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Abstract

We consider a model where agents are nodes on a graph and two agents are potential

partners if they are connected by an edge in the graph. Agents have to be matched in

pairs and have to contribute effort levels to complete a task of unit value. An allocation

consists of pairs of agents and a sharing arrangement for each pair. Each agent has

symmetric preferences around an ideal contribution level. We show that the strong

core exists in an instance of the problem if and only if the optimal values of the integer

matching, fractional matching and convering problems, coincide. The weak core exists

if the optimal values of the integer and fractional matching problems coincide and

always exists for the bipartite and complete graphs. A closely related paper is Nicolò

et al. (2022). They provide an algorithm that generates a weak core allocation in the

model with a complete graph and single-peaked preferences.

JEL classification: C78; D47; D71
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1 Introduction

We consider a model where agents are nodes in a graph. If two agents are connected by an

edge, they are potential partners. Once a partnership consisting of a pair of agents is formed,

they are required to perform a task of unit value. Each agent has an ideal contribution that

she would like to make and preferences are symmetric. For example, agent i may optimally

wish to contribute 0.3 with the contribution ti preferred to t
′
i if and only if ti is closer to 0.3
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than t
′
i. An allocation is a pairing (or matching) of all agents and a sharing arrangement for

each pair. We investigate the existence and properties of strong and weak core allocations

in this model.

We believe that situations we analyse arise naturally in several contexts. Managers may

have to assign pairs of workers to tasks where each worker has to contribute effort. Job

sharing in the software industry where programmers from different locations collaborate in

order to execute projects, is fairly common. Roommates have to share household duties. In

each case the compatibility of agents is specified by the graph structure. The requirement

that allocations in these situations must belong to the core can be interpreted as requiring

the absence of justified envy (see Roth (2002) and Kagel and Roth (2000)). The presence of

justified envy is likely to cause disaffection among agents and disrupt the smooth functioning

of institutions.

Our model is a variant of the well-known Shapley and Shubik (1971) model (henceforth

referred to as the assignment model). In that model, the underlying graph is bipartite with

buyers on one side and sellers on the other. In contrast, we consider a general graph structure

- for example, we allow for the possibility that the underlying graph is complete so every

agent is a potential partner for any other. Another significant departure from the assignment

model is that in our setting, agents can be satiated by giving them their ideal contribution.

Satiated agents will not be part of any coalition that blocks strongly. As a result, the strong

and weak cores may differ. On the other hand, there is no distinction between the strong

and the weak core in the assignment model. Moreover, the bipartite structure of the graph

ensures the existence of the core. It is well-known that existence will fail if the graph is not

assumed to be bipartite.

Fix a graph and a profile of preferences (i.e. a profile of ideal contributions). This induces

a cost cij for every edge (i, j) in the graph. We construct three distinct linear programs

from this data. In each case, the objective function is the cost associated with a matching.

The three problems differ with respect to the class of matchings over which an optimum is

sought. In the Fractional Matching problem (Program F ), agents i and j can be matched

with probability xij ∈ [0, 1] and
∑

j xij = 1 for all i. In the Integer Matching problem

(Program I), only deterministic matchings are considered, i.e. xij ∈ {0, 1} and
∑

j xij = 1

for all i. Finally, in the Covering problem (Program P ), xij ∈ [0, 1] but
∑

j xij ≥ 1 for all j.

Let ZI , ZF and ZP denote the optimal values of the three linear programs. It is clear from

the nature of the constraints imposed in each of the problems that ZP ≤ ZF ≤ ZI .

According to our results, the existence of the strong and weak cores depend crucially on

the relationship between ZI , ZF and ZP . The strong core exists if and only if ZI = ZF = ZP .

A sufficient condition for the existence of the weak core is ZI = ZF . Using these results,

we show that the weak core exists in the bipartite and complete graphs for all profiles of

preferences. We provide numerous examples that clarify the relationship between ZI , ZF and

ZP in the general case. Note that the existence of the strong and weak cores depends on both
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the structure of the graph and the preference profile. An open question is whether there are

other graph structures where statements about existence can be made without reference to

preferences (as in the bipartite and complete graph cases).

Our paper is closely related to Nicolò et al. (2022). They consider a very similar model

where agents have to be matched in pairs and contribute effort in order to complete a task of

unit value. They assume that all agents are compatible or equivalently, the underlying graph

structure is complete. In this respect, their model is more specialized than ours. On the

other hand, they assume that preferences of the agents are single-peaked with a unique peak.

Our preferences are therefore included in the class of preferences they consider. They provide

an algorithm called the SAM (Select-Allocate-Match) algorithm which explicitly computes

an allocation in the weak core. They point out that the strong core may not exist but

unlike us, do not investigate conditions under which it exists. However, a more fundamental

difference between the two papers is that they employ completely different techniques to

address the issue - we use ideas from linear programming (closer to the techniques in Shapley

and Shubik (1971)) while their methods are more direct. We believe that our approach offers

fresh insights into this interesting class of problems while proving several new results.

The rest of the paper is organized as follows. In Section 2, we introduce the model and

basic definitions. Subsection 3.1 provides the linear programming formulation of the stable

sharing problem. Subsections 3.2 and 3.3 provide the two main results on the strong and

weak core respectively. Section 4 contains illustrative examples while Section 5 provides

applications.

2 The Model

The set of agents is N = {1, . . . , n} where n is even. We consider a model where agents are

nodes in a graph. If two agents are connected by an edge, they are potential partners. Once

a partnership consisting of a pair of agents is formed, they are required to perform a task of

unit value. We assume that no agent can remain on her own and each agent can have only

one partner.

The set of possible partnerships is captured by the graph G = (N,E) with N as the set

of vertices. The edge-set E captures all feasible pairs of agents (partnerships) in the model.

A pair of agents (i, j) is a feasible pair if (i, j) ∈ E. We refer to Graph G as the partnership

graph. We assume that the partnership graph G admits at least one perfect matching.1 Our

objective is to identify who is paired with whom (matching), and how the unit value is shared

by the matched agents.

An allocation (M, t) is a matching M ⊆ E and a vector t = (tk)k∈N where tk ∈ [0, 1]

for all k ∈ N and ti + tj = 1 for all (i, j) ∈ M . For a pair (i, j) ∈ M , we refer to (ti, tj)

1One special case is that G is a complete graph.
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as the contribution vector (tuple) for the agents i, j who have been paired together in the

allocation.

Each agent i has a preference ordering %i over her contribution.2 We assume %i is sym-

metric single-peaked. The ordering %i is single-peaked if there exists a unique contribution

pi ∈ [0, 1] such that for all x, y ∈ [0, 1], if x < y < pi or x > y > pi then y �i x. The contri-

bution pi will be referred to as the peak of agent i in %i. A special instance of a single-peaked

preference is a symmetric or Euclidean preference: x %i y if and only if |x− pi| ≤ |y− pi|. A

preference profile % is an n-tuple of preferences (%1, . . . ,%n).

The fundamental property that an allocation should satisfy is stability. Observe that in

our model, “only” a feasible pair of agents can block an allocation.

Definition 1 Fix a preference profile %. Let (M, t) be an allocation and i, j ∈ N be a

feasible pair of agents with contributions ti and tj respectively in (M, t). Then the feasible

pair (i, j) strongly blocks (M, t) at % if there exists a contribution vector (t̄i, t̄j) such that

t̄i + t̄j = 1, t̄i �i ti and t̄j �j tj. An allocation belongs to the weak core if it is not strongly

blocked by any feasible pair of agents.

