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Abstract

We extend the classical discrete time stochastic one-sector optimal growth model with
logarithmic utility and Cobb-Douglas production á-la Brock and Mirman (1972) to allow
probabilities to be state-dependent. In this setting the probability of occurrence of a given
shock depends on the capital stock, thus as the economy accumulates more capital the
probability of occurrence of different shocks changes over time. We explicitly determine
the optimal policy and its relation with state-dependent probabilities in two alternative
scenarios in which the probability function, assumed to take a logarithmic form, is either
decreasing or increasing with capital. We show that, by affecting the optimal policy, state-
dependent probabilities act as an engine of capital accumulation, which, through its effects
on the probability of shocks realization, impacts the evolution of economic inequality. In
particular, whenever the probability is decreasing (increasing) in the capital stock the
probability of the most (least) favorable shock increases, and this incentivizes the plan-
ner to increase (decrease) his capital investment, which in turn will generate a widening
(reduction) in economic inequalities over time. We then show that the optimal solution
can be converted into an affine iterated function system with affine state-dependent prob-
abilities which converges to an invariant self-similar measure supported on a compact
(eventually fractal) attractor. We also characterize the properties of such an invariant
self-similar measure in terms of singularity and absolutely continuity with respect to the
Lebesgue measure, which ultimately depends on the magnitude of the capital share.
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1 Introduction

Over the last decades, following the seminal work by Brock and Mirman (1972), a large and
growing number of works has tried to characterize the implications of stochasticity on macroeco-
nomic dynamics and economic growth (see Olson and Roy, 2005, for a survey). Several of these
studies analyze the eventual fractal nature of the steady state in traditional macroeconomic
frameworks, which are now well known to give rise to random dynamics possibly converging
to invariant measures supported on fractal sets (Montrucchio and Privileggi, 1999). Indeed, in
a classical discrete time one-sector Ramsey (1928) model with logarithmic utility and Cobb-
Douglas production in which output is affected by binary random shocks, the optimal economic
dynamics can be converted into affine iterated function systems converging to invariant prob-
ability measures, which may turn out to be either singular and supported on a Cantor-like
set or absolutely continuous (Montrucchio and Privileggi, 1999; Mitra et al., 2003; Mitra and
Privileggi, 2004; 2006; 2009; La Torre et al., 2015). Several extensions of the standard setup
have been developed over the years in order to consider multisector frameworks, to allow for
sustained endogenous growth, to permit shocks to affect factor shares, and to account for pol-
lution externalities, showing that even in such contexts similar results apply apart from the
fact that the support of the invariant probability measure may be some other fractal set, like
the Sierpinski gasket or the Barnsley’s fern (La Torre et al., 2011, 2015, 2018b, 2018c).

To the best of our knowledge, all the refinements and extensions of the classical stochastic
optimal growth model rely upon the assumption that the probability with which shocks occur is
constant. Even if this setting is useful to characterize macroeconomic dynamics in a simple and
intuitive way, it limits the analysis of the implications of important phenomena like economic
inequality. Economic inequalities are a pervasive phenomenon in modern economies and its
mutual relation with macroeconomic outcomes has been known since Kuznets (1955). Several
studies discuss the extent to which inequalities, both within and between countries, have largely
widened over the last decades generating important social problems (see Banerjee and Duflo,
2003; Piketty, 2015; Scheidel, 2017). The recent economic history clearly shows that economic
inequality, and in particular income inequality, is characterized by path-dependency: the richer
(poorer) countries or individuals initially are, the richer (poorer) they will tend to become over
time (Piketty and Saez, 2014; Alvaredo et al., 2017). Understanding thus the implications of
path-dependency for inequalities and macroeconomic outcomes is crucial to develop a realistic
theory of economic development. This paper wishes to make a first contribution in this direction
by extending the classical optimal stochastic growth model to allow probabilities to be state-
dependent, that is to depend on the level of the capital stock, giving rise to path-dependency
and eventually economic inequalities. State-dependent probabilities are a straightforward (but
nontrivial) generalization of constant probabilities which allow to explain the path-dependency
phenomenon and to enrich the set of possible model’s outcomes, shedding some lights on the
mutual links between macroeconomic dynamics and economic inequalities (see, e.g., Cozzi and
Privileggi, 2009).

Specifically, we extend the classical discrete time stochastic one-sector optimal growth model
with logarithmic utility and Cobb-Douglas production á-la Brock and Mirman (1972) to allow
probabilities to be state-dependent. We assume that the probability of occurrence of different
shocks depends on the capital stock, and thus as the economy accumulates capital the prob-
ability of realization of a given stock endogenously changes. We consider the state-dependent
probability to be a monotonic function of capital, analyzing how results may change in sit-
uations in which the probability increases or decreases with capital. By assuming that the
probability function takes a logarithmic form, we are able to explicitly characterize the optimal

2



solution of such an extended optimal growth model, showing that by affecting the optimal policy
state-dependent probabilities act as an engine of capital accumulation, which through its effects
on the probability of shocks realization crucially drives the evolution of economic inequality. In
particular, whenever the probability is decreasing (increasing) in the capital stock the proba-
bility of the most (least) favorable shock increases, and this incentivize the planner to increase
(decrease) capital investment, which in turn will generate a widening (reduction) in economic
inequalities over time. This result generalizes those traditionally discussed in the stochastic
optimal growth literature (Brock and Mirman, 1972; Montrucchio and Privileggi, 1999; Mitra
et al., 2003), as the optimal policy boils down to the standard policy under constant proba-
bility whenever the probability function does not depend on the capital stock. We also show
that the optimal dynamics can be converted into a contractive affine iterated function system
(IFS) with affine state-dependent probabilities (SDP) which, under rather general conditions,
converges to an invariant self-similar measure supported on a (possibly fractal) compact attrac-
tor. This result generalizes those presented in the fractal steady state and stochastic optimal
growth literature (Montrucchio and Privileggi, 1999; Mitra et al., 2003; La Torre et al., 2015),
which has shown that under constant probabilities the optimal dynamics can be transformed in
a traditional IFS (without state-dependent-probabilities). Moreover, we present a new result,
more general than those discussed in extant literature (Mitra et al., 2003; Shmerkin, 2014), de-
termining sufficient conditions for the invariant self-similar measure associated with our affine
iterated function system with state-dependent probabilities (IFSSDP) to be either singular
or absolutely continuous with respect to the Lebesgue measure, showing that this ultimately
depends on the magnitude of the capital share.

Despite the fact that the probability of shocks realization may depend on the level of some
state variable is a very intuitive and natural framework to consider, the role of state-dependent
probabilities has not been explored in depth thus far. State-dependent probabilities and in
particular IFSSDP have received much attention in the mathematics literature (Barnsley et
al., 1988; Stenflo, 2002), but they have only seldom been discussed in economics (La Torre et
al., 2019). To the best of our knowledge, the only paper analyzing the role of state-dependent
probabilities in an economic setup is La Torre et al.’s (2019). They discuss the implications
of state-dependent probabilities on the possible steady state outcome in a purely dynamic
economic growth model with health capital (abstracting completely from optimizing behavior)
in which the probability of shocks depends on the relative abundance of health capital with
respect to physical capital. Unlike them we consider an optimal growth framework in which
the social planner endogenously determines the level of investment in capital accumulation,
which thus requires him to account for how the future capital level will impact the probability
of shocks occurrence.

The paper proceeds as follows. Section 2 reviews some well-known concepts on the IFS the-
ory and it focuses in particular on the theory of IFSSDP, deriving also a novel theoretical result
which will allow us to characterize singularity vs. absolute continuity of the self-similar mea-
sure associated with the IFSSDP derived from our stochastic optimal growth model. Section 3
introduces our extended Brock and Mirman’s (1972) model with state-dependent probabilities,
distinguishing between situations in which the probabilities are either decreasing or increasing
with the capital stock. Section 4 derives the optimal solution of such a model discussing how
the optimal policy changes (with respect to the standard one under constant probabilities) be-
cause of the presence of state-dependent probabilities. It also shows that the optimal dynamics
can be converted into an affine IFSSDP from which it is possible to investigate the singularity
vs. absolute continuity properties of the self-similar measure associated with such an IFSSDP.
Section 5 presents some specific examples by numerically approximating the invariant distribu-
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tion of our IFSSDP to illustrate how it may change under different assumptions regarding the
shape of the probability function. Section 6 as usual presents concluding remarks and highlights
directions for future research. All the proofs of our main results are presented in appendix A.

2 Iterated Function Systems

We now review some basic concepts and the main results in the IFS theory. We first recall
the case of IFS with constant probabilities (see also Kunze et al., 2012), and then we move to
the case of IFS with state-dependent probabilities discussing with more depth the implications
of such an extension. In particular, we discuss more thoroughly a sufficient condition for
the existence of a unique fixed point for state-dependent probabilities and we present two
novel examples that show the existence of multiple equilibria. Then we provide a new result
regarding the properties (in terms of singularity vs. absolute continuity) of the self-similar
measure associated with IFS with state-dependent probabilities in the case of affine maps
(Theorem 4), which will allow us in the next sections to characterize the steady state of our
stochastic optimal growth model under state-dependent probabilities.

2.1 Constant Probabilities

In the following, we denote by (X, d) a compact metric space. An N -map Iterated Function
System (IFS) on X , w = {w1, . . . , wN}, is a set of N contraction mappings on X , i.e., wi :
X → X , i = 1, . . . , N , with contraction factors ci ∈ [0, 1) (see Hutchinson, 1981; Barnsley,
1989; Kunze et al., 2012). Associated with an N -map IFS, there is the following set-valued
mapping ŵ defined on the space H (X) of nonempty compact subsets of X :

ŵ (S) :=

N
⋃

i=1

wi (S) , S ∈ H (X) .

For any pair of elements H (X) the distance between them is measured by means of the classical
Hausdorff distance h defined as:

h (A,B) = max

{

sup
x∈A

inf
y∈B

d (x, y) , sup
x∈B

inf
y∈A

d (x, y)

}

.

It can be proved that (H (X) , h) is a complete metric space (Hutchinson, 1981; Barnsley, 1989).
One reason for choosing the Hausdorff distance is that it allows the contractivity of the IFS
maps wi to be translated into contractivity of ŵ on (H (X) , h), that is, for A,B ∈ H (X), the
following holds (see Hutchinson, 1981):

h (ŵ (A) , ŵ (B)) ≤ cH (A,B) where c = max
1≤i≤N

ci < 1.

