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Abstract

This paper develops a theory of sequential lending in groups in micro-finance that centers

on the notion of dynamic incentives, in particular the simple idea that default incentives

should be relatively uniformly distributed across time. In a framework that allows project

returns to accrue over time (rather than at a single point), as well as strategic default, we

show that sequential lending can help resolve problems arising out of coordinated default,

thus improving project efficiency vis-a-vis individual lending. Inter alia, we also provide

a justification for the use of frequent repayment schemes, as well as demonstrate that,

depending on how it is manifested, social capital has implications for project efficiency and

borrower default. We then examine the optimal choices for the MFI, demonstrating that

the MFI opts for higher project sizes under group lending with limited collusion, and also

provide a plausible explanation of the transition from group to individual lending.

Key words: Collusion; coordinated default; dynamic incentives; group-lending; micro-

finance; sequential financing; social capital; social sanctions.

JEL Classification Number: D7, D9, G2, O2.

∗Address for Correspondence: Prabal Roy Chowdhury,

Economics and Planning Unit, Indian Statistical Institute, Delhi Center,

7 - S.J.S. Sansanwal Marg, New Delhi - 110016, INDIA.

E-mail: prabalrc1@gmail.com.

Fax: 91-11-41493981.



1 Introduction

This article seeks to develop a simple theory of sequential lending in groups under micro-finance

that centers on the notion of dynamic incentives, in particular the simple idea that default

incentives should be relatively uniformly distributed across time. In a framework that allows

project returns to accrue over time (rather than at a single point), as well as strategic default,

we show that sequential lending can help resolve problems arising out of coordinated default,

thus improving project efficiency vis-a-vis individual lending. Inter alia, we also provide a jus-

tification for the use of frequent repayment schemes, as well as demonstrate that, depending on

how it is manifested, social capital has implications for project efficiency and borrower default.

We then demonstrate that a socially motivated MFI opts for higher project sizes, and lends

to a greater number of borrowers under group lending. Finally, we show that this framework

provides a rich explanation of the transition from group to individual lending occurring over

the last decade or so.

Sequential lending involves different group members being provided loans at different points

of time and can trace its origin to ROSCAs (Besley et al., 1993). The institution of sequential

lending has been widely adopted by many microfinance institutions (henceforth MFIs) in Asia

and Africa, including Grameen I (and its replicators).1 While over the last decade or so there

has been a move towards individual lending (e.g., Rai and Sjostrom, 2010), sequential lending

still continues to be widely used. In India, for example, the Self Help Group (SHG) Linkage

Program initiated by the National Bank of Agriculture and Rural Development provides loans

in sequence (Aniket, 2009).2 Further, BRAC offers canonical Grameen I product in a number of

African countries such as Liberia, Sierra Leone, Tanzania and Uganda.3 Even some European

micro-finance programs follow sequential lending practices, e.g. the Kiutprogram for borrowers

of Roma origin in Hungary and other European countries (Molnar, 2010), and the micro.bo.

program in Bologna, Italy (Castri, 2010). It is therefore of interest to examine the reasons as

to why sequential lending had been so widely used in the recent past, and still continues to be

used in many cases.4

Turning to the formal model, we consider a framework where project returns are formulated

in a dynamic fashion, as a stream of income accruing over a period of time. Further, project size

is endogenous with project returns increasing in the level of initial investment. With borrowers

being poor, they have to approach some MFI if they want to invest. Further, there is a problem

of ex post moral hazard in that the borrowers can strategically default on their repayment

obligations at any point of time (see Gine et al., 2011, for evidence on strategic default).

We begin by analyzing the benchmark case of individual lending, showing that the optimal

repayment scheme has some interesting properties in that it involves immediate and frequent

repayment (IFR for short), with the repayment starting early, and continuing at the maximal

feasible rate until the MFI recoups its loan. Thus the optimal scheme demonstrates two features

1In Bangladesh, for example, our examination of the data collected by IFPRI in 1994 and used in Zeller et al.
(1996) for 128 groups belonging to group-based credit programs of three MFIs in Bangladesh, ASA, BRAC and
RDRS, shows that sequential lending was one of the features common to all three MFIs.