A more permissive notion of blocking is weak blocking where only one of the blocking

agents is better-off while the other one no worse-off. An allocation that cannot be weakly

blocked by any feasible pair of agents belongs to the strong core. It is easy to check that a

strong core allocation is also a weak core allocation while the converse may not be true.

Definition 2 Fix a preference profile %. Let (M, t) be an allocation and i, j ∈ N be a

feasible pair of agents with contributions ti and tj respectively in (M, t). Then the feasible

pair (i, j) weakly blocks (M, t) at % if there exists a contribution vector (t̄i, t̄j) such that

t̄i + t̄j = 1, t̄i %i ti and t̄j %j tj with either t̄i �i ti or t̄j �j tj. An allocation belongs to the

strong core if it is not weakly blocked by any feasible pair of agents.

Observe that for any feasible pair of agents in our model, it is possible to compute the cost

of a partnership between them using their peaks. Consider agents i, j ∈ N with (i, j) ∈ E.

We color the edge (i, j) red if pi + pj > 1, blue if pi + pj < 1 and black if pi + pj = 1. Define

cij = |pi + pj − 1| for all (i, j) ∈ E. The cost cij captures the net excess of a partnership

between agents connected by a red edge. Similarly cij captures the net deficit of a partnership

between agents connected by a blue edge. Also the cost of the partnership cij is zero for

black edges. Note that cij ∈ [0, 1].

A natural approach is to follow the techniques in the analysis of the assignment model:

computing the efficient3 matching between the buyers and sellers and determining the shares

2The asymmetric and symmetric components of %i are denoted by �i and ∼i respectively.
3The efficient matching maximises the sum of surplus generated.
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in the surplus from the dual. In our model, an efficient matching is one that minimises

the sum of costs incurred. The following example illustrates that this approach fails in our

model. Consider a complete bipartite graph where the agents are partitioned into two sides.4

We show that the efficient matching does not support a strong core allocation. In fact, the

strong core is empty. The example highlights the reasons for the non-existence of strong core

in our model.

Example 1 Let N = {1, 2, 3, 4, 5, 6}. The peaks of the agents are summarized in Table 1.

Figure 1 shows the partnership graph, where every black edge has zero cost and every blue

edge has cost 0.3.

p1 p2 p3 p4 p5 p6

0.1 0.4 0.4 0.9 0.9 0.6

Table 1: Peaks of agents in Example 1.

1

2

3

4

5

6

Figure 1: Graph in Example 1

We now compute the cost of the feasible partnerships (or edges) using the idea described

above. The following edges have zero cost: (1, 4), (1, 5), (2, 6) and (3, 6). An edge between

an agent in {2, 3} and an agent in {4, 5} has cost 0.3.5 Any efficient matching must include

two edges with zero cost and an edge with cost 0.3.

Here the efficient matching does not support a strong core allocation. In fact, the strong

core is empty. To see this, observe that in any strong core allocation, each agent must be

given their peak. Suppose not, then the agent not receiving her peak can (weakly) block

using one of edges in {(1, 4), (1, 5), (2, 6), (3, 6)}.
4We use a bipartite graph to keep the setting as similar as possible to the Shapley-Shubik model.
5Costs of the other edges can be computed similarly. Edge (1, 6) also has cost 0.3. However including the

edge (1, 6) in a matching will result in cost 0.9. This is because then the matching must include two edges,

like (2, 4) and (3, 5), both with cost 0.3.

5



3 The Core

We first make some preliminary observations about core allocations.

Observation 1 In any core allocation (M, t), the following is true: (i) matched agents

connected by a black edge have allocations equal to their peaks; (ii) matched agents connected

by a red edge each have allocations (weakly) below their peaks; and (iii) matched agents

connected by a blue edge each have allocations (weakly) exceeding their peaks. To see this,

suppose not. Then there exist agents i and j who are matched and their contributions are

on the “opposite” sides of their peak. Then (i, j) can block by transferring an infinitesimal

amount from one to the other such that both agents are moved closer to their peaks.

Thus in any stable allocation, agents who are paired together must be given contributions

on the same side of their peaks.

3.1 LP form of the model

Our goal is to provide a quick and efficient way to determine whether or not a given instance

of the stable sharing problem admits an allocation in the core. It will be useful to recast

the stable sharing problem into linear programming terminology. An allocation in our model

consists of a matching of agents and a contribution vector for each pair.

We first consider the matching problem of agents: introduce real variables xij for all

(i, j) ∈ E (xij can be interpreted as the probability that agents i and j are paired together)

and impose on them n constraints where
∑

j:(i,j)∈E xij = 1 for all i ∈ N . The objective is

to obtain the matching with minimum cost (or weight). This is described by the integer

programming formulation below.

min
∑

(i,j)∈E

cijxij

s.t.
∑

j:(i,j)∈E

xij = 1, ∀i ∈ N,

xij ∈ {0, 1}, ∀(i, j) ∈ E.

We refer to the minimum-weight matching problem as the integer program I. Let ZI

be the optimal cost of the integer program I. Since we assume that the graph G admits a

perfect matching, there is at least one feasible solution to this integer program. Thus ZI is

finite.

Suppose we “relax” this integer programming problem by allowing (i) xij ≥ 0 for all

(i, j) ∈ E and (ii)
∑

j:(i,j)∈E xij = 1 for all i ∈ N . These two features only enlarge the space
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of feasible solutions, so the optimal cost of the resulting linear program can only be lower.

We write down this linear program F as

min
∑

(i,j)∈E

cijxij

s.t.
∑

j:(i,j)∈E

xij = 1, ∀i ∈ N,

xij ≥ 0, ∀(i, j) ∈ E.

Let ZF be the optimal cost of the linear program F . The linear program F is the

minimum-weight fractional matching problem.

A further “relaxation” of the linear program F can be done by allowing (i) xij ≥ 0 for

all (i, j) ∈ E; and (ii)
∑

j:(i,j)∈E xij ≥ 1 for all i ∈ N .6 This enlarges the space of feasible

solutions even further, so the optimal cost of the resulting linear programming problem can

only be lower. We write down this linear program P as

min
∑

(i,j)∈E

cijxij

s.t.
∑

j:(i,j)∈E

xij ≥ 1, ∀i ∈ N,

xij ≥ 0, ∀(i, j) ∈ E.

Let ZP be the optimal cost of the linear program P . The linear program P is the

minimum-weight covering problem. A simple observation is that ZP ≤ ZF ≤ ZI .

Let D be the dual of the linear program P . The dual of P has n non-negative real

variables, πi for all i ∈ N . The dual D is given by

max
∑
i∈N

πi

s.t. πi + πj ≤ cij, ∀(i, j) ∈ E,
πi ≥ 0, ∀i ∈ N.

Let ZD be the optimal value of the dual D. By LP duality, ZD = ZP , and by our earlier

discussion, ZD ≤ ZI .

6Note that linear program F is also a relaxation of the integer program I.
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The three programs play a central role in our analysis about the existence of the strong

and weak core. Our first result shows that ZI = ZF = ZP is a necessary and sufficient

condition for the existence of the strong core. The second result pertains to the weak core:

ZI = ZF is a sufficient condition for the existence of the weak core, but is not a necessary

condition.