This result implies the existence and uniqueness of a fixed point A such that ŵ (A) = A.
Moreover, A is self-similar, that is, it is the union of distorted copies of itself. It is possible to
prove (see Hutchinson, 1981) that there exists a unique set A ∈ H (X), the attractor of the IFS
w, such that:

A = ŵ (A) =

N
⋃

i=1

wi (A) .

Moreover, for any B ∈ H (X), h (A, ŵtB) → 0 as t → ∞.

4



An N -map iterated function system with (constant) probabilities (w,p) is an N -map IFS
w with associated probabilities p = {p1, . . . , pN},

∑N
i=1 pi = 1. Denote by M (X) the set of

probability measures on (Borel subsets of) X . Then an N -map IFSP induces a Markov operator
M : M → M defined as follows. For any µ ∈ M (X) and any measurable set S ⊂ X , let us
denote by ν(S) = (Mµ)(S) the following set function:

ν (S) = (Mµ) (S) =
N
∑

i=1

piµ
(

w−1
i (S)

)

.

We introduce the Monge-Kantorovich distance on M(X), defined as follows. For any pair of
probability measures µ, ν ∈ M (X), we have

dMK (µ, ν) = sup
f∈Lip1(X)

[
∫

fdµ−

∫

fdν

]

,

where Lip1 (X) = {f : X → R : |f (x)− f (y)| ≤ d (x, y)}. Again, we can prove that the metric
space (M (X) , dMK) is complete (Hutchinson, 1981; Barnsley, 1989).

As with the Hausdorff distance, a very useful feature of the Monge-Kantorovich metric is
that it results in M being a contraction mapping over M (X). It is possible to prove (see
Hutchinson, 1981) that for µ, ν ∈ M (X),

dMK (Mµ,Mν) ≤ cdMK (µ, ν) .

This implies that there exists a unique measure µ̄ ∈ M (X), the invariant measure of the IFSP
(w,p), such that:

µ̄ (S) = (Mµ̄) (S) =

N
∑

i=1

piµ̄
(

w−1
i (S)

)

where c = max
1≤i≤N

ci.

Moreover, for any ν ∈ M (X), dMK (µ̄,M tν) → 0 as t → ∞.
There is a link between the invariant set of an IFS with the invariant probability measure

of an IFSP. It can be proved (see Hutchinson, 1981) that the support of the invariant measure
µ̄ of an N -map IFSP (w,p) is the attractor A of the IFS w′ = {wi : pi > 0}, i.e.,

supp µ̄ = A.

For instance, the following two-map IFS on X = [0, 1],

w1 (x) =
1

3
x, w2 (x) =

1

3
x+

2

3
,

has attractor the Cantor set C ⊂ [0, 1]. Let p1 ≡ p2 ≡ 1/2. It is well known that the invariant
measure µ̄ of this IFSP is a (uniform) measure on the Cantor set whose cumulative distribution
function is the famous Devil’s staircase function.

We note that while we assume in this paper that all the maps wi in the IFS are contractive,
the contractivity of M only requires average contractivity,

∑

i pici < 1. Moreover, it is also
possible to relax the compactness condition on X .
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2.2 State-Dependent Probabilities

We now consider the case in which the probabilities, pi, 1 ≤ i ≤ N , associated with an N -map
IFS w are state-dependent, i.e., pi : X → [0, 1] such that:

N
∑

i=1

pi (x) = 1, for all x ∈ X. (1)

The result is an N -map IFS with state-dependent probabilities (IFSSDP).

Example 1 (Affine probability functions) In the special case X = [0, 1] ⊂ R with affine
probabilities pi (x) = αix+ βi, substitution into (1) along with the fact that the functions x and
1 are linearly independent over [0,1] yields the following conditions on the αi and βi,

N
∑

i=1

αi = 0 ,
N
∑

i=1

βi = 1.

Only two other conditions must be imposed, namely, (i) 0 ≤ pi (0) ≤ 1 and 0 ≤ pi (1) ≤ 1 for
1 ≤ i ≤ N , which lead to the following additional constraints,

0 ≤ βi ≤ 1, 0 ≤ αi + βi ≤ 1, 1 ≤ i ≤ N.

These constraints also imply that −1 ≤ αi ≤ 1. In the special case αi = 0, 1 ≤ i ≤ N , the
IFSSDP reduces to an IFSP with constant probabilities pi = βi, 1 ≤ i ≤ N .

The Markov operator M : M (X) → M (X) associated with an N -map IFSSDP, (w,p), is
defined as:

ν (S) = Mµ (S) =
∑

i

∫

w−1
i (S)

pi (x) dµ (x) , (2)

where µ ∈ M(X) and S ⊂ X is a Borel set.

Theorem 1 (La Torre et al., 2018a) Given M as defined in equation (2), then M maps
M (X) to itself. In other words, if µ ∈ M (X), then ν = Mµ ∈ M (X).

Under appropriate conditions, the above Markov operator can be contractive with respect
to the Monge-Kantorovich metric.

Theorem 2 (La Torre et al., 2018a) Let (X, d) be a compact metric space and (w,p) an
N-map IFSSDP with IFS maps wi : X → X with contraction factors ci ∈ [0, 1). Furthermore,
assume that the probabilities pi : X → R are Lipschitz functions, with Lipschitz constants
Ki ≥ 0. Let M : M (X) → M (X) be the Markov operator associated with this IFSSDP, as
defined in (2). Then for any µ, ν ∈ M (X),

dMK (Mµ,Mν) ≤ (c+KDN) dMK (µ, ν) ,

where c = maxi ci, K = maxi Ki and D = diam (X) < ∞.

We note, however, that it is not necessary for M to be contractive with respect to the
Monge-Kantorovich metric in order to have a fixed point. In fact, by the Schauder fixed point
theorem, as long as all the pi (x)s are continuous there is at least one invariant measure for M .
The following examples exhibit more than one invariant measure.
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Example 2 Take the IFS on X = [0, 1] with:

w1 (x) =
1

2
x, w2 (x) =

1

2
x+

1

2
,

and consider the two state-dependent probability functions p1 (x) = 1 − x4 and p2 (x) = x4. In
this case the two Dirac measures δ0 and δ1, concentrated at the points 0 and 1 respectively, are
both fixed points and thus it is not possible for the Markov operator to be contractive with respect
to any metric on M([0, 1]). Moreover, for any ξ ∈ [0, 1], the measure µ = ξδ0 + (1− ξ) δ1 is
also a fixed point of the Markov operator.

Example 3 Let

w1 (x) =
1

2
x, w2 (x) =

1

2
x+

1

2
,

and for any x ∈ [0, 1], define the function τ (x) to be a binary sequence in {0, 1}N given by

τ (x)i = ⌊2ix⌋mod 2.

(so that τ (x)i is the ith digit in the binary expansion of x, choosing the terminating one if
necessary). Next define the function φ : [0, 1] → [0, 1] by

φ (x) = lim sup
# {1 ≤ i ≤ n : τ (x)i = 0}

n
= 1− lim inf

1

n

n
∑

i=1

τ (x)i

(so φ (x) is something like the asymptotic fraction of digits which are 0). Notice that φ (x) =
φ (wi (x)) for i = 0, 1 and also that φ (x) = φ (2x) if x ∈ [0, 1/2] and φ (x) = φ (2x− 1) for
1/2 ≤ x ≤ 1. Further notice that φ is Borel-measurable since it is the limit supremum of a
sequence of measurable functions. It is, however, discontinuous everywhere in [0, 1] with a graph
which is dense in [0, 1]2.

For each p ∈ (0, 1) define the set Bp ⊂ [0, 1] by

Bp = {x ∈ [0, 1] : φ (x) = p} .

We see from the definition that Bp ∩ Bq = ∅ if p 6= q. Finally, define the IFS with state-
dependent probabilities W by

{w0 (x) , w1 (x) , φ (x) , 1− φ (x)} . (3)

We now argue that there are uncountably many different invariant measures. To see this,
for each p ∈ (0, 1) let µp be the invariant measure for the IFS with probabilities Wp given by

{w0 (x) , w1 (x) , p, 1− p} .

It is well-known that µp (Bp) = 1; in fact, it has full measure on the smaller set given by

{

x ∈ [0, 1] : lim
# {1 ≤ i ≤ n : τ (x)i = 0}

n
= p

}

.

This means that for any Borel set S ⊂ [0, 1] we have µp (S) = µp (S ∩Bp).
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Let S ⊂ [0, 1] be given. First we assume that S ⊂ [0, 1/2], the case S ⊂ [1/2, 1] is similar
and the general case follows from additivity and these two. Using M to denote the Markov
operator associated with (3), we see that

Mµp (S) =

∫

2S

φ (x) dµp (x) =

∫

S

φ (2x) dµp (2x) =

∫

S

φ (x) dµp (2x)

=

∫

S∩Bp

φ (x) dµp (2x) = p

∫

S∩Bp

dµp (2x) = p µp

(

w−1
0 (S ∩ Bp)

)

=
p

p
µp (S ∩Bp) = µp (S) .

In the second line, we have used the fact that φ (x) = p for all x ∈ Bp and in the third we have
used µp (A) = p ◦ µp

(

w−1
0 (A)

)

whenever A ⊂ [0, 1/2] = w0 ([0, 1]).
For S ⊂ [1/2, 1] we have

Mµp (S) =

∫

2S−1

(1− φ (x)) dµp (x) =

∫

S

(1− φ (2x− 1)) dµp (2x− 1)

=

∫

S∩Bp

dµp (2x− 1)−

∫

S∩Bp

φ (x) dµp (2x− 1)

=
1

1− p
µp (S)− p

∫

w−1
1 (S∩Bp)

dµp (x)

=
1

1− p
µp (S)−

p

1− p
µp (S) = µp (S) .

Thus for all p ∈ (0, 1) we have that µp is invariant under this state-dependent IFS with
probabilities.

We now describe the so-called Chaos Game for an IFS with probabilities. Start with x0 ∈ X ,
and define the sequence xt ∈ X by:

xt+1 = wσt (xt) ,

where σt ∈ {1, 2, . . . , N} is chosen according to the probabilities pi (xt) (that is, P [σt = i] =
pi (xt)). We note that the sequence (xt) is a Markov chain with values in X . The following
theorem (from results in Elton, 1987; and Barnsley et al., 1988) gives conditions as to when
an IFSSDP has a unique stationary distribution µ and the Chaos Game “converges” to µ in a
distributional sense.

