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Abstract

We consider contests where agents have private information about their ability and

study the effect of different prizes and competition on the effort exerted by the agents.

We characterize the symmetric Bayes-Nash equilibrium strategy function and find that

the effect of prizes and competition depend qualitatively on the distribution of abilities

among the agents. In particular, if there is an increasing density of inefficient agents,

increasing the value of prizes or making the contest more competitive encourages effort.

In contrast, if the density is decreasing, these interventions discourage effort. We

discuss applications of these results to the design of optimal contests in environments

that impose natural constraints on feasible contests including grading contests, contests

where agents have concave utilities for prizes, and contests where the designer can only

award homogeneous prizes of a fixed value.
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1 Introduction

Contests are situations in which agents compete with one another by investing effort or

resources to win prizes. Such competitive situations are common in many social and eco-

nomic contexts, including college admissions, classroom settings, labor markets, R&D races,

sporting events, politics, etc. While some of these situations arise naturally, there are many

others where the contest designer can carefully design the rules of the contest so as to satisfy

their objectives. The designer’s objective, and the structural elements of the contest that it

can and cannot manipulate may vary depending upon the situation.

In this paper, we focus on situations where the contest participants have private in-

formation about their abilities and the designer can manipulate the values of the different

prizes v1, . . . , vn to influence the effort exerted by the participants. For such environments,

we study how the prizes and their inequality influence the effort exerted by the agents and

also discuss applications to the design of optimal contests in various settings. We note here

that while there is a significant literature that studies optimal contest design in incomplete

information environments, it typically assumes that the designer’s objective is to maximize

effort given a budget that it can divide arbitrarily among the n prizes. But there are set-

tings where effort does not carry any intrinsic value for the designer, and also the set feasible

contests are constrained or different. Our objective in this paper is to obtain a more general

comparison of how different contests compare in terms of the effort they induce and then

identify optimal contests in some natural environments where the designer’s objective and

the set of feasible contests are different from what is assumed in the classical case.

We discuss three different environments. First, we consider the case of a professor decid-

ing a rank-based grading scheme for a class. For these grading contests, we assume that the

value of a grade is determined by the information it reveals about the type of the student,

and in particular, equals its expected productivity. Under this assumption, we character-

ize the set of feasible contests for the designer. Since the effort exerted by the students in
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these grading contests may be desirable (if it adds to their productivity as under the human

capital theory of education), or a social waste (as under the signalling theory of education),

we identify both effort-maximizing and effort-minimizing grading contests. Our second ap-

plication considers the case of a designer who can costlessly award an arbitrary number of

agents with a prize of homogeneous value. This might be the case when the prize takes

the form of access to digital content, or a free trial to services. In comparison to grading

contests, the value of the prize in these cases does not change based on the number of agents

or ranks of the agents that it is awarded to. Our last application is to the case where contest

participants have concave utilities for prizes. We make parametric assumptions and discuss

how the effort maximizing contest changes as the agents values for the prizes become more

concave. We will now discuss our results.

We first study the effect of different prizes on the equilibrium function. We find that

increasing the value of first prize v1 encourages effort while increasing the value of the last

prize vn discourages effort for all agent types, and so these effects persist in expectation as

well. On the other hand, the effect of increasing any intermediate prize v2, . . . , vn−1 is mixed

in that it encourages effort from the less efficient agents while discouraging effort from the

more efficient agents. Moreover, this transfer of effort from the more efficient to less efficient

is balanced in the sense that the total area under the equilibrium effort function remains the

same. This property of the equilibrium function relies on the existence of agents with almost

zero marginal costs of effort, and to the best of our knowledge, ours is the first paper to study

contests in this domain. Importantly, the property leads to some interesting implications

for the overall effects of these prizes.

The overall effect on effort of increasing any intermediate prize vi depends qualitatively

on the distribution of abilities in the population and we obtain natural sufficient conditions

on the distribution under which these prizes encourage or discourage effort. If the distri-

bution of abilities is such that there is an increasing density of less efficient agents, then
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increasing the values of intermediate prizes encourages effort. In contrast, if there is an

increasing density of more efficient agents, these prizes discourage effort. Intuitively, this is

because any intermediate prize leads to a balanced transfer of effort from more efficient to

less efficient agents. And so if there is a greater density of less efficient agents, these prizes

have a positive effect in expectation. And if there is a greater density of more efficient agents,

these prizes have a negative effect in expectation. For the case of uniform distribution of

abilities, the intermediate prizes do not effect the expected effort. More generally, in the

uniform case, decreasing the value of any intermediate prize leads to an equilibrium func-

tion that is a mean preserving spread of the original effort function. So if the designer has

an increasing and concave objective, it would prefer to increase the value of the intermedi-

ate prizes, and if its objective is increasing and convex, it would prefer to reduce these values.

We also study how the competitiveness of a contest influences effort and as with the effect

of prizes, we find that the effect of competition also depends qualitatively on the prior dis-

tribution of abilities. To study the effects of competition, we focus on a parametric subclass

of distributions and examine how the expected effort changes as we increase competition

by increasing the inequality between the top and bottom prizes. When the density of less

efficient agents is increasing, more competitive contests induce higher expected effort. In

contrast, when the density of more efficient agents is increasing, making the contest more

competitive reduces expected effort. This is because under the parametric class of distribu-

tions, absolute values of the expected effects of prizes decreases as we go down the ranks of

the prizes. The effect of increasing inequality then follows from the fact the expected effects

of the intermediate prizes are positive when there is an increasing density of inefficient agents

and negative when this density is decreasing.

Lastly, we discuss applications to the design of optimal contests in three different en-

vironments. For grading contests, under the assumption that the value of a grade equals

the expected productivity of the agent who gets it, we show that more informative grad-
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ing schemes lead to more competitive prize vectors. We then use our results on the effect

of competition to derive optimal grading contests. When the density of inefficient agents

is increasing, the effort-maximizing contest awards a unique grade to each agent while the

effort-minimizing contest awards only two different grades, say A and B, in some distribu-

tion. When the density of efficient agents is increasing, the effort-maximizing contest awards

a unique grade to the best agent while pooling the remaining agents with a common grade,

and the effort-minimizing contest pools few of the top agents while awarding a unique grade

to the remaining agents at the bottom. For our second application, we consider a designer

who has a budget that it can split arbitrarily across n prizes and the agents have a common

parametric concave utility function for prizes and linear effort costs. We derive the effort-

maximizing contest and show that as the utility becomes more concave, the optimal prize

vector becomes less competitive. Our last application is to settings where the designer can

only choose the number of winners to award with a costless homogeneous prize. In this case,

we show that if the density is monotone, the optimal contest awards either a single prize or

n− 1 prizes depending upon whether productive agents are more or less likely.

1.1 Literature review

There is a vast literature in contest theory studying the effect of manipulating various fea-

tures of a contest on the equilibrium effort of the agents and consequently designing these

features so as to maximize effort. This work closely relates to the optimal contest design

problem in which the designer wants to distribute a given budget among prizes v1, v2, . . . , vn

so as to maximize the effort of the n competing agents. This problem was first posed by Gal-

ton in 1902 and has since been studied in various different environments. The environments

generally differ in the assumptions they make about the contest success function (csf), the

abilities or valuations of the agents which may be symmetric or asymmetric, and the infor-

mation agents have about the abilities of other agents which may be complete or incomplete.

We briefly discuss the literature on this problem for the perfectly discriminatory csf, which
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ranks agents according to the effort they put in and awards them the corresponding prizes.

In the complete information setting with symmetric agents, the results generally suggest

that increasing competition by increasing prize inequality discourages effort and so distribut-

ing the budget equally among the top n−1 agents maximizes total effort. This is for instance

the case in Glazer and Hassin [30] who consider a model with concave utility and linear costs.

In the special case when utility is also linear, Barut and Kovenock [2] show that any equilib-

rium induces the same expected aggregate effort and the only restriction posed by optimality

is that the last prize vn should be zero. More recently, Fang, Noe, and Strack [23] generalize

these results and find that with linear utility and convex costs, increasing prize inequality

reduces each agent’s effort in the sense of second order stochastic dominance. In contrast,

our work in the incomplete information environment identifies a sufficient condition on the

distribution of abilities under which competition actually encourages effort.

