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Abstract

Media reports say that high earners and syndicates buy lottery tickets in
bulk. Experimental evidence shows that agents aggressively bid in auctions
and contests. Do people try to trade-off probability of winning with other
basic risk dimensions (for example, cost) to achieve a subjective threshold
probability of winning (in environments they can) even when such choices
are second-order stochastic dominated? The literature on risky choices sug-
gests so. In the main design of this experiment, we deconstruct the expected
value with variance and skewness of a lottery with Bernoulli distribution to
examine the decision-making process. Based on the results, a proportion is
classified as expected utility maximizer (EUM)1 while another proportion
seems to achieve a subjective threshold probability of winning (termed as
target probability of winning (TPW)). More TPWs prefer higher probabili-
ties compared to EUMs in a constant value lottery set which may explain
the preference for negative skewness in experiments. Additionally, we test
two contest designs and find TPWs in the population which may explain
the puzzle of equilibrium effort more than risk-neutral Nash equilibrium in
experiments.

1 Introduction

The purpose of this chapter is to find experimental evidence with a clearer
design for target-based decision-making in risky choices where subjects trade-off
cost with the probability of winning to reach their desirable chance of winning.

The idea of target-based decision-making is found in the literature with levels
of income as the main focus. Camerer et al. (1997) find that cab drivers keep
daily targets on earning, driving fewer hours on a good day and more hours on
a bad day. The authors attribute this driving behavior to bracketed thinking

1In this thesis whenever we say expected utility theory (EUT) or maximization (EUM) we
mean any continuous and smooth utility function for which second-order stochastic dominance
holds.
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combined with aspirations. Similarly, studies show that gamblers tend to shift
bets toward long shots in the last race in an attempt to “break even” on the
day (McGlothlin, 1956). Here, breaking even is a clear and significant reference
point. Such mechanisms (and their combination) of decision-making can give
rise to behavior that is qualitatively different from what is predicted by standard
models.

However, in some settings choices are over probabilities of success, not levels.
For example, buying lottery tickets when a prize is fixed. Anecdotal evidence
suggests they might be trading off the probability of winning with either cost or
size of the prize to achieve a target probability of winning. In a two-outcome
probabilistic game, a sufficiently favorable probability of winning each game
(one at a time in case these are repeated) can serve as an aspiration. In this case,
only after winning can one achieve payoffs above endowment as a reference
point when there is no explicit need-based reference point on the (net) amount
to be won.

The objective of this chapter is to answer the following questions. A) Do
subjects target a probability of winning in risky choices? B) Do subjects prefer
negative skewness relatively over positive skewness in risky choices? C) Do
subjects target a probability of winning in contests? To help answer these
questions, TPW decision-making will first be described; then, some real-life
examples of the behavior it predicts will be given. Subsequently, the TPW
decision rule (Section 3) will be introduced and some predictions it makes with
that of EUMs will be compared (Section 7). Following this, lab experiments will
be used to test the predictions and explore different aspects of behavior (Section
8).

TPW, target probability of winning, emphasizes that the probability of win-
ning in any decision/game could be an independently important determinant of
decision making. If feasible, subjects will base their decision to engage with a
choice set on the relative probability of winning. This means that they can also
choose an option that is second-order stochastic dominated. This is different
from the probability weighting function (CPT) where subjects perceive the ob-
jective probabilities subjectively and a decision is a function of the product of
this subjective probability with the possible subjective value to be gained.

In the real world, people may have to “win” (complete task within constraints)
multiple games rather than trying to achieve the highest expected utility with
a low probability of winning in each game. Some intuitive real-life examples
can be as follows: addressing an acceptable research problem for your thesis
(or tenure track) which can be completed in the designated time rather than
putting forward the best ideas you can, given the low probability of getting it
completed within the time frame in the latter scenario; in congested cities trying
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to reach a nearby hospital in an emergency rather than the best hospital whose
location in the city is less accessible; doctoral students may not even apply to
higher-ranking universities for the position of assistant professors even when
these applications require minimal effort.

In these situations, if there is a possibility of changing the chance of success
by changing the cost/effort, some people may make such a trade-off to reach
a more desirable chance of winning. Some intuitive real-life examples can be:
doctoral students extend their thesis by a year or take up a post-doc to improve
their chance of getting a position of assistant professor; students take up a
full-time research assistantship after their undergraduate studies to improve
their chance of getting into a good doctoral program, among other reasons;
differences in long-term investment decisions—at later age, people choose a
lower proportion of equities in their portfolio to increase the chances of the net
return on the investment to be above risk-free return at the time of retirement
even though equities would give the highest expected value.

Similarly, in real-life scenarios, keeping everything in one basket to achieve
the highest second-order dominant choice—even if one can substantially in-
crease the chance of winning by increasing the effort (cost) but can’t make it
certain—may not be preferred by some as it does not leave them with anything
if it is a loss. An intuitive example in real life can be seen in professional choices
where very few people opt for taking up a career path that requires long-term
focused effort and (irreversible) opportunity cost on multiple fronts even when
success can transform their careers in the desired direction.

So far, only intuitive examples that are debatable in terms of whether ex-
pected utility or any other mainstream behavioral theory can explain such
decisions have been given. It is only the decision-maker who has a true insight
into how they make those decisions. The following example is more appropriate
for allowing discussion based on only observed behavior. There seems to be
a general “strategy” popular among the lottery players that one should buy
more tickets to increase the chance of winning. This is when, in general, the
expected value of the lottery is negative. There are media reports which claim
the following:

1) High earners buy in bulk.
2) People form a syndicate to buy tickets in bulk (and a Wikipedia page suggests
that people do it to enhance their chance of winning).
3) Winners tend to follow the strategy of buying in bulk.

Some players find such advice reasonable.2 It might be the case that when

2See Appendix for a screenshot of news cited here (Figure 1.36-1.42).
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individually they think they are not able to achieve this then some of them form
a syndicate to achieve this. Buying in a syndicate strengthens the belief that they
enhance the chance of winning by trading off the size of the prize they will share
as a reasonable way to approach this game since the expected value remains the
same.

Our main task in this experiment (Part 5) teases out EUMs from possible
TPWs and deconstructs the expected value with variance and skewness. Hence, a
clearer experiment to address aspects of questions A and B is achieved. Evidence
on TPWs may resolve the differences between one set of findings in (finance and
psychology) literature—which finds preference for statistical moments (corre-
sponding to some utility maximization) as the underlying approach subjects
take when making a decision in risky choices—and another set of findings (psy-
chology and finance) where subjects make a decision based on some contextual
behavioral approaches. A possible reason for the two different sets of findings is
that these designs (due to their contextual nature) are dominated by one “type”
of subjects. This could leave the overall finding confounded which may also
be the reason that some experiments show a preference for positive preference
and some for negative. The behavior in these studies cannot be distinguished,
whether subjects are making choices based on moments (which can be rational-
ized as expected utility maximization) or the probability of winning (a behavioral
approach).

If the probability of winning is an important determinant in decision making
(at least for some substantial proportion of the population) in risky choices then,
among others, it can contribute to insights into two areas of economics research
which are contests and all-pay auctions where a limited discussion has occurred
so far. If subjects are using this approach to make a decision, then their decision
will reflect qualitatively different choices compared to what is predicted by the
standard theory. This motivates us to come up with two (Part 3 and 4) additional
tasks to address aspects of question C. In these tasks, the environment is varied
including the information available to the subjects. A challenge of testing any
decision-making approach is that it is contextual; subjects may use a different
approach to decision making depending on how they understand technically the
same game presented differently3. If TPWs are present in contests then it may
give insights into behavioral regularities such as over-dissipation and dropout.

In summary, there are three tasks (Part 5, 4, and 3) to study our questions.
In Part 5 (the lottery task) the subjects choose from a set of lotteries that vary
in cost and probability of winning for a fixed prize which is the same across
all the lottery sets (LS). The purpose of this task is to directly test if subjects
make decisions based on EUM or TPW in risky choices. In Part 4 (the response

3Framing Effect, Kahneman and Tversky (1979), is a testimonial to this
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curve task) subjects play as a second-mover to the pre-populated choices of the
opponent. The purpose of this task is to understand the subjects’ response curve.
In Part 3 (the contest task) group size varies in the contests. The objective of this
task is to explore how subjects respond to change in the number of subjects in
Tullock contests. These are all one-shot tasks. After quizzes (Part 1), subjects
played contests for ten periods (Part 2) with limited feedback. Part 6 measures
risk aversion.

A summary of the results is as follows. In Part 1, most of the subjects can
calculate the probability of winning if the opponent’s bid is given and can calcu-
late the payoffs based on whether they would win or lose. In Part 2, most of the
subjects actively participated, responded to the outcome (winning and losing)
and the change in the number of subjects in the game. In Part 3, around 33%
subjects consistently decreased their probability of winning and bid amount
upon an increase in subjects in the game while 55% subjects consistently in-
creased either bid amount or probability of winning. In Part 4, around 15% of
subjects behaved as predicted by expected utility theory, 23% subjects behaved
as predicted by the target probability of winning. In Part 5, 23% of the subjects’
behavior is as predicted by an expected utility theory, 36% as predicted by the
target probability of winning. In Part 6, it is found that around 8% of subjects are
either risk-neutral or mildly risk-seeking or mildly risk-averse, 92% of subjects
are risk-averse.

Contribution: This chapter contributes to the experimental literature on risky
choices that investigate the probability of winning as an independent criterion
in decision making under laboratory conditions (for example, Edwards, 1953;
Edwards, 1954; Slovic and Lichtenstein, 1968; Payne and Braunstein, 1971;
Payne, 2005). It implicitly contributes to the literature on bracket-based decision
making (for example, Camerer et al. (1997)) and adds to the evidence on non-
value-based aspirations. The main contribution is a clearer design (which can
tease out EUMs) to test for subjects making trade-offs with basic risk dimensions
to achieve their TPW. To our knowledge, there has been no previous study that
tries to investigate for heterogeneity of decision making (EUM vs TPW) within
one task4. It is found that a substantial proportion of subjects can be categorized
as EUM while a substantial proportion of the population is TPW. This chapter
also contributes to the literature on skewness preference and finds that agents
tend to prefer negative skewness over positive skewness. It may resolve an
apparent contrast between the finance literature which suggests that subjects

4This is in a spirit similar to Harrison and Rutström (2009) who find support for data in the
experiment being generated by two types of the decision process with two different underlying
theories
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are EUMs with a preference for skewness and the psychology literature which
suggests that subjects use behavioral approaches to makes decisions which are
contextual. This chapter also contributes to finding such behavioral types in
contests. To our knowledge, there are no previous attempts5 to investigate TPW
types in contests. Given more of these behavioral types have a high target prob-
ability of winning, this could be another possible explanation for the regular
finding of over-dissipation in these games. Experiments can be designed to test
such behavioral types in all-pay-auction as well.

The remaining chapter is organized as follows. In the T owards T heoretical
Formulation section, we attempt to come up with a decision rule which can
capture the central idea of the behavior conjectured. In the Related Literature
section, some literature is reviewed on risky choices which suggest that the
above behavior is a possibility. In the Main Design−Features section, the design
aspects of the main design, which can tease out two broad behavior types, are
discussed. In Experimental Design and P rocedures section, the design of whole
experiment is explicated. In Research Questions, the important questions we
would like to obtain an answer for from this experiment are listed. In the Results
section, the insights from the experimental data are discussed. In the Discussion
section, further questions and designs to test the robustness and understanding
of the findings are considered.