Theorem 3 (Elton, 1987; Barnsley et al., 1988) Suppose that there is a δ > 0 so that
pi (x) > δ for all x ∈ X and i = 1, 2, . . . , N and suppose further that the moduli of continuity
of the pis satisfy Dini’s condition (see Elton, 1987; and Barnsley et al., 1988). Then there is
a unique stationary distribution µ̄ for the Markov operator. Furthermore, for each continuous
function f : X → R,

1

t+ 1

t
∑

i=0

f (xi) →

∫

X

f (x) dµ̄ (x) . (4)

Theorem 3 can be used to show the following result.

Corollary 1 Suppose that the IFSSDP {w, pi} satisfies the hypothesis of Theorem 3. Then the
support of the invariant measure µ̄ of the N-map IFSSDP (w,p) is the attractor A of the IFS
w, i.e.,

supp µ̄ = A.
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Example 4 Modifying Example 2 slightly by using

p1 (x) = 1− β − (1− 2β)x4, and p2 (x) = (1− 2β)x4 + β,

for 0 < β < 1 we obtain an IFSSDP which satisfies the conditions of Theorem 3 and thus has a
unique invariant distribution. Notice that the probability functions from Example 2 correspond
to the case β = 0.

Notice that if pi are not continuous then the IFSSDP might have more than one invariant
measure (in fact, continuity is not enough; see Stenflo, 2002).

2.3 Singularity vs. Absolute Continuity

We now derive some novel results which allow us to characterize singularity vs. absolute
continuity of the self-similar measure associated with IFS with state-dependent probabilities in
the case of affine maps, generalizing what has been discussed in extant literature. Recall that an
absolutely continuous invariant measure can be represented by a density, and thus admits a full
representation depending only on a few parameters. Conversely, a singular invariant measure
does not have a simple and effective representation, unless one states its value on every point
of its domain.

Theorem 4 Take the two-map IFS {αx, αx+ 1− α} on X = [0, 1] where α ∈ [0, 1) along
with the two probability functions p1 (x) = p (x) and p2 (x) = 1 − p (x) on [0, 1]. Assume that
inf {p (x) : 0 ≤ x ≤ 1} > 0 and that p is Hölder continuous. Let µα be the invariant measure of
this state-dependent IFS.

1. If 0 ≤ α < 1/2 then µα is singular with respect to Lebesgue measure.

2. If α = 1/2 then µα is either singular with respect to Lebesgue measure or is equal to
Lebesgue measure on [0, 1] and p (x) = 1− p (x) ≡ 1/2.

3. For each α > 1/2, let hα be defined by

hα = −

∫ 1

0

{p (x) ln [p (x)] + [1− p (x)] ln [1− p (x)]} dµα.

Then µα is absolutely continuous with respect to Lebesgue measure for Lebesgue almost
every α such that α > e−hα. Moreover, µα is singular for almost every α < e−hα.

Theorem 4 characterizes the singularity vs. absolutely continuity properties of the invariant
measure according to the value of the parameter α, which measures the slope of the maps of the
IFSSDP. Note that its third statement determines the absolutely continuity property in terms
of the invariant measure µα itself; as in most cases the expression of µα is unknown, verifying
the condition at point 3 might be difficult. In order overcome this issue, Corollary 2 provides
a sufficient condition based on the sup and the inf of the function p(x) over the interval [0, 1],
which does not require a priori knowledge of the invariant measure µα.

Corollary 2 Under the hypotheses of Theorem 4, let us define pinf := inf {p (x) : 0 ≤ x ≤ 1} >
0 and psup := sup {p (x) : 0 ≤ x ≤ 1} < 1 and the quantity:

Θ := max {psup ln (psup) , pinf ln (pinf)}+max {(1− psup) ln (1− psup) , (1− pinf) ln (1− pinf)} < 0
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Then for Lebesgue almost every α > eΘ, µα is absolutely continuous with respect to Lebesgue
measure. If p (x) is constant, p (x) ≡ p for any x ∈ [0, 1], then:

Θ = p ln (p) + (1− p) ln (1− p) = ln
(

pp (1− p)1−p)

and µα is absolutely continuous with respect to Lebesgue measure when α > eΘ = pp (1− p)1−p.

Corollary 2 determines a sufficient condition which allows to directly determine whether
the invariant measure is absolutely continuous in the case of affine IFSSDP. Note that the last
result is consistent with what has been shown in the case of constant probabilities by Mitra
et al. (2003) for intermediate values of the constant probability p (i.e., 1/3 ≤ p ≤ 2/3) and
by Shmerkin (2014) for smaller and larger values (i.e., p < 1/3 and p > 2/3). Theorem 4 and
Corollary 2 will allow us in the next sections to analyze the characteristics of the steady state
of our state-dependent-probability extended Brock and Mirman’s (1972) model.

3 The Model

We extend the classical discrete time stochastic one-sector growth model á-la Brock and Mirman
(1972), with logarithmic utility and Cobb-Douglas production function, to allow probabilities
to be state-dependent. This can be described by a social planner’s problem summarized by the
following stochastic dynamic programming model:

V (k0, z0) = max
ct

E0

∞
∑

t=0

βt ln ct (5)

s.t. kt+1 = ztk
α
t − ct

k0 > 0 and z0 ∈ {r, 1} given,

where E0 is the expectation operator at time t = 0, kt capital, ct consumption, 0 < α < 1
the capital share, 0 < β < 1 the discount factor, and {zt}

∞

t=0 a Bernoulli process taking values
0 < r < 1 and 1 with probabilities p (kt) and 1 − p (kt), respectively. Therefore, at each time
t, zt can take only two values with state-dependent probabilities, and in particular the fact
that probabilities depend on the capital level implies that the realization of shocks is related
to the past evolution of capital, implying a path-dependency in macroeconomic dynamics with
important consequences on the evolution of economic inequalities. Intuitively, whenever p′ < 0
capital accumulation will naturally imply a widening of economic inequalities (i.e., the proba-
bility of the best shock realization, zt = 1, given by 1− p(kt) increases with the capital stock),
while, if p′ > 0, a reduction in inequalities (i.e., the probability of the best shock realization
decreases with capital). Note that this setting boils down to the classical Brock and Mirman’s
(1972) model whenever p (kt) ≡ p, that is, probabilities are constant. In order to understand
how the macroeconomic outcomes might respond to different state-dependent probabilities and
uncover the underlying mechanisms, in the remainder of the paper we will focus on a framework
in which the relation between p and kt is monotonic analyzing how the results may change when
either p′ ≤ 0 or p′ ≥ 0 .

The reduced problem associated with (5) can be stated as follows:

V (k0, z0) = max
kt

E0

∞
∑

t=0

βt ln (ztk
α
t − kt+1) (6)

s.t. 0 ≤ kt+1 ≤ ztk
α
t

k0 > 0 and z0 ∈ {r, 1} are given.
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Note that the probability p (kt) determines the occurrence of the random shock zt at the same
time t in which the actual amount of capital kt is employed in production; in this scenario
production occurs after the shock zt is realized, and its occurrence is controlled by the state-
dependent probability p (kt) depending on the actual availability of the stock of capital kt in
the same period t. However, as the amount of capital available at time t corresponds to the
investment decision made at time t − 1, such an assumption actually determines in essence a
Markov-type stochastic dynamic for capital, in which the probability of the random variable zt
at time t depends on a choice made in the previous period t− 1.

It is straightforward to verify that (6) is a concave problem as the zt-sections of the graphG =
{(kt, kt+1, zt) : kt+1 ∈ Γ (kt, zt)} of the optimal correspondence
Γ (kt, zt) = {kt+1 : 0 ≤ kt+1 ≤ ztk

α
t } are convex sets. Moreover, the dynamic constraint Γ (kt, zt)

eventually (monotonically) leads any feasible trajectory {kt}
∞

t=1 inside the interval [0, 1] as time
elapses, because ztk

α
t ≤ kα

t < kt for any value kt > 1. That is, the trapping region for the
dynamics that are admissible for the problem (6) is the interval [0, 1], so that, without loss of
generality, by assuming that the initial capital value k0 lies in such an interval, any trajectory
will have values that remain confined in it.

The Bellman equation associated to (6) reads as:

V (k, z) = max
0≤y≤zkα

[ln (zkα − y) + βEyV (y, z′)] ,

where Ey denotes the expectation operator that depends on the probabilities of both realizations
of the random variable z′ occurring in the next period, itself depending on the saving choice y,
which corresponds to the capital available in the next period, that is, Pr (z′ = r) = p (y), while
Pr (z′ = 1) = 1− p (y) — recall that, for given y, the random variable z′ is independent of past
realizations. Then, the expectation Ey can be directly evaluated and the above equation can
be rewritten in the following form:

V (k, z) = max
0≤y≤zkα

{ln (zkα − y) + βp (y)V (y, r) + β [1− p (y)]V (y, 1)} . (7)

Our goal is to find a closed-form solution for the Bellman equation that generalizes the well
known results discussed under the assumption that the probability of the shock is constant (see,
e.g., Montrucchio and Privileggi, 1999; Mitra et al., 2003). Following the cited literature, in
order to do so we apply the “Guess and Verify” Method (Stokey and Lucas, 1989; Bethmann,
2007; La Torre et al., 2015); to this purpose, however, we must explicitly compute the derivative
with respect to y in the RHS of (7), which, in turn requires also an explicit, non trivial functional
form for the state-dependent probability p (y). Having in mind that such a functional form
must allow for the explicit calculation of the FOC in the RHS of (7), and reminding that
the standard approach to the log-Cobb-Douglas Brock-Mirman model is to assume (guess) a
logarithmic form for the value function, we proceed by assuming a logarithmic form of the type
p (y) = A+B ln y for the state-dependent probability as well. Of course, any such logarithmic
forms turn out to be unbounded over the interval (0, 1], while state-dependent probabilities
must satisfy 0 < p (k) < 1 for any feasible state value k. We overcome such an issue by opting
for a piecewise functional form that is constant for k values close to 0 while taking the form
p (k) = A+B ln k for larger k values, so to keep the probability bounded between 0 and 1.