2The mechanism is described in details in Aniket (2006). The SHG-linkage program in India has grown rapidly,
with the number of clients increasing from 38.02 million in 2006-07, to 54 million in 2008-09 (Srinivasan, 2009).

3Based on discussions with officials of BRAC International and field visits, in particular to BRAC Uganda.
4de de de de Quidt et al. (2012) report that out of 663 institutions that reported to Microfinance Information

Exchange (MIX) in 2009, 12.2% of the lenders offered joint liability loans exclusively, and 57.9% offered some
joint liability loans. Of course, this does not say anything as to whether the joint liability groups also used
sequential lending or not.
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that appear to be ‘near-universal’ (Bauer et al., 2008), namely early and frequent repayment.

Further, in the presence of either (a) risk-aversion, or (b) positive discounting, the optimal

scheme may be ‘gradual’ in the sense that it asks for less than the maximal feasible payoff at

every instant.

We find though that in case the moral hazard problem is severe (in a sense made formal

later), then the efficient level of investment may not be attainable, even with IFR schemes.

Given this, we then turn to the central question of this paper, namely whether group-lending

with sequential financing can help improve efficiency.

In the group-lending context, we focus on the interaction between social sanctions and

collusive possibilities. Social sanctions involve the borrowers who are adversely affected because

of default, imposing some penalty on the defaulting borrower(s). While such sanctions can help

prevent default, whether such sanctions are actually imposed or not, however depend on the

extent of collusion among the borrowers.

We consider two scenarios, one where collusion is limited, and another where it is complete.

In the first scenario, borrowers cannot make transfers to one another in a bid to avoid the impo-

sition of social sanctions in case of default. Collusion in this case thus takes a limited form and

simply involves not invoking the social sanction whenever all borrowers benefit from a coordi-

nated default. Under the second scenario, we however allow borrowers to make transfers among

one another. Complete collusion is modeled simply as the borrowers taking default/repayment

decisions jointly, based on maximizing aggregate group payoff. Clearly, in case of a default, the

social sanctions are never invoked.

Under the first scenario with limited borrower collusion, we find that sequential lending

necessarily improves efficiency vis-a-vis individual lending (as long as group size is not too

large). The basic intuition for this can be easily understood by considering a two member

group. Let the first recipient default at a time when the second borrower is yet to receive her

loan. Such a default will clearly adversely affect the second borrower, who obtains no loan, thus

attracting the social sanctions. Next at the instant when the second borrower obtains her loan,

the first borrower may have already repaid a substantial amount of her own loan because of

IFR, and thus will be adversely affected if the second borrower defaults (because the lender will

then liquidate both the projects). Consequently the first borrower will then impose the social

sanction.

The possibility of limited collusion implies that the second borrower cannot obtain her loan

too early in the cycle, otherwise there will be coordinated default by the borrowers. Furthermore,

the second loan can not be too delayed either. This is because in that case when the first

borrower completes her project, she will not impose the social sanction and this may then

lead defaulting by the second borrower. It is this subtle interaction of dynamic incentives,

in particular the interaction between sequential lending and IFR, that ensures that a higher

project return can be implemented.

Note that our approach is based on two simple but robust ideas that (a) incentives to

default are higher in case the amount to be repaid is higher, and (b) borrowers may collude

in their default decisions, thus impairing the efficacy of social sanctions. Turning to the first

idea, it leads to the intuition that default incentives must be relatively uniformly distributed

across time, so that it is not too large at any single point. In the presence of limited borrower

collusion, sequential lending serves to prevent such coordinated default by ensuring that the

default incentives of the borrowers will not be completely aligned. In fact, under individual
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lending, even the IFR scheme is driven by the idea that default incentives should not become

too large at any single instant.

We next examine the second scenario where there is complete collusion. Given that social

sanctions have no bite in this situation we find, somewhat surprisingly, that the MFI can

sustain more efficient projects compared to that under individual lending. The idea can again

be illustrated most transparently for a two member group. While, at the start of the project,

default payoffs involves a single project, the continuation payoff from not defaulting must take

the potential income from both projects into account. Thus default incentives may not be too

high early on. Next consider default incentives later on, after both borrowers have already

obtained their loans. At this point, since the first project has already run its course for some

time, and some repayment have already been made, the payoff from the first project would be

higher if it is allowed to continue, rather than in case there is default. Consequently, default

may not be too appealing from the standpoint of the group as well.