In an incomplete environment with ex-ante symmetric agents, which is the focus of this

paper, a wide range of models have been studied in the literature. In many of these settings,

a winner-take-all prize structure has been shown to be optimal for maximizing effort. Glazer

and Hassin [30] show that if the agents have concave utility and linear costs, the optimal

prize vector involves setting all the later half of the prizes to 0. Zhang [61] considers a model

with convex effort costs and identifies a necessary and sufficient condition under which the

winner-takes-all prize structure is optimal among a general class of mechanisms. In a setting

with linear utility and linear or concave costs, Moldovanu and Sela [44] find that award-

ing only a single prize is optimal. For convex costs, they identify conditions under which

awarding more than one prize might be optimal. In comparison, our paper obtains a more

complete ordering of contests in terms of the effort they induce. The analysis allows us to

study and solve the optimal contest design problem in other natural environments where the

set of feasible prize vectors may be constrained or different.
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There has been relatively little work on the optimal prize distribution problem with asym-

metric agents. In a complete information setting with linear utility and linear costs, Clark

and Riis [14] provide examples where splitting the budget into more than one prize might

be optimal. We are not aware of any work on the problem in an incomplete information

environment with ex-ante asymmetric agents. There has also been work on this problem for

the ratio-form contest success function, which is the most popular alternative to the per-

fectly discriminatory csf. Clark and Riis [15] consider a complete information setting with

symmetric agents having linear utility and costs and find that under the Tullock csfs, which

represents a parametric subclass of ratio-form csfs, increasing prize inequality leads to an

increase in total effort. Szymanski and Valletti [59] show that with asymmetric agents, a sec-

ond prize might be optimal. Other related work that looks at the design of optimal contests

under some different assumptions include Krishna and Morgan [37], Liu and Lu [42], Co-

hen and Sela [16]. Sisak [57] provides a more detailed survey of the literature on this problem.

In addition to manipulating the values of prizes to influence the effort, there are other

structural elements of a contest that have also been considered in the literature. These in-

clude winner selection mechanisms, introduction of dynamics with sequential decision mak-

ing, introduction of asymmetry via head starts, information disclosure at intermediate stages,

entry constraints, introducing multiple contests, group contests, etc. Fu and Wu [26] pro-

vides a survey of the theoretical literature on optimal contest design from these different

perspectives. More general surveys of the theoretical literature in contest theory can be

found in Corchón [18], Vojnović [60], Konrad et al. [34], Segev [52].

The settings we focus on for our applications have also been studied in the literature.

In particular, there has been significant work on the design of optimal grading schemes

(Moldovanu, Sela, and Shi [46], Rayo [50], Popov and Bernhardt [49], Chan, Hao, and Suen

[8], Dubey and Geanakoplos [20], Zubrickas [62]). Moldovanu, Sela, and Shi [46] consider

a setting where the designer can associate grades with arbitrary monetary prizes subject
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to budget and individual rationality constraints and find that the optimal grading scheme

awards the top grade to a unique agent and a single grade to all the remaining agents. Dubey

and Geanakoplos [20] consider a complete information environment where agents care about

relative ranks and find that absolute grading is generally better than relative grading and that

it’s better to clump scores into coarse categories. Other related papers look at the signalling

value of grades under different models or assumptions (Costrell [19], Betts [5], Zubrickas

[62], Boleslavsky and Cotton [6]). The setting of our last application where the designer can

only choose the number of winners to receive a fixed homogeneous prize was also considered

in Liu and Lu [42] under different distributional assumptions. They find that the expected

effort is single peaked in the number of prizes. In comparison, we identify natural conditions

on the prior distribution under which awarding just a single prize or n− 1 prizes is optimal.

The paper proceeds as follows. In section 2, we present the model of a contest in an

incomplete-information environment. In section 3, we present and discuss our results through

an illustrative example. Section 4 characterizes the symmetric Bayes-Nash equilibrium of

the contest game and studies the effect of prizes and competition on effort. In section 5, we

discuss applications to the design of optimal contests in three natural environments. Section

6 concludes. All proofs are relegated to the appendix.

2 Model

There is a single contest designer and n agents. The designer chooses a vector of prizes v =

(v1, v2, . . . , vn) such that vi ≥ vi+1 for all i. The agents compete for these prizes by exerting

costly effort. Each agent i is privately informed about its marginal cost of effort θi ∈ [0, 1]

which is drawn independently from [0, 1] according to a distribution F : [0, 1] → [0, 1]. The

distribution F is common knowledge. Given a vector of prizes v, marginal cost of effort θi,

and belief F about the marginal costs of effort of other agents, each agent i simultaneously

chooses an effort level ei. The designer ranks the agents in order of the efforts they put in
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and awards them the corresponding prizes. The agent who puts in the maximum effort is

awarded prize v1. Agent with the second highest effort is awarded prize v2 and so on. If

agent i puts in effort ei and wins prize vi, its final payoff is

vi − θiei

Given a prize structure v and belief F , an agent’s strategy σi : [0, 1] → R+ maps its

marginal cost of effort to the level of effort it puts in. A strategy profile σ = (σ1, σ2, . . . , σn)

is a Bayes-Nash equilibrium of the game if for all agents i and type θi ∈ [0, 1], agent i’s

expected payoff from playing σi(θi) is at least as high as its payoff from playing anything

else given that all other agents are playing σ−i. We’ll focus on the symmetric Bayes-Nash

equilibrium of this contest game. This is a Bayes-Nash equilibrium where all agents are

playing the same strategy gv : [0, 1] → R+.

Given a prior distribution F , we’ll assume the designer’s preferences over the different

contests or prize vectors v is defined by a monotone utility function U : R+ → R so that the

designer prefers v over v′ if and only if E[U(gv(θ))] ≥ E[U(gv′(θ))] where gv represents the

symmetric Bayes-Nash equilibrium function under prize vector v. We’ll impose conditions on

U as required to illustrate our results. A standard objective for the designer in the literature is

to maximize expected effort which is captured in our model by the utility function U(x) = x.

3 Illustrative example

In this section, we’ll use specific instances of our model to illustrate the main results of the

paper. Through examples, we’ll show that the effect of prizes and competition on effort

depend in an important way on the distribution of abilities in the population and discuss

implications for the design of optimal grading contests.

Consider an instance of the model with n=4 agents. Given a distribution F on marginal

costs and a prize vector v = (v1, v2, v3, v4) with v1 ≥ v2 ≥ v3 ≥ v4, the equilibrium effort
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level for an agent of type θ is a weighted sum of the prizes given by

gv(θ) = v1m1(θ) + v2m2(θ) + v3m3(θ) + v4m4(θ),

where the weights mi(θ) depend on the distribution and are such that the effort gv(θ) de-

creases as marginal cost θ increases (Lemma 1). The expected effort of an arbitrary agent

under any prize vector v is

E[gv(θ)] = v1E[m1(θ)] + v2E[m2(θ)] + v3E[m3(θ)] + v4E[m4(θ)]

We will illustrate our results using three populations which differ in whether productive

agents are likely, uniformly distributed, or unlikely.

• F (θ) = θ
2
3 : corresponds to a population where productive agents are likely

• F (θ) = θ: corresponds to a population with uniform distribution of abilities

• F (θ) = θ2: corresponds to a population where productive agents are unlikely

Effect of prizes on effort

Table 1 shows the expected effort under the three distributions for three prize vectors which

differ in the number of homogeneous prizes they award. It illustrates how the effect of

the second and the third prize depends on the distribution. In particular, it shows that if

productive agents are likely in the population, increasing the value of the intermediate prizes

discourage effort. In contrast, if these agents are unlikely to exist in the population, these

prizes encourage effort (Theorem 1).

The effect of intermediate prizes depend on the distribution because when their value is

increased, it has an opposite effect on highly productive and less productive agents. The

highly productive agents are competing for the best prizes and when the value of intermediate

prizes increase, their incentive to fight for the better prizes goes down and they reduce their

effort. The low productivity agents are encouraged to put in more effort because they
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Prize vector Productive agents likely Uniform Productive agents unlikely

(10,0,0,0) 32 10 32
7

(10,10,0,0) 16 10 48
7

(10,10,10,0) 12 10 60
7

Table 1: Effect of prizes on expected effort under F (θ) = θ
2
3 , F (θ) = θ, F (θ) = θ2

generally get lower ranked prizes and their value for better prizes has increased. The overall

effect then depends on whether productive agents are more or less likely.

Effect of competition on effort

Table 2 shows the expected effort under the three distributions for three prize vectors which

differ in the inequality between the top and bottom prizes. It illustrates how the effect

of competition also depends on the distribution and again, can go in opposite directions

depending upon the likelihood of productive agents in the population (Theorem 2).

Prize vector Productive agents likely Uniform Productive agents unlikely

(40,40,0,0) 64 40 192
7

(40,30,10,0) 76 40 188
7

(40,20,20,0) 88 40 184
7

Table 2: Effect of prize inequality on expected effort under F (θ) = θ
2
3 , F (θ) = θ, F (θ) = θ2

The idea is that when productive agents are likely, we already know from before that the

second and third prize discourage effort. But it is also the case that second prize discourages

even more than the third prize. As a result, when the second prize reduces and comes closer

to the third, the prize inequality and the competitiveness goes down and the expected effort

increases. An analagous reasoning holds when productive agents are unlikely. In this case,

we already know that the second and third prizes encourage effort but we also have that the
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second prize encourages more than the third. Therefore, as prize inequality goes down, the

level of effort also goes down.