Recall that, by assuming that the initial capital value k0 lies in the interval [0, 1], any tra-
jectory have values that remain confined in it. Under such an assumption we can introduce the
following two piecewise-logarithmic forms for the state-dependent probability, one decreasing
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and one increasing in k, defined for k ∈ [0, 1]:

p (k) =

{

1− δ if 0 ≤ k < e−
1−δ−γ

ε

γ − ε ln k if e−
1−δ−γ

ε ≤ k ≤ 1
(8)

p (k) =

{

δ if 0 ≤ k < e−
1−δ−γ

ε

1− γ + ε ln k if e−
1−δ−γ

ε ≤ k ≤ 1,
(9)

with δ, γ > 0 such that δ + γ < 1 and ε > 0 sufficiently small.
Clearly, as k ≤ 1, (8) defines a (Lipschitz) continuous state-dependent probability which

satisfies 0 < p (k) < 1 for all 0 ≤ k ≤ 1, is constant over
[

0, e−
1−δ−γ

ε

)

and strictly decreasing

in k over
[

e−
1−δ−γ

ε , 1
]

, while (9) defines a continuous state-dependent probability which again

satisfies 0 < p (k) < 1 for all 0 ≤ k ≤ 1, is constant over
[

0, e−
1−δ−γ

ε

)

and strictly increasing in

k over
[

e−
1−δ−γ

ε , 1
]

. Note that, for any fixed δ, γ > 0 satisfying δ+γ < 1, ε can be chosen small

enough so to have the (more relevant) interval
[

e−
1−δ−γ

ε , 1
]

arbitrarily large; we shall return on

this property later on. Figure 1 shows an example of the probability functions according to (8)
and (9) for δ = γ = 0.01 and ε = 0.1756; for such parameters’ values the kink point turns out

to be e−
1−δ−γ

ε = 0.0038.

k

p (k)

0 0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

(a)
k

p (k)

0 0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

(b)

Figure 1: state-dependent probabilities for δ = γ = 0.01 and ε = 0.1756; a) as defined in (8), b) as
defined in (9).

In the next section we will characterize the optimal solution of problem (6) by determining
a closed-form expression for the value function in (7) in situations in which p(kt) is defined as
either in (8) or in (9).

4 Optimality

In order to search for a closed-form solution of our optimization problem, following previous
literature we guess the following form for the value function in (7):

V (k, z) = A +B ln k + C ln z,
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where A, B and C are constants to be determined. For such a logarithmic guess the Bellman
equation in (7) becomes:

V (k, z) = A+B ln k + C ln z

= max
0≤y≤zkα

[ln (zkα − y) + β (A+B ln y) + βp (y)C ln r] . (10)

Both state-dependent probabilities p (y) with the forms defined either in (8) or in (9) are

not differentiable at y = e−
1−δ−γ

ε ; hence, provided that zkα ≥ rkα > e−
1−δ−γ

ε , in both cases
we must consider two different Bellman equations of the type in (10) depending on whether

y ∈
[

0, e−
1−δ−γ

ε

)

or y ∈
[

e−
1−δ−γ

ε , zkα
]

. Specifically, when p (y) is defined according to (8), the

above equation becomes:

V (k, z) = A+B ln k + C ln z

= max
0≤y<e−

1−δ−γ
ε

[ln (zkα − y) + βA+ βB ln y + β (1− δ)C ln r] , (11)

V (k, z) = A+B ln k + C ln z

= max
e−

1−δ−γ
ε ≤y≤zkα

[ln (zkα − y) + βA+ βB ln y + β (γ − ε ln y)C ln r] , (12)

while when p (y) is defined according to (9), it takes the form:

V (k, z) = A +B ln k + C ln z

= max
0≤y<e−

1−δ−γ
ε

[ln (zkα − y) + βA+ βB ln y + βδC ln r] , (13)

V (k, z) = A +B ln k + C ln z

= max
e−

1−δ−γ
ε ≤y≤zkα

[ln (zkα − y) + βA+ βB ln y + β (1− γ + ε ln y)C ln r] . (14)

Equations (11) and (13) represent problems that keep probabilities constant forever (p =
1−δ and 1−p = δ in the former, p = δ and 1−p = 1−δ in the latter); however, if, after a finite

number of iterations, kt becomes larger than e−
1−δ−γ

ε , the relevant Bellman equations become
those defined in (12) and (14). Therefore, equations (11) and (13) turn out to be completely

useless unless we can guarantee that kt < e−
1−δ−γ

ε forever, that is, for every t ≥ 0. Because

δ + γ < 1, for ε sufficiently small the term e−
1−δ−γ

ε can be made arbitrarily small, which, in

turn, implies that the possibility of kt jumping above the level e−
1−δ−γ

ε after a finite number
of iterations becomes likely. As a matter of fact, the Inada conditions exhibited by the lower
Cobb-Douglas production function, rkα

t , invites the social planner to choose investment levels
kt+1 much larger than the actual stock of capital kt available at time t when the latter is very

close to the left-end point 0 of the feasible set [0, 1], thus easily leading to a value kt+1 > e−
1−δ−γ

ε .

For k values in
[

0, e−
1−δ−γ

ε

)

problem (6) turns out to be a standard stochastic intertemporal

model with constant probabilities, either p = 1 − δ and 1− p = δ or p = δ and 1 − p = 1 − δ.
Hence, in this scenario we can invoke the well known result for this class of problems and easily

find that, whenever k ∈
[

0, e−
1−δ−γ

ε

)

the optimal policy yields the optimal investment given by

(see, e.g., Mitra et al., 2003; Stokey and Lucas, 1989):

y∗ = h (k, z) = αβzkα. (15)

Now, if ε is chosen sufficiently small with respect to parameters α, β and r, after a finite
number τ of iterations of the policy (15) the optimal short-run trajectory will reach a value

kτ > e−
1−δ−γ

ε . The next assumption identifies such a threshold value for ε.
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A. 1 Parameters δ, γ, ε satisfy δ, γ, ε > 0 and δ+γ < 1. Moreover ε is small enough to satisfy:

ε < −
(1− α) (1− δ − γ)

ln (αβr)
. (16)

Note that the RHS in (16) is positive as 1− δ − γ > 0 and ln (αβr) < 0.

Lemma 1 Under Assumption A.1—specifically, condition (16)—the regime represented by both
Bellman equations in (11) and (13) cannot be sustained over time, as there exist a finite number

of iterations τ ≥ 0 such that the optimal capital value in that iteration satisfies kτ ≥ e−
1−δ−γ

ε .

In view of Lemma 1, in the following we shall assume that Assumption A.1 holds and

that the initial capital stock satisfies k0 ∈
[

e−
1−δ−γ

ε , 1
]

, and focus exclusively on the (truly)

state-dependent case represented by the second-type Bellman equations (12) and (14) over the

(compact) interval
[

e−
1−δ−γ

ε , 1
]

. The next Propositions 1 and 2 will establish that, under such

assumptions, the optimal capital trajectory k∗
t remains confined in the interval

[

e−
1−δ−γ

ε , 1
]

for

all t ≥ 0 indeed, thus justifying the focus exclusively on the relevant Bellman equations (12)
and (14).

We consider first the case characterized by the decreasing state-dependent probability de-

fined in (8) for y ∈
[

e−
1−δ−γ

ε , 1
]

: p (y) = γ− ε ln y. In this case the (relevant) Bellman equation

(12) reads as:

V (k, z) = A+B ln k + C ln z

= max
e−

1−δ−γ
ε ≤y≤zkα

[ln (zkα − y) + β (A+ γC ln r) + β (B − εC ln r) ln y] . (17)

It is then possible to prove the following result.

Proposition 1 Under Assumption A.1 and for k0 ∈
[

e−
1−δ−γ

ε , 1
]

, the solution of the Bellman

equation (17) is the function:

V (k, z) = A+B ln k + C ln z

where:

A =
ln [1− β (α− ε ln r)]

1− β
+

β (α− ε ln r) ln [β (α− ε ln r)] + βγ ln r

(1− β) [1− β (α− ε ln r)]
, (18)

B =
α

1− β (α− ε ln r)
, (19)

C =
1

1− β (α− ε ln r)
; (20)

the optimal policy for capital is given by:

k∗
t+1 = h (k∗

t , zt) = β (α− ε ln r) zt (k
∗
t )

α , (21)

while the corresponding optimal policy for consumption is given by:

c∗t = [1− β (α− ε ln r)] zt (k
∗
t )

α . (22)
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It is possible to show (see Appendix A) that β (α− ε ln r) < 1, which ensures that: i)
coefficients B in (19) and C in (20) are strictly positive, which, in turn, imply that the value
function V (k, z) solving equation (17) is strictly concave in k and that the RHS is strictly
concave in y, so that the optimal policy in (21) is unique; and ii) the optimal consumption in
(22) is strictly positive. Therefore, Proposition 1 determines the unique optimal policy asso-
ciated with our extended Brock and Mirman’s (1972) model with decreasing state-dependent
probabilities. We can note that the optimal policy in (21) differs from the standard (under
constant probability) optimal policy k∗

t+1 = h (k, z) = αβzkα as in (15) because of the role of
the state-dependent probability p (k) = γ−ε ln k as in (8). Specifically, the positive term added
to the original multiplicative coefficient α appearing in (15) (i.e., −ε ln r) takes into account
that, as p (k) = γ − ε ln k is decreasing in k, investing more in future capital increases the
probability 1 − p (k) of having future favorable shocks zt = 1. Clearly, if ε = 0, that is, the
probability p (k) does no longer depend on capital, the optimal policy (21) perfectly coincides
with the standard one in (15).

We now move to the case of an increasing state-dependent probability defined in (9) for

y ∈
[

e−
1−δ−γ

ε , 1
]

: p (y) = 1− γ + ε ln y. In this case the (relevant) Bellman equation (14) reads
as:

V (k, z) = A+B ln k + C ln z

= max
e−

1−δ−γ
ε ≤y≤zkα

[ln (zkα − y) + β [A+ (1− γ)C ln r] + β (B + εC ln r) ln y] . (23)

Unlike the case with decreasing state-dependent probabilities, now we need an additional con-
dition on parameter ε in the definition of probability in (9) – the following condition (24) – that
guarantees interiority of the optimal policy (28) determined in the next Proposition 2 whenever

its argument k∗
t ∈

[

e−
1−δ−γ

ε , 1
]

. In fact, now the term ε ln r < 0 indicates that, when the state-

dependent probability is increasing, the optimal choice on investment turns out to be strictly
lower than that prescribed by the standard optimal policy (15). This property requires that
the upper bound for parameter ε in condition (16) is further restricted in order to assure that

the optimal trajectory generated by (28) remains trapped in the (open) interval
(

e−
1−δ−γ

ε , 1
)

for all t ≥ 0.