We find that even though social sanctions have no bite under complete collusion, dynamic

incentives arising from the fact that default decisions take group payoffs into account, ensure

that the maximal loan size under complete collusion exceeds that under individual lending.

The maximal sustainable loan size under complete collusion is however lower than that

under limited collusion. The reason may not be obvious given that there are two countervailing

forces at work here. While, the fact that social sanctions have no bite under complete collusion,

makes loans harder to recover, the fact that default decisions take group payoffs into account,

makes loans easier to recover. Why does the first effect necessarily dominate? This has to do

with the fact that under limited collusion group size is taken to be large enough making social

penalties an effective threat, whereas these have no bite under complete collusion.

We then consider the optimization problem facing a socially motivated MFI, i.e. one that

cares for its borrowers, a natural assumption in this context and one that is well accepted in the

literature.5 Solving for the optimization problem of such an MFI under both lending regimes,

we find that both project size, as well as the number of borrowers served are higher under group-

lending. Intuitively, with appropriately constructed schemes, default incentives are lower under

group-lending. Since the MFI’s payoffs are increasing in project size, this therefore implies that

(a) the MFI optimally chooses a higher project size under group-lending, and (b) the MFI’s

marginal benefit from an additional borrower is higher under group lending, and consequently

the number of borrowers served is also higher.

Finally, we use this framework to analyze a phenomenon that is not very well understood in

the literature, namely the transition from group to individual lending discussed earlier. We use

the framework developed here to argue that this shift can be attributed to the increase in MFI

competition that was happening around the same time, in particular to three possible effects

of such increased competition, namely (i) increased competition for donor funds, resulting in

a higher opportunity cost of fund for the MFIs, (ii) an increase in the reservation utility of

the borrowers arising out of a reduction in interest rates, and (iii) mission-drift, i.e. the MFIs

becoming more profit-oriented. We show that all three will tend to make group-lending relatively

more attractive for the MFI, thus providing a possible explanation of this transition.

The intuition has to do with the fact that default incentives are lower under group-lending.

5The United Nations Interagency Committee on Integrated Rural Development for Asia and the Pacific (1992)
for example, mentions six defining characteristics of an NGO, one of them being ‘highly socially motivated and
committed’. See Besley and Ghatak (2005, 2006) for studies on incentive provision to socially motivated agents.
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Consider, for example, the effect of an increase in the opportunity costs of funds. This will tend

to reduce project sizes, and consequently MFI payoffs, under individual, as well as group-lending.

From the envelope theorem, the magnitude of this effect is exactly equal to the project size.

Given that project sizes are larger under group lending, so will be the decline in profitability.

Inter alia, we also analyze the effects of a ceiling on the interest rates being charged by the

MFIs, as well as subsidized credit being provided to the MFIs.

The next section provides a brief review of the literature, whereas Section 3 describes the

model, before going on to analyze the case of individual lending. Section 4 then examines

a scenario with both IFR, as well as sequential lending, under limited, as well as complete

collusion. Section 5 analyzes a scenario where the MFIs optimally decides on projects sizes,

etc. Section 6 then uses this framework to analyze some questions of policy interest. Finally,

Section 7 concludes. Some of the proofs can be found in the appendices.

2 Related Literature

We organize our literature review around three themes that this paper relates to, namely IFR,

sequential lending and social capital.

2.1 Immediate and Frequent Repayment (IFR)

In Jain and Mansuri (2003), early repayment forces borrowers to borrow from friends/local mon-

eylenders, thus tapping into the information possessed by these agents regarding the borrowers’

credit worthiness.

In a couple of recent contributions, Fischer and Ghatak (2010, 2011) show that the presence

of (i) a net continuation value in case of repayment (which may arise either because of contingent

renewal, or from avoiding future punishment), and (ii) either present-biased preferences, or

strict risk aversion by the borrowers (in the absence of savings instruments), make the incentive

constraints at the earlier stages tighter, thus providing an explanation for frequent installments.