Together, these tables illustrate that even though the first prize has a positive effect on

effort across distributions, the effects of the later prizes depend in an important way on the

distribution of abilities. This is important because there are natural settings where the set

of feasible contests are constrained or different. And the dominance of the first prize may

not be enough to identify the optimal contests in those environments. We illustrate this next

through our application of grading contests.

Grading contests

Suppose a professor is teaching a class of n = 4 students and needs to choose a grading

scheme. With 4 students, there are only seven feasible grading schemes: ABCD,ABCC,

ABBC,AABC,ABBB,AABB,AAAB. To compare them in terms of the effort they in-

duce, we need to associate prizes with grades. In this paper, we assume that the value of

a grade is determined by the information it reveals about the type of the agent, and in

particular, equals its expected productivity. Suppose w(θ) = 10(1 − θ) is a publicly known

productivity function mapping marginal costs to productivity. We assume that the value

associated with a grade is the expected salary earned by the student in a downstream job

market. Specifically, it is the expectation of w(θ) given the grade of the agent. For instance,

suppose the professor uses the grading scheme ABCD. Then, the value associated with

grade A will be E[w(θ)|A] = E[w(θ)|θ = θ(1)] where θ(1) = min{θ1, θ2, θ3, θ4}. For the uni-

form distribution, the value of grade A equals eight and we can similarly compute the values

of grades B,C, and D to be six, four, and two respectively. Under our assumptions, the

prize vector associated with any grading scheme can be represented using the prize values

induced by ABCD: (v1, v2, v3, v4). Table 3 describes the prize vectors induced by the seven

grading schemes (vij represents vi+vj
2

and vijk represents vi+vj+vk
3

):
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Grading scheme Prize vector Uniform

ABCD (v1, v2, v3, v4) (8,6,4,2)

ABCC (v1, v2, v34, v34) (8,6,3,3)

ABBC (v1, v23, v23, v4) (8,5,5,2)

AABC (v12, v12, v3, v4) (7,7,4,2)

ABBB (v1, v234, v234, v234) (8,4,4,4)

AABB (v12, v12, v34, v34) (7,7,3,3)

AAAB (v123, v123, v123, v4) (6,6,6,2)

Table 3: Prize vectors induced by grading schemes

Observe that the set of prize vectors is a finite subset of prize vectors available to a

designer with a budget of v1+v2+v3+v4 = 20. Similarly, under the distributions F (θ) = θ2

and F (θ) = θ
2
3 , all feasible grading contests have associated prize vectors that add up to

constant sums of 40
3

and 24 respectively. In the problem where the designer can allocate this

budget arbitrarily, it will allocate the entire budget to the first prize to maximize expected

effort for any distribution. But it is not clear what will be the effort-maximizing grading

contest and how it may depend on the distribution. Table 4 illustrates the effort induced by

the seven grading schemes under the three distributions:

We can see from the table that the ordering of the grading contests in terms of effort

depends on the prior distribution of abilities. The ordering is partly determined by the fact

that more informative grading schemes induce more competitive prize vectors. And so we

can use our results on effects of competition to study the relationship between the informa-

tiveness of a contest and the effort it induces (Theorem 3). Also observe that the optimal

grading contests (effort-maximizing and effort-minimizing) are now different depending upon

the distribution (Corollary 3 and Corollary 4).
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Grading scheme Productive agents likely Uniform Productive agents unlikely

ABCD 11.56 6 3.05

ABCC 10.64 5 2.39

ABBC 12.82 6 3.01

AABC 7.48 5 2.82

ABBB 12.37 4 1.57

AABB 6.56 4 2.16

AAAB 5.12 4 2.54

Table 4: Effort induced by grading contests with n = 4 agents under the three distributions

F (θ) = θ
2
3 , F (θ) = θ, F (θ) = θ2

To summarize, we know that when the designer has a fixed budget that it can distribute

arbitrarily across prizes, allocating the entire budget to the first prize maximizes effort

under all distributions (Moldovanu and Sela [44]). The example illustrates that when we go

beyond the first prize, the effect of prizes and competition depend heavily on the distribution

of abilities in the population and this has important consequences for the design of optimal

contests in settings like grading contests where the set of feasible contests or the designer’s

objective or both may be different.

4 Equilibrium

In this section, we first characterize the symmetric Bayes-Nash equilibrium of the game for

arbitrary prize vectors and then discuss how the equilibrium changes as we vary different

prizes. Note that our model is similar to the model studied in Moldovanu and Sela [44]. The

difference is that Moldovanu and Sela [44] assume that the agents marginal costs of effort

are bounded away from zero in an interval [m, 1] with m > 0. While the symmetric Bayes-

Nash equilibrium strategy function takes the same form as in Moldovanu and Sela [44], it

satisfies an interesting property due to the presence of agents with negligible marginal costs
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of effort which we will discuss later. The following result displays the symmetric Bayes-Nash

equilibrium strategy of the contest game (Moldovanu and Sela [44]).

Lemma 1. In a contest with n agents, prizes v = (v1, v2, . . . , vn−1, vn) and prior cdf F , the

symmetric Bayes-Nash equilibrium strategy function is given by

gv(θ) =
n∑

i=1

mi(θ)vi

where,

mi(θ) =

(
n− 1

i− 1

)∫ 1

F (θ)

[(1− t)n−i−1ti−2]

F−1(t)
((n− 1)t− (i− 1)) dt

for all i ∈ {1, 2, . . . , n}.

The proof uses the standard approach of assuming that n−1 agents are playing the same

strategy and then getting conditions under which that strategy is the best response for the

remaining agent:

−f(θ)
n−1∑
i=1

(vi − vi+1)
(n− 1)!

(i− 1)!(n− i− 1)!

[
(1− F (θ))n−i−1F (θ)i−1

]
= θg′v(θ)

Using the boundary condition gv(1) = 0 pins down the form of the function

gv(θ) =
n−1∑
i=1

(vi − vi+1)
(n− 1)!

(i− 1)!(n− i− 1)!

∫ 1

F (θ)

[(1− t)n−i−1ti−1]

F−1(t)
dt

We can then rewrite the expression as in the lemma by combining the two terms with coef-

ficient vi. Lastly, we check that the second order condition is satisfied. The full proof is in

the appendix.

Observe that the equilibrium is linear in prizes. So the equilibrium effort level of an

agent of type θ is simply a weighted sum of the values of prizes where the weights mi(θ)

depend on the distribution. These weights represent the marginal effects of prize i on the

effort exerted by agent θ and are such that
∑n

i=1 mi(θ) = 0. This is because if all the prizes

are the same value, there is no incentive for agents to exert any effort. Generally, studying

the effects of different prizes on effort amounts to understanding properties of these marginal
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effect functions and we’ll discuss them in the next subsection.

In case an agent’s value for prize v is given by some utility function u(v) and all agents

share the same utility function u for prizes, the equilibrium in Theorem 1 is simply as if

prize i was u(vi) instead of vi. The following corollary states this formally.

Corollary 1. In a contest with n agents, each with utility function u for prizes, prizes

v = (v1, v2, . . . , vn−1, vn) and prior cdf F , the symmetric Bayes-Nash equilibrium strategy

function is given by

gv(θ) =
n∑

i=1

mi(θ)u(vi)

where,

mi(θ) =

(
n− 1

i− 1

)∫ 1

F (θ)

[(1− t)n−i−1ti−2]

F−1(t)
((n− 1)t− (i− 1)) dt

for all i ∈ {1, 2, . . . , n}.

We will use this when we discuss the effort-maximizing contest for agents with concave

utility for prizes.

4.1 Effect of prizes

Now that we know what the equilibrium function looks like, we focus our attention on

studying how the equilibrium changes as we vary the values of different prizes.

Theorem 1. Consider a setting with n agents and prior distribution of abilities F . Suppose

v = (v1, . . . , vn) and w = (w1, . . . , wn) are two prize vectors such that vi > wi and vj = wj

for all j ̸= i.

1. If i = 1, then E[U(gv(θ))] ≥ E[U(gw(θ))] for any increasing function U .

2. If i = n, then E[U(gw(θ))] ≥ E[U(gv(θ))] for any increasing function U .
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3. If i ∈ {2, . . . , n − 1} and the density f is increasing, then E[U(gv(θ))] ≥ E[U(gw(θ))]

for any increasing and concave function U .

4. If i ∈ {2, . . . , n − 1} and the density f is decreasing, then E[U(gw(θ))] ≥ E[U(gv(θ))]

for any increasing and convex function U .