2 Related Literature

There is some evidence in the literature that the probability of winning is impor-
tant in risky choices suggesting that subjects make a trade-off with cost, wherever
feasible, to reach their suitable probability of winning in the decision making
(for example, Edwards, 1953; Edwards, 1954; Slovic and Lichtenstein, 1968;
Payne and Braunstein, 1971; Payne, 2005). —But these pieces of evidence are
either debated due to their design or find their explanation in some mainstream
theories. Edwards (1954) puts forward “subjective probability” which now is
known as probability weighting to explain Edwards (1953, 54), while Decidue
(2008) explains Payne (2005) with a discontinuous value function. Similarly, the
evidence on preference for skewness is inconclusive. Both Golec and Tamarkin
(1998) and Garret and Sobel (1999) find evidence for positive skewness, whilst

5To our knowledge this is the first study that has hypothesized probability of winning as an
independent criterion of decision making in winner-take-all competitions. An early version of
the current second chapter (with the previous title “Learning in Contests”) with these insights
was poster-presented in GW4 Game Theory Workshop in May 2016 and in conference Contests:
Theory and Evidence in June 2017
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Symmonds et al. (2011) and Taleb (2004) find evidence for negative skewness.
This could be because skewness is correlated with either expected value or vari-
ance or other moments which may also be present in the distribution, thereby
finding its explanation in EUM rather than as an independent criterion of de-
cision making. There seems to be no literature which studies evidence for the
probability of winning in contests before conducting this experiment. A topic-
wise detailed literature review is conducted below.

Suggestive Literature on TPW

The probability of winning can be an important psychological factor of risk.
Allais (1952/1979) emphasizes the factors of psychological risk in his example
of a traveler who may choose a gamble which gives him the greatest chance of
winning an amount equal to the price of the ticket they need to return home. It
emphasizes the shape of a utility function, probability weighting, and dispersion
as psychological factors of risk and expected utility as a monetary factor of risk.
The example suggests that the probability of winning can be another important
factor in decision-making in risky choices.

There is some suggestive evidence from zero expected value lottery tickets,
in a lab experiment, that agents have a preference for the probability of winning.
Edwards (1953) designed the lotteries which have the same expected value to
understand what makes subjects deviate from the expected value. A set of
gambles is designed with a monotonically increasing probability of winning and
decreasing prize value such that the expected value of all the gambles remained
the same6. Three such sets are designed. The first is in the domain of gain
having a positive expected value. The second is in the domain of losses having
the negative expected value. The third is neutral having an expected value as
close to zero. Each set of gambles had three parts, Part A, B, and C. Part A is
based just on imagining. Part B is based on worthless-chip. Part C is based on real
gambling. The choices of all the parts are highly correlated. In the real gambling
choices based on the choice distribution of all the subjects it is concluded that
in positive and zero expected value gamble sets, subjects have a preference for
the probability of winning. The middle gambles (with probability 3/8, 4/8, and
5/8) are chosen more than other gambles. In the negative expected value set, the
choices generally decreased as the probability of winning increased.

Similar suggestive evidence is found in the non-zero expected value gam-
ble experiment in the lab. Edwards (1954), following Edwards (1953), de-
signed an experiment to identify variables that determine choices among bets
which differ from one another in expected value. Three sets of gambles are

6One of the lottery sets in the main design in our experiment is similar to this
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designed—positive, negative, and near zero. Based on the results, it can be
concluded that subjects do not consistently prefer bets with higher expected
values to bets with lower expected values and part of the variation can be pre-
dicted by probability preferences. Edwards (1954) gives subjective probability
as a possible explanation for the probability preference; that is, the objective
probabilities stated in the gambles are perceived subjectively by the subjects and
the subjects are trying to maximize “subjective” (weighted probability) expected
utility7.

Subjects may use an alternative approach to understand and take gambles
which can make choices qualitatively different from EUT. They may evaluate a
gamble using some basic independent dimensions and seek a preferred trade-
off between those. Slovic and Lichtenstein (1968) characterize a gamble as a
multidimensional stimulus with four basic risk dimensions—the probability of
winning, amount to win, probability of losing, and amount to lose. This design
approach focuses on the relative importance of the basic risk dimensions and how
people use them. It gives an alternative explanation of subjects preferring low
probability of winning gambles in Coombs and Pruitt (1960), possibly because
these (zero expected value) gambles have the higher winning amount or lower
losing amount (their argument does not apply for the preference for gambles
with a high probability of winning). They use the same explanation (amount
of winning and amount of losing) to explain variance preference. Their results
show that subjects’ bids were influenced considerably more by variation in the
probability of winning and amount of losing than by variation in the amount of
winning or probability of losing when subjects have to choose between the duplex
gamble. It is seen that subjects’ ratings or bids monotonically increased as the
probability of winning increases and monotonically decreases as the probability
of losing increases. These results are attributed to an information processing
model where subjects believe the probability of winning is more important
than other risk dimensions rather than subject having specific preference8 for
probability.

Similarly, Tversky (1969, 3/33) argued that “one subject may conceptualize
(two-outcome) gambles in terms of odds and stakes, while another may view
them in terms of their expectation, variance, and skewness.” Tversky used spe-
cially constructed sets of gambles to demonstrate that subjects use a choice
process termed as “lexicographic semiorder” (LS) that is qualitatively incompati-
ble with expected utility maximization. Payne and Braunstein (1971) explore

7In our main design, behavior in three lottery sets can help to gauge the possibility of such an
explanation

8Preference here means the intrinsic preference across the games (e.g., risk preferences). To
avoid such confusion of terminology we preferred to use the abbreviation ’TPW’ (i.e., target
probability of winning)
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the relative merit of the basic risk dimensions and the underlying distributions
as explanations for decisions. Their study involves the use of pairs of gambles
that display different values for the risk dimensions, but which are equal in their
underlying distributions9. To explain the results, they propose an information
processing model in which subjects first examine probability information and
use it to exclude gambles having an unacceptable probability of winning.

Some known behavior effects could be specific examples suggesting that
the probability of winning does matter for some in decision-making in risky
choices. Kahneman and Tversky (1979) show “possibility effect” (no chance of
winning less preferred to some chance of winning) and “certainty effect” (some
chance of losing less preferred to no chance of losing) in decision making where
subjects choose the option with lower mathematical expectation. It possibly
reflects (in two extreme cases) that the probability of winning and losing can be
an important factor in decision making and if subjects can trade-off expected
value/cost with (substantial) increased chance of winning, they do so.

Lopes (1981) questions the interpretation of expected utility theory by von
Neumann and Morgenstern regarding whether subjects combine values (utilities)
and probabilities ever, except in the long run. She discusses the idea of whether
the only rational measure of the worth of a gamble is its expected value (utility).
She argues that in decision making it is reasonable to consider the probability
of success in the short-run compared to expectation-based decision-making in
long-run situations. Lopes (1987, 1996, 1995, 1999) cites multiple experimental
studies conducted after Lopes (1981) which confirm the difference between the
choices made by the subjects when they playing a one-shot game compared to the
same game being played repeatedly. It concludes that an adequate descriptive
theory of risk-taking will need to be a dual criterion theory. It formulates the
SP/A theory that combines a decumulative weighting process with a process
that maximizes the probability of achieving an aspiration level. It claims that
the dual criterion theory does a creditable job of describing both preferences
and reasoning patterns across a wide variety of behavioral phenomena.

Some more recent evidence confirms that the probability of winning can
drive the decision-making in risky choices. Payne (2005) does a simple test of the
expected utility model, the original prospect theory, and cumulative prospect
theory in a value allocation task. Subjects are provided with an opportunity to
improve a gamble (for example: $100, 0.20; $50, 0.20; $0, 0.20; -$25, 0.20; -$50,
0.20) such that they can change the overall probability of gain or loss. Subjects
are given a value (say $38) and must choose one of the two options (say $100
and $ 0 from the above gamble) they would like to add to this value. The experi-

9Note, a tradeoff between EV and probability of winning is not tested in this design but is
present in our main design
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ment finds that subjects were highly sensitive to changes in outcome values that
either increased the overall probability of a strict gain or decreased the overall
probability of a strict loss. It is concluded that the experimental result supports
the hypothesis that subjects focus on the overall probability of success, which is
in contrast with expected utility and prospect theory. Venkatraman, Payne, and
Huettel (2014) use the value allocation task in multi-outcome gambles involving
possibilities of both gains and losses and find that subjects often maximize the
overall probability of winning. Zeisberger (2016), in a series of experiments,
finds that people pay explicit attention to the probability of losing and their
willingness to take risks and choice behavior is considerably influenced by loss
probabilities, while performance feedback seems unable to mitigate this effect.

EUM and Skewness

The economics approach to decision-making in risky choices is the expected
utility maximization which depends on the curvature of the utility function
(Pratt, 1964). The finance approach to decision-making in risky choices is based
on statistical moments of the underlying distribution. Markowitz (1952) shows
that the approach of mean-variance is the expected utility maximization if
the distribution is normal. Roy (1952) defines the “safety first” principle that
calculates the probability of returns of the portfolio going below the desired
threshold as a measure of downside risk. The optimum portfolio will be the
one that minimizes this probability. Such a measure of downside risk has been
further generalized as a probability loss risk measure for making risky choices.
The major problem with probability loss risk measure is its failure to distinguish
increasing downside risk from other properties of distributions (e.g., mean,
variance, skewness).10

Tsiang (1972) asserts that as the ratio of risk (standard deviation) to the
mean value of total wealth increases, the accuracy of mean-variance analysis
decreases, and higher-order central moments in a particular third would have
to be taken into consideration for an appropriate utility function for a risk-
averse individual.11 It shows that subjects with such utility functions will have

10The main design (Part 5) of this experiment does indeed distinguish it from the first two
moments.

11As mentioned in Tsiang (1972), according to Arrow an appropriate utility function for a risk-
averse individual should have the following essential properties: (a) U ′(y) > 0, i.e., the marginal
utility of wealth is positive; (b) U”(y) < 0, i.e., the marginal utility of wealth decreases with an
increase of wealth; (c) d[−U”(y)/U ′(y)]/dy < 0, i.e., marginal absolute risk-aversion should, if
anything, decrease with an increase in wealth; (d) d[−yU”(y)U ′(y)]/dy > 0, i.e., marginal relative
(proportional) risk-aversion should, if anything, increase with an increase in wealth. These
properties are satisfied by a negative exponential function, constant elasticity utility function,
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a preference for positive skewness (U ′′′ > 0) if the phenomenon of increasing
absolute risk aversion is regarded as absurd. Scott and Horvath (1980) show
that investors exhibiting positive marginal utility of wealth for all wealth levels,
consistent risk aversion at all wealth levels, and strict consistency of moment
preference will have a positive preference for positive skewness (i.e. U ′′′ > 0 )

In the wide range of economic models (e.g., gambles, auctions, and con-
tests) individuals’ decisions under risk can be understood as trade-offs between
mean, variance, and skewness. Chiu (2010) establishes a skewness-comparability
condition on probability distributions that is necessary and sufficient for any
decision-makers preferences over the distributions to depend on their means,
variances, and third moments only. The study generalizes the condition for
two distributions to be comparable in terms of downside risk, establishing that
all Bernoulli distributions are mutually skewness comparable. The degree of
skewness is determined only by the probability of the lower possible outcome.
The utility preferences can be described by the preference over three moments.

Evidence on Preference for Skewness

In the below papers there is differing evidence on preference for skewness in
lab experiments as well as natural empirical data. The evidence ranges from
a preference for positive skewness to negative skewness and a preference for
skewness to no skewness. Coombs and Bowen (1971) construct gambles with the
same underlying mathematical expectation and variance but different skewness.
The choices made by the subjects show that their decision (perceived risk) was
a function of skewness as well as mathematical expectation and variance even
under multiple plays.

Some studies (Arditti, 1967; Levy and Sarnat ,1972; Krauss and Litzenberger,
1976) have found the coefficient for the second moment to be positive and
statistically significant. This was interpreted to mean that a higher return tends
to go together with prospects with a higher variance 12 and investors prefer a
positive asymmetry. The coefficient for the fourth moment was significant only
in few cases, and the coefficient for higher moments was always insignificant.