We provide some examples below to show that the structure of the graph and the pref-

erence profile “jointly” determine whether the equality ZI = ZF = ZF holds or not.7

Example 2 Let N = {1, 2, 3, 4}. The peaks of the agents are summarized by Table 2.

Figure 2 contains the partnership graph along with cost of each partnership.

p1 p2 p3 p4

0.9 0.2 0.2 0.2

Table 2: Peaks of agents in Example 2.

1

23

4

0.6

0.1

0.1
0.1

Figure 2: Graph in Example 2

The partnership graph has one perfect matching with pairs (1, 2) and (3, 4), with cost

0.7. So the optimal cost of the integer program is ZI = 0.7.

Consider the minimum weight fractional matching problem F . Since agent 2 has only

one edge in the graph, this edge (1, 2) must have x12 = 1 in any feasible solution of F . This

implies x13 = x14 = 0 as the sum of the xij’s for any node must be exactly one. Also x34 = 1.

Thus ZF = 0.7 = ZI .

Finally we consider the minimum weight covering problem P . Note that
∑

j:(i,j)∈E xij ≥ 1

for all nodes i ∈ N . A feasible solution of P is x12 = x13 = x14 = 1 and x34 = 0. Note that

it is possible to assign probability 0 to the expensive edge (3, 4). In fact the optimal value

of the program P is attained at this feasible solution with ZP = 0.3. Thus in this example,

we observe that ZI = ZF < ZP .

7In Section 5, we provide two applications: fix a graph structure and show that ZI = ZF holds for all

preference profiles.
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The second part of the inequality is important even in the bipartite version of our problem.

In assignment model, the second inequality plays no role. In our model, we require that agents

must be paired while in assignment model, agents have the option of remaining unmatched.

3.2 Strong Core

We are now ready to prove the following theorem. The necessity part of the theorem shows

that the efficient matching plays a critical role for the existence of the strong core. In fact,

if a strong core allocation exists then it must be supported by the efficient matching.

Theorem 1 Consider an arbitrary graph and assume that agents have symmetric prefer-

ences. The stable sharing problem has an element in the strong core if and only if ZI = ZD.

Proof : We first prove the sufficiency result. Assume ZI = ZD. We will construct a strong

core allocation using the optimal solutions to the primal and dual linear programs.

In particular, this implies that the minimum-cost fractional matching—one in which

xij ≥ 0, but
∑

j:(i,j)∈E xij = 1 for each i ∈ V—is exactly ZI as well.

Consider the integer program I. Let M be an optimal integer matching. Define x∗ij = 1

whenever (i, j) ∈ M and zero otherwise. Let x∗ be the characteristic vector of the given

minimum-cost perfect matching M . Because ZI = ZD, we can view x∗ as an optimal solution

to the linear program P as well. Let π∗ be an optimal solution to the dual D. Because x∗

and π∗ are optimal solutions to a primal-dual pair of linear programs, they must satisfy the

complementary slackness conditions. In particular, x∗ij > 0 =⇒ π∗i +π∗j = cij. Thus for any

pair of agents (i, j) who are matched together, we know π∗i + π∗j = cij.

We next show how to construct a contribution vector t∗ such that the allocation (M, t∗)

is in the strong core of the given stable allocation problem. Consider the allocation t∗,

computed based on the color of the matched edge in the following manner:

• If (i, j) is a black edge, let t∗i = pi and t∗j = pj;

• If (i, j) is a red edge, let t∗i = pi − π∗i and t∗j = pj − π∗j ; and

• If (i, j) is a blue edge, let t∗i = pi + π∗i and t∗j = pj + π∗j .

We claim that the allocation (M, t∗) is a strong core allocation. First we show that (M, t∗)

is an allocation. We verify t∗i + t∗j = 1 for all edges (i, j) ∈ M . We know that π∗i + π∗j = cij
for all edges in M . We consider the three cases.8

(a) If (i, j) is a black edge, then pi + pj = 1. So t∗i + t∗j = 1.

8Note that the non-negativity of π∗ is not used to show that (M, t∗) is an allocation.
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(b) If (i, j) is a red edge, then cij = pi + pj − 1. So t∗i + t∗j = pi − π∗i + pj − π∗j =

1 + cij − π∗i − π∗j = 1.

(c) If (i, j) is a blue edge, then cij = 1 − pi − pj. So t∗i + t∗j = pi + π∗i + pj + π∗j =

1− cij + π∗i + π∗j = 1.

We color each node the same color as the matched edge incident to it. We know π∗i ≥ 0

for all i ∈ N . Thus the black nodes receive their peak, the red nodes are (weakly) below

their peak and the blue nodes are (weakly) above their peak.

Now we will prove that (M, t∗) is a strong core allocation, i.e. we show that no edge

(or a pair of agents) can block the allocation (M, t∗). Clearly no edge of M can block this

solution: the agents matched in M are on the “same” side of the peak, so there is no way for

them to weakly block M .

Suppose (i, j) 6∈M blocks M via the contribution vector (t̃i, t̃j). Without loss of general-

ity, we can assume that i and j are not on opposite sides of their peaks.9 Define π̃i = |t̃i−pi|
and π̃j = |t̃j − pj|. If (i, j) blocks M , then π̃i ≤ π∗i , π̃j ≤ π∗j , with at least one of these

inequalities being strict. In particular, π̃i + π̃j < π∗i + π∗j ≤ cij, where the last inequality

follows from the dual feasibility of π∗.

Now, if pi + pj ≥ 1, we must have t̃i ≤ pi and t̃j ≤ pj. In this case,

t̃i + t̃j = pi − π̃i + pj − π̃j
= pi + pj − (π̃i + π̃j)

> pi + pj − cij
= 1,

contradicting the requirement that t̃i + t̃j = 1.

If pi + pj ≤ 1, we must have t̃i ≥ pi and t̃j ≥ pj. In this case,

t̃i + t̃j = pi + π̃i + pj + π̃j

= pi + pj + (π̃i + π̃j)

< pi + pj + cij

= 1,

contradicting the requirement that t̃i + t̃j = 1.

Thus we have shown that if ZI = ZD, the allocation (M, t∗) is in the strong core, i.e. the

strong core is non empty.

9If t̃i < pi and t̃j > pj , there is an even better contribution vector that they both prefer and can use to

block.
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To prove the necessity, we proceed similarly. Suppose we are given a strong core allocation

(M, t) with matching M and contribution vector t. We will show that ZI = ZD.

Consider the solution x to the linear program P where we assign xij = 1 for each (i, j) ∈
M and xij = 0 for each (i, j) 6∈ M . It is clear that x is feasible for the integer program I

and for P .

We consider the following solution for the dual D: define πi = |pi− ti| for each i ∈ N . We

will show that the constructed π is feasible for D. In particular, we will show πi + πj = cij
for all (i, j) ∈ M and πi + πj ≤ cij for all (i, j) /∈ M . By our assumption that (M, t) is a

strong core allocation and Observation 1, we know the following holds for each (i, j) ∈ M :

(a) if pi + pj = 1, ti = pi and tj = pj; (b) if pi + pj < 1, ti ≥ pi and tj ≥ pj; (c) if pi + pj > 1,

ti ≤ pi and tj ≤ pj. Thus, for each (i, j) ∈M with pi + pj < 1, we have

πi + πj = ti − pi + tj − pj = 1− pi − pj = cij.

Similarly, for each (i, j) ∈M with pi + pj > 1, we have

πi + πj = pi − ti + pj − tj = pi + pj − 1 = cij.