In words, the first prize always encourages effort and the last prize discourages effort

irrespective of the prior distribution of abilities. The effect of the intermediate prizes depends

on the prior distribution of abilities. If the prior distribution is such that the density of less

efficient agents is increasing, then higher values of intermediate prizes encourage effort. But

if this density is decreasing, then these prizes discourage effort. This is partly because any

intermediate prize i has a different effect on different types of agents. The more efficient

agents put in lesser effort as the incentive for winning the top prizes goes down when the

value of the intermediate prize increases. In contrast, the less efficient agents who generally

get lower prizes now put in more effort to get the increased prize i. Importantly, the decrease

in effort of the more efficient agents and the increase for the less efficient agents cancel out

so that there is basically a transfer of effort from the more efficient agents to the less efficient

agents as any intermediate prize is increased. Note that the existence of agents with negligible

marginal costs of effort is important for the equilibrium to have this property. This property

is formally stated in the following lemma which is the key to proving Theorem 1.

Lemma 2. For any number of agents n and prior distribution of abilities F , the marginal

effects functions mi(θ) satisfy the following properties:

1. θmi(θ) ≤ 1 for all i ∈ {1, . . . , n− 1}, θ ∈ [0, 1]

2. limθ→0 θmi(θ) = 0 for all i ∈ {1, . . . , n− 1}

3.
∫ 1

0
m1(θ) = 1 and

∫ 1

0
mi(θ) = 0 for i ∈ {2, n− 1}

4. m1(θ) > 0 for all θ and monotone decreasing

5. For i ∈ {2, n− 1}, there exist t1i < t2i such that
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mi(θ) =

<= 0 if θ ≤ t1i

> 0 otherwise

m′
i(θ) =

>= 0 if θ ≤ t2i

< 0 otherwise

The first property provides and upper bound on the increase in effort from increasing

any prize i. It follows from observing that if a prize increases by δ, the increase in effort cost

is δθmi(θ) which should be less than the maximum gain from the increase in effort which

is δ. The second property says that the effort cost goes to zero as the agent becomes more

efficient. The third property is the balanced transfer of effort property we alluded to earlier.

It says that the overall effect of any prize i other than the first prize is zero. So increasing

any prize i just transfers the effort from some set of agents to another set of agents. The

first prize is special in that its overall effect is positive and equals 1 irrespective of the prior

distribution. To prove this, we apply integration by parts to integrate
∫ 1

0
mi(θ)dθ and using

the second property, we get that it equals −
∫ 1

0
θm′

i(θ)dθ. By Leibniz rule, we know

m′
i(θ) = −

(
n− 1

i− 1

)
[(1− F (θ))n−i−1F (θ)i−2]

θ
((n− 1)F (θ)− (i− 1)) f(θ)

and so we are able to integrate θm′
i(θ) to get the result. As we mentioned earlier, the presence

of agents with negligible marginal costs of effort is essential for the equilibrium to have this

property. And we will discuss some of its implications later. Moving on, the fourth property

says that the first prize encourages effort for all types of agents and this effect decreases as

the marginal cost of effort increases. And finally, the last property describes exactly how the

effort transfers from one set of agents to another as we increase the value of some prize. In

particular, for any prize i that is not the first prize, increasing its value leads to a transfer of

effort from more efficient agents (θ ≤ t1i ) to less efficient agents (θ > t1i ). Intuitively, this is

because as the value of prize i increases, the more efficient agents incentive to fight for the

better prizes goes down and so their effort decreases. On the other hand, the less efficient

agents now have a stronger incentive to exert effort for prize i and so their effort level goes

up. These properties of the marginal effect functions are illustrated in Figure 1 for the case
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of n = 5 agents and prior cdf F (θ) = θ3.

Figure 1: The marginal effect of prizes on effort for n = 5 and F (θ) = θ3.

Going back to Theorem 1, the overall effect of the first prize is positive and that of the

last prize is negative irrespective of the prior distributions. The effect of any intermediate

prize i depends on the prior distribution of abilities in the population. We already know from

Lemma 2 that increasing prize i leads to a balanced transfer of effort from more efficient

to less efficient agents. Therefore, if the density of inefficient agents is increasing and so

there is a higher fraction of inefficient agents in the population, increasing prize i will have

a positive effect in expectation. And in fact, because the equilibrium functions will have a

single-crossing property, the equilibrium under the higher prize will second order stochasti-

cally dominate the one under the lower prize. In contrast, if the density of efficient agents is

increasing and so there is a higher fraction of efficient agents in the population, increasing

prize i will have a negative effect in expectation. The full proofs of Lemma 2 and Theorem

1 are in the appendix.

Note that both the third and fourth parts of Theorem 1 apply to the special case where

there is a uniform distribution of abilities in the population.
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Corollary 2. Consider a setting with n agents and uniform distribution of abilities F (θ) = θ.

Suppose v = (v1, . . . , vn) and w = (w1, . . . , wn) are two prize vectors such that vi > wi and

vj = wj for all j ̸= i. Then,

1. E[U(gv(θ))] ≥ E[U(gw(θ))] for any increasing and concave function U .

2. E[U(gw(θ))] ≥ E[U(gv(θ))] for any increasing and convex function U .

In other words, for the uniform case, gw(θ) is a mean-preserving spread of gv(θ).

4.2 Effect of competition

Theorem 1 identifies natural conditions on the prior distributions under which the prizes

encourage or discourage effort. Next, we discuss how these effects compare across prizes.

That is, how does the effect of prize i compare with that of prize j. While we are not able to

answer that question in full generality, we consider a natural parametric class of the priors

for which we can compute and compare the expected marginal effects of prizes. We then

discuss what this comparison implies for the effect of competition on the effort exerted by

the agents under these priors. First, let us formally define what it means for a prize vector

to be more competitive than another.

Definition 4.1. A prize vector v = (v1, v2, . . . , vn−1, vn) is more competitive than w =

(w1, w2, . . . , wn−1, wn) if v majorizes w (i.e.
∑k

i=1 vi ≥
∑k

i=1 wi for all k ∈ [n] and
∑n

i=1 vi =∑n
i=1 wi).

This is the definition that was also considered in Fang et al. [23] who showed that in a

complete information environment, competition discourages effort. The next result describes

the effect of competition on expected effort and expected minimum effort and how these

effects depends on the prior distribution of abilities.

Theorem 2. Consider a setting with n agents and distribution of abilities F (θ) = θp.

Suppose v = (v1, . . . , vn) and w = (w1, . . . , wn) are two prize vectors such that v is more

competitive than w. Then, we have the following:
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1. If p > 1, then

E[gv(θ)] ≥ E[gw(θ)].

2. If 1
2
< p < 1, and v1 = w1, vn = wn, then

E[gv(θ)] ≤ E[gw(θ)].

3. If p > 1
2

and vn = wn, then

E[gv(θmax)] ≤ E[gw(θmax)].

The two cases p > 1 and 1
2
< p < 1 represent populations where more productive are

less likely and more likely respectively. And the theorem says that when productive agents

are less likely, increasing competition by increasing prize inequality encourages effort. In

contrast, when productive agents are more likely, increasing competition discourages effort.

To prove this, we first compute the expected marginal effects for each prize i under the

prior F (θ) = θp. We get that for i > 1
p

and i ∈ {1, 2, . . . , n− 1},

E[mi(θ)] =

(
n− 1

i− 1

)
β(i− 1

p
, n− i)

(n− i)(p− 1)

np− 1

From this, we can determine how the expected marginal effects compare across prizes by

finding the ratio E[mi+1(θ)]

E[mi(θ)]
. Computing this ratio, we get that

E[mi+1(θ)]

E[mi(θ)]
=

n− i

i

i− 1
p

n− i− 1

n− i− 1

n− i
=

i− 1
p

i
< 1

It follows then that for p > 1, the expected marginal effects E[mi(θ)] are positive and

decreasing in i. Thus, increasing the value of prize 2 encourages more than increasing the

value of prize 3 and so on. This might be a bit surprising since these are distributions in

which the designer puts more weight on the effort of the less efficient agents, who care more

about the lower ranked prizes. While we do see that the relative benefit of prize i over i+ 1

reduces as p increases, it continue to be ≥ 1 as p → ∞. Now note that the less unequal

prize vector w can be obtained from the more unequal prize vector v by a sequence of Robin
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Hood transfers, each of which involves a transfer of value from a top ranked prize to a bottom

ranked prize. Since each of these transfers has a net effect of reducing expected effort, we get

that the expected effort goes down as prize vector becomes less unequal or less competitive.

Thus, in contrast to the complete information case (Fang et al. [23]), competition actually

encourages effort in this case.

An analogous argument holds for the case where 1
2
< p < 1. In this case, the ratios

remain the same but the expected marginal effects are actually negative for the intermediate

prizes. Thus, increasing the value of prize 2 discourages more than increasing the value of

prize 3 and so on. As a result, we get that the Robinhood transfers actually have a net

positive effect on expected effort. And therefore, in this case, conditional on the values of

the first and last prize being fixed, competition actually discourages effort.