Golec and Tamarkin (1998) find that betting behavior at horse tracks is
explained by expected utility functions which consider mean, variance, and
skewness of the returns. It finds that bettors are risk-averse, but are attracted to
the positive skewness of returns offered by low probability, high variance bets.
Garret and Sobel (1999) find that lottery players are also risk-averse but favor

log function, among others. Polynomials as utility functions cannot satisfy these requirements at
the same time.

12In the main design higher mean are separated with higher variance for two sets of choices
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positive skewness. In contrast with risk-measures focusing only on the chance
of poor outcomes, Symmonds et al. (2011) use a multi-outcome gamble to test
preference for statistical moments. The study finds the mean-variance-skewness
model as the best fit. The majority of subjects were variance averse and seeking
negative skewness. In line with this conclusion from the perspective of financial
markets, Taleb (2004) also lists the areas where traders have a preference for
negative skewness.

Brunner, Levinsky and Qiu (2011) experimentally test skewness preference
at the individual level. The experimental approach allows to directly control
the payoff distributions faced by the subjects. Their definition of skewness
preferences follows the definition of Tsiang (1972) that an expected utility
maximizer reveals skewness preferences if the third derivative of the utility
function is positive. The subjects choose one of the two gambles provided each
time. The researchers find that skewness of the distribution has a significant
impact on the decisions. Around 40% prefer skewness (positive and negative)
and around 10% avoid skewness.

Astebro, Mata, and Santos-Pinto (2015) study how the presence of skewness
influences the risk attitudes of experimental subjects. Using three sets (with
different non-negative skewness) of ten pairs of choices (similar to Holt and
Laury, 2002) each with multiple outcomes, they find that when the choice task
includes a positively skewed lottery, subjects make riskier choices. Additionally,
estimated parameters of power utility (crra) function find no evidence for risk-
loving; rather, skew seeking is attributed to optimism and likelihood sensitivity.

One-Shot vs Multi-Period Games

Even if subjects are expected to be utility maximizers, they can behave differently
in the one-shot game to how they would in a repeated game. Ross (1999) shows
that there is a large class of utility functions (including crra utility functions,
but excluding exponential and risk-neutral utility functions) that accepts a long
enough sequence of independent good bets due to the law of large numbers, any
one of which considered individually would be rejected. This motivates us to
prefer a one-shot design as our starting point of investigation. In our design,
subjects play lotteries and raffles which have more choices than simply accepting
or rejecting: they can choose their bid amount.

3 Towards Theoretical Formulation

In an attempt to give more clarity to what is being conjectured we formulate a
decision rule, stated below, to express the behavior. The domain of the decision
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rule is an environment where there is a feasibility of probability-cost trade-off
with the framing of two-possible outcomes as winning and losing.13 Given a
lottery game, the TPW is taken as exogenous14. It possibly depends on various
factors like the endowment of the agent, the cost structure of the lottery, and the
number of total lotteries and prize money. What we conjecture is that if these
factors remain approximately the same then a TPW subject will make a similar
choice. Our basic conjecture emphasizes that people try to achieve a threshold
probability of winning even if it is a second-order stochastic dominated choice.15

This is in no way to claim that the stated decision rule is exactly how people
make decisions in risky choices. Not everyone is the same and decision-making
also depends on the environment. For example, in the case of a choice between a
pair of gamble options, it may not be feasible for subjects to achieve their TPW; in
which case, they may decide differently while making a choice. For example, the
value of the amount which can be won/lost or a substantial difference/absolute
values of probabilities of the two paired gambles may become salient.

Decision Rule: min(n) s.t. nP (L) ≥ T PW
where
n is the number of lottery tickets
P (L) is the probability of winning achieved by one lottery (L) ticket
T PW is the target probability of winning agent desires for this lottery game

It is not possible to fully ascertain how exactly subjects arrive at their target
probability of winning. Yet, this decision-making can be captured even without
such knowledge if an environment is considered that has a possibility of a more
continuous trade-off between the two. In such an environment, for a specific
game, a simulation of such behavior can be generated as agents try to achieve
some minimum chance of winning and see whether they go beyond that as it is
costly. Figure 1.0 (x-axis: cost, y-axis: the probability of winning) captures such
an environment.

Now, returning to the lottery example, let us discuss the decision rule and

13It might apply to limited multi-outcome games and lotteries but will require separate study
to investigate.

14This is a critical simplification and beyond the scope of this work
15As Roy (1952) notes, “a valid objection to much economic theory is that it is set against

a background of ease and safety. To dispel this artificial sense of security, theory should take
account of the often close resemblance between economic life and navigation in poorly charted
waters or man-oeuvres in a hostile jungle. Decisions taken in practice are less concerned with
whether a little more of this or of that will yield the largest net increase in satisfaction than
with avoiding known rocks of uncertain position or with deploying forces so that, if there is
an ambush round the next corner, total disaster is avoided. If economic survival is always
taken for granted, the rules of behavior applicable in an uncertain and ruthless world cannot be
discovered.”
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Figure 1.0: Indifference Curves

prediction it makes which is in contrast to two mainstream theories. Can indi-
viduals buying lotteries in bulk, but not spending all their spendable income
on it, be explained using expected utility maximization (EUM) or cumulative
prospect theory (CPT)? It seems that these lottery players make a trade-off deci-
sion between cost and chance of winning. Although players may enhance their
chance of winning by buying more lottery tickets, at the same time they do not
pour all their money into doing that. Hence, in the first-order they seem to value
the chance of winning up to a certain threshold and in second-order value the
cost. In the case of buying in bulk in a syndicate, the trade-off is between the
chance of winning and the size of the prize they will share as an individual.

Let us consider these lotteries with a prize value equal to 100 which is equal
to the endowment (spendable income). The TPW indifference curve would
be a vertical line starting from the point in the lottery curve that gives this
probability of winning. The family of curves will be parallel vertical lines on
the right. Note, if the cost does not greatly differ across lottery curves then
indifference curves for a specific TPW across different lottery curves will be close.
16 The indifference curves (Figure 1.0) for EUMs are inclined straight lines. It
is seen that for these lotteries with slightly different cost structures (compared
to constant expected value (=100) lottery line LS 1) the choice predictions for
LS 2 and 3 are at the extreme opposite end. In general for a family of lottery

16This is an approximation in itself. This means that if cost changes substantially players are
likely to consider this factor. However, with a small margin of change, they will choose a similar
probability of winning.
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sets (LS 2 and 3), any point on the curve can be considered as an element of
the set of lotteries represented by this curve, the EUM prediction will be one
of the endpoints. The indifference curves for prospect theory are based on the
convex weighting function with loss aversion equals 2.25 and endowment as
the reference point. These predict that the high probability end lotteries will be
chosen.

Nonetheless, it is important to note that there can be various qualitatively
different indifference curves for PT due to different parametric functionals.
Although it is difficult to rule out the possibility that another existing EUM
or CPT model can explain this behavior (some of such (non-standard) CPT
models and their limitations will be discussed), we find that a CPT model with
parametric values of Tversky and Kahneman (1992), as used in the literature
on risky choice, with an endowment as the reference point17 gives a prediction
similar to standard EUM. A list of possibility of alternative explanations are
discussed in Section 8 of this chapter for the results in the main design.

4 Main Design-Features

As reviewed above, on the one hand, literature in finance suggests that subjects
are expected to be utility maximizers, attracted to the first and the third moment
and with an aversion towards the second moment. On the other hand, literature
in psychology finds subjects having some preference for the probability of win-
ning (equivalent to skewness in Bernoulli distribution), preference for statistical
moments, and use of some information processing approach to make decisions.

The main task central to our study is framed such that variance and skewness
for any lottery do not vary across the three lottery sets (LS1-LS3) and only
expected value changes as shown in Table 1.1-1.3 below. In these tables apart
from self-explanatory headers, EV denotes the expected wealth of the gamble
(including the endowment of 100), Var denotes variance of wealth and Skew
denotes its skewness.

LS 2 and 3 are second-order stochastic dominant lotteries in the respective
lottery sets. There is no second-order stochastic dominance among lotteries in LS
1. In this task, between two adjacent lotteries, the “risk dimensions” (probability
of winning, probability of losing, winning amount, and losing amount) change
gradually over lottery sets with moments varying in a pattern easily detectable
even if values are difficult to calculate.

17One of the challenges in applying PT is that it is not clear what should be the reference point
(Barberis, 2013). In a lottery with only two possible outcomes (single prize), it seems reasonable
to take endowment as a reference point.
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Table 1.1: Lottery Set 1

Table 1.2: Lottery Set 2

In one of the lottery sets, LS 1, the expected value is zero for all the lotteries
in the set. The pair LS 2-3 can help categorize EUMs and LS 1 can test if they
choose positive skewness over negative skewness since for each value of variance
there are two lotteries in the set, one with positive skewness and another with
negative skewness.

A design approach of choices between pair-wise gambles is good in under-
standing whether something is a significant factor in decision making. Many
real-life situations are not the choices between a pair, rather a series of options
varying such that there is a trade-off among the decision-making factors. In this
sense, a lottery set has an advantage over pairwise choices to better depict a
realistic situation.

A lottery set design also has an advantage over pairwise choices given to
subjects by removing possibilities of different salience guiding choices between
different pairs. For example, the choice between a pair which is close to each
other in any lottery sets can be due to the salience of the amount to be won or
amount to be lost while the choice between any pair far apart in any lottery set
could be due to the probability of winning (losing). This design makes lotteries
easier to compare among themselves.

There is evident salience in LS 2 and 3. In the first lottery (L1) in LS 2, the
proportional cost (per unit probability of winning) is minimum. The case is
similar to the last lottery (L9) in LS 3, in which the proportional cost of the last
lottery is minimum. These two lotteries are the optimal choice for a non-risk-
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Table 1.3: Lottery Set 3

seeking (measured risk preference found in the experiment) expected utility
maximizer.

The expected value (first moment) in LS 1 does not change, in LS 2 it decreases
monotonically and in LS 3 it monotonically increases from top to bottom lottery.
Variance is symmetric and decreases on either side away from the middle lottery.
The skewness of the middle lottery is zero and is symmetric and increasing in
magnitude as one moves away from the middle lottery on either side with top
lotteries positively skewed and bottom lotteries negatively skewed. The variance
and skewness of each lottery are the same across the three lottery sets.

In LS 2 and LS 3, optimal choice based on expected value and variance is in
the opposite direction to skewness. The subjects who are predominantly driven
by the probability of winning should not change their choice across the lottery
sets LS 1 to 3. There is no lottery with the certainty of outcome in either of the
lottery sets. This is to eliminate choices due to the “certainty effect” and avoid
any abrupt change in the pattern of the moments.

The lottery set provides a series of probability of winning (losing) options,
unlike many other studies where designs have limited values of probability of
winning. This is to frame a gradual trade-off between cost and probability of
winning for a fixed prize which captures many real-life situations. While there
is a gradual trade-off between the expected value and probability of winning in
LS 2 these are in the same direction in LS 3.

These features can help to gauge which are major risk dimensions of decision-
making if subjects are driven by some behavioral approach. The fact that only
two dimensions, cost, and the probability of winning, change gradually, as one
moves down any lottery with the salience of L1 in LS 2 and L9 in LS 3, makes the
task simple to comprehend. A presence of increasing or decreasing stochastic
dominant lotteries and separately measuring risk aversion allows these subjects
to be classified into broad types.
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5 Experimental Design and Procedures

This is a within-subject design. As discussed above, the main task is framed
as lotteries with a fixed prize where subjects have to choose one of the nine
lotteries in each lottery set. The other two tasks are framed as a raffle where
the choices made relate to the number of tickets (bid amount) they want to
buy. Three sessions are conducted on consecutive days from 5 to 7 June 2018
with 24 students in each. All the subjects are undergraduate students. All
the sessions lasted for around 75 minutes. The average earning is around 15.5
pounds. For further details refer to the instructions sheet in the Appendix section.
The descriptive statistics of the payment subjects received can be found in the
Appendix (Table 1.43). The experiment is implemented using the experimental
software z-Tree (Fischbacher, 2007).