A. 2 Under Assumption A.1, suppose that ε is sufficiently small to satisfy:

e−
(1−α)(1−δ−γ)

ε − (βr ln r) ε < αβr. (24)

Condition (24), although stated in implicit form with respect to ε, is meaningful, as the RHS
is strictly positive and the LHS is strictly positive, strictly increasing in ε and tends to 0 as ε →
0+. In other words, for any choice for 0 < α, β, δ, γ, r < 1 satisfying all our assumptions, there
always exist some values ε > 0 satisfying (24). Its threshold upper bound value is the unique
ε > 0 satisfying (24) with equality. Moreover, as − (βr ln r) ε > 0, condition (24) is stricter than

(i.e., implies) condition (16); indeed, e−
(1−α)(1−δ−γ)

ε − (βr ln r) ε < αβr =⇒ e−
(1−α)(1−δ−γ)

ε < αβr,
where the last inequality is equivalent to (16). Therefore, Lemma 1 always holds true under
Assumption A.2.

Proposition 2 Under Assumption A.2 and for k0 ∈
[

e−
1−δ−γ

ε , 1
]

, the solution of the Bellman

equation (23) is the function:

V (k, z) = A+B ln k + C ln z
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where:

A =
ln [1− β (α + ε ln r)]

1− β
+

β (α + ε ln r) ln [β (α+ ε ln r)] + β (1− γ) ln r

(1− β) [1− β (α+ ε ln r)]
, (25)

B =
α

1− β (α + ε ln r)
, (26)

C =
1

1− β (α + ε ln r)
; (27)

the optimal policy for capital is given by:

k∗
t+1 = h (k∗

t , zt) = β (α+ ε ln r) zt (k
∗
t )

α , (28)

while the corresponding optimal policy for consumption is given by:

c∗t = [1− β (α + ε ln r)] zt (k
∗
t )

α . (29)

Also in this case it is possible to show (Appendix A) that under condition (24) 0 <
β (α+ ε ln r) < 1 holds, thus assuring that: i) the optimal investment in (28) is strictly positive;
ii) the optimal consumption in (29) is strictly positive; and iii) coefficients B in (26) and C in
(27) are both strictly positive, which, in turn, together with the property β (α + ε ln r) > 0,
imply that the value function V (k, z) solving equation (23) is strictly concave in k and that
the RHS is strictly concave in y, so that the optimal policy in (28) is unique. Therefore,
Proposition 2 determines the unique optimal policy associated with our model with increas-
ing state-dependent probabilities. We can note that also in the case of increasing probability
the optimal policy in (28) differs from the standard (under constant probability) optimal pol-
icy k∗

t+1 = h (k, z) = αβzkα in (15) because of the effects of the state-dependent probability
p (k) = 1−γ+ε ln k as in (9). The negative term added to the original multiplicative coefficient
α appearing in (15) (i.e., +ε ln r), emphasizes the fact that, as p (k) = 1−γ+ε ln k is increasing
in k, the decision maker takes into account that too large an investment increases the proba-
bility p (k) of bad shocks zt = r occurring in subsequent times that will cause a reduction in
the future capital stock. Also in this case, whenever ε = 0 the probability p (k) turns out not
to depend on capital any longer, and thus the optimal policy (28) perfectly coincides with the
standard one in (15).

We wish to stress that, independently of whether the probability increases or decreases
with the capital stock, the optimal policy under state-dependent probability crucially depends
on the shocks probability p(kt). Therefore, by affecting the optimal capital dynamics, state-
dependent probabilities act as an engine of capital accumulation, which through its effects on
the probability of shocks realization impacts the evolution of economic inequality. Such effects
are completely absent under the standard constant probability assumption, explaining why the
standard Brock and Mirman’s (1972) setup cannot say anything about the source of path-
dependent outcomes, limiting thus its ability to explain the relation between macroeconomic
dynamics and economic inequalities. If macroeconomic outcomes and inequalities are related
(and inequalities are characterized by path-dependency) as confirmed by several works (Piketty,
2015; Piketty and Saez, 2014; Alvaredo et al., 2017), we need to allow probabilities to be state-
dependent in order to account for the nature of such a relation. Comparing the optimal policies
(21) and (28) under decreasing and increasing state-dependent probabilities respectively, it is
straightforward to notice that they differ only for the additive term ε ln r, whose sign is positive
in the former case and negative in the latter case, such that the optimal policy prescribes
a larger (smaller) investment whenever the probability decreases (increases) with the capital
stock.
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The optimal policies (21) and (28) derived in Propositions 1 and 2 can be rewritten as
follows, respectively:

kt+1 = θ1ztk
α
t and kt+1 = θ2ztk

α
t ,

where θ1 = β (α− ε ln r) and θ2 = β (α+ ε ln r). Consistent with extant literature (Montruc-
chio and Privileggi, 1999; Mitra et al., 2003; La Torre et al., 2019), the following log-linear
transformations:

xt = −
1− α

ln r
ln kt + 1 +

ln θi
ln r

, for i = 1, 2, (30)

define affine topological conjugate dynamics in the new variable xt over the interval [0, 1]. As
0 < r < 1 and, by Propositions 1 and 2, 0 < θi < 1 for i = 1, 2 as well, (30) are increasing affine
transformations of ln kt for i = 1, 2. Specifically, they are invertible and each of them establish
a one-to-one correspondence between the nonlinear dynamics of kt defined by maps (21) and
(28) and the affine dynamics of the new variable xt according to:

xt+1 = αxt + (1− α)

(

1−
ln zt
ln r

)

,

which, in turn, can be rewritten in terms of the following IFSSDP:

xt+1 =

{

αxt with probability p̃i (xt)
αxt + (1− α) with probability 1− p̃i (xt)

(31)

where the conjugate state-dependent probabilities p̃i (x) : [0, 1] → [0, 1] are the affine functions
defined in the next proposition.

Proposition 3 For the probabilities defined in (8) and (9), under Assumptions A.1 and A.2
the conjugate state-dependent probabilities p̃i (x) : [0, 1] → [0, 1] associated to the IFSSDP (31)
for i = 1, 2 are:

p̃1 (x) = γ −
ε

1− α
ln (θ1r) +

ε ln r

1− α
x (32)

p̃2 (x) = 1− γ +
ε

1− α
ln (θ2r)−

ε ln r

1− α
x. (33)

Both satisfy 0 < p̃i (x) < 1 for all x ∈ [0, 1], p̃1 (x) is strictly decreasing while p̃2 (x) is strictly
increasing.

Different from what happens under constant probabilities, Proposition 3 states that with
state-dependent probabilities also the probability function needs to be converted in an affine
function in order to derive a topologically equivalent transformation of the original dynamical
system. Thanks to this transformation the IFSSDP (31) with associated state-dependent prob-
abilities (32) and (33) can be analyzed through the tools described in Section 2, which ensure
the existence of a unique stationary distribution µ for such an IFSSDP. Moreover, since our
IFSSDP is characterized by affine maps, Theorem 4 and Corollary 2 directly apply allowing
us to determine the singularity vs. absolute continuity properties of the self-similar measure
associated with our IFSSDP. According to Theorem 4 and Corollary 2 the invariant distribu-
tion turns out be either singular if the capital share α is small (i.e., α ≤ 1/2) or absolutely
continuous if it is large (i.e., α > 1/2). Therefore, the capital share plays an important role in
the determination of the steady state of our state-dependent-probability extended Brock and
Mirman’s (1972) model as its magnitude drives the singularity vs. absolute continuity proper-
ties of the invariant distribution, and, as we are going to see through some specific examples
in the next section, different values of the capital share have important implications not only
for the long run but also for the short run macroeconomic dynamics and for the evolution of
inequalities.
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5 Numerical Examples

We now consider a few examples of the optimal growth model (6) based on the two state-
dependent probabilities defined in (8) and (9). Specifically, we numerically approximate the
evolution of a given probability distribution over time according to the affine IFSSDP (31)
where state-dependent probabilities p̃i (x) are the affine functions defined in (32) and (33),
that is, they are obtained as log-linearization of the state-dependent probabilities associated
to the optimal policies (21) and (28), which solve (6) in our two scenarios: 1) when p (k) is
decreasing and defined according to (8), and 2) when p (k) is increasing and defined according
to (9). To this purpose, we apply a Maple algorithm1 that approximates successive iterations
of the Markov operator (2) associated with the IFSSDP (31) based on Algorithm 1 in La Torre
et al. (2019), in order to have a qualitative idea on what the invariant distribution µα may
look like. The novelty with respect to the previous Algorithm is that this update is capable of
handling the case in which the two maps in (31) are allowed to overlap, thus paving the way
for the exploration of models characterized by high capital share values α, under which, as we
have seen from Theorem 4 and Corollary 2, the invariant distribution µα may be absolutely
continuous.

We fix the following parameters’ values:

β = 0.96, r = 0.25, and δ = γ = 0.01, (34)

and then consider the following values for the capital share:

α = 0.33, α = 0.5, and α = 0.8. (35)

To each of the α values in (35), a value for parameter ε satisfying the most restrictive condition
(24)—but very close to its upper bound—will be associated, both for the decreasing and the
increasing state-dependent probabilities scenarios.

In order to illustrate the evolution over time of some arbitrary initial distribution µ0 sup-
ported over the interval [0, 1] according to the Markov operator (2) associated with the IFSSDP
(31) along with how it is affected by the fact that the probabilities p̃i (x) are state-dependent,
we start with an example in which α = 0.5. Such a feature envisages the whole interval [0, 1] as
the support of the invariant distribution, while, at the same time, the images of the two maps
w1 (x) = αx and w2 (x) = αx + (1− α) in (31) (almost) do not overlap, except for the zero-
Lebesgue measure point w1 (1) = w2 (0). In this scenario, the full effect of the state-dependent
probabilities on the probability distribution µt at time t can be neatly appreciated as, in order
to build µt+1 = Mµt (x), fractions of its mass are being distributed between each of the two
sub-intervals appearing from each interval belonging to the pre-fractal in t after the tth iteration
of (2). When α < 0.5 such sub-intervals shorten too fast, thus reducing the visual magnitude
of the state-dependent probabilities effects, while if α > 0.5 the overlapping images of the wi

maps in (31) introduce a distortion that somewhat hides the full effect of the probabilities p̃i (x)
and 1− p̃i (x).

