 0.184
[0.386] [0.127]

Non-Paying × Dec 2019 0.159 0.202**
[0.480] [0.081]

Non-Paying × Jan 2020 0.740 0.084
[0.450] [0.094]

Non-Paying × Feb 2020 0.809 0.145
[0.506] [0.088]

Non-Paying × Mar 2020 0.298 0.124
[0.847] [0.102]

Non-Paying × May 2020 1.285*** 0.199
[0.495] [0.122]

Non-Paying × Jun 2020 1.042** 0.351*
[0.441] [0.183]

Non-Paying × Jul 2020 -0.994* 0.259***
[0.598] [0.100]

Non-Paying × Aug 2020 2.012* 0.384**
[1.046] [0.165]

Non-Paying × Sep 2020 0.454 0.260**
[0.551] [0.116]

Non-Paying × Oct 2020 1.769** 0.253***
[0.739] [0.098]

Non-Paying × Nov 2020 1.521*** 0.166**
[0.364] [0.082]

Non-Paying × Dec 2020 0.674 0.314**
[0.429] [0.153]

Patient Controls Yes NA
Month Dummy Yes NA
Physician Dummy NA Yes
Observations 1,392 1,307

Patient Fixed Effects NA Yes
Month Fixed Effects NA Yes

Notes: The dependent variable in column (1) is Visual Impairment, and in column (2) is OCTA. We can see that the interaction

coefficients of both models are mostly insignificant before the cutoff of April 2020. The shift in the coefficients from zero

to positive and significant values post-COVID19 is evident and fully consistent with the baseline difference-in-differences

results. The time horizon is October 2019 to December 2020. Interaction coefficient for April is dropped because of very few

observations due to mobility restrictions caused by the lockdown. The constant term is included but not reported. Robust

standard errors clustered at patient level are presented in the parenthesis. ‘***’,‘**’,‘*’ indicate significance at the 1%, 5% and

10% respectively.
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Table 5: Change in the Likelihood of OCTA Adoption for Non-Paying after COVID-19
Lockdown

(1) (2) (3) (4) (5) (6)
OCTA vs. All Other Technologies OCTA vs. OCT
Logit OLS OLS Logit OLS OLS

Non-Paying × Covid 1.078** 0.093** 0.097** 1.466** 0.202** 0.216***
[0.537] [0.044] [0.045] [0.632] [0.079] [0.080]

Covid -0.569** -0.040 -0.076** -0.563* -0.058 -0.103
[0.250] [0.032] [0.038] [0.293] [0.067] [0.075]

Non-Paying -0.629* -1.024**
[0.359] [0.406]

Physician Dummy No Yes Yes No Yes Yes
Observations 2,316 2,316 2,316 1,307 1,307 1,307
Number of Patients 1,076 1,076 1,076 747 747 747

Patient Fixed Effects No Yes Yes No Yes Yes
Month Fixed Effects No No Yes No No Yes

Notes: The dependent variable in all columns is the likelihood of adoption of OCTA. In columns (1) to (3), we compare OCTA

with all other technologies, and in columns (4) to (6) we compare OCTA only with OCT. Across model specifications, we see

that the interaction term is positive and statistically significant. Thus, likelihood of OCTA adoption increased significantly

post COVID-19 for Non-Paying patients. The time horizon is October 2019 to December 2020. The constant term is included

but not reported. Robust standard errors clustered at patient level are presented in the parenthesis. ‘***’,‘**’,‘*’ indicate

significance at the 1%, 5% and 10% respectively.
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Table 6: Mechanism - Adoption of OCTA Technology by Young Physicians

(1) (2) (3)
DV: OCTA All Physicians Young Physicians

(Age < 50)
Old Physicians
(Age ≥ 50)

Physician’s Age -0.002*
[0.001]

Non-Paying × Covid 0.088* 0.037
[0.052] [0.043]

Covid -0.077* -0.047
[0.047] [0.058]

Physician Dummy No Yes Yes
Observations 2,316 1,924 392
Number of Patients 1,076 925 228

Patient Fixed Effects Yes Yes Yes
Month Fixed Effects Yes Yes Yes

Notes: The dependent variable in all columns is the likelihood of OCTA compared with all other technologies. In column

(1), we check likelihood of adoption of OCTA with increasing age of the physician. In columns (2) and (3) we do sub-sample

analysis varying physician’s age to be less than 50 and at least 50, respectively. The time horizon is October 2019 to December