The experiment consists of six parts. In Part 1, subjects are provided with
an explanation about the game of raffle by asking them six basic questions on
calculating the probability of winning and payoff of the raffle upon winning and
losing. The answers along with the explanations were provided after each set of
three questions so that the underlying principles of the game were clear. In Part
2, a recap on the raffle game and its procedure was provided before we matched
subjects in a fixed group of two for five rounds followed by a fixed group of three
for five rounds. Subjects received the information on the outcome of each round.
The purpose of this part is to give subjects experience of the game with a change
in group size. This is to ensure that subjects have a good understanding of the
game as the following part consists of a one-shot game. In Part 3, the subjects
played the game of raffle with a change in group size. In the first two games,
their group size doubled in the second period, while in the last two games their
group size halved in the second period. The change in group size is made such
that there is a minimum change in the number of new partners encountered.
This part is designed is to understand how the subjects change their probability
of winning and bid amount as their group size changes. In Part 4, subjects are
matched with another subject and have to submit their response against the set
of pre-populated opponents’ bid amounts. These choices are used to categorize
the subject’s response curve. In Part 5, subjects have to choose a lottery from
the set of lottery choices that have varied costs and the probability of winning
ranging from 0.1 to 0.9. There are three sets of such lotteries. In Part 6, the
subjects’ risk aversion is measured.

The primary parts of the experiment (Part 3, 4 and 5) were organized as
one-shot games. This preference for one-shot games over the repeated game is
to decrease the impact of any learning as it is not clear what and how they will
learn. It is unclear how the winning and losing will impact the decision-making
approach subjects may have. It is suspected that subjects may approach the
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game differently when making decisions in repeated games.
One may question if the subjects understood the one-shot games. The ex-

planatory instructions are given, but the constraint remained that examples
could not be given in the instructions as this may have an anchoring effect.
In the questionnaire at the end of the experiment, subjects were asked if the
instructions were clear to them. The response in the survey suggests that the
instructions for any part of the experiment were clear to most of the subjects. The
analysis includes data only for the subjects who have stated that they understood
that part of the experiment.

One general concern is whether the order of the parts of the experiment
impacts the results and why the order is not randomized over three sessions.
Even though the underlying contests game is the same, after Part 2 all games
are one-shot and framed differently; hence, it is less likely that any significant
learning would take place. Subjects may enhance their understanding of the
contest game as they proceed in the session which means that it is better to
put easier experiments first. The experiment is not concerned with comparing
any treatments; rather, the focus remains on the proportion of EUM and TPW
types in each part. The rationale of Parts 1 and 2 is largely to give subjects an
understanding of the game. It is logical for Part 3 to follow Part 1 and 2. As Part
4 is on raffles and is more complicated in terms of instructions so it followed
Part 3. Part 5 is on lotteries, so it followed all the parts which were based on
raffles. Part 6 is to measure risk-aversion, so it is kept at last. In Part 2, the order
of contests is not changed, having group size 2 with contests having group size
3. The reason is that only three sessions are run and no inferences are drawn
from the parts which are designed for enhancing the understanding by giving
subjects some experience of the game.

In Part 3, subjects are simply asked what they consider their target proba-
bility of winning to be. One may like to extend further and get incentivized
elicitation of the sum of other subjects’ effort and use both the inputs to check
for the consistency of beliefs. However, using a modulus or square error to elicit
opponents’ effort will distort the incentives of the primary contest. The risk
symmetric Nash equilibrium does not change if such an elicitation mechanism
is applied but based on data from other experiments in the Tullock contest it is
known that subjects deviate from standard theoretical predictions, in general,
they are overbid. In this case, subjects know that they would possibly incur
losses in predicting other subjects’ efforts. So in response, they may change their
actual bidding behavior. If they are loss averse, then they may further reduce
their bids. If subjects are relative payoff maximizers then they may increase their
bid even further so that the opponent incurs losses while predicting. Moreover,
under behavioral factors (e.g., optimism and pessimism) at play, the consistency
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approach is not appropriate. Let’s say the subject believes (in a two-person
contest) that the opponent would put 50 and her actual bid amount is 50 and
she puts in her probability of winning to be 70%. These choices can be explained
by assuming that the subject is optimistic rather than being interpreted as incon-
sistent. The value of interest is 70%, not 50%. These are the reasons for simply
asking subjects to input their estimated probability of winning assuming that is
what they aimed for.

In Part 3, the assumption is that the joy-of-winning does not change as group
size changes. This rules out a possible explanation of subjects increasing their
bid amount as group size increases. The reason for not having a design for
capturing the joy of winning was to keep the scope of the experiment within
its set objectives. Nonetheless, subjects are asked in the questionnaire if they
experience any joy in winning. The distribution is listed in the Appendix (Table
1.44). It is found that almost half of the subjects say that they do not have any
joy in winning and the other half say they have somewhat. In Part 4, subjects are
matched with another subject across raffles, so the joy of winning is the same
across each raffle which should not change the shape of the response curve. In
Part 5, subjects are playing against a computer and the interest is in how close
the lottery choices are in the three different lottery sets. In LS 1 and 3, the EUM
predictions for agents with some additive joy-of-winning are incorporated in the
last lottery (L9).

It is useful to think about how the target probability of winning is different
from the joy of winning and whether it can explain the behavior observed in
different parts of the experiment. In the three main parts of the experiment, the
inference is drawn based on their relative behavior in different raffles/lotteries
in that part. It is reasonable to assume that the joy of winning does not change
significantly for different raffles/lotteries in any part of the experiment which
rules it out as a possible explanation for the difference in behavior. Described
below is each part in more detail including the tables used. For further details
please see the instructions sheet and z-tree screenshots.

Part 1 (Quizzes) Two quizzes with 3 questions each are framed in such a way
that subjects understand the underlying game of raffle across the parts of the
experiment and how to calculate the probability of winning, compute the pay-
offs upon winning and losing, and interchange notation of percentage and real
number to express probability.

Part 2 (Experience) This part of the experiment aimed to give subjects some
experience of the raffle game. In the first five rounds, subjects were matched in a
fixed group of two players, and in the last five rounds, they were re-matched in
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a fixed group of three players. The subjects knew about the number of tickets
they bought and the outcome at the end of each round.

Part 3 (Group Size Change) In this part of the experiment, four games of two
periods each were played as shown in the table below. In the first two games, the
group size was doubled in period 2 by amalgamating the two groups from period
1. In the last two games, the group size was decreased to half by splitting the
groups formed in period 1. A separate screen was used to obtain the input for
each game each period. In the first period of each game, subjects were told about
what follows in period 2 and in the second period of the game subjects were told
about what they choose in period 1. This is done to give them a perception of
actual periods. The outcome of each game is presented only at the end of all the
games in this part. This is done to avoid any impact of intermediate winning
and losing during this part of the experiment. Subjects played Part 3 based on
whatever understanding and learning they had by the end of Part 2. Table 1.4
below is used in the instructions sheet to describe this part of the experiment.

Table 1.4: Design summary for Part 3

Part 4 (Response Curve) This part of the experiment aims to capture the re-
sponse curve of the subjects. Subjects are presented with the pre-populated
choice of the opponent in each of the six raffle games. Subjects are matched with
another subject and all are given the same pre-populated choices to enter their
choices against them. It is created in this way to give subjects a perception that
they will be winning or losing against another subject rather than a computer.
All the choices are entered on one screen. Table 1.5 below describes this part of
the experiment.

Part 5 (Inverted Lotteries Sets) A brief description of the main features of this
part is as follows. Three sets of lotteries are constructed each having the same
prize value. Each set has nine lotteries to choose from with their probabilities
ranging from 0.1 to 0.9. The variance and skewness are the same across the three
lottery sets. The expected value is the same for all lotteries in LS 1. The expected
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Table 1.5: Design summary for Part 4

value is highest for the first lottery (L1) in LS 2 and decreases towards the last
lottery choice (L9). The expected value is highest for the last lottery (L9) in LS
3 which decreases towards the first lottery choice (L1). Table 1.6 describes this
part of the experiment.

Table 1.6: Summary design for Part 5

Part 6 (Risk Preference) This part of the experiment aims to measure the risk
aversion of the subjects using Holt and Laury (2002). Table 1.7 (Appendix)
describes this part of the experiment.

6 Predictions

Following are the predictions for some parts of the experiment design. The order
of the parts is changed compared to the one in the experiment to examine first
the part which is central to our experiment.

P rediction 1 : In Part 5 (Inverted Lotteries Sets), if subjects are driven by EUM
(smooth and continuous standard utility functions) and they are not risk-seeking
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then, irrespective of the risk preference, they will choose L1 in LS 2 and L9 in LS
3.

P rediction 2 : In Part 5 (Inverted Lotteries Sets), if subjects are driven by TPW
then their choices will remain largely stable across all three lottery sets.

P rediction 3 : In Part 5 (Inverted Lotteries Sets), if subjects have a preference
for positive skewness then they will choose lotteries in the upper half of the LS
1 and if they prefer negative skewness then they will choose in the lower half
of the LS 1. This is because the expected value of all the lotteries in LS 1 is the
same with variance decreasing as one moves away from the middle lottery. For
any value of variance, there are two choices, one with positive skewness and the
other with negative skewness.

P rediction 4 : In Part 4 (Response Curve), expected utility theory predicts that
subjects’ best response curve will be like the shape of a rightly skewed inverted
parabola while TPW predicts that subjects’ response will be in a straight line of
the positive slope until they drop out. The below graph (Figure 1.8) shows the
prediction of two competing theories for discrete values greater than equal to 10.
The red curve is the response predicted by standard theory while other curves
are based on subjects been driven by the TPW.

Figure 1.8: Best Response curve and TPW predictions

P rediction 5 : In Part 3 (Group Size Change), the expected utility theory predicts
that subjects decrease their bid amount as the group size increases. Regarding
TPW prediction, this depends on whether subjects increase or decrease their
target probability of winning as the group size increases. TPW predicts an
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increase in bid amount if subjects do not decrease their minimum probability.
The inference is drawn based on the direction of change rather than the point
prediction.

7 Results

In this section, the main results of this experiment are briefly discussed. The
results of each section will be covered in an order different from the experiment
conducted; rather, the first parts are designed to make subjects understand
followed by more degree of objectivity in other parts. First results are presented
on how subjects performed in the Quizzes (Part 1) then the description of the
behavior in Part 2 is designed to give experience to the subjects. Then the dis-
tribution of the risk-preference is measured in Part 6. Following this, choices
made in Part 5 are analyzed which is central to this experiment. Subsequently,
the qualitative behavior in Part 4 is studied. This is followed by an analysis of
the impact of group size change on the bid amount and probability of winning
of subjects in Part 3. As previously mentioned, all the results are based only on
the choices of subjects who stated that they were clear about the instructions for
that part of the experiment.

Part 1 (Quizzes) Quiz 1 and Quiz 2 each consist of 3 basic questions (see Instruc-
tions in Appendix) related to the underlying contests. Quiz 1 was followed by a
detailed explanation of the answers before the start of Quiz 2 which has similar
questions to those of Quiz 1. Table 1.9 shows the number of questions answered
correctly. Out of 72, 62 subjects answered all the questions correctly in both
the quizzes. In Quiz 1, 64 subjects answered all the questions correctly, which
increased to 69 in Quiz 2. This suggests that almost all the subjects understood
how to calculate the probability of winning and how to calculate payoff upon
winning and losing.