For α = 0.5 the ε value satisfying condition (24) with equality is 0.1757, so that we set
ε = 0.1756, that is, 0.0001 less that its upper bound. Hence, the optimal policies (21) and
(28) turn out to be kt+1 = β (α− ε ln r) ztk

α
t = (0.7137) ztk

α
t and kt+1 = β (α + ε ln r) ztk

α
t =

(0.2463) ztk
α
t respectively. The plots of the state-dependent probabilities p (k) for these param-

eters’ values, both for the decreasing and for the increasing probability, are those reported in

Figure 1 for the relevant interval
[

e−
1−δ−γ

ε , 1
]

= [0.0038, 1]; to such probabilities correspond

1The detailed code is available upon request.
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the log-linearized affine probabilities (32) and (33) defined as p̃1 (x) = 0.6154− (0.4870)x and
p̃2 (x) = 0.0107+(0.48780)x respectively. Figure 2 shows the first n = 8 iterations of our Maple
algorithm for the state-dependent probabilities p̃1 (x) and 1− p̃1 (x), i.e., when the (decreasing)
probability of the shock z = r is defined according to p̃1 (x) = 0.6154 − (0.4870)x, starting
from the uniform initial distribution µ0 (x) ≡ 1. Figure 3 shows the first n = 8 iterations of
our Maple algorithm for the state-dependent probabilities p̃2 (x) and 1− p̃2 (x), i.e., when the
(increasing) probability of the shock z = r is defined according to p̃2 (x) = 0.0107+(0.48780)x,
starting from the uniform initial distribution µ0 (x) ≡ 1.
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Figure 2: First 8 iterations of our Algorithm to approximate the Markov operator (2) associated to
the IFSSDP (31) for β = 0.96, r = 0.25, δ = γ = 0.01, α = 0.5, ε = 0.1756 when the state-dependent

probability is decreasing and defined by p̃1 (x) = 0.614 − (0.4870) x.
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Figure 3: First 8 iterations of our Algorithm to approximate the Markov operator (2) associated to
the IFSSDP (31) for β = 0.96, r = 0.25, δ = γ = 0.01, α = 0.5, ε = 0.1756 when the state-dependent

probability is increasing and defined by p̃2 (x) = 0.0107 + (0.4870) x.

Assuming that Figures 2(i) and 3(i) provide a reasonably meaningful approximation of the
invariant distribution µα in both models, from Figure 2 we learn that, as expected, µα tends
to preserve a high degree of inequality by allocating most of the mass on x values close to
the endpoints of [0, 1], especially on the best event x = 1 (notice the very high spike close to
x = 1 in Figure 2(i), corresponding to the largest probability value for the best shock z = 1,
1 − p̃1 (1) = 1 − 0.1285 = 0.8715). This is explained by the fact that a decreasing probability
p̃1 (x) introduces a conservative pattern for the x values, with a higher probability to remain
close to x = 0 if the system is already there, and (much) higher probability to remain close
to x = 1 if the system is already in that area. A larger spike close to x = 1 than close to
x = 0 is determined by the property that p̃1 (x) = 0.6154− (0.4870)x implies uniformly larger
values for 1− p̃1 (x) than for p̃1 (x) for all x ∈ [0, 1], which translates in having always a higher
probability associated with the best shock z = 1. Conversely, Figure 3 shows that an increasing
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probability like p̃2 (x) = 0.0107 + (0.48780)x tends to concentrate more mass in the middle of
[0, 1], that is, future values of x are more likely to jump (almost) anywhere in the interval [0, 1]
than in the previous case. Again the justification of this pattern originates from the increasing
probability p̃2 (x) that raises the chance of the occurrence of the best shock z = 1 when x is
small and viceversa. As also in this case p̃2 (x) = 0.0107 + (0.48780)x implies uniformly larger
values for 1 − p̃2 (x) than for p̃2 (x) for all x ∈ [0, 1], again the probability associated with the
best shock z = 1 is always higher, thus explaining the presence of a slightly larger mass in the
right half of the interval [0, 1] in Figure 3(i) (notice the largest probability value for the best
shock z = 1 is reached in x = 0, as 1 − p̃2 (0) = 1 − 0.0107 = 0.9893). Finally, the height
and irregularity of the spikes in both figures 2(i) and 3(i) are consistent with statement 2 in
Theorem 4 establishing that, when α = 0.5, our state-dependent probabilities p̃1 (x) and p̃2 (x)
imply that the invariant distribution µα must be singular with respect to Lebesgue measure.

For α = 0.33 the ε value satisfying condition (24) with equality is 0.1720, so that we set
ε = 0.1719, that is, 0.0001 less that its upper bound. Hence, the optimal policies (21) and
(28) turn out to be kt+1 = β (α− ε ln r) ztk

α
t = (0.5456) ztk

α
t and kt+1 = β (α + ε ln r) ztk

α
t =

(0.0880) ztk
α
t respectively and the relevant interval becomes

[

e−
1−δ−γ

ε , 1
]

= [0.0033, 1]; to such

probabilities correspond the log-linearized affine probabilities (32) and (33) defined as p̃1 (x) =
0.5211 − (0.3557)x and p̃2 (x) = 0.0110 + (0.3557)x respectively. Figure 4(a) shows the 5th

iteration of our Maple algorithm for the state-dependent probabilities p̃1 (x) and 1 − p̃1 (x),
where the former is decreasing, starting from the uniform initial distribution µ0 (x) ≡ 1. Figure
4(b) shows the 5th iteration of our Maple algorithm for the state-dependent probabilities p̃2 (x)
and 1 − p̃2 (x), where the former is increasing, starting from the uniform initial distribution
µ0 (x) ≡ 1. Both invariant distributions in Figure 4 have the Ternary Cantor set as attractor,
so that they concentrate on a much thinner and sparser set than the invariant distributions
in Figures 2 and 3; besides this feature, the general pattern exhibited by the approximations
of Figures 4(a) and 4(b) seems consistent with that already discussed for the approximations
in Figures, 2 and 3. Clearly, consistently with statement 1 in Theorem 4, both invariant
distributions must be singular with respect to Lebesgue measure.
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Figure 4: 5th iteration of our Algorithm to approximate the Markov operator (2) associated to the
IFSSDP (31) for β = 0.96, r = 0.25, δ = γ = 0.01, α = 0.33, ε = 0.1719; a) when the state-dependent
probability is decreasing and defined by p̃1 (x) = 0.5211 − (0.3557) x; b) when the state-dependent

probability is increasing and defined by p̃2 (x) = 0.0110 + (0.3557) x.
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If α = 0.8 the ε value satisfying condition (24) with equality is 0.1058, so that we set
ε = 0.1057, that is, 0.0001 less that its upper bound. Hence, the optimal policies (21) and
(28) turn out to be kt+1 = β (α− ε ln r) ztk

α
t = (0.9087) ztk

α
t and kt+1 = β (α + ε ln r) ztk

α
t =

(0.6273) ztk
α
t respectively and the relevant interval becomes

[

e−
1−δ−γ

ε , 1
]

= [0.0001, 1]; to such

probabilities correspond the log-linearized affine probabilities (32) and (33) defined as p̃1 (x) =
0.7932 − (0.7326)x and p̃2 (x) = 0.0110 + (0.7326)x respectively. Figure 5(a) shows the 10th

iteration of our Maple algorithm for the state-dependent probabilities p̃1 (x) and 1 − p̃1 (x),
where the former is decreasing, starting from the uniform initial distribution µ0 (x) ≡ 1. Figure
5(b) shows the 10th iteration of our Maple algorithm for the state-dependent probabilities p̃2 (x)
and 1 − p̃2 (x), where the former is increasing, starting from the uniform initial distribution
µ0 (x) ≡ 1. Figure 5 considers an IFSSDP in which the images of the two maps w1 (x) = αx
and w2 (x) = αxt + (1− α) exhibit a large overlapping region, with magnitude of 0.6. Such a
property, consistently with Theorem 4, implies that the invariant distribution µα is more likely
to be smooth, a feature clearly apparent from both Figures 5(a) and 5(b). More precisely, the
invariant distribution approximated in Figure 5(a) satisfies the sufficient condition of Corollary
2, and thus it is almost surely absolutely continuous. In fact, the term Θ turns out to be
Θ = −0.2287, so that eΘ = e−0.2287 = 0.7956 < 0.8 = α. In other words, the spikes present in
the finite-time approximation of µα in Figure 5(a) are likely to be asymptotically smoothed out
as the number of iterations approaches infinity. A similar sufficient condition does not hold for
the invariant distribution approximated in Figure 5(b), as in this case Θ = −0.0289, so that
eΘ = e−0.0289 = 0.9715 > 0.8 = α.
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Figure 5: 10th iteration of our Algorithm to approximate the Markov operator (2) associated to the
IFSSDP (31) for β = 0.96, r = 0.25, δ = γ = 0.01, α = 0.8, ε = 0.1057; a) when the state-dependent
probability is decreasing and defined by p̃1 (x) = 0.7932 − (0.7326) x; b) when the state-dependent

probability is increasing and defined by p̃2 (x) = 0.0110 + (0.7326) x.

A careful comparison between the pair of Figures 2(i), 3(i) and the pair of Figures 5(a),
5(b), easily allows to appreciate that the general characteristics of the invariant distributions
generated by decreasing vs. increasing state-dependent probabilities are the same, regardless
on whether they turn out to be singular or absolutely continuous. Specifically, both plots in
Figures 2(i) and 5(a) exhibit a certain degree of inequality with a higher spike close to x = 1,
with the approximation in Figure 5(a) characterized by a slightly larger mass concentration
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around the middle of [0, 1] due to the overlapping images of the maps wi. Similarly, both
Figures 3(i) and 5(b) exhibit enough mass in the middle of [0, 1], which in both cases happens
to be slightly shifted to the right half of the interval [0, 1]; again, Figure 5(b) concentrates more
mass in the middle of [0, 1] due to the overlapping images of the maps wi.