Also, for each (i, j) ∈M with pi + pj = 1, we have πi = πj = 0, thus verifying

πi + πj = 0 = cij.

We now verify the dual feasibility of this solution for all pairs (i, j) 6∈ M . Suppose not.

Fix an (i, j) ∈ E \M such that πi + πj > cij. Without loss of generality, suppose πi ≥ πj.

Define δ := πi + πj − cij, and note that δ > 0. We consider two cases.

(a) If πj ≥ δ/2, let π̃i := πi − δ/2 and π̃j = πj − δ/2.

(b) If πj < δ/2, let π̃i := cij and π̃j = 0.

In each case, we verify that 0 ≤ π̃i < πi and 0 ≤ π̃j ≤ πj. Furthermore, we verify that

π̃i + π̃j = cij. This is immediate in case (a) as both πi, πj ≥ δ/2. In case (b), observe that

πj < δ/2 ⇐⇒ 2πj < πi + πj − cij ⇐⇒ πj + cij < πi,

which implies π̃i = cij < πi − πj < πi.

Consider the following allocation, (t̃i, t̃j), for agents i and j:

• If pi + pj ≥ 1, let t̃i = pi − π̃i and t̃j = pj − π̃j. Observe that

t̃i + t̃j = pi + pj − π̃i − π̃j = pi + pj − cij = 1.

• If pi + pj < 1, let t̃i = pi + π̃i and t̃j = pj + π̃j. Observe that

t̃i + t̃j = pi + pj + π̃i + π̃j = pi + pj + cij = 1.
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By construction, agent i strictly prefers and agent j weakly prefers (t̃i, t̃j) to (ti, tj),

contradicting the assumption that (M, t) is a strong core allocation. Thus, starting from

a strong core allocation we have constructed a feasible integer solution to P and a feasible

solution to D that satisfies the complementary slackness conditions. So ZI = ZP = ZD. �

Observation 2 Observe that if a strong core allocation exists, then it must be supoorted

by an efficient matching. This follows from the necessity part of Theorem .

3.3 Weak Core

In this section, we provide a sufficient condition for the existence of the weak core. The

condition requires that the optimal solution to the minimum-weight fractional matching

problem is integral. Formally, we require ZI = ZF where I is the minimum-weight integer

program and F is the minimum-weight fractional matching problem. In particular, we show

that the efficient matching supports a weak core allocation when ZI = ZF .

Before stating the theorem, we will define the dual D̄ of the linear program F . The

optimal solution of the dual will be used to construct the weak core allocation. The dual D̄

of program F is,

max
∑
i∈N

πi

s.t. πi + πj ≤ cij, ∀(i, j) ∈ E.

Remark 1 It is important to note that the dual variables in D̄ are unconstrained. This is

because the primal problem F has equality constraints. This is in constrast to the dual of

the minimum-weight covering problem P , where the dual variables are non-negative. It is

important to note that non-negativity of the dual variables is essential for the construction of

the strong core allocation when we prove the sufficiency result for the strong core (Theorem

2). However it is possible to construct a weak core allocation from the unconstrained dual

variables in D̄.

Let x∗ be an optimal solution to F . The sufficient condition ensures that x∗ is integral.

By standard LP duality, we know that D̄ has an optimal solution π∗ such that:

(a)
∑

i,j cijx
∗
ij =

∑
i∈N π

∗
i and

(b) π∗i + π∗j = cij whenever x∗ij > 0.

Theorem 2 establishes that the weak core exists when ZI = ZF . To prove this, we will

use the optimal solution for D̄, π∗ to construct a weak core allocation.

12



Theorem 2 Consider an arbitrary graph and assume that agents have symmetric prefer-

ences. If ZI = ZF , then the weak core is non-empty.

Proof : We know ZI = ZF . Thus the optimal solution to F , x∗ is integral. By standard LP

duality, we know that D̄ has an optimal solution π∗ which satisfies the properties described

above. In particular, π∗i + π∗j = cij whenever x∗ij > 0 and π∗i + π∗j ≤ cij whenever x∗ij = 0.

We will use π∗ to construct a weak core allocation. There are two cases: (I) π∗i ≥ 0 for all

i ∈ N and (II) π∗i < 0 for some i ∈ N . We consider the two cases separately.

Case (I): π∗i ≥ 0 for all i ∈ N .

Consider the natural matching M where (i, j) ∈ M whenever x∗ij > 0 and (i, j) /∈ M

whenever x∗ij = 0. We will construct a contribution vector t∗ such that the allocation (M, t∗)

belongs to the weak core. We compute t∗ based on the color of the matched edge in the

following manner:

• If (i, j) is a black edge, let t∗i = pi and t∗j = pj;

• If (i, j) is a red edge, let t∗i = pi − π∗i and t∗j = pj − π∗j ; and

• If (i, j) is a blue edge, let t∗i = pi + π∗i and t∗j = pj + π∗j .

We show below that (M, t∗) is an allocation by verifying t∗i +t∗j = 1 for all edges (i, j) ∈M .

We know that π∗i + π∗j = cij for all edges in M . There are three cases.10

(a) If (i, j) is a black edge, then pi + pj = 1. So t∗i + t∗j = 1.

(b) If (i, j) is a red edge, then cij = pi + pj − 1. So t∗i + t∗j = pi − π∗i + pj − π∗j =

1 + cij − π∗i − π∗j = 1.

(c) If (i, j) is a blue edge, then cij = 1 − pi − pj. So t∗i + t∗j = pi + π∗i + pj + π∗j =

1− cij + π∗i + π∗j = 1.

We color each node the same color as the matched edge incident to it. We know π∗i ≥ 0

for all i ∈ N . Thus the black nodes receive their peak, the red nodes are (weakly) below

their peak and the blue nodes are (weakly) above their peak.

We show below that (M, t∗) is a weak core allocation. Clearly no edge of M can block

this solution: the agents matched in M are on the “same” side of the peak, so there is no

way for them to weakly block M . Assume for contradiction that (i, j) 6∈ M blocks (M, t∗)

via the contribution vector (t̃i, t̃j). Without loss of generality, we can assume that i and j

are not on opposite sides of their peaks.11 Define π̃i = |t̃i − pi| and π̃j = |t̃j − pj|. If (i, j)

10Note that the non-negativity of π∗ is not required to show that (M, t∗) is an allocation.
11If t̃i < pi and t̃j > pj , there is an even better contribution vector that they both prefer.
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blocks M , then π̃i < π∗i and π̃j < π∗j . In particular, π̃i + π̃j < π∗i + π∗j ≤ cij, where the last

inequality follows from the dual feasibility of π∗.

Now, if pi + pj ≥ 1, we must have t̃i ≤ pi and t̃j ≤ pj. In this case,

t̃i + t̃j = pi − π̃i + pj − π̃j
= pi + pj − (π̃i + π̃j)

> pi + pj − cij
= 1,

contradicting the requirement that t̃i + t̃j = 1.

If pi + pj ≤ 1, we must have t̃i ≥ pi and t̃j ≥ pj. In this case,

t̃i + t̃j = pi + π̃i + pj + π̃j

= pi + pj + (π̃i + π̃j)

< pi + pj + cij

= 1,

contradicting the requirement that t̃i + t̃j = 1.

Case (II): There exists i ∈ N such that π∗i < 0.