Table 1.9: Response summary for Quizzes

Part 2 (Experience) The average behavior of the subjects in the 10 rounds is
given in Table 1.10 and the distribution of tickets (bid amount) is shown in
Figure 1.11 (Appendix).
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Table 1.10: Summary of results in Part 2

Part 6 (Measuring Risk-Preference) Out of 72, 57 subjects were clear about the
instructions for this part of the experiment and entered the choices which are
valid18. The distribution of choices made is in Table 1.12. Very few subjects are
found to be possibly risk-seeking (switching point ≤ 4).

Table 1.12: Risk distribution of subjects in Part 6

Part 5 (Inverted Lotteries Sets) In this part the choice behavior of decision-
makers is examined and attempt to find if they are EUM or TPW. Further, it is
examined if they prefer negative skewness over positive skewness. Out of 72, 56
subjects were clear about the instructions. Table 1.45 shows some statistics and
distributions of the choices made in the three sets of lottery tables. Table 1.46
shows the choice distribution of the subjects in the three lottery sets.

As the lotteries in LS 2 and 3 follow second-order stochastic dominance
and given that almost all subjects are either risk-averse or risk-neutral—as per
expected utility theory predictions— subjects should choose L1 in LS 2 and L 9
in LS 3. Figure 1.13 shows the joint distribution of choices in LS 2 and LS 3.
Table 1.14 shows the classification of subjects into two main types (EUM & TPW).
The variable Diff (LS3 - LS2) is the difference between the choice made in lottery
set 3 and 2. If subjects are EUM, then the predicted difference in choices should
be 8 (as subjects are not risk-seeking) while if their behavior is driven by TPW
then the difference should be zero. The data shows that only 5% of subjects have
made a choice such that LS3 < LS2 which strengthens the belief that subjects
are not making the choices randomly. The direction of the stochastic dominant
lottery appears to impact the choices of the subjects. From the frequency table of
the difference in choices between LS 2 and 3, one can categorize the behavior as

18The choices are considered to be valid if the subject has switched only once with the order of
switch from Option A to Option B and last choice as Option B.
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Figure 1.13: Joint distribution of choices in LS2 and LS3

Table 1.14: Classification of Types

follows: subjects with a difference of 0 to 2 are categorized as driven by the target
probability of winning, while subjects with a difference of 6 to 8 are categorized
as expected utility maximizers. The subjects with a difference of 3 to 5 are
categorized as others. The proportion of the population is estimated in each
category using maximum likelihood estimation and approximating it to normal
distribution. Table 1.15 shows the estimated mean values of the proportion
along with the confidence interval for each category.

Result 1 In Part 5 (Inverted Lotteries Sets), the proportion of subjects driven
by expected utility maximization are approximately 23%. The criterion used
for EUM classification is: any choice in LS 1 and difference in lottery choices
between LS 2 and 3 is ≥ 6. The predicted difference is 8 as these lottery sets have
dominant lotteries on opposite ends.
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Table 1.15: Proportion estimation of each type in Part 5.

Result 2 In Part 5 (Inverted Lotteries Sets), the criterion for classifying an agent
as TPW is the difference between the choices in LS 2 and 3 is less than equal to 2
(irrespective of choice in LS 1). This criterion takes TPW counts to 27 which is
48%.

Robustness Check
A robustness check is done using how many agents have LS 1 choices within

the choices they made in LS 2 and 3, this criterion makes TPW agents count to
25 which is 45%. It is found that due to the choices of 2 subjects in LS 1 they
are categorized as TPW based on the second criterion but not based on the first
criterion.19

Another robustness check controls for possible status quo bias. Our definition
of status quo bias is that agents make the same choices across LS 1 to 3 that is
either all L4 or all L5 or all L620. It reduces the estimate to 36%.

A further robustness check is to see if the decision rule holds for the subjects
classified as TPW. What can falsify it? If subjects classified as TPW strongly
respond to the cost difference between LS 2 and 3 at either end. Below is the
graph (Figure 1.16) drawn for the smaller to middle probabilities TPWs and
for middle to higher21 probabilities TPWs. The difference is examined if it is
correlated with the lottery number in LS 2. For smaller to middle probabilities
lotteries, the graph is almost flat. For middle to higher probabilities lotteries, it
seems that the difference increases as the probability increases. But one should
notice the salience effect. Out of 7 L7 choices made in LS 2, the corresponding
choices in LS 3 are L9 for 6 cases and L8 for 1 case. This shows that agents jump

19Note, pairwise comparison between two sets for consistency of type by categorizing TPW
based on any two lottery sets and comparing it with the third lottery set is not appropriate as the
first lottery set does not have any second-order stochastic dominant lottery.

20Note, any other lottery has different costs across the three lottery sets. For details see status
quo bias under section Alternative Explanations

21Note, omitted are L8 and 9 in LS 2 because the difference between LS 3 and 2 cannot reach 2.
If those are included then the regression line will be forced to be flatter.
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to choice L9 in LS 3 due to salience which causes the positive slope but the R
square explained is low.

Table 1.16: Decision Rule Robustness

Result 3 In Part 5 (Inverted Lotteries Sets), the design of LS 1 helps to answer
whether more subjects prefer positive skewness over negative skewness. Note,
the measured values of risk aversion in Part 6 shows that almost all of the
subjects are risk-averse. For subjects who are not risk-seeking, the CRRA utility
is almost unchanged over the lotteries L 1-9 in LS 1 as shown in Table 1.19
(Appendix). From Table 1.20 the ratio of the population preferring negative
skewness to positive skewness for each type can be calculated. The ratio (=1.5)
is least for the EUM types and highest (=3.0) for TPW types.

Figure 1.21 shows the histogram of the choices in LS 1. It validates the
assertion that subjects preferred positive skewness over negative skewness when
the expected value and variance are the same. Note, it cannot be inferred that
EUM subjects prefer positive or negative skewness per se. This is because the
middle lotteries have relatively high variance which could be the reason why
these subjects choose skewed lotteries. EUM types have the least proportion of
preference for zero skewness. This serves as another robustness check that our
classification of types is not arbitrary rather is directionally consistent with the
theoretical predictions that the risk-averse subjects of EUM types should prefer
positive skewness and largely prefer positive over negative. It still leaves the
puzzle of why any EUM type prefers negative skewness at all, as it does not find
its explanation in the theory. It could be that these subjects mostly have a utility
function (for example, crra) such that there is no significant difference in utilities
between positive and negative skewness options for a given variance in LS 1.
In Part 5, there is no certainty lottery option (probability of winning equals
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Table 1.20: Distribution of preference for skewness in Lottery Set 1

Figure 1.21: Histogram showing the preference for skewness in Part 5

0 or 1) in any lottery sets. This is done to avoid the first option in LS 2 and
the last option in LS 3 with an abrupt change in distribution pattern in that
lottery set. One drawback of an absence of certainty option in a lottery set is that
subjects can choose lottery 1 in LS 2 and LS 3 because these are the least cost
option preferred by subjects who do not want to play this game. The data indi-
cate that there are no observations with all choices as L1 across lottery sets LS1-3.

Part 4 (Response Curve) The purpose of this part of the experiment is to un-
derstand the response curve of the subjects. Out of the total 72 subjects, 53
stated that they have clarity on the instructions for this part of the experiment.
The results are shown in Table 1.22. The classification criterion used is as follows:

EU : If the subject first increases then decreases the bid amount, it is classified
as an EU type. The qualitative shape of the response curve is the only criterion
used for classification.

T PW : If the subject increases the bid amount (unless drops out) as the pre-
populated bid amount of the opponent increases then she is classified as TPW
type.
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Others : If the subjects are difficult to classify into either of the two above types
then they are grouped under the type Others.

Table 1.22: Proportion estimation of each type in Part 4.

Result 4 In experiment Part 4, the proportion of subjects driven by the target
probability of winning (TPW) is approximately 23%, while the subjects driven
by expected utility (EU) represent 15%.

The above qualitative classification (based on the manual observation) considers
only responses that can be classified into one of the categories. The minimum
probability can be estimated for the cases classified as TPW. The data for this part
of the experiment is included in the Appendix (Table 1.47) for self-verification.

Part 3 (Group Size Change) Out of the total of 72 subjects, 63 stated that they
have clarity on the instructions for this part of the experiment. Figure 2.24
(Appendix) illustrates the distribution of the difference in subjects’ bid amount
as the group size changes in the four games. The difference is calculated as the
bid amount high group size minus low group size irrespective of the initial group
size. The interest is in the direction of change in the bid amount (increases or
decreases) in the four games rather than the point prediction. This is because the
expected utility theory predicts a decrease in bid amount as group size increases
and the target probability of winning conjecture predicts an increase in bid
amount if subjects do not decrease their minimum probability.

Based on the direction of change in the four games, subjects are categorized
as consistent if their direction of change was the same for at least three out of
four games. Table 1.25 shows the number of subjects who are consistent in either
direction, including no change, along with their measured risk preference. The
number of subjects found consistent in the direction of change is the same for
the increase and decrease, and their mean value of risk preference is similar. Out
of the total of 63 subjects who have clarity on the instructions, 49 subjects are
consistent. Note, that the probability of a behavior being classified as consistent
when it is random is (1

3 ·
1
3 ·

1
3 =) 1

27 which is low.
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Table 1.25: Number of subjects and risk for each consistency type.

Result 5 In Part 3, approximately 25% of subjects increase their bid amount in
at least three of the four games as their group size decreases. Similarly, approxi-
mately 25% of subjects decrease their bid amount in at least three of the four
games as their group size increases.

Result 6 In Part 3, 48 subjects are consistent in terms of their directional change
(including no change). In Table 1.25 38 subjects are consistently decreasing
their probability of winning (based on their judgment) upon an increase in the
number of subjects in the game. In Table 1.27 14 subjects who decrease their bid
amount and probability of winning upon the increase in the number of subjects
in the game cannot be rejected as EUM types. 23 subjects either increase bid
amount or probability of winning or both and cannot be rejected as TPW types.

Table 1.27: Consistent change in probability of winning

Table 1.28: Joint distribution of consistent change in probability of winning and
bid amount
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8 Part 5 Results - Alternative Explanation

Risk Aversion

There are many subjects classified as TPW choosing middle lotteries that have
the least skewness, maximum variance and median expected values, which sug-
gests that these subjects are not driven by any expected utility maximization but
are targeting the probability of winning. Similar results are found in Edwards
(1953, 1954) and in Tversky (1969) where it is presumed that subjects choose
middle lotteries considering them as “fair bets”. The other subjects classified as
TPW which have opted for choices corresponding to lower probabilities of win-
ning can be rationalized as EUT only if they are risk-seeking. But, the measured
risk aversion in Part 6 has a scale of monetary distribution higher than these
individual lotteries and almost all of the subjects are found to be risk-averse.
This implies any explanation assuming subjects have convex utility functions at
these lower monetary distributions is inconsistent. The TPWs do not opt for the
maximum probability of winning across lottery sets either, which could indicate
that these subjects just want to win the game. It is not clear how and why they
are targeting such a probability of winning. The subjects who are classified
as intermediate (neither EUT nor TPW) are possibly the ones who value both
expected utility and probability of winning (within this setup) as argued by Roy
(1952).