As a curiosity, Figure 6 reports the approximations of the invariant distribution of the
original nonlinear random dynamics defined by the optimal policies (21) and (28) for the first
two models considered in Figures 2 and 3, i.e., for the parameters’ values as in (34), α = 0.5 and
ε = 0.1756, so that, for the decreasing probability p (k) = γ−ε ln kt as in (8), the dynamics are
generated by kt+1 = θ1ztk

α
t , while, for the increasing probability p (k) = 1−γ+ ε ln kt as in (9),

the dynamics are generated by kt+1 = θ2ztk
α
t where θ1 = β (α− ε ln r) and θ2 = β (α+ ε ln r).

Specifically, the IFSSDP describing the dynamics of the former model turns out to be:

kt+1 =

{

(0.1784) k0.5
t with probability p (kt) = 0.01− (0.1756) ln kt

(0.7137) k0.5
t with probability 1− p (kt) = 0.99 + (0.1756) ln kt,

(36)

defined over the interval
[

(θ1r)
2 , θ21

]

= [0.0318, 0.5094] whose endpoints are the fixed points of
the two maps w1 (k) = θ1rk

α
t and w2 (k) = θ1k

α
t , while the IFSSDP describing the dynamics of

the latter model is:

kt+1 =

{

(0.0616) k0.5
t with probability p (kt) = 0.01− (0.1756) ln kt

(0.2463) k0.5
t with probability 1− p (kt) = 0.99 + (0.1756) ln kt,

(37)

defined over the interval
[

(θ2r)
2 , θ22

]

= [0.0038, 0.0606] whose endpoints are the fixed points of
the two maps w1 (k) = θ2rk

α
t and w2 (k) = θ2k

α
t .
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Figure 6: 7th iteration of our Algorithm to approximate the Markov operator (2) associated to the
nonlinear IFSSDP defined by a) (36) over [0.0318, 0.5094], and b) (37) over [0.0038, 0.0606].

As in both IFSSDPs defined in (36) and (37) the derivative of the higher map w2 (k) = θik
α
t

evaluated at the left endpoint, (θir)
2, of their attractor

[

(θir)
2 , θ2i

]

is larger than 1, both IF-
SSDPs are not contractive. However, convergence to a unique invariant distribution supported
over the whole intervals

[

(θir)
2 , θ2i

]

is guaranteed by the fact that they are topologically con-
jugate of the affine IFSSDP (31), which, being a contraction, converges to a unique invariant
distribution that, when α = 0.5, is supported on the full interval [0, 1]. Moreover, as occurs to
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the IFSSDP (31), for α = 0.5, the images of w1 (k) and w2 (k) (almost) do not overlap, except
for the zero-Lebesgue measure points w1 (θ

2
i ) = w2

[

(θir)
2], for i = 1, 2. In other words, the

invariant distributions of the IFSSDPs (36) and (37) are just transformations of the invariant
distributions whose approximations are plotted in Figures 2(i) and 3(i). This is confirmed
by Figures 6(a) and 6(b), where the 7th iteration of our Maple algorithm to approximate the
Markov operator (2) associated with the nonlinear IFSSDPs (36) and (37) starting from the
uniform distribution µ0 ≡ 1/

[

θ2i − (θir)
2] over the interval

[

(θir)
2 , θ2i

]

are shown respectively.
As a matter of fact, the latter approximations exhibit a similar pattern of those appearing
in Figures 2(i) and 3(i), or, more appropriately, in Figures 2(h) and 3(h), only with a shift,
together with higher spikes, of mass toward smaller values for the variable k; more precisely, in
Figure 6(a) the general inequality features of Figures 2(h) and 2(i) are kept, but with higher
spikes appearing closer to the left endpoint of the support, while Figure 6(b) maintains the
general pattern of Figures 3(h) and 3(i), only with the overall mass shifted to the left half of
the support.

6 Conclusion

We extend the classical discrete time stochastic one-sector growth model with logarithmic utility
and Cobb-Douglas production function á-la Brock and Mirman (1972) to allow probabilities
to be state-dependent. Under state-dependent probabilities the probability of occurrence of a
given shock depends on the capital stock, thus as the economy accumulates more capital along
its process of economic development the probability of occurrence of different shocks changes
over time. As the social planner in making his investment decisions needs to account for
how the future capital stock level will impact these probabilities, the optimal policy critically
depends on the characteristics of the state-dependent probability function. Therefore, state-
dependent probabilities act as an engine of capital accumulation, which through its effects on
the probability of shocks realization impacts the evolution of economic inequality. We show
that whenever the probability (assumed to take a logarithmic form) is decreasing (increasing)
in the capital stock the probability of the most (least) favorable shock increases, and this
incentivize the planner to increase (decrease) his capital investment, which in turn will generate
a widening (reduction) in economic inequalities over time. We also show that the optimal
solution can be converted into a contractive affine IFS with affine SDP which, under rather
general conditions, converges to an invariant self-similar measure supported on a (possibly
fractal) compact attractor. Moreover, we characterize the properties of the invariant self-
similar measure associated with our IFSSDP in terms of singularity and absolutely continuity
with respect to the Lebesgue measure, showing that this is ultimately related to the magnitude
of the capital share.

To the best of our knowledge, ours is the first attempt to analyze the role of state-dependent
probabilities in optimal stochastic economic growth settings. Therefore, several interesting
issues associated with the role of state-dependent probabilities on macroeconomic dynamics
still need to be uncovered. We have considered only the situation in which the probability
function monotonically depends on the capital stock, thus it is natural to wonder how results
may change in more general settings in which the probability may be non-monotonic in capital.
We have also analyzed only the centralized outcome in which the social planner internalizes the
dependence of the shocks probability on capital, thus it may be interesting to understand how
results would change in a decentralized setting and how to eventually decentralize the social
optimum. The analysis of these further issues is left for future research.
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A Proofs of the Main Results

A.1 Proof of Theorem 4

1) The first conclusion is clear since whenever α < 1/2 the measure µα is supported on a
Cantor set with zero Lebesgue measure. 3) By the results in Peres and Solomyak (1996)
the IFS {αx, αx+ 1− α} satisfies the transversality condition for all α > 1/2 and then the
conclusion follows by Theorem 1.1 in Bárány (2015). 2) Since α = 1/2 is fixed, we use µ rather
than µα to avoid extraneous clutter on our notation. Recall that the “Markov operator” is
given by

Mν (S) =
∑

i

∫

w−1
i (S)

pi (x) dν (x) =
∑

i

∫

S

pi
(

w−1
i (x)

)

dν
(

w−1
i (x)

)

and that µ is the unique fixed point of M . Suppose that µ is absolutely continuous with density
function f (x). Then we obtain the equation

∫

S

f (x) dx =
∑

i

∫

w−1(S)

pi (y) f (y) dy = 2
∑

i

∫

S

f
(

w−1
i (x)

)

pi
(

w−1
i (x)

)

dx

= 2

∫

S

[

p1 (2x) f (2x)χ[0,1/2] (x) + p2 (2x− 1) f (2x− 1)χ[1/2,1] (x)
]

dx

where χA (x) is the characteristic function of the set A. For this to be true for all Borel sets S
we must have that, for almost every x, the two equations

f (x) = 2f (2x) p1 (2x) 0 ≤ x ≤ 1/2,

and
f (x) = 2f (2x− 1) p2 (2x− 1) 1/2 ≤ x ≤ 1.

Doing a simple change of variable these become for 0 ≤ y ≤ 1

f (y/2) = 2f (y) p1 (y) =⇒ p1 (y) =
f (y/2)

2f (y)

and

f (y/2 + 1/2) = 2f (y) p2 (y) =⇒ p2 (y) =
f (y/2 + 1/2)

2f (y)
.

Then the condition that p1 (y) + p2 (y) = 1 implies that

2f (y) = f (y/2) + f (y/2 + 1/2) (38)

for Lebesgue almost every y ∈ [0, 1]. Thus f (x) is the fixed point of the operator

T (g) (x) =
g (x/2) + g (x/2 + 1/2)

2
.
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We show that the only fixed point of T which is a density function is the constant function
g (x) = 1. It is easy to see that Tg is a density if g is a density. Suppose that g ∈ C1 [0, 1].
Then (Tg)′ (x) = g′ (x/2) /4 + g′ (x/2 + 1/2) /4 and so

∥

∥(Tg)′
∥

∥

∞
≤ 1

2
‖g′‖

∞
. By induction this

means that
∥

∥(T ng)′
∥

∥

∞
≤

1

2n
‖g′‖

∞
. (39)

Next, suppose that we have a density function g ∈ C1 [0, 1] with |g′ (x)| ≤ m for all x ∈ [0, 1].
Then for all x ∈ [0, 1] we have

g (0)−mx ≤ g (x) ≤ g (0) +mx

and thus, integrating over [0, 1], we have

g (0)−m/2 ≤ 1 ≤ g (0) +m/2 ⇒ |g (0)− 1| ≤ m/2

and so

|g (x)− 1| ≤ mx+m/2 ≤
3

2
m ⇒ ‖g − 1‖

∞
≤

3

2
m. (40)

Next for two functions f, g ∈ L1 [0, 1], integrating the inequality

|T (f) (x)− T (g) (x)| ≤
1

2
|f (x/2)− g (x/2)|+

1

2
|f (x/2 + 1/2)− g (x/2 + 1/2)|

over [0, 1] we get

∫ 1

0

|T (f) (x)− T (g) (x)| dx

≤
1

2

∫ 1

0

|f (x/2)− g (x/2)| dx+
1

2

∫ 1

0

|f (x/2 + 1/2)− g (x/2 + 1/2)| dx

=

∫ 1/2

0

|f (u)− g (u)| du+

∫ 1

1/2

|f (u)− g (u)| du =

∫ 1

0

|f (u)− g (u)| du,

and thus ‖T (f)− T (g)‖1 ≤ ‖f − g‖1. Let f be a density function and let ǫ > 0 be given.
Then there is some density function g ∈ C1 [0, 1] so that ‖f − g‖1 ≤ ǫ/2. Then we have

‖T n (f)− 1‖1 ≤ ‖T n (f)− T n (g)‖1 + ‖T n (g)− 1‖1
≤ ‖T n (f)− T n (g)‖1 + ‖T n (g)− 1‖

∞

≤ ‖f − g‖1 +
3

2

∥

∥(T ng)′
∥

∥

∞

≤ ‖f − g‖1 +
3

2n+1
‖g′‖

∞
≤ ǫ

for sufficiently large n. Thus T nf → 1 in L1 [0, 1] for any density f and so the only density
function which satisfies (38) is f (x) = 1.