2020. The constant term is included but not reported. Robust standard errors clustered at patient level are presented in the

parenthesis. ‘***’,‘**’,‘*’ indicate significance at the 1%, 5% and 10% respectively.
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Table 7: Mechanism - Adoption of OCTA Technology by Physicians with Basic Qualification

(1) (2) (3)
DV: OCTA All Physicians Basic Qualification High Qualification

Physicians’ Qualification -0.232**
[0.094]

Non-Paying × Covid 0.109** 0.051
[0.046] [0.075]

Covid -0.080** 0.027
[0.041] [0.034]

Physician Dummy Yes Yes Yes
Observations 2,316 2,177 139
Number of Patients 1,076 1,041 92

Patient Fixed Effects Yes Yes Yes
Month Fixed Effects Yes Yes Yes

Notes: The dependent variable in all columns is the likelihood of OCTA compared with all other technologies. In column

(1), we check likelihood of adoption of OCTA with increase in physicians’ qualifications. In columns (2) and (3), we do a

sub-sample analysis of varying physicians’ qualifications from basic to high. The time horizon is October 2019 to December

2020. The constant term is included but not reported. Robust standard errors clustered at patient level are presented in the

parenthesis.‘***’,‘**’,‘*’ indicate significance at the 1%, 5% and 10% respectively.
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Table 8: Change in Visual Impairment after COVID-19 Lockdown

(1) (2) (3) (4)
DV: Change in Impairment OCTA vs. All Technologies OCTA vs. OCT

Non-Paying × OCTA × Covid -1.553** -1.361* -2.594** -2.524**
[0.791] [0.818] [1.134] [1.149]

Non-Paying × Covid -0.011 0.051 0.287 0.555
[0.384] [0.379] [0.774] [0.834]

Non-Paying × OCTA 0.149 -0.079 0.437 0.148
[0.637] [0.648] [0.977] [1.044]

OCTA × Covid 0.945*** 0.922** 1.337** 1.313**
[0.360] [0.383] [0.558] [0.622]

OCTA -0.082 -0.046 -0.365 -0.242
[0.333] [0.345] [0.599] [0.656]

Non-Paying -0.005 -0.036 -0.272 -0.416
[0.269] [0.267] [0.514] [0.548]

Covid -0.496*** -0.513** -0.722* -1.202**
[0.167] [0.224] [0.390] [0.528]

Physician Dummy Yes Yes Yes Yes
Observations 785 785 243 243

Patient Controls Yes Yes Yes Yes
Month Dummy No Yes No Yes

Notes: The dependent variable in all columns is Change in Visual Impairment. In columns (1) and (2), we compare OCTA

with all other technologies, and in columns (3) and (4) we compare OCTA with only OCT. Across model specifications, we see

that the interaction term is negative and statistically significant. Thus, vision improved with OCTA adoption post-COVID-19

for non-paying patients. The time horizon is October 2019 to December 2020. The constant term is included but not reported.

Robust standard errors clustered at patient level are presented in the parenthesis. ‘***’,‘**’,‘*’ indicate significance at the 1%,

5% and 10% respectively.

44



Table 9: Coarsened Exact Matching (CEM) Estimates

(1) (2) (3) (4) (5)
OCTA vs All OCTA vs OCT OCTA vs All OCTA vs OCT

Visual Impairment OCTA OCTA Change in VI Change in VI

Non-Paying × Covid 0.868*** 0.127** 0.306*** 0.461 1.370
[0.314] [0.055] [0.095] [0.434] [0.995]

Non-Paying × Covid × OCTA -1.715* -2.571**
[0.961] [1.270]

Non-Paying × OCTA -0.305 -0.983
[0.823] [1.185]

Covid -0.344* -0.093* -0.206** -1.159*** -2.183***
[0.184] [0.054] [0.099] [0.305] [0.695]

Non-Paying 0.132 -0.263 -0.840
[0.231] [0.328] [0.698]

OCTA 0.023 0.291
[0.514] [0.839]

OCTA × Covid 1.424*** 1.689**
[0.541] [0.860]

Patient Controls Yes No No Yes Yes
Physician Dummy No Yes Yes Yes Yes
Month Dummy Yes NA NA Yes Yes
Observations 1,105 1,920 1,146 616 194