Cumulative Prospect Theory

The design of lotteries in LS 2 and 3 being second-order stochastic dominant,
TPW subjects are ruled out from being expected utility maximizers. One of the
widely used descriptive models of risky choice is prospect theory. While the
reference point of the individual in these models can be anything, the generally
considered reference point is the subject’s endowment. The expected payoff is
the subjective value of the two possible outcomes combined with their weighted
probabilities. The probability weights will remain the same for any lottery across
the lottery sets. If it can be shown that the stochastic order of the lotteries within
each lottery set has some order for widely accepted parameters then it can be
ruled out that the behavior can be explained using cumulative prospect theory.
The functional forms used for the value function (v) and probability weighting
functions (w+ and w-) are as proposed by Tversky and Kahneman (1992). Based
on these value functions and standard parametric values the calculated expected
value for the three lottery sets is as shown in Table 1.29-1.31. The expected value
monotonically decreases before increasing. Thus, for a wide range of parametric
values, the highest should be either the first lottery or the last lottery. Therefore,

32



it seems that TPW cannot be explained using cumulative prospect theory, which
concurs with the findings of Wu and Gonzalez (1996). Both the models are
examined for the reference point as either 100 and 150.

Table 1.29: Expected value (based on PT) of Lottery Set 1

Table 1.30: Expected value (based on PT) of Lottery Set 2

Discontinuous Value Function

Diecidue and Van (2008), based on experimental evidence in other papers (in-
cluding Payne, 2005), theorize aspiration levels as a relevant aspect of decision
making in value allocation tasks. They develop a model that includes the overall
probabilities of success and failure relative to the aspiration level into an ex-
pected utility representation. This turns out to be equivalent to the expected
utility with a discontinuous utility function. The discontinuous value function
around the aspiration level as a reference point exhibits the extreme form of loss
aversion. For two possible outcome prospects that involve the aspiration level,
the model shows that subjects are always risk-averse from above and risk-seeking
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Table 1.31: Expected value (based on PT) of Lottery Set 3

from below. The functional form of the model is given as:

V (x) =
∑n
j=1pju(xj) +µP (x+)−λP (x−)

where
n is the number of prospects which in our case is 2 for every lottery (L)
pj is the probability of prospect j,
u(xj) is the utility of prospect xj ,
P (x+) is the overall probability of success,
P (x−) is the overall probability of failure,
µ,λ ∈R+

and aspiration level is taken as zero (there is no endowment in the value alloca-
tion task)

The above functional form for our set-up of two possible outcomes with endow-
ment as aspiration level

V (x) = pv(x+) + (1− p)v(x−) +µP (x+)−λP (x−)

where
v(x+) = x+0.88,
v(x−) = x−0.88,
and other notations are as defined as above

Can it explain the TPW behavior? Irrespective of the parameters of the overall
gain and overall loss probabilities (the last two parts of the equation above), it
can be said that as one move from top to bottom lotteries (in all three lottery
sets) the net value from this part of the functional form increases monotonically.
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Based on the first two components of the value function and parametric values
used above it can be seen (as shown in Table 1.32-1.34) that the expected value
almost monotonically increases in LS 1 and 3 and monotonically decreases
in LS 2. When the values from all four parts of the value function will be
combined, it will give the last lottery (and not middle lotteries) in LS 1 and 3 as
the preferred choice for a range of parametric values which is not supported by
the experimental data.

Table 1.32: Expected value (based on Diecidue and Van (2008)) of Lottery Set 1

Table 1.33: Expected value (based on Diecidue and Van (2008)) of Lottery Set 2

Table 1.34: Expected value (based on Diecidue and Van (2008)) of Lottery Set 3

Non-Standard Weighting Functions
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Can non-standard weighting functions explain this experimental data. To an-
swer this take three weighting functions—one which has abrupt jump ( w(p) = 0
for p <= p′ & w(p) = 1 for p > p′), another which has concave smooth jump
(w(p) = 0 for p <= p′ & w(p) = p0.5 for p > p′) and another which has convex
smooth jump (w(p) = 0 for p <= p′ & w(p) = p2 for p > p′). The concave and
convex functions are chosen to be able to judge a combined weighting function
for any arbitrary switching point to give a general weighting function. A general
weighting function is convex for a range of small probabilities and concave above
that. This is done for three values of loss aversion parameter (l=1, 1.75 and 2.25)
and a set of jump probabilities (p’={0.1, 0.2, 0.3, 0.4, 0.5, 0.6}). The predictions
of the EUM and CPT models are calculated with these weighting functions.

The prediction for the EUM model is calculated with the subjective per-
ception for winning defined as per the weighting function and the remaining
probability for losing. This indicates that the abrupt and concave weighting
function gives a prediction that is the same as TPW, while convex weighting
predicts the first or the last lottery as the highest value. Note, in general, weight-
ing functions are found to be concave for small probabilities and convex for
large probabilities. Also, what drives the prediction in the abrupt model is the
increasing cost as all probabilities below the jump point are perceived to be zero.
Similarly, a CPT model with an abrupt jump and reference point as zero (or
below) also gives the same prediction as that of TPW.

A CPT model with the above weighting functions and endowment (=100)
as the reference point predicts behavior similar to TPW around lotteries L6-9
regardless of p at which jump is taken as shown in Table 1.35. This is a limited
range and as one can see the middle lottery (L5) which has the highest propor-
tion in experimental data is not predicted. This feature seems to be robust for a
range of parameters as what is driving this result is the fact that for p < p′ only
negative values will be reflected in the expected value of a value function.

Table 1.35: Jump Weighting Function

Priority Heuristics
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Brandstatter, Gigerenzer and Hertwig (2006) generalize the framework of fast
and frugal heuristics as the priority heuristic can explain many experimental
pieces of evidence that are different from expected utility maximization. It does
so in gambling environments that were designed to demonstrate the empirical
validity of theories of risky choice that assume both weighting and summing. It is
a simple heuristic that forgoes summing and therefore does not make trade-offs.
It proposes the priority rule of reasons in the order of minimum gain, probability
of minimum gain, maximum gain and probability of maximum gain. Although
it is clearly stated that the priority heuristics does not apply in cases where one
of the gambles dominates the other, in general, it predicts the top lottery to be
chosen as both the minimum amount and the probability of minimum amount
are higher than the immediate lower lottery.

Status Quo Bias

The simplicity of this design is that only one dimension (cost) changes across
the sets which makes a comparison of the lottery within the set and across the
sets easy. Still, the status quo bias due to decision avoidance (Dean, 2008) can be
conjectured as a possible reason for subjects classified as TPW who chose the
same lottery across lottery sets. Except for middle lottery L5, all lotteries across
the lottery sets are different. One can consider L4 and L6 to be close enough
across the lottery sets. Considering these three lotteries to be the same across the
three lottery sets, there is a total of 7 subjects who chose these lotteries. These
subjects could also be considered as targeting cost or making choices considering
these lotteries as ’fair’ (Tversky, 1969). If all these subjects are considered not to
be TPW, then it reduces the estimate to 36%.

Security-Potential/Aspiration Theory

SP/A dual criterion theory that combines a decumulative weighting process
(the security potential part of SP/A) with a process that maximizes the proba-
bility of achieving an aspiration level describes both preferences and reasoning
patterns across a wide variety of behavioral phenomena. This model captures
the idea of the probability of attaining a certain aspiration level as one of the
dual criteria used for decision-making. It can be thought that subjects aspire to
win (receive the outcome higher than endowment) in the two possible outcome
games rather than aspiring to any specific value. Unlike this model, TPW sub-
jects are cost-sensitive. This can be confirmed from the choices that the TPW
subjects make in LS 3 where the lowest lottery (L9) has maximum expected
utility and highest probability of winning but all these subjects do not make it
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as their choice possibly because its cost is highest in that set.

Spiteful Behavior

Herrmann and Orzen (2008) investigate the importance of spiteful rivalry in
Tullock contests. In the Fehr-Schmidt model, spiteful agents dislike disad-
vantageous inequality but enjoy advantageous inequality. They find subjects
overinvest to some extent even in decision tasks when there are no other players
and social preferences can play no role. This is similar to the results in the
main design of this experiment. In another task, the best response function for
each player is elicited in a one-shot setting. The difference in response curves
— increasing vs hump-shaped — is attributed to spite and excessive rivalry
between players. In this experiment, both the results, that is, decision task in
main design with probabilities and response curves (more like a decision task)
are explained by the same underlying behavior types. The increasing response
curve is classified as TPW and the humped-shaped response curve as EUMs.
This makes the inference of behavior types as TPW and EUMs more robust.

9 Discussion

The support for TPW is found with a clearer main task that can separate EUMs
from TPWs and some important alternative explanations for the choices made.
The risk preference measured helps to rule out risk-based residual explana-
tions for such behavior. Similarly, these tasks help to rule out other possible
explanations in the literature like joy-of-winning, CPT, discontinuous value
function, status quo bias, SP/A, priority heuristics as discussed in Section 1.8.
Non-standard weighting functions are simulated. While these weighting func-
tions are conceptually different than TPW these do support the possibility of
such choices being optimized behavior. There is also supportive evidence for
these behavioral types in contests tasks tested.

This chapter contributes to decision-making literature in risky choices includ-
ing areas in lotteries, lottery-like financial decision making and winner-take-all
competitions. Some more specific applied areas for illustration purposes are as
follows. It can contribute to the literature on pricing by measuring the trade-offs
between risk dimensions, for example, a salesperson deciding on how much
minimum secret discount to offer a customer to make a B2B sales in a limited
information environment. Similarly, it can contribute to the literature on salary
negotiation in a market with structural differences like perceived taste-based
and statistical discrimination.

Further to above, we would suggest that this decision-making approach
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holds wherever there is a possibility where subjects can trade-off the chance of
winning with the cost and the two possible outcomes are winning and losing.
Subjects would follow this decision-making irrespective of whether it increases
or decreases the expected payoff. This can be seen in Part 5 (LS 3) where lower
lotteries have a higher probability of winning as well as a higher expected value,
these subjects do not choose the last lottery. This shows that their behavior
is primarily driven by two of the basic dimensions of the game which are a
probability of winning and cost, with priority given to the probability of winning
up to a target and then to the cost. This is in line with the results in Slovic and
Lichtenstein (1968) but is different from the priority heuristic in Brandstatter,
Gigerenzer and Hertwig (2006). In this experimental design, the trade-offs are
with cost. Lottery buying in a syndicate is an example of a trade-off with the size
of the prize. Similarly, trade-offs with other risk dimensions can be studied with
different designs.

A one-shot game provides a starting point to investigate the underlying
decision-making approach; however, there are a number of ways in which
further research could address the limitations of the present research. The
parts of this experiment could be extended further as a repeated game with and
without intermediate feedback to examine any difference in behavior. Further
studies are required to understand the general decision-making process of these
subjects who are being classified as TPW type which can answer how and why
these subjects make such decisions of the target probability of winning and the
theoretical equilibrium predictions are in the presence of these types.

To robustly corroborate the results one can design an experiment with a
series of lotteries which are transformations of LS 1-3 for a fixed common value
prize and endowment. If subjects make choices in 20 such lotteries (LS 1-3), this
can allow for more robust statistical tests. Additionally, a graphical alternative
of the above design, which can help understand how subjects choose TPW, could
be achieved by giving subjects various cost vs probability of winning (p=f(c))
graphs for a fixed common value prize and endowment. The pattern of their
choices across various such graphs can reveal if they have a kink or can offer
insights into how they value a probability of winning and cost.

Another design that uses equivalent designs of LS 1-3 with cost and prize
replaced by values of two possible outcomes can be used to test the generality
of the result by changing the context. Such a design can have different results
due to a change in frame. The frame of two possible positive outcomes (without
any endowment) is in the gain domain while the present framing is in the mixed
domain if subjects have endowment as a reference point.

To further test the robustness the sequence of lotteries can be randomized
in every lottery set (in Part 5) such that no lottery is at the same row across the
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lottery sets. This can filter out the possibility that subjects merely choose a row
of a position on the computer screen. Nevertheless, this might make comparing
lotteries difficult/costly for subjects.

For empirical validation, one can collect applications for the position of
assistant professors in top universities and one stratum lower-ranking universi-
ties. These applications are generally costless other than the manual effort of
applying. The distribution of applications from all strata of universities can
be examined to see if students generally fail to even apply to relatively higher-
ranking universities where they believe that they will not get through. Similarly,
applications for any other competitive positions where application cost is low
can be examined.