Similar to Case (I), we consider the natural matching M . Let Ī = {i ∈ N : π∗i < 0}.
Consider agent i ∈ Ī and let j ∈ V be her partner in the matching M . By the dual

feasibility constraints, we have π∗i +π∗j = cij where cij ≥ 0. Thus π∗j ≥ 0. This implies j /∈ Ī.

Define J̄ = {j ∈ N : (i, j) ∈M and i ∈ Ī}. Note that Ī ∩ J̄ = ∅. So we have partitioned the

set of agents N into Ī,J̄ and N \ [Ī ∪ J̄ ] using the dual variable values.12

We construct a new set of non-negative dual variables, π̃ using the partition of N and π∗

as follows:

• For any i ∈ Ī, j ∈ J̄ such that (i, j) ∈ M , define π̃i = 0 and π̃j = cij. Recall

π∗i + π∗j = cij where π∗i < 0. So π∗j = cij − π∗i > cij = π̃j.
13

• For any k ∈ N \ [Ī ∪ J̄ ], define π̃k = π∗k.

Thus for any pair (i, j) ∈M , we have

12All agents with negative dual variable values belong to Ī. Their respective partners in M must have

non-negative dual variable values and belong to J̄ . The remaining agents in N \ [Ī ∪ J̄ ] are matched to each

other and have non-negative dual variable values.
13Since the non-negative dual variables in π∗ are increased to 0, this means that all agents in Ī will receive

their peak after the adjustment. Also the dual variables of their respective partners in J̄ are decreased after

the adjustment.
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1. If (i, j) ∈ N \ [Ī ∪ J̄ ], then π̃i + π̃j = π∗i +π∗j = cij where the latter equality comes from

the dual feasibility conditions.

2. If i ∈ Ī and j ∈ J̄ , then π̃i + π̃j = 0 + cij = cij.

We will construct a contribution vector t̃ such that the allocation (M, t̃) belongs to the

weak core. Consider the allocation t̃, computed based on the color of the matched edge in

the following manner:

• If (i, j) is a black edge, let t̃i = pi and t̃j = pj;

• If (i, j) is a red edge, let t̃i = pi − π̃i and t̃j = pj − π̃j; and

• If (i, j) is a blue edge, let t̃i = pi + π̃i and t̃j = pj + π̃j.

We claim that (M, t̃) is an allocation. We verify t̃i + t̃j = 1 for all edges (i, j) ∈ M .

Consider an edge (i, j) ∈M .

1. If i, j ∈ N \ [Ī ∪ J̄ ], we know π̃i + π̃j = cij. The argument for feasibility is similar to

Case (I).

2. If i ∈ Ī and j ∈ J̄ , by construction π̃i + π̃j = cij. There are three subcases.

• If (i, j) is a black edge, then t̃i + t̃j = pi + pj = 1.

• If (i, j) is a red edge, we know cij = pi + pj − 1. Here t̃i + t̃j = pi− π̃i + pj − π̃j =

pi + pj − cij = 1 + cij − cij = 1.

• If (i, j) is a red edge, we know cij = 1− pi − pj. We can argue similarly.

Finally we prove that (M, t̃) is a weak core allocation. Clearly no edge in M can block

this allocation. The agents matched in M are on the “same” side of the peak, so there is no

way for them to strongly block the allocation. Assume for contradiction that there exists

an edge (i, j) /∈M that strongly blocks the allocation. Since agents i and j strictly improve

by blocking, we have t̃i 6= pi and t̃j 6= pj. By construction, the contribution of any agent

k ∈ N is t̃k ∈ {pk, pk − π̃k, pk + π̃k}. So t̃k = pk for all agents k ∈ Ī.14 Thus the agents in

the blocking pair do not belong to Ī, i.e. i, j /∈ Ī and i, j ∈ N \ Ī. There are four subcases

to consider.

1. Agents i, j ∈ N \ [Ī ∪ J̄ ].

By construction, π̃i = π∗i and π̃j = π∗j . Thus π̃i + π̃j = π∗i + π∗j ≤ cij.

14This is because π̃k = 0 for such agents.
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Suppose (i, j) blocks M via the contribution vector (t̂i, t̂j). Without loss of generality,

we may assume that i and j are not on opposite sides of their peaks, for if t̂i < pi and

t̂j > pj there is an even better allocation that they both prefer. Define π̂i = |t̂i − pi|
and π̂j = |t̂j − pj|. If (i, j) blocks (M, t̃), then π̂i < π̃i, π̂j < π̃j. In particular,

π̂i + π̂j < π̃i + π̃j ≤ cij.

Now, if pi + pj ≥ 1, we must have t̂i ≤ pi and t̂j ≤ pj. In this case,

t̂i + t̂j = pi − π̂i + pj − π̂j
= pi + pj − (π̂i + π̂j)

> pi + pj − cij
= 1,

contradicting the requirement that t̂i + t̂j = 1.

If pi + pj ≤ 1, we must have t̂i ≥ pi and t̂j ≥ pj. In this case,

t̂i + t̂j = pi + π̂i + pj + π̂j

= pi + pj + (π̂i + π̂j)

< pi + pj + cij

= 1,

contradicting the requirement that t̃i + t̃j = 1.

2. Agents i, j ∈ J̄ .

By construction, we know π̃i < π∗i and π̃j < π∗j . So π̃i + π̃j < π∗i + π∗j . By the dual

feasibility constraints, we know π∗i +π∗j ≤ cij. Thus π̃i + π̃j < cij. Suppose (i, j) blocks

(M, t̃) via the contribution vector (t̂i, t̂j). We can argue like we did in Case 1.

3. Agents i ∈ N \ [Ī ∪ J̄ ] and j ∈ J̄ .

Since i ∈ V \ [Ī ∪ J̄ ], we know π̃i = π∗i . Since j ∈ J̄ , we know π̃j < π∗j .

By the dual feasibility constraints, we have π∗i +π∗j ≤ cij. By the above facts, π̃i + π̃j <

π∗i + π∗j . Thus π̃i + π̃j < cij. Suppose (i, j) blocks (M, t̃) via the contribution vector

(t̂i, t̂j). We can argue like we did in Case 1.

4. Agents j ∈ N \ [Ī ∪ J̄ ] and i ∈ Ī.

This case is symmetric to Case 3 above. Suppose (i, j) blocks (M, t̃) via the allocation

(t̂i, t̂j). We can argue like we did in Case 1.
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We have shown that (M, t̃) belongs to the weak core and this completes the proof of

theorem. �

However this condition is not necessary, as shown by the following example.

Example 3 Let N = {1, . . . , 6}. Table 3 summarizes the peaks of the agents. Figure 3

provides the partnership graph and the cost of each partnership.

p1 p2 p3 p4 p5 p6

0.9 0.4 0.4 0.5 0.5 0.5

Table 3: Peaks of agents in Example 3.

1

2 3
0.2

0.3 0

4
0.4

5

0.3

6
0

0

Figure 3: Graph in Example 3

There is a unique perfect matching (1, 4), (2, 3), (5, 6) with cost 0.4 + 0.2 + 0 = 0.6. Thus

ZI = 0.6. The fractional solution that puts half on each of the triangles 123 and 456 and

zero on the edge (1, 4) has cost 1
2
(0.3 + 0.3 + 0.2) + 1

2
(0 + 0 + 0) = 0.4. Thus ZI > ZF .

However a weak core allocation exists in this example: (1, 4) with (0.9, 0.1), (2, 3) with

(0.5, 0.5) and (5, 6) with (0.5, 0.5).

4 Examples

We present a sequence of examples and discuss the implications of the two theorems.