Moreover, like in the present paper, they also make the point that smaller amounts may be less

prone to diversion.

The two papers offers complementary insights though, being applicable under different sce-

narios. The present paper, for example, provides a theory that does not require either a net

continuation value in case of repayment, or the borrowers to have either present-biased pref-

erences, or strict risk aversion. Fisher and Ghatak (2010, 2011) on the other hand provide a

theory that applies even when full repayment is possible in the very first period, a scenario that

is not allowed for in the present paper.6

Albuquerque and Hopenhayn (2004) consider a repeated game theoretic model of lending

with endogenous borrowing constraints where a firm requires working capital in every period.

They find that the equilibrium contract involves paying no dividend in the initial years. While

this result is reminiscent of our IFR result, it is driven by a different intuition, namely that

doing so allows the firm to build up equity as quickly as possible, thus relaxing the borrowing

constraint. Further, this policy is aimed at solving inefficiency with respect to working capital,

rather than the scale of the project itself. Another related work is Shapiro (2012) who examines

6We would like to thank Maitreesh Ghatak and Dilip Mookherjee for encouraging us to clarify some of these
issues.
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dynamic incentives in the presence of asymmetric information, but no enforcement problems.

He shows that in all equilibria but one, even the most patient borrowers default with probability

one.

Among empirical papers, Field and Pande (2008) find that a shift from a weekly to a

monthly repayment scheme leads to no significant difference in either delay, or default. Field

et al. (2010) however find that allowing for a grace period before repayment starts, increases

default. Seen through the lens of the present paper, such grace periods would necessitate

greater repayment later, thus pushing up the incentive to default later on. Feijenberg et al.

(2011) use an experimental approach to argue that more frequent meetings (often associated

with frequent repayment schemes), lead to lower default, possibly because of improvement in

informal risk-sharing arising out of greater social interactions.

The present paper is thus complementary to this literature in that it provides an explanation

of IFR that is not based on any of (i) asymmetric information, or (ii) a net continuation value in

case of repayment and either present-biased preferences, or strict risk aversion by the borrowers,

or (iii) social interactions.

2.2 Sequential Lending

The literature on sequential lending goes back to Varian (1990), who demonstrates that it pro-

vides incentives to high productivity borrowers to school low productivity types. Roy Chowd-

hury (2005) argues that sequential lending can encourage a high level of monitoring by the

downstream borrowers.7 Aniket (2006) examines this issue using a framework with endoge-

nously determined interest rates. Roy Chowdhury (2007) shows that in the presence of con-

tingent renewal there is positive assortative matching, and, consequently, sequential lending

allows the lender to test for the composition of a group relatively cheaply. Finally, while Aniket

(2009) shows that sequential lending may widen access to less profitable projects, Sinn (2009)

examines the role of sequential lending in the presence of ex post moral hazard problems. Ahlin

and Waters (2011) also compare individual with joint liability lending, but in the presence of

simultaneous group-lending.

In contrast to the literature, the present paper does not rely on either borrower monitoring,

or testing for group composition, neither does it focus on borrowers’ access to loans. Instead

this paper unearths a role for sequential lending in preventing collusion, irrespective of whether

it is limited, or complete.

Further, it examines the interaction between sequential lending and frequent repayment,

an aspect that has thus far been ignored in the literature. In particular we show that there is

a strong synergy between frequent repayment and sequential lending, to the extent that there

can be scenarios where, working in isolation, neither can sustain any positive project size, but

working together, they can sustain not just a positive project size, but even the efficient one.

2.3 Social Capital

Besley and Coate (1995) analyze the implications of social sanctions in a group-lending context,

as well as emphasize the importance of ex post moral hazard problems. They find that depending

on the magnitude of social capital, group-lending may, or may not lead to greater repayment as

7Conning (2005) makes the point that with simultaneous lending, the monitoring level of the borrowers are
strategic complements.
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compared to individual lending. Laffont and Rey (2003) find that even with collusion, group-

lending does better compared to individual lending. Other papers examining the issue of social

capital include Aghion (1999), Bhole and Ogden (2010), Paal and Wiseman (2011) and de Quidt

et al. (2012).