For the case of expected minimum effort, we again find the expected marginal effect of

each prize on the effort of the least efficient agent. We find that for each i ∈ {1, 2, . . . , n−1},

E[mi(θmax)] =

(
n− 1

i− 1

)
β

(
n+ i− 1− 1

p
, n− i

)
(n− i)(np− 1)

2np− p− 1

which implies
E[mi+1(θmax)]

E[mi(θmax)]
=

n+ i− 1− 1
p

i
> 1

Thus, the expected marginal effects are positive for all prizes i ∈ {1, 2, . . . , n − 1} and

actually increasing in i. So the second prize encourages more than the first prize, the third

prize encourages more than the second prize and so on. As a result, we get that less unequal

or less competitive prize vectors lead to higher expected minimum effort. In comparison

to the case of expected effort where we saw that the effect of having a large fraction of

inefficient agents was not enough to make lower ranked prizes induce more effort than top

ranked prizes, we find that this is indeed the case when the designer cares about effort of

the least efficient agent. In this case, the designer is putting even more weight on the effort

of the least efficient agents. And so we get that the lower ranked prizes induce greater effort

in expectation from the least efficient agent than the top ranked prizes.
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5 Applications

In this section, we discuss some applications to the design of optimal contests in three dif-

ferent environments. The typical setting is one where the designer can distribute a budget

in any arbitrary way and wants to maximize the total effort. In the incomplete information

environment, a winner-take-all prize structure has been shown to be optimal for this problem

(Glazer and Hassin [30], Moldovanu and Sela [44], Zhang [61]) under many different assump-

tions. However, there are some natural environments where the set of feasible prize vectors

available to the designer are constrained or different. For this section, we will consider three

such environments. First, we’ll consider settings where the designer can commit to a grading

scheme and the value of these grades is determined by the information they reveal about the

type of the agents. Second, we’ll consider settings where agents have concave utilities for

prizes and we’ll derive the effort-maximizing prize structure under the standard constraint

that the designer has a budget that it must allocate across prizes. We’ll also discuss how the

optimal prize structure changes as the degree of concavity increases in the population. At

last, we’ll consider settings where the contest designer is constrained to award homogeneous

prizes of a fixed value and only needs to decide how many prizes it must award to maximize

effort.

5.1 Optimal grading contests

First, we focus on the design of grading schemes. In this case, the contest designer doesn’t

have an explicit budget that it can distribute across prizes. Instead, it can only choose a

distribution of grades that it can award based on the rank of the agents. This is generally

the case in classroom settings where the professor awards grades to students based on their

performance in exams. For instance, the professor may commit to giving grades A and B

to the top 50% and bottom 50% respectively, or it may give A+, A−, B+, and B− with

distribution (1
4
, 1
4
, 1
4
, 1
4
). Formally, we define a grading contest as follows:

Definition 5.1. A grading contest with n agents is defined by a strictly increasing sequence
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of natural numbers s = (s1, s2, . . . , sk) such that sk = n.

The interpretation of grading contest s is that the top s1 agents get grade g1, next s2−s1

get grade g2 and generally, sk − sk−1 get grade gk. There is a natural partial order over

these grading contests in terms of how much information they reveal about the quality of

the agents. In the examples above, the grading contest that awards the grades A+, A−, B+,

and B− in equal proportion is more informative about the agents type then the one that

awards just A and B in equal proportion. More generally, we can say the following:

Definition 5.2. A grading contest s is more informative than s′ if s′ is a subsequence of s.

Clearly, the rank revealing contest s∗ = (1, 2, . . . , n) is more informative than any other

grading contest.

To discuss how these grading contests compare in terms of the effort they induce, we need

to define how the agents assign cardinal values to these grades. We assume that the value

of a grade is determined by the information it reveals about the type of the agent. More

precisely, we suppose that there is a publicly known wage function w : Θ → R+ which maps

an agent’s marginal cost to its productivity and is monotone decreasing. The interpretation

is that if the market could observe the type of the agent to be θ, the agent would be offered

a wage of w(θ). Given this wage function, we assume that the value of a grade in a grading

contest s equals the expected productivity of the agent who gets the grade. That is, if the

market has a posterior belief f over the type of the agent after observing its grade under the

grading contest s, then the agent will get a wage or prize that equals
∫ 1

0
w(θ)f(θ)dθ.

Under this assumption, the rank revealing contest s∗ = (1, 2, . . . , n) induces the prize

vector

vi = E[w(θ)|θ = θn(i)]

where θn(i) is the ith order statistic in a random sample of n observations. This is because

the rank revealing contest reveals the exact rank of the agent in a random sample of n ob-

servations. Note here that since θn(i) is stochastically dominated by θn(j) for all i < j and w

is monotone decreasing, the prize vector induced by the rank revealing contest is monotone
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decreasing v1 > v2 · · · > vn.

Now we can define the prize vectors induced by arbitrary grading contests s in terms of

the vi’s as defined above. An arbitrary grading contest s = (s1, s2, . . . , sk) induces the prize

vector v(s) where

v(s)i =
vsj−1+1 + vsj−1+2 + · · ·+ vsj

sj − sj−1

and j is such that sj−1 < i ≤ sj. This is because if an agent gets grade gj in the grading

contest s = (s1, s2, . . . , sk), then the market learns that the agent’s rank must be one of

{sj−1 + 1, . . . , sj} and further, it is equally likely to be ranked at any of these positions.

The form of the prize vector above then follows from the assumption that the value of grade

equals its expected productivity under the posterior induced by the grade.

Given this framework, we can now ask how the different grading schemes compare in

terms of the effort they induce.

Theorem 3. Consider a setting with n agents and prior distribution of abilities F (θ) = θp.

Suppose grading scheme s is more informative than s′. Then, we have the following:

• If p > 1, then E[gv(s)(θ)] ≥ E[gv(s′)(θ)]

• If 1
2
< p < 1, and v(s)1 = v(s′)1, v(s)n = v(s′)n, then E[gv(s)(θ)] ≤ E[gv(s′)(θ)]

• If p > 1
2

and v(s)n = v(s′)n, then E[gv(s)(θmax)] ≥ E[gv(s′)(θmax)]

Proof. If grading contest s is more informative than s′, then it induces a prize vector v(s)

that is more competitive than the prize vector v(s′). The result then follows directly from

Theorem 2 which describes the effect of competition on effort under the prior F (θ) = θp.

We can now find the optimal grading contest. The following corollary describes the

effort-maximizing grading contests.
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Corollary 3. Consider a setting with n agents and prior distribution of abilities F (θ) = θp.

Then, we have the following:

• If p > 1, the rank revealing contest s = (1, 2, . . . , n) maximizes expected effort among

all grading contests.

• If 1
2
< p < 1, the contest s = (1, n− 1, n) maximizes expected effort among all grading

contests in which the last agent gets a unique grade.

• If p > 1
2
, the contest s = (n − 1, n) maximizes expected minimum effort among all

grading contests.

Note that when the designer has a budget that it can distribute arbitrarily across prizes,

the expected effort maximizing contest is a winner-take-all contest that allocates the entire

budget to the first prize (Moldovanu and Sela [44]). But when the designer can only choose a

grading scheme, the set of feasible contests is actually a finite subset of all prize vectors with

a constant sum. And as we see in the corollary, the optimal grading contest now depends on

the prior distribution of abilities. If the density of agents is increasing in θ so that there is a

greater proportion of inefficient agents (p > 1), the effort maximizing grading contest awards

a unique grade to each agent. But when the density is decreasing (1
2
< p < 1), the optimal

grading contest, among those that award a unique grade to the last agent, awards a unique

grade to the best agent and pools the rest of the agents by awarding them a common grade.

And finally for the case where the designer wants to maximize expected minimum effort,

which is perhaps a reasonable objective in a classroom environment, the optimal grading

contest awards a common grade to everyone except the least efficient agent.

The next corollary describes the effort minimizing grading contests. Note that a grading

contest that pools all the agents together clearly minimizes effort among all grading contests

as it leads to 0 effort. So we focus on finding effort-minimizing grading contests that reveal

some information about the type of the agents. In other words, we exclude the trivial grading

contest s = (n) below.
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Corollary 4. Consider a setting with n agents and prior distribution of abilities F (θ) = θp.

Then, we have the following:

• If p > 1, the effort minimizing contest takes the form s = (k, n) for some k ∈

{1, 2, . . . , n− 1} .

• If 1
2
< p < 1, the effort minimizing contest takes the form s = (k, k + 1, . . . , n − 1, n)

for some k ∈ {1, 2, . . . , n− 1} .

In words, when the density of inefficient agents is increasing, the effort-minimizing con-

test only awards two grades, say A and B, in some distribution. And when the density is

decreasing, it pools some of the top agents together by awarding them a common grade, and

then awards a unique grade to each of the remaining agents.