Much remains unknown about TPW behavioral types. Venkatraman, Payne
and Huettel (2014) and Zeisberger (2016) have labeled it as a heuristic. We
propose to repeat the experiments (those of Venkatraman et al. (2014) and our
main design) by giving subjects a calculator in one treatment and with additional
information on statistical moments in another treatment. If the proportion of
these types do not fall considerably then one needs to run a series of designs to
further investigate how these subjects approach such decisions. Based on the
present results it is not clear whether this decision-making approach is being
used by the subjects (who are classified as TPW) as a heuristic (see, for example,
Tversky and Kahneman, 1973; Tversky and Kahneman, 1974) or more of these
subjects choosing higher probabilities is a reflection of behavioral tendencies
which in real-life might give some evolutionary (survival) advantage. The non-
standard jump weighting functions predictions are similar to TPW, showing
that the decision-making approach can also be viewed as optimization. In this
experimental design, incentive-based joy-of-winning is not captured. One can
do this and correlate it with the TPW types. It can give insight into the question
if both types might have a similar evolutionary origin.

In the next chapter, we show that the decision rule has utility representation
and how agents may learn in a severely limited information environment of
repeated contests when driven by TPW. The reinforcement learning model
predictions track the experimental data available from other studies reasonably
well. This strengthens support for TPW.
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10 Appendix

10.1 News and Social Media Posts

Figure 1.36: Individuals buying in bulk.

Figure 1.37: Individuals buying in syndicate.
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Figure 1.38: Media promoting bulk buying.

Figure 1.39: Individual response to media promoting bulk buying 1.
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Figure 1.40: Individual response to media promoting bulk buying 2.

Figure 1.41: Individual response to media promoting bulk buying 3.
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Figure 1.42: Individual response to media promoting bulk buying 4.
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10.2 Further Charts and Data

Table 1.7: Summary design for Part 6

Figure 1.11: Tickets distribution in Part 2
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Table 1.19: CRRA utility values with different risk preference for each lottery in
Lottery Set 1

Figure 1.24: Distribution of difference in bid amount with change in group size.
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Table 1.43: Descriptive statistics of the payment subjects received.

Table 1.44: Distribution of winning utility of subjects.

Table 1.45: Summary statistics of choices in three lottery sets in Part 5
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Table 1.46: Choice distribution of three lottery sets in Part 5
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10.3 Risk Aversion for Part 5, 4 and 3

We further state and test predictions if the difference between TPW and EUM
can be explained by the difference in measured risk preferences of these subjects
as stated below.

P rediction 6 : In Part 5 (Inverted Lotteries Sets), if TPW is a conceptually dif-
ferent way of decision making then the measured risk aversion of the subjects
should not be able to explain the difference in their classification as EUM and
TPW.

P rediction 7 : In Part 4 (Response Curve), if TPW is a conceptually different way
of decision making then the measured risk aversion of the subjects should not
be able to explain the difference in their classification as EUM and TPW.

P rediction 8 : In Part 3 (Group Size Change), if TPW is a conceptually different
way of decision making then the measured risk aversion of the subjects should
not be able to explain the difference in their classification as EUM and TPW.

Result for Prediction 6 In Part 5 (Inverted Lotteries Sets), the risk preference for
each type is shown in Table 1.17. It appears that for the type TPW (0,2) the mean
value of risk preference is lower than the type EU (6,8). Wilcoxon Rank-Sum test
is not able to reject that both the samples are taken from the same distribution.
The calculation for the test is shown in Table 1.18

Table 1.17: Mean risk of each type in Part 5
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Table 1.18: Wilcox Risk Difference between EU and TPW Part 5

Result for Prediction 7 In experiment Part 4 the measured risk aversion can’t
explain the difference in choices made by the types of subjects. Table 1.23 shows
the mean risk for each category and the result of the significance test of differ-
ence in the mean risk for each category.

Table 1.23: Mean risk for each type in Part 4

Result for Prediction 8 In Part 3, the measured risk aversion can’t explain the
difference in choices made by the types of subjects. In the below table we see the
mean risk for each category. Wilcoxon Rank-Sum test (Table 1.26) can’t reject
that both the samples are taken from the same distribution.

Table 1.26: Wilcox risk difference between increase and decrease consistency
type Part 3
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Table 1.47: Data from Part 4.
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Table 1.48: Data from Part 5.
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10.4 Instructions Set
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General Instructions for the Experiment 

 
 

Welcome  to  the  experiment.  This  is  an  experiment  related  to  decision‐making.  Over 

approximately next 75 minutes, you will be asked to participate in several tasks. For simply 

showing up  to  this  experiment  you have  already  received  £3. You  can  earn  considerably 

more. During  the experiment, you may earn ECU  (Experimental Currency Unit). The  total 

amount of ECU that you will have earned during the experiment will be converted into £ at 

the end of the experiment; 50 ECU = £1. You will receive these earnings in cash, in £, and in 

private at the end of the experiment. Please stay seated until we ask you to leave. 

 

There are six independent parts of this experiment followed by a questionnaire. The details 

will  be  provided  in  the  instructions  for  each  part. Any  examples  in  the  instructions  are 

merely for illustration purposes; you should not interpret them as the advice of any kind. 

 

Please read the instructions carefully. If you have any questions, please raise your hand. One 

of  the  experimenters  will  come  to  you  and  answer  your  questions.  From  now  on 

communication with  other  participants  is  not  allowed.  Do  not  use  your mobile  phones 

during the experiment. 

 

Remember, on  the computer  screen once Submit button  is  clicked you  can’t go back and 

change your choices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Instructions for Part 1:  
 

This part of the instructions explains the raffle task followed by two quizzes. Each quiz has 

three questions to be answered. All questions are multiple‐choice questions and there is one 

correct answer. If you choose a correct answer then you will score 100 ECU for that question, 

an incorrect answer will score zero. Your score from one of the six questions will be chosen 

randomly for the actual payment. 

 

There  is a raffle where a prize worth 100 ECU can be won. Your probability of winning  is 

the number of raffle tickets you buy divided by the number of raffle tickets sold in total. For 

instance, if you buy X raffle tickets and the other participants Y, your chance of winning is X 

/ (X+Y). Each raffle ticket costs 1 ECU 

 

If you win, your income from the raffle will be: 

Income = 100 (Endowment) ‐ No. of tickets you bought (0‐100) + 100 (Prize Value) 

 

If you lose, your income from the raffle will be: 

Income = 100 (Endowment) ‐ No. of tickets you bought (0‐100) 

 

 

 

On the computer screen, Quiz 1 will be followed by its answers and explanations after you 

have clicked Submit button. Similarly, Quiz 2 will be followed by its answers and 

explanations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



QUIZ 1 

 

Q1. Assume  that you bought  10  tickets  in  a  raffle  and  all  other participants  in  the  raffle 

bought 90. What is your chance of winning the raffle? 

 

(a) 10 / 90 

(b) 10 / 100 

(c) 10 / 80 

(d) 80 / 90 

 

Q2. Assume that from an endowment of 100 ECU you bought 40 raffle tickets. What is your 

income if you win? (Hint: If you win, Income = Endowment ‐ Ticket Cost + Prize Value) 

(a) 80 

(b) 180 

(c) 160 

(d) 40 

 

Q3. Assume your probability of winning in a raffle is 0.8. What is your chance of winning 

expressed in percentage? 

 

(a) 40% 

(b) 80% 

(c) 60% 

(d) 100% 

 

 

 

Please WRITE DOWN your answers in this instructions sheet BEFORE clicking the Submit 

button on your computer screen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



QUIZ 2 

  

Q4. Assume  that  in  a  raffle  you  bought  60  tickets  and  all  other participants  bought  140. 

What is your chance of winning the raffle? 

 

(a) 60 / 160 

(b) 160 / 200 

(c) 60 / 200 

(d) 160 / 300 

 

Q5. Assume that from an endowment of 100 ECU you bought 40 raffle tickets. What is your 

income if you lose? (Hint: If you lose, Income = Endowment ‐ Your Ticket Cost) 

 

(a) 60  

(b) 140  

(c) 30 

(d) 170 

 

Q6. Assume your probability of winning in a raffle is 0.3. What is your chance of winning 

expressed in percentage? 

 

(a) 40% 

(b) 60% 

(c) 80% 

(d) 30% 

 

 

 

Please WRITE DOWN your answers in this instructions sheet BEFORE clicking the Submit 

button on your computer screen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Instructions for Part 2:  
 

In this part of the experiment, you will play 10 rounds of the raffle described in the quizzes 

earlier and explained again in the paragraphs below. In the first five rounds, you will be in a 

group of  size  2  and  in  the  last  five  rounds group  size will be  3. Groups will be  formed 

randomly at the beginning of each group size. You will stay in the same group for all five 

rounds of each group size.  

 

In  each  round, you have  an  endowment of  100 ECU  and you  can  buy between  0  to  100 

tickets. Similarly, other members of your group will also  choose  to buy between 0  to 100 

tickets. You will not know how much  the other participants choose. The winning prize  is 

100 ECU and the cost of each ticket is 1 ECU.  

 

Your probability of winning is the number of tickets you buy divided by the total number of 

the tickets bought  in your group (including you). One of the participants from your group 

will be chosen randomly as a winner. Your income in ECU in any round will be as follows: 

 

If you win, your income will be: 

Income = 100 (Endowment) ‐ No. of tickets you bought (0‐100) + 100 (Prize Value) 

 

If you lose, your income will be: 

Income = 100 (Endowment) ‐ No. of tickets you bought (0‐100) 

 

Out of the 10 rounds, your income from one of the rounds will be chosen randomly as your 

actual payment from this part of the experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Instructions for Part 3:  
 

In this part of the experiment, you will be grouped with other participants. You will play 4 

games. Each game has 2 raffles, one in Period 1 followed by another in Period 2.   

 

In Game  1,  in  Period  1  you will  be  grouped  in  a  group  of  size  2  and  in  Period  2  two 

additional participants will join your group and your group size will increase to 4, as shown 

in Table 1 below. 

 

In Game  2,  in  Period  1  you will  be  grouped  in  a  group  of  size  3  and  in  Period  2  three 

additional participants will join your group and your group size will increase to 6, as shown 

in Table 1 below.  

 

In Game 3, in Period 1 you will be grouped in a group of size 4 and in Period 2 two group 

members will leave your group and your group size will decrease to 2, as shown in Table 1 

below.  

 

In Game 4, in Period 1 you will be grouped in a group of size 6 and in Period 2 three group 

members will leave your group and your group size will decrease to 3, as shown in Table 1 

below.  

 

In each game, at the start of each period, you will get an endowment of 100 ECU and you 

have to decide how much of this endowment will you like to use to purchase tickets. Each 

ticket costs 1 ECU. You can buy from 0 to 100 raffle tickets. In each game, each period the 

prize value is 100 ECU.  

 

You will not know how many tickets the other group members have bought. You will know 

the outcomes of all the raffles ONLY at the end of Period 2 of Game 4. Note that exactly one 

of the participants will win the prize in every group, for each period and in every game.   

 

Additionally, you have to estimate your ‘probability of winning’ (P1‐P8) given the number 

of  tickets  you  have  purchased  in  each  game  in  each  period.  Your  estimation  of  the 

‘probability of winning’ will not be used in computing your income. 