The experimental and empirical evidence on the efficacy of social capital in ensuring timely

repayment is decidedly mixed. Abbink et al. (2006) in a lab experiment find that groups

consisting of strangers do as well as self-selected groups. In a similar vein, Wydick (1999) using

group lending data from Guatemala finds that friends do not make better group members. Ahlin

and Townsend (2007) also find that proxies for social ties are correlated with weaker repayment

performance in Thailand. In contrast, Karlan (2007), Wenner (1995) and Gomez and Santor

(2003) all find that social capital is correlated with positive repayment performances. Feijenberg

et al. (2011) also find that social interactions have a positive impact on repayment, though in

the individual, rather than group-lending context.

In contrast to Besley and Coate (1995) and Aghion (1999), we explicitly allow for borrower

collusion against the lender. Also, in contrast to Laffont and Rey (2003), Bhole and Ogden

(2010), Paal and Wiseman (2011), and de Quidt et al. (2012) we analyze sequential, rather

than simultaneous lending schemes. Further, unlike Bhole and Ogden (2010) and Paal and

Wiseman (2011), we do not allow for repeated interactions but instead analyze a dynamic one-

off interaction. Finally, in contrast to both these papers, the magnitude of social sanctions

is norm driven in our framework. We add to this literature by analyzing how social capital

interacts with sequential lending, in particular how the nature of collusion affects repayment

performance. In so doing this paper, along with Paal and Wiseman (2011), takes a step in

reconciling the mixed results found in the empirical literature.

3 The Model

The framework is populated by a lender, namely an MFI, and a set of potential borrowers of

size n. Each borrower has a project that requires a start-up capital of k, where k is a choice

variable and can take any non-negative value. Project returns accrue over time, starting at time

0 (say), so that a project of size k yields a return of F (k) at every t ∈ [0, 1]. F (k) is increasing,

strictly concave and once differentiable in k, with F (0) = 0. Moreover, F (k) satisfies a version

of the Inada condition, with limk→∞ F
′(k) < 1. Project returns are observed by the lender.

We assume that neither the MFI, nor the borrowers discount the future and that all have

linear utility functions defined over money. Denoting the opportunity cost of 1 unit of fund

for the lender by (1 + c), where c ≥ 0, the ‘efficient’ project size k∗(c) is then obtained by

maximizing F (k)−k(1+ c). Given strict concavity of F (k), it follows that there exists a unique

value of k∗(c) that maximizes F (k) − k(1 + c). Since F (0) = 0, it follows that k∗(c) > 0 if

and only if F ′(0) > 1 + c, with F ′(k∗(c)) = 1 + c under this condition. We maintain this

assumption throughout this paper. We also note that strict concavity of F (k) implies that

F (k)− k(1 + c) > 0 for all 0 < k ≤ k∗(c).
The borrowers have no investible fund. Thus, to implement a project of size k, they must

borrow the amount k from the MFI and agree to repay the lender according to some repayment

schedule. In what follows, we assume that the lender charges an interest rate r for his loan,

r ≥ 0, so that for any project of size k, the aggregate repayment must equal k(1 + r).

As in Besley and Coate (1995), a borrower is allowed to strategically default on her repay-
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ment obligation at any date t.8 In the event of such strategic default, the project is ‘liquidated’

with the borrower obtaining a private benefit of (1− t)b(k) and the lender obtaining (1− t)z(k),

where b(k), z(k) ≥ 0. Throughout, we maintain the following assumption.

A.1.

(i) b(k) is increasing and once differentiable in k, with b(0) = 0. Furthermore, for every

k > 0

F (k) > b(k) + z(k).

(ii) For all k ≥ 0, b(k)
F (k) is non-decreasing in k.

A.1(i) implies that ‘liquidation’ is ex post inefficient. Our interest given A.1(i) will be to

characterize outcomes that do not involve strategic default and liquidation. As will be clear

shortly, the actual magnitude of z(k) plays no role in the ensuing analysis and henceforth,

we normalize its value to zero. On the other hand, A.1(ii) captures the intuitive notion that

default incentives are non-decreasing in the project size k, and will be satisfied quite generally.