Example 4 Let N = {1, 2, . . . , 6}. The peaks of the agents are summarized in Table 4.

Figure 4 contains the partnership graph along with the cost of each partnership.

The graphG has only one perfect matching: {(1, 4), (2, 3), (5, 6)} with cost 0.8+0.2+0.2 =

1.2. Thus ZI = 1.2.

Consider the feasible solution that puts a weight of 1/2 on the edges of the two triangles,

and zero on the edge (1, 4). The cost of this solution is 0.8. Furthermore, one can verify

that this solution is optimal for the minimum cost fractional covering problem and hence
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p1 p2 p3 p4 p5 p6

0.9 0.4 0.4 0.9 0.4 0.4

Table 4: Peaks of agents in Example 4.

1

2 3
0.2

0.3 0.3

4
0.8

5

0.3

6
0.2

0.3

Figure 4: Graph with edge costs in Example 4

also the minimum cost fractional matching problem. (One way to verify this is to check that

the solution π1 = π4 = 0.2, π2 = π3 = π5 = π6 = 0.1 is feasible for the dual of the minimum

cost fractional covering problem and has the same cost as that of the primal.)

Thus, we have shown that ZI 6= ZF = ZP . By Theorem 1, we know that the strong

core is empty. Theorem 2 only provides a sufficient condition under which the weak core is

nonempty, but that condition is violated in this example. As a result, a weak core allocation

may or may not exist in this example. Indeed, we show next that the weak core is also

empty.

Consider an arbitrary allocation (M, t) where the matching M is (1, 4), (2, 3), (5, 6). Sup-

pose without loss of generality that t1 ≤ t4. Then, t1 ∈ [0.1, 0.5], for otherwise t1 < 0.1

and t4 > 0.9, and this allocation is blocked by t1 = 0.1, t4 = 0.9 (leaving all the other t’s

unchanged). Now we can apply a similar reasoning to the pair (2, 3): supposing, without

loss of generality, that t2 ≤ t3, we can conclude that t3 ∈ [0.5, 0.6]. However, agents 1 and

3 can block this allocation (M, t) by choosing t′1 = 0.6, t′3 = 0.4. Thus we can conclude that

the weak core is empty.

Example 5 Let N = {1, 2, 3, 4, 5, 6}. The peaks of the agents are shown in Table 5. Figure

5 shows the partnership graph, where every red edge has zero cost and every blue edge has

cost 0.3.

p1 p2 p3 p4 p5 p6

0.1 0.4 0.4 0.9 0.9 0.6

Table 5: Peaks of agents in Example 5.
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1

2

3

4

5

6

Figure 5: Graph in Example 5

We can verify that the edges (1, 4), (1, 5), (2, 6) and (3, 6), each have zero cost. Every

other edge in the graph has a cost of 0.3.

Any perfect matching must include at least one edge with cost 0.3. Therefore any perfect

matching that has exactly one edge with cost 0.3 (and there are many such matchings) is

necessarily optimal. Moreover, because the graph is a bipartite graph, this is also the cost

of an optimal fractional matching . Thus ZI = ZF = 0.3. Finally, observe that choosing all

the edges with zero cost yields a valid cover, so ZP = 0. Thus we have ZI = ZF 6= ZP .

Theorem 1 implies that the strong core is empty. Because ZI = ZF , Theorem 2 implies

that the weak core is non-empty: indeed, it is easy to construct a weak core allocation using

a minimum-cost matching. For instance, the optimal matching M = {(1, 4), (2, 5), (3, 6)}
can be supported as a weak core allocation with the respective contribution vectors being

{(0.1, 0.9), (0.5, 0.5), (0.4, 0.6)}.
Interestingly, a weak core allocation in this example can also be supported on a matching

that is not optimal. For instance, consider the matching M ′ = {(1, 6), (2, 5), (3, 4)} with the

respective contribution vectors {(0.4, 0.6), (0.1, 0.9), (0.1, 0.9)}. Observe that all agents on

the side {4, 5, 6} receive their peaks, and so this allocation is in the weak core. A similar

construction where all agents on the side {1, 2, 3} receive their peaks also supports M ′ as a

weak core allocation.

Observation 3 If (M, t) is an allocation in the weak core, then M is not necessarily a

minimum-cost matching. This is illustrated in Example 5. In contrast, if (M, t) is an

allocation in the strong core, then M is necessarily a minimum-cost matching.

Example 6 Let N = {1, . . . , 6}. Table 6 summarizes the agents’ peaks. Figure 6 contains

the partnership graph with cost of each partnership.

There are two matchings in G: {(1, 4), (2, 3), (5, 6)} and {(1, 3), (2, 5), (4, 6)} whose total

costs are, respectively, 1 and 1.4. The first matching is the efficient one and ZI = 1. To find
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p1 p2 p3 p4 p5 p6

0.9 0.3 0.8 0.9 0.4 0.5

Table 6: Peaks of agents in Example 6.

1

3 2
0.1

0.7 0.3

4
0.8

5

0.2

6
0.3 0.4

0.4

Figure 6: Graph in Example 6

a minimum-cost fractional matching, consider the feasible solution that puts a weight of 1/2

on all the edges of the two triangles 15, and zero everywhere else. This feasible solution has

cost 0.9 and can be shown to be optimal. Thus ZF = 0.9. Finally, the solution consisting

of the edges {(1, 2), (1, 3), (4, 5), (5, 6)} has cost 0.7 and can be shown to be a minimum-cost

fractional cover. Thus ZP = 0.7.

This is an instance for which ZI 6= ZF 6= ZP . By Theorem 1, we know that the strong

core is empty. Also, the sufficient condition of Theorem 2 is violated in this example, so we

cannot conclude the existence of a weak core allocation may or may not exist in this example.

In fact, the weak core is non-empty in this example. The efficient matching (1, 4), (2, 3), (5, 6)

with contribution vectors (0.3, 0.7), (0.3, 0.7) and (0.5, 0.5) belongs to the weak core: To see

this, observe that for this allocation, neither the three edges in the matching nor any edge

involving agents 2 or 6 can block the matching (as agents 2 and 6 receive their peaks); the

only potential block pairs are (1, 3) and (4, 5). For the pair (1, 3), both agents receive an

allocation below their peak and their allocations add up to 1, so there is no possibility of

improvement; for the pair (4, 5), agent 4 needs to receive more than 0.7 to improve, which

implies that agent 5 will receive an allocation below 0.3, which is worse than their current

allocation.

Finally, in contrast to Example 5, the other perfect matching (with cost 1.4) cannot be

supported by a weak core allocation.

The following examples show the existence of strong core allocations in different types of

graphs.

Example 7 Let N = {1, . . . , 6}. The peaks are summarized in Table 7. Figure 7 contains

the partnership graph along with the cost of each partnership.