  

 
 

 

 

 



Your income (in ECU) in each raffle will be calculated as follows:  

 

If you win, your income will be: 

Income = 100 (Endowment) ‐ No. of tickets you bought (0‐100) + 100 (Prize Value) 

 

If you lose, your income will be: 

Income = 100 (Endowment) ‐ No. of tickets you bought (0‐100) 

 

Out of  the  total  8  raffles you played, your  income  from one of  the  raffles will be  chosen 

randomly as your actual payment for this part of the experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Instructions for Part 4:  
 

This part of the experiment consists of 6 raffles (R1‐R6). You will be matched with another 

participant. For each raffle, you are endowed with 100 ECU. The endowment can be used to 

purchase raffle tickets. You can buy between 0 to 100 tickets. Each raffle ticket costs 1 ECU. 

The prize value of each raffle is 100 ECU.  

 

Both you  and your matched participant  are provided with Table  2.  In Table  2,  column  2 

(“Matched Participant’s Fixed Tickets Choice”) has fixed ticket choices for each raffle R1‐R6. 

Against these fixed ticket choices, you have to enter a number of tickets you want to buy for 

each  raffle R1‐R6. You will enter your choices of a number of  tickets  in column 3 of your 

Table 2. Similarly, your matched participant will enter her choices of a number of tickets in 

column  3 of her Table  2. Note, you  can’t make  any  choices  in your matched participants 

Table 2 and she can’t make any choices in your Table 2. 

 

The  fixed  tickets choices  in your Table 2 will be considered as your matched participant’s 

ticket choices in your table. Similarly, the fixed tickets choices in your matched participant’s 

Table 2 will be considered as your tickets choices in her table. The fixed tickets choices can’t 

be changed. 

 

Either  your  Table  2  or  your matched  participants  Table  2 will  be  selected  for  the  actual 

payment  calculation.  The  unselected  Table  2 will  be  discarded.  You  and  your matched 

participant have an equal chance of getting your Table 2 selected. 

 

Once either yours or your matched participant’s Table 2 is selected, one of the raffles (R1‐R6) 

will be  selected  from  this  table  for yours  and your matched participant’s  actual payment 

calculation. All six raffles are equally likely to be chosen.  

 

If your Table 2 is selected, your probability of winning the raffle will be as given in column 5 

of your Table 2 and your matched participant’s probability of winning the raffle will be as 

given in column 6 of your Table 2.  

 

If your matched participant’s Table 2 is selected, her probability of winning the raffle will be 

as given  in  column 5 of her Table 2 and your probability of winning  the  raffle will be as 

given in column 6 of her Table 2.  

 

 



Your actual payment (in ECU) is given as follows: 

 

   If your Table 2 is selected and a raffle from R1‐R6 is selected: 

 

If you win, your actual payment will be: 

100 (Endowment) ‐ Your Ticket Choice for the selected raffle + 100 (Prize Value) 

 

If you lose, your actual payment will be: 

100 (Endowment) ‐ Your Ticket Choice for the selected raffle  

 

   If your matched participant’s Table 2 is selected and a raffle from R1‐R6 is selected: 

 

If you win, your actual payment will be: 

100 (Endowment) ‐ Fixed Ticket Choice for the selected raffle + 100 (Prize Value) 

 

If you lose, your actual payment will be: 

100 (Endowment) ‐ Fixed Ticket Choice for the selected raffle  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Instructions for Part 5:  

 
In this part of the experiment, you are not grouped with other participants. You must choose 

one of the lotteries (L1‐L9) from each Lottery Table 1, Lottery Table 2, and Lottery Table 3. 

For each Lottery Table, you are endowed with 100 ECU. The endowment  can be used  to 

purchase any one of the lotteries in that  Lottery Table.  

 

For each of the lotteries in all the  Lottery Tables, its probability of winning, cost and prize 

value of the lottery is mentioned in the table. Unlike in the earlier parts of the experiment, in 

this part,  the probability of winning  is  fixed  for each  lottery. Note: Only  the values  in  the 

‘Cost’ column are different in each Lottery Table. 

 

Once  you  have made  your  choices,  any  one  of  the  three  Lottery  Tables will  be  selected 

randomly. All  Lottery  Tables  are  equally  likely  to  be  chosen. After  the  Lottery  Table  is 

selected, the lottery you have chosen in that Lottery Table will be considered for the actual 

payment calculation.  

 

 

 

Your actual payment (in ECU) will be as follows: 

 

If you win, your actual payment  will be: 

100 (Endowment) ‐ Cost of your chosen lottery in the selected Table + 100 (Prize Value) 

 

If you lose, your actual payment will be: 

100 (Endowment) ‐  Cost of your chosen lottery in the selected Table  

 

 

 

 

 

 

 

 



Instructions for Part 6:  

 
In  this part  of  the  experiment,  you  are not  grouped. You have  to make  10  choices. Each 

decision is a paired choice between “Option A” and “Option B”. For each decision row (D1‐

D10), you will have to choose between Option A and Option B. You may choose A for some 

decision rows and B for other rows and you may change your decisions and make them in 

any order. 

Now, please  look at decision D1 at  the  top  in  the below  table. Option A has  two possible 

outcomes A1 and A2. A1 pays 100 ECU with a probability of 0.1 and A2 pays 80 ECU with 

the remaining probability of 0.9. Similarly, Option B has two possible outcomes B1 and B2. 

B1 pays 193 ECU with a probability of 0.1 and B2 pays 5 ECU with the remaining probability 

of 0.9. 

The other decisions are similar, except that as you move down the table, the chances of the 

higher paying outcome  for each option  increases.  In  fact,  for decision D10  in  the bottom 

row, each option pays the highest payoff for sure, so your choice here is between 100 or 193 

ECU. 

To determine  your  income,  one  of  the decisions  (D1‐D10) will  be  selected  randomly. All 

decisions have an equal chance of being selected for your actual payment calculation. 

   

 

Your income (in ECU) will be as follows: 

 

If you have chosen A, your income will be either 100 or 80 based on the probabilities stated 

in the table.  

     

If you have chosen B, your income will be either 193 or 5 based on the probabilities stated in 

the table.  

 

 

 

 

Pr A1 A1 Pr A2 A2 Pr B1 B1 Pr B2 B2

D1 0.1 100 0.9 80 0.1 193 0.9 5

D2 0.2 100 0.8 80 0.2 193 0.8 5

D3 0.3 100 0.7 80 0.3 193 0.7 5

D4 0.4 100 0.6 80 0.4 193 0.6 5

D5 0.5 100 0.5 80 0.5 193 0.5 5

D6 0.6 100 0.4 80 0.6 193 0.4 5

D7 0.7 100 0.3 80 0.7 193 0.3 5

D8 0.8 100 0.2 80 0.8 193 0.2 5

D9 0.9 100 0.1 80 0.9 193 0.1 5

D10 1 100 0 80 1 193 0 5

Decision
Option A Option B



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Questionnaire:  

 
Please answer the following questions. These answers will be anonymous and there are no 

right and wrong answers. The more exhaustive you will be in answering these questions, the 

more you will be helping the research study. Please write clearly! 

 

 

1. Your Age? _____ 

 

2. Your Gender? Tick  

1) Female, 2) Male, 3) Not Listed, 4) Prefer Not to Answer 

 

3. Your Nationality?__________________ 

 

4. Your subject of study?( Eg: Economics)______________________ 

 

5. Your level of study? Tick one below 

1) Undergraduate Year 1, 2) Year 2, 3) Year 3, 4) Year 4, 5) Masters, 6) PhD 

 

6. Which Parts of the experiment have clear instructions? Tick any below 

1) Part 1, 2) Part 2, 3) Part 3, 4) Part 4, 5) Part 5, 6) Part 6 
 

7. Were quizzes helpful in making you understand the game of raffle? Tick one 

1) not at all,  2) somewhat,  3) very much,  4) absolutely 

 

8. In which Parts you felt confident of the approach you took in making choices? 

Tick any below  

1) Part 1, 2) Part 2, 3) Part 3, 4) Part 4, 5) Part 5, 6) Part 6 
 

9. Were  results  in  one  part  of  the  experiment  impacted  your decisions  in  the 

following parts? Tick one below 

1) Yes,  2) No  

If yes, how exactly:___________________________ 

 

 

10. Did  you  have  some  basic  understanding  of  probability  prior  to  this 

experiment? Tick one below 

1) Yes,  2) No  

 

11. Are you comfortable with numeric calculations? Tick one below 

1) not at all,  2) somewhat,  3) very much,  4) absolutely: it makes me feel 

better. 



 

12. Have you played any raffle/lottery games earlier? Tick any below  

1) Yes in real life, 2) Yes in Another experiment, 3) Not at all. 

 

13. In  the games where you were  in a group, did your choice‐making  take  into 

consideration what choices other group members may be making? Tick one 

1) Not at all, 2) Somewhat, 3) Fully Considered  

 

14. In general, which of  the  following  factors did you considered  to make your 

choices? Tick any below 

1) Income/Actual Payment, 2) Cost,  3) Probability of Winning  

 

15. Do you like winning even if you end up making losses in total? Tick one below 

1) not at all,   2) somewhat,   3) very much,   4) absolutely: winning at any 

cost 

 

16. How  you  approached  the  game  of  raffle/lottery? On what  basis were  you 

making your choices/decisions? ________________________________________ 

 

 

 

17. Was there a common strategy you took to make decisions in every part of the 

experiment?__________________________________________________________ 

 

 

 

18. How winning  or  losing  in  any  raffle/lottery  impacted  your  choices  in  the 

following raffle/lottery?________________________________________________ 

 

 

 

19. Any thoughts, comments or suggestions on improvements in the experiment?  

            _____________________________________________________________________ 

 
 

 

 

 

Thank  you  very much  for  your  participation!  Please  do  not  share  anything  about  this 

experiment with anyone for next  two months. There are other sessions  to be run and  it 

will contaminate the research study.   



10.5 z-Tree Screenshots

Figure 1.49: z-tree screenshot of Part 1 (Quizzes) - questions

Figure 1.50: z-tree screenshot of Part 1 (Quizzes) - solutions
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Figure 1.51: z-tree screenshot of Part 1 (Quizzes) - solutions

Figure 1.52: z-tree screenshot of Part 1 (Quizzes) - payment
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Figure 1.53: z-tree screenshot of Part 2 (Experience) - choice input

Figure 1.54: z-tree screenshot of Part 2 (Experience) - feedback
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Figure 1.55: z-tree screenshot of Part 2 (Experience) - payment

Figure 1.56: z-tree screenshot of Part 3 (Group Size Change) - choice input Game
1, Period 1
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Figure 1.57: z-tree screenshot of Part 3 (Group Size Change) - choice input Game
1, Period 2

Figure 1.58: z-tree screenshot of Part 3 (Group Size Change) - choice input Game
4, Period 1
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Figure 1.59: z-tree screenshot of Part 3 (Group Size Change) - choice input Game
4, Period 2

Figure 1.60: z-tree screenshot of Part 3 (Group Size Change) - payment
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Figure 1.61: z-tree screenshot of Part 4 (Response Curve) - choice input

Figure 1.62: z-tree screenshot of Part 4 (Response Curve) - payment
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Figure 1.63: z-tree screenshot of Part 5 (Inverted Lottery Sets) - choice input
Lottery Table 1

Figure 1.64: z-tree screenshot of Part 5 (Inverted Lottery Sets) - choice input
Lottery Table 2
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Figure 1.65: z-tree screenshot of Part 5 (Inverted Lottery Sets) - choice input
Lottery Table 3

Figure 1.66: z-tree screenshot of Part 5 (Inverted Lottery Sets) - payment
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Figure 1.67: z-tree screenshot of Part 6 (Measuring Risk Aversion) - choice input

81


	Introduction
	Related Literature
	Towards Theoretical Formulation
	Main Design-Features
	Experimental Design and Procedures
	Predictions
	Results
	Part 5 Results - Alternative Explanation
	Discussion
	Appendix
	News and Social Media Posts
	Further Charts and Data
	Risk Aversion for Part 5, 4 and 3
	Instructions Set
	z-Tree Screenshots