In particular, since F (k) is strictly concave, b(k)
F (k) will be decreasing in k if b(k) is (weakly)

convex. Moreover, if b(k) = γF (k), where 0 < γ < 1, then b(k)
F (k) is a constant function of k and

A.1(ii) is satisfied.

We note that the formulation of the default payoff adopted in this paper is quite general

and encompasses many different scenarios.

One interpretation is that the default payoff b(k)(1 − t) is closely tied to the physical liq-

uidation of the project, arising either directly out of liquidation by the MFI itself, or as the

benefit that the borrower can garner for herself by overusing the asset just prior to defaulting

at t (with subsequent liquidation by the lender yielding a residual benefit of (1− t)z(k) to the

lender).

The default payoff however need not necessarily involve physical liquidation of assets, and

can be interpreted more broadly.9 For instance, one can assume that if the borrower wants

to default, she can hide the return F (k) from the lender. In order to do this however, the

borrower needs to incur a cost which is some fraction 1 − γ of the actual output F (k). Given

this interpretation, the default payoff to the borrower can then be written as γF (k)(1− t).10

Another possible interpretation is that, following a default, the MFI imposes some one-shot

penalty on the borrower, say p > 0. Such one shot penalties arise quite naturally, for example,

in case the MFI’s punishment strategies involve some form of social shaming. The borrower

however continues to use the project technology without any further loss of efficiency, so that

the default payoff is given by F (k)(1−t)−p.11 Default may also lead to denial of future loans, or

a defaulting borrower’s credit history being wiped out. While such additional penalties would

make default less attractive, and some implications of allowing for such default payoffs are

8There is also a large literature on ex ante moral hazard, e.g. Banerjee et al (1994), Bond and Rai (2009),
Conning (1999), Ghatak and Guinnane (1999), and Stiglitz (1990), as well as adverse selection in micro-finance,
e.g. Aghion and Gollier (2000), Ghatak (1999, 2000), Laffont and N’Guessan (2000), Laffont and Rey (2003),
Sadoulet (2000), Rai and Sjostorm (2004), van Tassel (1999), and Varian (1990).

9We are thankful to two referees who suggested these alternative interpretations.
10A default payoff of γF (k)(1 − t) can also arise in case the default penalty leads to some loss of efficiency,

though not physical liquidation of the assets. Such loss of efficiency can arise in case (a) default leads to some
loss of social capital following some form of public shaming, for example, public disclosure of such default, and
(b) the project payoff is itself dependent on social capital.

11While this interpretation fits less obviously into the present framework, we shall later discuss the implications
of adopting this alternative formulation of the default function under individual lending.
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analyzed in Fischer and Ghatak (2010, 2011), a full analysis is beyond the scope of this paper.

In the rest of the paper, we thus use liquidation as a portmanteau term that allows for all the

different interpretations that can be represented via the default function b(k)(1− t).

3.1 Individual Lending

The case of individual lending forms a benchmark for the later analysis. This is also of indepen-

dent interest since, as discussed in the introduction, some MFIs are either moving away from

group loans, or do not impose any form of joint liability even though the loans may involve a

group structure (ASA, for example, has some group loans without group guarantees, see, ASA

(2008)).

We visualize the following scenario: at t = 0, the MFI enters into a contract with a borrower

that specifies the amount borrowed k, and a payment scheme y(t, k), t ∈ [0, 1], where y(t, k)

is the instantaneous non-negative payment at date t. Let Y (t, k) =
∫ t

0 y(τ, k)dτ denote the

aggregate payment that the borrower makes in the time interval [0, t]. Throughout, we assume

that borrowers are protected by limited liability so that at each date t, the maximum payment

that can be made to the lender is no more than the aggregate returns that accrue till date t,

i.e. Y (t, k) ≤ tF (k) for every t. If the borrower accepts the contract, she immediately invests k

in the project and has to make payments according to the repayment schedule. If the borrower

fails to meet her payment obligations at any date t, the project is liquidated.