5.2 Optimal contests where agents have concave utility

Now we consider the contest design problem in a typical environment where the designer

has a budget of B that it can allocate across prizes v = (v1, v2, . . . , vn) such that vi ≥ vi+1.

Again, with linear utility, we know that the effort maximizing contest awards the entire prize

budget B to the first prize ([44]). In this section, we consider the contest design problem

where agents have concave utilities. More precisely, we assume that under a prize vector v,

if agent i of type θi puts in effort ei and wins prize j, its payoff equals u(vj) − θiei where

u(vj) = vrj for r ∈ (0, 1). The next result characterizes the expected effort maximizing

contest in this environment.

Theorem 4. Suppose there are n agents with utility u(v) = vr for prizes with r ∈ (0, 1) and

the distribution of abilities is F (θ) = θp.

• If p > 1, the effort-maximizing contest awards n − 1 prizes of decreasing values.

Moreover, the optimal contest v(r) becomes more competitive as r increases.

• If p < 1, the effort maximizing contest is a winner-take-all contest for any r ∈ (0, 1).
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The proof proceeds by using corollary 1 to identify the Bayes-Nash equilibrium function

so that the problem becomes maxv
∑n−1

i=1 vriE[mi(θ)] such that
∑

vi = B. For p < 1, it

follows from Theorem 1 that the marginal effects of all intermediate prizes is negative and

so regardless of how concave the utilities are, the optimal contest awards the entire budget

to the first prize. For p > 1, we know from Theorems 1 and 2 that the expected marginal

effects for prizes 1, 2, . . . , n− 1 are all positive and decreasing in rank. In this case, we solve

the constrained optimization problem and characterize the optimal contest. To show that

the optimal contest become more competitive as r increases, we define fk(r) as the sum of

the first k prizes in the optimal contest under r and show that this sum is increasing in r.

Thus, as the agents utility for prizes becomes less concave, the effort maximizing contest

becomes more competitive.

5.3 Optimal contests with costless homogeneous prizes

For our last application, we consider a setting where the contest designer can award arbi-

trarily many prizes of a fixed value a. More precisely, the set of prize vectors available to

the designer is given by

B = {v ∈ Rn : ∃k such that vi = a if i ≤ k and vi = 0 if i > k}

This might be the case when the designer is awarding free trials or subscriptions to digital

content or services. In these cases, unlike grading contests, the value of the prize does not

change based on the number or ranks of the agents it is awarded to. The designer wants to

chose the number of prizes so as to maximize the expected effort. Note that this problem

was also considered in Liu and Lu [42] but under different distributional assumptions. In

their setting, the authors found that the expected effort was single-peaked in k. For our

setting, we have the following as a corollary of Theorem 1.

Corollary 5. Consider a setting with n agents and distribution of abilities F . Then, we

have the following:
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1. If the density f is increasing, then the contest that awards n − 1 prizes maximizes

E[U(gv(θ))] for any increasing and concave function U .

2. If the density f is decreasing, then the contest that awards only a single prize maximizes

E[U(gv(θ))] for any increasing and convex function U .

6 Conclusion

We study the effect of prizes and competition on effort in contests where agents have private

information about their abilities. For prizes, we find that increasing the value of the first

prize encourages effort for all agents, increasing the value of last prize discourages effort

for all agent types, and increasing any intermediate prizes leads to a balanced transfer of

effort from the more efficient agents to the less efficient agents. In expectation, the effects of

prizes and competition depend qualitatively on the prior distribution of abilities in the pop-

ulation and we identify natural sufficient conditions on the distributions under which these

interventions have opposite effects. If there is an increasing density of inefficient agents,

increasing the value of prizes or competition encourages effort. If this density is decreasing,

these interventions discourage effort.

We also discuss applications of these results to the design of optimal contests in three

natural environments. First, we consider the design of grading contests under the assumption

that the value of a grade is determined by the information it reveals about the type of the

agent. We find that more informative grading schemes induce more competitive prize vectors

and then we use our results on the effect of competition on effort to derive effort-maximizing

and effort-minimizing grading contests. Second, we consider a parametric setting where

the designer has a budget that it must allocate across different prizes and the agents have

concave utilities for prizes. We find the optimal contest in this setting and show that it

becomes more competitive as the degree of concavity decreases. Lastly, we consider settings

where the designer can only choose the number of agents to award with a homogeneous prize
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and show that when the prior density is monotone, it is optimal to award either 1 or n− 1

prizes depending on whether the density is increasing or decreasing.
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A Proofs for Section 4 (Equilibrium)

Lemma 1. In a contest with n agents, prizes v = (v1, v2, . . . , vn−1, vn) and prior cdf F , the

symmetric Bayes-Nash equilibrium strategy function is given by

gv(θ) =
n∑

i=1

mi(θ)vi

where,

mi(θ) =

(
n− 1

i− 1

)∫ 1

F (θ)

[(1− t)n−i−1ti−2]

F−1(t)
((n− 1)t− (i− 1)) dt

for all i ∈ {1, 2, . . . , n}.

Proof. Suppose n−1 agents are playing a monotone decreasing strategy g(θ). Let θn(j) denote

the jth order statistic from n random draws with θn(0) = 0 and θnn+1 = 1. Then, an agent of

type θ’s utility from putting in x units of effort is given by:

u(θ, x) =
n∑

i=1

vi Pr[θ
n−1
(i−1) ≤ g−1(x) ≤ θn−1

(i) ]− θx

=
n∑

i=1

vi

(
n− 1

i− 1

)
F (g−1(x))i−1(1− F (g−1(x)))n−i − θx

Now, differentiating with respect to x gives:

∂u(θ, x)

∂x
=

f(g−1(x))

g′(g−1(x))

n∑
i=1

vi

(
n− 1

i− 1

)
[
(1− F (g−1(x)))n−i(i− 1)F (g−1(x))i−2 − F (g−1(x))i−1(n− i)(1− F (g−1(x)))n−i−1

]
− θ

. Setting it to 0 and plugging in g(θ) = x gives the condition for g(θ) to be a symmetric

Bayes-Nash equilibrium:

f(θ)
n∑

i=1

vi

(
n− 1

i− 1

)[
(1− F (θ))n−i(i− 1)F (θ)i−2 − F (θ)i−1(n− i)(1− F (θ))n−i−1

]
= θg′(θ)

37



An alternate way to write this condition is:

−f(θ)
n−1∑
i=1

(vi − vi+1)
(n− 1)!

(i− 1)!(n− i− 1)!

[
(1− F (θ))n−i−1F (θ)i−1

]
= θg′(θ)

Using the boundary condition g(1) = 0, we get that the symmetric Bayes-Nash equilib-

rium function is given by∫ 1

θ

f(θ)

θ

n−1∑
i=1

(vi − vi+1)
(n− 1)!

(i− 1)!(n− i− 1)!

[
(1− F (θ))n−i−1F (θ)i−1

]
dθ

Replacing F (θ) = t, we get

g(θ) =

∫ 1

F (θ)

1

F−1(t)

n−1∑
i=1

(vi − vi+1)
(n− 1)!

(i− 1)!(n− i− 1)!

[
(1− t)n−i−1ti−1

]
dt

Bringing the summation outside:

gv(θ) =
n−1∑
i=1

(vi − vi+1)
(n− 1)!

(i− 1)!(n− i− 1)!

∫ 1

F (θ)

[(1− t)n−i−1ti−1]

F−1(t)
dt

We can also write the equilibrium function as gv(θ) =
∑n

i=1 mi(θ)vi where for i ≥ 2,

mi(θ) =
(n− 1)!

(i− 1)!(n− i− 1)!

∫ 1

F (θ)

[(1− t)n−i−1ti−1]

F−1(t)
dt− (n− 1)!

(i− 2)!(n− i)!

∫ 1

F (θ)

[(1− t)n−iti−2]

F−1(t)
dt

=
(n− 1)!

(i− 2)!(n− i− 1)!

∫ 1

F (θ)

(
[(1− t)n−i−1ti−1]

(i− 1)F−1(t)
− [(1− t)n−iti−2]

(n− i)F−1(t)

)
dt

=
(n− 1)!

(i− 2)!(n− i− 1)!