A.2 Proof of Lemma 1

Fix an initial value k0 for capital, possibly, but not necessarily, such that

k0 ∈
(

0, e−
1−δ−γ

ε

)

, and suppose, by contradiction, that the optimal saving/investment y∗ = kt+1

in each period t remains bounded inside the interval
[

0, e−
1−δ−γ

ε

)

. Hence, both definitions (8)
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and (9) imply that at each time t ≥ 0 the probability of the shock r is constant—given by
p (y∗) ≡ 1 − δ or p (y∗) ≡ δ respectively—so that either the Bellman equation (11) or (13)
fully represent problem (6). It is well known that the optimal policy solving either equa-
tion (11) or equation(13) is the same and is given by (15); such a policy generates trajec-
tories kt+1 = h (kt, zt) = αβztk

α
t having the deterministic trajectory generated by the lower

map kt+1 = αβrkα
t as lower bound, so that kt+1 = αβztk

α
t ≥ αβrkα

t for all t ≥ 0. The
lower bound trajectory generated by kt+1 = αβrkαt converges to the (deterministic) fixed point

limt→∞ αβrkαt = (αβr)
1

1−α . As condition (16) is equivalent to

e−
1−δ−γ

ε < (αβr)
1

1−α ,

we conclude that there exists a finite date τ ≥ 0 such that kτ ≥ kτ ≥ e−
1−δ−γ

ε , thus contradicting

the assumption that kt remains bounded inside the interval
[

0, e−
1−δ−γ

ε

)

for all t ≥ 0.

A.3 Proof of Proposition 1

Under the assumption that B − εC ln r > 0 (we shall see that it holds at the end of the proof)
the RHS in (17) is strictly concave in y, and the FOC with respect to y yields the unique
solution

y∗ =
β (B − εC ln r)

1 + β (B − εC ln r)
zkα, (41)

Substituting y∗ as in (41) into the RHS of (17) after some algebra yields

V (k, z) = A+B ln k + C ln z

= ln

[

zkα −
β (B − εC ln r)

1 + β (B − εC ln r)
zkα

]

+ β (B − εC ln r) ln

[

β (B − εC ln r)

1 + β (B − εC ln r)
zkα

]

+ β (A + γC ln r)

= α [1 + β (B − εC ln r)] ln k + [1 + β (B − εC ln r)] ln z

+ β (B − εC ln r) ln [β (B − εC ln r)]− [1 + β (B − εC ln r)] ln [1 + β (B − εC ln r)]

+ β (A + γC ln r) .

By equating all similar terms in both sides we find that a solution of the Bellman equation
(17) is given by the constants A, B and C that satisfy















(1− β)A = βγC ln r + β (B − εC ln r) ln [β (B − εC ln r)]
− [1 + β (B − εC ln r)] ln [1 + β (B − εC ln r)]

B = α [1 + β (B − εC ln r)]
C = 1 + β (B − εC ln r) .

From the second and third equations we see that B = αC, so that, after substituting this in the
third equation, we easily find the value of C as in (20), C = 1

1−β(α−ε ln r)
, which, when replaced

into the second equation, yields the (crucial) value for B as in (19): B = α
1−β(α−ε ln r)

.
After cumbersome algebra the value of parameter A can be easily obtained; as

B = αC = α
1−β(α−ε ln r)

, we get

β (B − εC ln r) = β (αC − εC ln r) = β (α− ε ln r)C =
β (α− ε ln r)

1− β (α− ε ln r)
,
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so that:

A =
1

1− β

{

β (α− ε ln r)

1− β (α− ε ln r)
ln

[

β (α− ε ln r)

1− β (α− ε ln r)

]

−

[

1 +
β (α− ε ln r)

1− β (α− ε ln r)

]

ln

[

1 +
β (α− ε ln r)

1− β (α− ε ln r)

]

+
βγ ln r

1− β (α− ε ln r)

}

=
[1− β (α− ε ln r)] ln [1− β (α− ε ln r)] + β (α− ε ln r) ln [β (α− ε ln r)] + βγ ln r

(1− β) [1− β (α− ε ln r)]
,

which is the expression in (18).
After replacing B and C as in (19) and in (20) respectively into (41) we easily obtain

y∗ = h (k, z) =
β (B − εC ln r)

1 + β (B − εC ln r)
zkα = β (α− ε ln r) zkα,

which confirms the expression in (21) for the optimal policy.
The solution in (21) is certainly interior under condition (16). In fact, on one hand it is

straightforward to show that

ε < −
(1− α) (1− δ − γ)

ln (αβr)
⇐⇒ αβr

(

e−
1−δ−γ

ε

)α

> e−
1−δ−γ

ε ,

which implies that, as −ε ln r > 0, for any k ≥ e−
1−δ−γ

ε ,

y∗ = β (α− ε ln r) zkα > αβzkα ≥ αβrkα ≥ αβr
(

e−
1−δ−γ

ε

)α

> e−
1−δ−γ

ε ,

that is, y∗ > e−
1−δ−γ

ε . On the other hand, to prove that y∗ = β (α− ε ln r) zkα < zkα we show
that condition (16) implies that 0 < β (α− ε ln r) < α− ε ln r < 1. To this purpose note that,
as 0 < αβ < 1 and 0 < r < 1, the following holds:

ln (αβ) + ln r = ln (αβr) < ln r ⇐⇒ −
1− α

ln r
> −

1− α

ln (αβr)

=⇒ −
1− α

ln r
> −

(1− α) (1− δ − γ)

ln (αβr)
> ε,

where the last inequality is condition (16); as the last two inequalities are equivalent to α −
ε ln r < 1, we have just established that that y∗ < zkα.

The property that 0 < β (α− ε ln r) < 1 ⇐⇒ 1 − β (α− ε ln r) > 0 also implies that
both coefficients B and C are strictly positive; this establishes that the RHS in (17) is strictly
concave.

Finally, it is a simple exercise to show that problem (6) satisfies all assumptions of Theorem
9.12 on p. 274 in Stokey and Lucas (1989): therefore, the function
V (k, z) = A + B ln k + C ln z—with coefficients A, B and C defined in (18), (19) and (20)
respectively—that solves the Bellman equation (17) is exactly the value function of problem
(6), while the function h (k∗

t , zt) = β (α− ε ln r) zt (k
∗
t )

α defined in (21) is exactly the optimal
policy. We omit the details for brevity.

A.4 Proof of Proposition 2

Provided that B + εC ln r > 0, the RHS in (23) is strictly concave in y; hence, steps similar
to those used in the proof of Proposition 1 easily yield the values A, B and C as in (25),
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(26) and (27), together with the optimal policy as in (28) and the optimal consumption as
in (29). Being the same exercise as in the previous proof of Proposition 1, also establishing
that Theorem 9.12 on p. 274 in Stokey and Lucas (1989) holds is straightforward, so that the
function V (k, z) = A + B ln k + C ln z—with coefficients A, B and C defined in (25), (26)
and (27) respectively—that solves the Bellman equation (23) is exactly the value function of
problem (6), while the function h (k∗

t , zt) = β (α + ε ln r) zt (k
∗
t )

α defined in (28) is exactly the
optimal policy.

We only need to establish that the unique solution in (28) is interior under condition (24).
In fact, on one hand it is immediately shown that

e−
(1−α)(1−δ−γ)

ε − (βr ln r) ε < αβr ⇐⇒ β (α + ε ln r) r
(

e−
1−δ−γ

ε

)α

> e−
1−δ−γ

ε ,

which implies that, for any k ≥ e−
1−δ−γ

ε ,

y∗ = β (α+ ε ln r) zkα ≥ β (α + ε ln r) rkα ≥ β (α + ε ln r) r
(

e−
1−δ−γ

ε

)α

> e−
1−δ−γ

ε ,

that is, y∗ > e−
1−δ−γ

ε . Note, in turn, that, as e−
1−δ−γ

ε > 0, the last inequality also establishes
that β (α+ ε ln r) > 0. On the other hand, as ε ln r < 0, β (α + ε ln r) < 1 definitely holds, so
that y∗ = β (α + ε ln r) zkα < zkα as well.

Finally,

β (α + ε ln r) > 0 ⇐⇒
βα

1− β (α + ε ln r)
+

βε ln r

1− β (α + ε ln r)
= β (B + εC ln r) > 0,

which establishes that the RHS in (23) is strictly concave in y.

A.5 Proof of Proposition 3

The inverse transformation of (30) yields k as a function of x according to k = (θir)
1

1−α

(

r−
1

1−α

)x

.

Therefore, p̃i (x) = p (k) = p
[

(θir)
1

1−α

(

r−
1

1−α

)x]

, so that, for i = 1, according to (8),

p̃1 (x) = γ − ε ln k = γ − ε ln
[

(θ1r)
1

1−α

(

r−
1

1−α

)x]

, which is equivalent to (32), while, for i = 2,

according to (9), p̃2 (x) = 1−γ+ε ln k = 1−γ+ε ln
[

(θ2r)
1

1−α

(

r−
1

1−α

)x]

, which is equivalent to

(33). As, under Assumptions A.1 and A.2, Propositions 1 and 2 establish that kt ∈
[

e−
1−δ−γ

ε , 1
]

for all t ≥ 0, definitions (8) and (9) guarantee that p̃i (x) = p (k) = p
[

(θir)
1

1−α

(

r−
1

1−α

)x]

sat-

isfy 0 < p̃i (x) < 1 for all x ∈ [0, 1] and i = 1, 2. Finally, as ε ln r
1−α

< 0, clearly p̃1 (x) is decreasing,

while, as −ε ln r
1−α

> 0, p̃2 (x) is increasing.
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[31] Stenflo Ö. Uniqueness of invariant measures for place-dependent random iteration of func-
tions, in Fractals in Multimedia, IMA Vol. Math. Appl. 132: 13–32 (2002).

[32] Stokey NL, Lucas RE. Recursive methods in economic dynamics. Harvard University Press,
Cambridge, MA (1989).

31


	Introduction
	Iterated Function Systems
	Constant Probabilities
	State-Dependent Probabilities
	Singularity vs. Absolute Continuity

	The Model
	Optimality
	Numerical Examples
	Conclusion
	Proofs of the Main Results
	Proof of Theorem 4
	Proof of Lemma 1
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3