Patient Fixed Effects NA Yes Yes NA NA
Month Fixed Effects NA Yes Yes NA NA

Notes: The dependent variable in column (1) is Visual Impairment, in columns (2) and (3) is OCTA, and in columns (4)

and (5) is Change in Visual Impairment. Columns (3) and (5) are sub-sample analyses where we compare the adoption of

OCTA only with OCT. Across model specifications, we see that the interaction term follows the same sign and significance as

baseline results. The time horizon is October 2019 to December 2020. The constant term is included but not reported. Robust

standard errors clustered at patient level are presented in the parenthesis.‘***’,‘**’,‘*’ indicate significance at the 1%, 5% and

10% respectively.
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Table 10: Estimates using an Alternate Control Group of General Paying Patients

(1) (2) (3) (4) (5)
OCTA vs All OCTA vs OCT OCTA vs All OCTA vs OCT

Visual Impairment OCTA OCTA Change in VI Change in VI

Non-Paying × Covid 0.573** 0.083** 0.201*** 0.011 0.405
[0.286] [0.041] [0.071] [0.388] [0.865]

Non-Paying × Covid × OCTA -1.342 -1.964*
[0.819] [1.133]

Non-Paying × OCTA -0.082 -0.088
[0.644] [1.005]

Covid -0.246* -0.041 -0.060 -0.525** -1.109*
[0.135] [0.032] [0.055] [0.243] [0.580]

OCTA × Covid 0.957*** 1.086*
[0.365] [0.624]

Non-Paying 0.347* 0.040 -0.254
[0.204] [0.271] [0.575]

OCTA 0.012 -0.027
[0.336] [0.719]

Patient Controls Yes No No Yes Yes
Physician Dummy No Yes Yes Yes Yes
Month Dummy Yes NA NA Yes Yes
Observations 1,295 2,059 1,140 711 219

Patient Fixed Effects NA Yes Yes NA NA
Month Fixed Effects NA Yes Yes NA NA

Notes: The dependent variable in column (1) is Visual Impairment, in columns (2) and (3) is OCTA, and in columns (4)

and (5) is Change in Visual Impairment. Columns (3) and (5) are sub-sample analyses where we compare the adoption of

OCTA only with OCT. Across model specifications, we see that the interaction term follows the same sign as baseline results.

The time horizon is October 2019 to December 2020. The constant term is included but not reported. Robust standard

errors clustered at patient level are presented in the parenthesis. ‘***’,‘**’,‘*’ indicate significance at the 1%, 5% and 10%

respectively.

46



Table 11: Robustness of Baseline Results with respect to Placebo Treatment Date (before
the actual Treatment)

(1) (2) (3) (4) (5)
OCTA vs All OCTA vs OCT OCTA vs All OCTA vs OCT

Visual Impairment OCTA OCTA Change in VI Change in VI

Non-Paying × Covid 0.203 0.034 0.079 -0.336 -1.000
[0.219] [0.036] [0.058] [0.698] [1.368]

Non-Paying × Covid × OCTA -0.837 -1.603
[1.454] [2.105]

Non-Paying × OCTA 0.217 -0.223
[1.202] [1.789]

Covid 0.258* 0.002 0.003 -0.458 -0.976
[0.132] [0.031] [0.050] [0.367] [1.125]

Non-Paying 0.625*** 0.275 1.179
[0.151] [0.541] [0.867]

OCTA -0.468 -0.589
[0.495] [1.183]

OCTA × Covid 1.504*** 2.454**
[0.546] [1.045]

Patient Controls Yes No No Yes Yes
Physician Dummy No Yes Yes Yes Yes
Month Dummy Yes NA NA Yes Yes
Observations 1,965 2,983 1,643 320 107

Patient Fixed Effects NA Yes Yes NA NA
Month Fixed Effects NA Yes Yes NA NA

Notes: The dependent variable in column (1) is Visual Impairment, in columns (2) and (3) is OCTA, and in columns (4)

and (5) is Change in Visual Impairment. Columns (3) and (5) are sub-sample analyses where we compare the adoption of

OCTA only with OCT. Across model specifications, we see that the interaction term is insignificant indicating no effect if the

shock is shifted two years ago. The time horizon is October 2017 to December 2018 with a placebo shock in April 2018. The

constant term is included but not reported. Robust standard errors clustered at patient level are presented in the parenthesis.

‘***’,‘**’,‘*’ indicate significance at the 1%, 5% and 10% respectively.
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