∫ 1

F (θ)

[(1− t)n−i−1ti−2]

F−1(t)

(
t

(i− 1)
− 1− t

n− i

)
dt

=

(
n− 1

i− 1

)∫ 1

F (θ)

[(1− t)n−i−1ti−2]

F−1(t)
((n− 1)t− (i− 1)) dt

For i = 1, we have that

m1(θ) = (n− 1)

∫ 1

F (θ)

[(1− t)n−2]

F−1(t)
dt

Now we check that the second order condition is satisfied. To simplify calculations, let

g−1(x) = t so the agent of type θ is imitating an agent of type t. Then, the foc can be

written as:
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f(t)
n∑

i=1

vi

(
n− 1

i− 1

)[
(1− F (t))n−i(i− 1)F (t)i−2 − F (t)i−1(n− i)(1− F (t))n−i−1

]
−θg′(t) = 0

or alternatively

−
n−1∑
i=1

(vi − vi+1)

(
n− 1

i− 1

)
(n− i)f(t)

[
(1− F (t))n−i−1F (t)i−1

]
− θg′(t) = 0

Let V (t) = −
∑n−1

i=1 (vi − vi+1)
(
n−1
i−1

)
(n− i)f(t) [(1− F (t))n−i−1F (t)i−1]

Then, the foc is that V (t) = tg′(t) and so V ′(t) = tg′′(t) + g′(t). Taking the derivative of

lhs of the foc wrt t gives

V ′(t)− θg′′(t) = V ′(t)− θ
(V ′(t)− g′(t))

t

At t = θ, we get that this equals g′(θ) which we know is < 0. Thus, the second order

condition is satisfied.

Theorem 1. Consider a setting with n agents and prior distribution of abilities F . Suppose

v = (v1, . . . , vn) and w = (w1, . . . , wn) are two prize vectors such that vi > wi and vj = wj

for all j ̸= i.

1. If i = 1, then E[U(gv(θ))] ≥ E[U(gw(θ))] for any increasing function U .

2. If i = n, then E[U(gw(θ))] ≥ E[U(gv(θ))] for any increasing function U .

3. If i ∈ {2, . . . , n − 1} and the density f is increasing, then E[U(gv(θ))] ≥ E[U(gw(θ))]

for any increasing and concave function U .

4. If i ∈ {2, . . . , n − 1} and the density f is decreasing, then E[U(gw(θ))] ≥ E[U(gv(θ))]

for any increasing and convex function U .

Proof. Let’s prove each of the claims in order.
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For the first claim, we know from lemma 2 that gv(θ) > gw(θ) for all θ ∈ [0, 1] since

m1(θ) > 0 for all θ ∈ [0, 1]. As a result,

P[gw(θ) ≤ x] = P[θ ≥ g−1
w (x)] ≥ P[θ ≥ g−1

v (x)] = P[gv(θ) ≤ x]

Note that the result also follows from Theorem 1.A.17 in [55].

The second claim again follows from the fact that mn(θ) < 0 for all θ.

Now let’s prove the third claim. First we’ll show that E[mj(θ)] ≥ 0. Note that E[mj(θ)] =∫ 1

0
mj(θ)f(θ)dθ. For any j ∈ {2, . . . , n − 1}, we know from Lemma 2 that there exists t1j

such that mj(θ) =

<= 0 if θ ≤ t1j

> 0 otherwise
Using this, we have that

E[mj(θ)] =

∫ 1

0

mj(θ)f(θ)dθ

=

∫ t1j

0

mj(θ)f(θ)dθ +

∫ 1

t1j

mj(θ)f(θ)dθ

≥
∫ t1j

0

mj(θ)f(t
1
j)dθ +

∫ 1

t1j

mj(θ)f(t
1
j)dθ

= f(t1j)

∫ 1

0

mj(θ)dθ

= 0

. It follows then that E[gv(θ)] ≥ E[gw(θ)]. In addition, we know from lemma 2 that there

exists t1j such that gv(θ)− gw(θ) =


< 0 if θ < t1j

= 0 if θ = t1j

> 0 otherwise
Let Gv(x) = P[gv(θ) ≤ x] denote the cdf of effort under prize vector v. Then, from above,

we have that

Gv(x)−Gw(x) =


< 0 if x < gv(t

1
j)

= 0 if x = gv(t
1
j)

> 0 otherwise
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Thus, we have that E[gv(θ)] ≥ E[gw(θ)] and also the sign of Gv(x)−Gw(x) changes exactly

once from − to + as x increases. It follows then from Theorem 4.A.22 in [55] that gv(θ)

second order stochastically dominates gw(θ).

The argument for the case of decreasing density is analagous.

Lemma 2. For any number of agents n and prior distribution of abilities F , the marginal

effects functions mi(θ) satisfy the following properties:

1. θmi(θ) ≤ 1 for all i ∈ {1, . . . , n− 1}, θ ∈ [0, 1]

2. limθ→0 θmi(θ) = 0 for all i ∈ {1, . . . , n− 1}

3.
∫ 1

0
m1(θ) = 1 and

∫ 1

0
mi(θ) = 0 for i ∈ {2, n− 1}

4. m1(θ) > 0 for all θ and monotone decreasing

5. For i ∈ {2, n− 1}, there exist t1i < t2i such that

mi(θ) =

<= 0 if θ ≤ t1i

> 0 otherwise

m′
i(θ) =

>= 0 if θ ≤ t2i

< 0 otherwise

Proof. We’ll prove the properties one by one.

The first property provides an upper bound on the marginal effect of any prize i on the

effort of agent of type θ: mi(θ) ≤ 1
θ
. To prove this, consider a case where prize i increases

by ∆. Then from the characterization in Theorem 1, it follows that an agent of type θ will

increase its effort by ∆mi(θ). This would correspond to an increase in cost of ∆θmi(θ). But

the overall gain from the increased prize is ≤ ∆. Since the change in cost must be less than

the gain in prize, we get a simple bound of θmi(θ) ≤ 1 for all θ.

The second property essentially says that the cost of the most efficient agent goes to zero.

We’ll first prove this property for i ∈ {2, n − 1} by squeeze theorem. First let’s obtain an

upper bound:
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θmi(θ) =

(
n− 1

i− 1

)
θ

∫ 1

F (θ)

[(1− t)n−i−1ti−2]

F−1(t)
((n− 1)t− (i− 1)) dt

≤
(
n− 1

i− 1

)
θ

∫ 1

F (θ)

[(1− t)n−i−1ti−2]

θ
((n− 1)t− (i− 1)) dt

=

(
n− 1

i− 1

)∫ 1

F (θ)

(1− t)n−i−1ti−2 ((n− 1)t− (i− 1)) dt

At θ = 0, the integral equals (n− 1)β(i, n− i)− (i− 1)β(i− 1, n− i) = 0

For the lower bound, we have

θmi(θ) ≥
(
n− 1

i− 1

)
θ

∫ 1

F (θ)

(1− t)n−i−1ti−2 ((n− 1)t− (i− 1)) dt

which goes to 0 as θ → 0. Thus, limθ→0 θmi(θ) = 0 for i ∈ {2, 3, . . . , n− 1}

Now we’ll prove the limit is 0 for i = 1. We have

θm1(θ) = θ(n− 1)

∫ 1

F (θ)

[(1− t)n−2]

F−1(t)
dt

. If the integral is finite, we are done. If it is infinite, we can apply L-Hospital’s rule to get

lim
θ→0

m1(θ)
1
θ

= lim
θ→0

−θ2m′
1(θ) = lim

θ→0
θ2(n− 1)f(θ)

(1− F (θ))n−2

θ
= 0

Now we prove the third property. By Leibniz rule, for i ≥ 2, we have

m′
i(θ) = −

(
n− 1

i− 1

)
[(1− F (θ))n−i−1F (θ)i−2]

θ
((n− 1)F (θ)− (i− 1)) f(θ)

Since limθ→0 θmi(θ) = 0, we have that
∫ 1

0
θm′

i(θ) = −
∫ 1

0
mi(θ)dθ

From above, we have that∫ 1

0

θm′
i(θ)dθ = −

∫ 1

0

θ

(
n− 1

i− 1

)
[(1− F (θ))n−i−1F (θ)i−2]

θ
((n− 1)F (θ)− (i− 1)) f(θ)dθ

= −
(
n− 1

i− 1

)∫ 1

0

[
(1− t)n−i−1ti−2

]
((n− 1)t− (i− 1)) dt

= 0

Thus, we get that
∫ 1

0
mi(θ)dθ = 0 for i ≥ 2. For i = 1, we have that

m1(θ) = (n− 1)

∫ 1

F (θ)

[(1− t)n−2]

F−1(t)
dt
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so that m′
1(θ) = −(n − 1)

(1− F (θ))n−2

θ
f(θ) and thus,

∫ 1

0
θm′

1(θ)dθ = −1. This gives that∫ 1

0
m1(θ)dθ = 1.

The fourth property follows from the fact that m′
1(θ) < 0 and m1(1) = 0.

For the last property, we can use the expression for m′
i(θ) to get that t2i = F−1( i−1

n−1
).

The claim on existence of t1i < t2i then follows from the fact that
∫ 1

0
mi(θ)dθ = 0 for i ∈

{2, . . . , n− 1}.

Theorem 2. Consider a setting with n agents and distribution of abilities F (θ) = θp.