15These edges are (1, 2),(1, 3),(2, 3), (4, 5),(4, 6) and (5, 6).
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p1 p2 p3 p4 p5 p6

0.9 0.2 0.6 0.3 0.4 0.5

Table 7: Peaks of agents in Example 7

1

2

3

4

5

6

0.2

0.10.3

0.1

0.4 0.1

Figure 7: Graph in Example 7

The graph has two perfect matchings: (1, 2), (3, 4), (5, 6) and (1, 6), (2, 3), (4, 5). The first

matching has cost 0.3 and the second matching has cost 0.9. Thus ZI = 0.3. Now we

examine the minimum cost fractional matching problem. Any fractional solution requires

that the weights on the edges alternate between x and 1− x where 0 ≤ x ≤ 1. We will show

that for any x ∈ (0, 1), the cost of the solution will be higher than ZI . Consider a feasible

solution where the edge (1, 2) has weight x ∈ (0, 1). Then the edge (2, 3) will have weight

1− x as the sum of weights for node 2 is 1. Continuing in this manner, we get a sequence of

weights alternating between x and 1−x, with the last edge (1, 6) receiving a weight x. Thus

cost of this feasible solution is (x)(c12 + c34 + c56) + (1 − x)(c23 + c25 + c16).
16 This cost of

this solution is stricly less than ZI iff x > 1. Thus the efficient matching (1, 2), (3, 4), (5, 6) is

also the optimal solution to the minimum weight fractional matching program. So ZF = ZI .

Similarly we can argue that the efficient matching is the optimal solution to the minimum

weight covering problem as well. We have shown ZI = ZF = ZP . Theorem 1 implies that

the strong core is non-empty and the efficient matching can be used to construct a strong

core allocation.

The allocation (1, 2) with (0.9, 0.1), (3, 4) with (0.6, 04) and (5, 6) with (0.4, 0.6) belongs

to the strong core. Agents 1, 3 and 5 receive their peaks. We can show that no weak blocking

16Observe that the value of any feasible solution to the fractional program is a weighted average of the

cost of the two matchings in the graph, where x and 1−x are the weights given to the efficient and inefficient

matchings respectively.
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is possible here.

Examples 8 and 9 below consider connected graphs with cliques.

Example 8 Let N = {1, . . . , 6}. The peaks are summarized in Table 8. Figure 8 provides

the partnership graph and the cost of each partnership.

p1 p2 p3 p4 p5 p6

0.5 0.4 0.4 0.5 0.4 0.4

Table 8: Peaks of agents in Example 8

1

2 3
0.2

0.1 0.1

4
0

5

0.1

6
0.2

0.1

Figure 8: Graph in Example 8

A strong core allocation consists of the matching (1, 4), (2, 3) and (5, 6) where all pairs

receive (0.5, 0.5). The cost of the perfect matching is 0 + 0.2 + 0.2 = 0.4.

Example 9 Let N = {1, . . . , 8}. The peaks are summarized in Table 9. Figure 9 provides

the partnership graph and the cost of each partnership.

p1 p2 p3 p4 p5 p6 p7 p8

0.5 0.4 0.4 0.2 0.5 0.4 0.4 0.2

Table 9: Peaks of agents in Example 9

Since 1 and 5 have cost 0, they must receive their peaks in any strong core allocation.

A strong core allocation is: (1, 5) with (0.5, 0.5), (3, 4) with (0.5, 0.5) and a similar match-

ing/contribution vector for the other clique.

Agents 1 and 5 will not block as they both get their peaks. An agent from {3, 4} will not

block with 1 as they must give her 0.5 = p1 and then they have no change in their allocation.

Agents 2 and 4 cannot block together as they both want to reduce their contributions from

0.5.
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1

23

4

0.2

0.4

0.3 0

0.1

0.1
5 6

78

0.1

0.20.3

0.4

0.1

0.4 0.4

Figure 9: Graph in Example 9

5 Applications

This section provides two applications of Theorem 2. Our goal is to investigate whether

some special graphs satisfy the sufficiency condition ZI = ZF , for all preference profiles. The

bipartite graph is one such case and this is implied by well-known results. We show that

complete graph also exhibits this property and hence always admit weak core allocations.

5.1 Complete graph

We show below that the sufficient condition for the existence of weak core holds for a complete

graph, for any given configuration of peaks. We begin by proving a preliminary claim.

Claim 1 Consider four agents i, j, k, `, with their peaks satisfying 0 ≤ pi ≤ pj ≤ pk ≤
p` ≤ 1. Then, the matching {(i, `), (j, k)} is optimal. That is the cost of the matching

M := {(i, `), (j, k)} is no more than the cost of the other two matchings M ′ := {(i, j), (k, `)}
and M ′′ := {(i, k), (j, `)}.

Proof : We enumerate all cases and verify the claim in each. Let c(X) denote the cost of

matching X. We start with two easy cases.

• pi + pj ≥ 1: In this case every pair of agents have a sum of peaks that is at least 1.

The cost of any perfect matching is given by pi + pj + pk + p` − 2. Thus, c(M) =

c(M ′) = c(M ′′).

• pk + p` ≤ 1: In this case every pair of agents have a sum of peaks that is at most 1. The

cost of any perfect matching is given by 2−pi−pj−pk−p` =: c(M) = c(M ′) = c(M ′′).

We may thus assume for the rest of the argument that pi + pj < 1 and that pk + p` > 1.

Observe that, under these assumptions, the cost of M ′ is fixed and equals

c(M ′) = 1− pi − pj + pk + p` − 1 = pk + p` − pi − pj.

We now look at some further subcases.
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• pi + pk ≥ 1: Here, every pair of agents, other than the pair {i, j}, has a sum of peaks

that is at least 1, and so c(M) = c(M ′′) = pi + pj + pk + p` − 2. Now,

c(M ′)− c(M) = (pk + p` − pi − pj)− (pi + pj + pk + p` − 2)

= 2(1− pi − pj),

which is positive. Thus, c(M) = c(M ′′) < c(M ′).

• pj + p` ≤ 1: In this case every pair of agents, other than the pair {k, `}, has a sum of

peaks that is at most 1, and so c(M) = c(M ′′) = 2− pi − pj − pk − p`. Now,

c(M ′)− c(M) = (pk + p` − pi − pj)− (2− pi − pj − pk − p`)
= 2(pk + p` − 1),

which is positive. Thus, c(M) = c(M ′′) < c(M ′).

For the rest of the argument, we may assume that pi + pk < 1 and that pj + p` > 1. Note

that this fixes the cost of M ′′ as well:

c(M ′′) = 1− pi − pk + pj + p` − 1 = pj + p` − pi − pk.

We note also that in all the cases considered so far c(M) = c(M ′′) ≤ c(M ′), so it is enough

to compare M and M ′′ to complete the proof of the claim.

Of the six pairs of agents, the pairs {i, j} and {i, k} are assumed to have sum of peaks

below 1; and the pairs {k, `} and {j, `} are assumed to have sum of peaks above 1. Each of

the remaining pairs, {i, `} and {j, k}, could have a sum of peaks above 1 or below 1, which

naturally leads to the following four subcases:

• pi + p` ≥ 1 and pj + pk ≥ 1: In this case, c(M) = pi + p` + pj + pk − 2 and

c(M ′′)− c(M) = (pj + p` − pi − pk)− (pi + pj + pk + p` − 2)

= 2(1− pi − pk),

which is positive. Thus, c(M) < c(M ′′).

• pi + p` ≥ 1 and pj + pk < 1: In this case, c(M) = pi + p` − 1 + 1 − pj − pk =

pi + p` − pj − pk.

c(M ′′)− c(M) = (pj + p` − pi − pk)− (pi + p` − pj − pk)

= 2(pj − pi),

which is positive. Thus, c(M) < c(M ′′).
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• pi + p` < 1 and pj + pk ≥ 1: In this case, c(M) = 1 − pi − p` + pj + pk − 1 =

pj + pk − pi − p`.

c(M ′′)− c(M) = (pj + p` − pi − pk)− (pj + pk − pi − p`)
= 2(p` − pk),

which is positive. Thus, c(M) < c(M ′′).