Suppose v = (v1, . . . , vn) and w = (w1, . . . , wn) are two prize vectors such that v is more

competitive than w. Then, we have the following:

1. If p > 1, then

E[gv(θ)] ≥ E[gw(θ)].

2. If 1
2
< p < 1, and v1 = w1, vn = wn, then

E[gv(θ)] ≤ E[gw(θ)].

3. If p > 1
2

and vn = wn, then

E[gv(θmax)] ≤ E[gw(θmax)].

Proof. First, we show that the expected marginal effect of prize vi is

E[mi(θ)] =

(
n− 1

i− 1

)
β(i− 1

p
, n− i)

(n− i)(p− 1)

np− 1

This follows from the following calculations:

E[mi(θ)] = −
∫ 1

0

F (θ)m′
i(θ)dθ

=

(
n− 1

i− 1

)∫ 1

0

[(1− F (θ))n−i−1F (θ)i−1]

θ
((n− 1)F (θ)− (i− 1)) f(θ)dθ

=

(
n− 1

i− 1

)∫ 1

0

[(1− t)n−i−1ti−1]

F−1(t)
((n− 1)t− (i− 1)) dt

43



For F (θ) = θp,

E[mi(θ)] =

(
n− 1

i− 1

)(
(n− 1)β(i+ 1− 1

p
, n− i)− (i− 1)β(i− 1

p
, n− i)

)
=

(
n− 1

i− 1

)(
(n− 1)β(i− 1

p
, n− i)

i− 1
p

n− 1
p

− (i− 1)β(i− 1

p
, n− i)

)

=

(
n− 1

i− 1

)
β(i− 1

p
, n− i)

(
(n− 1)

i− 1
p

n− 1
p

− (i− 1)

)

=

(
n− 1

i− 1

)
β(i− 1

p
, n− i)

(n− i)(p− 1)

np− 1

Now observe that

E[mi+1(θ)]

E[mi(θ)]
=

n− i

i

i− 1
p

n− i− 1

n− i− 1

n− i
=

i− 1
p

i
< 1

Note that for p ≥ 1, these marginal effects are positive and thus, the marginal effect of prize

i is decreasing in i. This implies that the change in expected effort from increasing any prize

i ∈ [n− 1] is positive and the change from increasing vi is greater than that from increasing

vj for any i < j. Since w can be obtained from v via a sequence of Robinhood operations

which involve replacing vi by vi − ϵ and vj by vj + ϵ, each of which reduces expected effort,

we get that the expected effort under w will be lesser than the expected effort under v when

p ≥ 1. So if v is more competitive than w, then E[gv(θ)] ≥ E[gw(θ)]. For 1
2
≤ p ≤ 1, the

expected marginal effects are < 0 but the ratio is still < 1. Thus, the expected marginal

effects are actually increasing in i and so we get the inequality in the second item.

For the inequality in the third item, we first show that

E[mi(θmax)] =

(
n− 1

i− 1

)
β

(
n+ i− 1− 1

p
, n− i

)
(n− i)(np− 1)

2np− p− 1

for i ∈ {1, 2, . . . , n− 1}.

E[mi(θmax)] =

∫ 1

0

mi(θ)nF (θ)n−1f(θ)dθ
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=

(
n− 1

i− 1

)∫ 1

0

[(1− F (θ))n−i−1F (θ)i−2]

θ
((n− 1)F (θ)− (i− 1))F (θ)nf(θ)dθ

=

(
n− 1

i− 1

)∫ 1

0

[(1− t)n−i−1tn+i−2]

F−1(t)
((n− 1)t− (i− 1)) dt

For the case of F (θ) = θp, we get that

E[mi(θmax)] =

(
n− 1

i− 1

)(
(n− 1)β

(
n+ i− 1

p
, n− i

)
− (i− 1)β

(
n+ i− 1− 1

p
, n− i

))
=

(
n− 1

i− 1

)
β

(
n+ i− 1− 1

p
, n− i

)(
(n− 1)

n+ i− 1− 1
p

2n− 1− 1
p

− (i− 1)

)

=

(
n− 1

i− 1

)
β

(
n+ i− 1− 1

p
, n− i

)
(n− i)(np− 1)

2np− p− 1

Now observe that
E[mi+1(θmax)]

E[mi(θmax)]
=

n+ i− 1− 1
p

i
> 1

Thus, the marginal effect of prize i is increasing in i. Again, since w can be obtained from v

via a sequence of Robinhood operations which involve replacing vi by vi− ϵ and vj by vj + ϵ,

each of which increases expected minimum effort, we get that the expected minimum effort

under w will be greater than that under v. It follows that if v is more competitive than w

and both have the same last prize, then E[gv(θmax)] ≤ E[gw(θmax)]

B Proofs for Section 5 (Applications)

Theorem 4. Suppose there are n agents with utility u(v) = vr for prizes with r ∈ (0, 1) and

the distribution of abilities is F (θ) = θp.

• If p > 1, the effort-maximizing contest awards n − 1 prizes of decreasing values.

Moreover, the optimal contest v(r) becomes more competitive as r increases.
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• If p < 1, the effort maximizing contest is a winner-take-all contest for any r ∈ (0, 1).

Proof. When p < 1, we know from Theorem 1 that the expected marginal effect of the

intermediate prizes are negative. Thus, regardless of how concave the utilities are, it is best

to allocate the entire budget to the first prize.

Now let’s consider the case where p > 1 where we know from Theorems 1 and 2 that the

expected marginal effects for prizes 1, 2, . . . , n − 1 are all positive and decreasing in rank.

From corollary 1, we know that the Bayes-Nash equilibrium function takes the form

gv(θ) =
n∑

i=1

mi(θ)u(vi)

where,

mi(θ) =

(
n− 1

i− 1

)∫ 1

F (θ)

[(1− t)n−i−1ti−2]

F−1(t)
((n− 1)t− (i− 1)) dt

for i ∈ [n− 1] and mn(θ) = −
∑n−1

i=1 mi(θ). Given this form of the equilibrium function, the

problem is

max
v

n−1∑
i=1

u(vi)E[mi(θ)]

such that
∑n−1

i=1 vi = B.

Check that the solution will satisfy the equation

V1(r)

[
1 +

n−1∑
i=2

c
1

1−r

i

]
= B

where ci =
E[mi(θ)]
E[m1(θ)]

< 1 and ci > ci+1 for all i. Note that ci does not depend on r.

Let fk(r) = V1(r)

[
1 +

∑k
i=2 c

1
1−r

i

]
.

I want to show that f ′
k(r) > 0 for all k.

If I can show f ′
k(r) is single peaked in k, that would imply the result since fn(r) = 0.

Check that V ′
1(r) =

−
[∑n−1

i=2 c
1

1−r

i log(ci)

]
V 2
1 (r)

(1− r)2B
Plugging it in, we get

f ′
k(r) = V1(r)

[
1

(1− r)2

k∑
i=2

c
1

1−r

i log(ci)

]
+ V ′

1(r)

[
1 +

k∑
i=2

c
1

1−r

i

]
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= V1(r)

[
1

(1− r)2

k∑
i=2

c
1

1−r

i log(ci)

]
−

[∑n−1
i=2 c

1
1−r

i log(ci)

]
V 2
1 (r)

(1− r)2B

[
1 +

k∑
i=2

c
1

1−r

i

]

=
V1(r)

(1− r)2

k∑
i=2

c
1

1−r

i log(ci)

[
1− V1(r)

B

(
1 +

k∑
i=2

c
1

1−r

i

)]
− V 2

1 (r)

B(1− r)2

n−1∑
i=k+1

c
1

1−r

i log(ci)

[
1 +

k∑
i=2

c
1

1−r

i

]

=
V1(r)

B(1− r)2

k∑
i=2

c
1

1−r

i log(ci) [B − fk(r)]−
V1(r)fk(r)

B(1− r)2

n−1∑
i=k+1

c
1

1−r

i log(ci)

=
V1(r)

B(1− r)2

(
B

k∑
i=2

c
1

1−r

i log(ci)− fk(r)
n−1∑
i=2

c
1

1−r

i log(ci)

)

To show that the term inside the bracket is positive, we basically need to show that for

any decreasing sequence 1 ≥ d1 > d2 > . . . dn > 0, we have that

h(k) =
n∑

i=1

di

k∑
i=1

di log(di)−
k∑

i=1

di

n∑
i=1

di log(di) ≥ 0

for any k ∈ [n]

Observe that

∆(k) = h(k + 1)− h(k)

= dk+1 log(dk+1)
n∑

i=1

di − dk+1

n∑
i=1

di log(di)

= dk+1

(
log(dk+1)

n∑
i=1

di −
n∑

i=1

di log(di)

)

Since dk is a decreasing sequence, it follows that if ∆(k) < 0, then ∆(j) < 0 for all j > k.

But observe that h(n) = 0. So we just need to show that h(1) > 0 which is obvious.
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