• pi + p` < 1 and pj + pk < 1: In this case, c(M) = 2− pi + p` − pj − pk and

c(M ′′)− c(M) = (pj + p` − pi − pk)− (2− pi − pj − pk − p`)
= 2(1− pj − p`),

which is positive. Thus, c(M) < c(M ′′).

�

Claim 2 Given 2n agents with 0 ≤ p1 ≤ p2 . . . ≤ p2n−1 ≤ p2n ≤ 1, the matching {(1, 2n), (2, 2n−
1), . . . , (n, n+ 1)} is optimal.

Proof : Given 2n agents with 0 ≤ p1 ≤ p2 . . . ≤ p2n−1 ≤ p2n ≤ 1, we can use Claim 1

iteratively to show that the matching {(1, 2n), (2, 2n− 1), . . . , (n, n+ 1)} is optimal.

First, we argue that there is an optimal matching in which agents 1 and 2n are matched

(*): suppose there is an optimal matching in which 1 is matched to j and 2n is matched to k.

Because p1 ≤ pj, pk ≤ p2n, Claim 1 implies that the matching in which 1 is matched to 2n

and j is matched to k is also optimal, establishing (*). The result now follows by applying

the same observation to the smaller problem obtained by removing agents 1 and 2n. �

We will now show that there exists an optimal integer solution to the LP for a complete

graph.

By well known results in the literature, we know that the extreme points of the LP

formulation of the matching problem are half-integral: every component of each extreme

point is in {0, 1/2, 1}. We now argue that in fact there is an optimal integer solution to

the LP formulation as well. We do this by showing that the matching {(1, 2n), (2, 2n −
1), . . . , (n, n+ 1)} is optimal for the LP as well.

Suppose x is an optimal solution to the LP. Because the entries are all {0, 1/2, 1}, we

note that the fractional components of x will have to be a collection of odd cycles (and there

should be an even number of them). We first argue that there is an optimal x in which

every odd cycle, if any, has exactly three nodes. For otherwise, suppose there is an odd cycle
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involving nodes i, j, k, `, m, and possibly some other nodes. Suppose i has the smallest peak

among all nodes in this cycle, and suppose its neighbors are j and m, and suppose pj ≤ pm.

Suppose m’s other neighbor in the cycle is `. We can create a new solution x′ that differs

from x only on the pairs (i,m), (j, `), (i, j) and (m, `): we set x′i,m = 1, x′j,` = 1/2, x′m,` = 0

and x′i,j = 0. The values for x on these edges were originally xi,m = 1/2, xj,` = 0, xm,` = 1/2

and xi,j = 1/2. Observe that:

c(x′)− c(x) =
1

2
(ci,m + cj,` − ci,j − cm,`) ≤ 0,

where the last inequality follows from Claim 1 applied to the agents {i, j,m, `}. (We do not

know where `’s peak falls....but regardless we know that the cost of {(i,m), (j, `)} is at most

the cost of {(i, j), (m, `)}.)
We have thus reduced the length of the cycle by 2, while ensuring that the cost of the

cycle never increases. By applying this repeatedly we can eventually obtain an x in which

every odd cycle has length 3.

If x has at least one odd cycle, then x must have an even number of odd cyles (because

the total number of nodes is even). Pick two odd cycles, say, {i, j, k} and {u, v, w}. Suppose

pi ≤ pj ≤ pk and pu ≤ pv ≤ pw, and suppose, without loss of generality, pi ≤ pu. We shall

exhibit an integer optimal solution on these six nodes.

We consider two cases.

Case 1: pk ≥ pw

(a) Suppose further that pj ≤ pu.

We claim that the cost of the matching µ := {(i, k), (j, w), (u, v)} is at most the cost

of x:

c(µ)− c(x) =
1

2

(
cik + cuv − cij − cuw − cjk − cvw + cjw + cjw

)
=

1

2

{
(cik + cjw − ciw − cjk) + (cuv + cjw − cvw − cju) + (ciw + cju − cij − cuw)

}
≤ 0,

where the last inequality follows from applying Claim 1 repeatedly: when applied to

the subset of agents {i, j, w, k}, the first term is seen to be non-positive; when applied

to the subset of agents {j, u, v, w}, the second term is seen to be non-positive; and when

applied to the subset of agents {i, j, u, w}, the final term is seen to be non-positive.

(b) Suppose pj ≥ pw.
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We claim that the cost of the matching µ′ := {(i, k), (v, w), (u, j)} is at most the cost

of x:

c(µ′)− c(x) =
1

2

(
cik + cvw − cij − cuw − cjk − cuv + cuj + cuj

)
=

1

2

{
(cik + cuj − cij − cuk) + (cvw + cuj − cuw − cvj) + (cuk + cvj − cjk − cuv)

}
≤ 0,

where the last inequality follows from applying Claim 1 repeatedly: when applied to

the subset of agents {i, u, j, k}, the first term is seen to be non-positive; when applied to

the subset of agents {u, v, w, j}, the second term is seen to be non-positive; and when

applied to the subset of agents {u, v, j, k}, the final term is seen to be non-positive.

(c) Finally, suppose pu ≤ pj ≤ pw. We claim that the cost of the matching µ′′ :=

{(i, k), (u,w), (v, j)} is at most the cost of x:

c(µ′′)− c(x) =
1

2

(
cik + cuw − cij − cvw − cjk − cuv + cvj + cvj

)
≤ 1

2

(
ciw + cuk − cij − cvw − cjk − cuv + cvj + cvj

)
=

1

2

{
(ciw + cvj − cij − cvw) + (cuk + cvj − cuv + cjk)

}
≤ 0,

where the first inequality follows from applying Claim 1 to the subset of agents {i, u, w, k};
and the final inequality follows from Claim 1 applied to the subsets of agents {i, j, v, w}
and {u, v, j, k} respectively.

Case 2: pk < pw

Consider the solution x′ obtained from x by setting

x′i,w = 1; x′i,j = x′i,k = x′w,u = x′w,v = 0; x′j,u = x′k,v =
1

2
,

and letting x′ be the same as x for all other edges (including the edges (j, k) and (u, v),

which both have values 1/2. We claim that c(x′) ≤ c(x). Note that

c(x′)− c(x) =
1

2

(
ciw + ciw − cij − cik + cuj − cvw − cuw + cvk

)
=

1

2

{
(ciw + cuj − cij − cuw) + (ciw + cvk − cik − cvw))

}
≤ 0,
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where the last inequality follows from applying Claim 1 repeatedly: when applied to

the subset of agents {i, u, j, w}, the first term is seen to be non-positive; and when

applied to the subset of agents {i, v, k, w}, the second term is seen to be non-positive.

Thus, we have exhibited a solution x′ that is fractional with c(x′) ≤ c(x). Morever, when

restricted to the six nodes i, j, k, u, v, w, x′ can be written as the average of the two matchings

{(i, w), (j, k), (u, v)} and {(i, w), (j, u), (k, v)}. One of these two matchings has cost no more

than the cost of x′ and is also integral (on these six nodes).

We have shown the following. Start from any extreme point solution. Standard results

tell us that the fractional components are a collection of odd cycles. We first showed how

one can convert each of them into cycles of length 3. We then showed how any pair of 3

cycles can be converted to an integer matching that is optimal. By repeatedly applying this

process we can always arrive at an integer optimal solution.
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