A repayment schedule y(t, k) is said to satisfy the no default (ND) condition if, for every

t ∈ [0, 1],

F (k)(1− t)−
∫ 1

t
y(τ, k)dτ ≥ b(k)(1− t). (1)

Given k, and y(t, k) for which the ND condition holds, the aggregate repayment received by the

lender is given by
∫ 1

0 y(t, k)dt.

For any r, we say that a lending scheme < k, y(t, k) > is said to be r-feasible if it satisfies

the ND condition and ∫ 1

0
y(t, k)dt = k(1 + r). (2)

Note that if r ≥ c, then equation (2) also ensures that the MFI makes non-negative profits on

its loans.

Our plan in this section, as well as the following one, is to characterize the set of r-feasible

project sizes k, taking the interest rate r as given. In Sections 5-6, we then specify an objective

function for the MFI and explicitly solve for the MFI’s optimization problem.

We next define a simple class of contracts, where the loan amount is repaid in the shortest

possible time.

Definition 1. An immediate and frequent repayment scheme (henceforth IFR) corresponding

to a project size k and an interest rate r is defined as

y(t, k) =

{
F (k), if 0 < t ≤ (1+r)k

F (k) ,

0, otherwise.
(3)

Our next result, Lemma 1, is analytically extremely convenient as it shows that, in the

presence of risk neutrality and in the absence of discounting, one can, without loss of generality,

restrict attention to such IFR contracts.

8



Lemma 1. Under an individual lending arrangement, if a lending scheme < k, y(t, k) > is

r-feasible, then the IFR scheme corresponding to the project size k is also r-feasible.

Proof. We first observe that since the scheme < k, y(t, k) > is r-feasible, it must satisfy the

ND condition at t = 0. But at t = 0, the ND condition for any scheme is given simply by

F (k)− k(1 + r) ≥ b(k). (4)

Next we consider the IFR scheme given k and r. Under this scheme, the entire loan is repaid

by t̃, where t̃ = k(1+r)
F (k) . Consider t < t̃. Since, at any such date

∫ 1
t y(τ, k)dτ = k(1 + r)−F (k)t,

the ND constraint under an IFR can be re-written, using equation (1), as

F (k)− k(1 + r) ≥ b(k)(1− t). (5)

Clearly, under an IFR, the default incentives are decreasing over time. Thus, the ND constraints

are satisfied for all t, if and only if the ND constraint at t = 0, i.e. F (k) − k(1 + r) ≥ b(k), is

satisfied, which is true given (4).

The intuition as to why one can restrict attention to IFR schemes is simple. With a frequent

repayment scheme, the installments are staggered, so that the amount to be repaid does not

become very large at any one point, in particular as the project nears completion. While default

incentives are largest at the very start of the project, i.e. at t = 0, at this point continuation

payoffs are also correspondingly higher. With any other repayment scheme, given that income

accrues dynamically, time has to pass before the MFI can ask for repayment. At such an

instant, however, the borrower has potentially less to gain from continuing with the project, so

that default becomes more attractive.

We observe that Lemma 1 is consistent with Field et al (2010). It is also in line with Kurosaki

and Khan (2009), who find that while, in Pakistan, several group-lending schemes failed in the

late 1990s, there was a drastic decrease in default rates from early 2005, when contract designs

were changed and involved more frequent repayment installments (and improved enforcement

of contingent renewal).

For any k which is r-feasible, let the payoff of a borrower be denoted π(k, r) = F (k) −
k(1 + r). Further, given r ≥ 0, let k0(r) > 0 solve π(k0(r), r) = 0. Given our assumption that

limk→∞ F
′(k) < 1, for any r ≥ 0, k0(r) is uniquely defined. Moreover, π(k, r) > 0, if and only

if k < k0(r).

We now introduce a notion that plays an important role in the development of our results.

Definition 2. For any (k, r), with π(k, r) > 0, define the average net default incentive,

φ(k, r) =
b(k)− π(k, r)

π(k, r)
=

b(k)

π(k, r)
− 1. (6)

Note that b(k) − π(k, r) represents the net gain from defaulting at t = 0. Thus φ(k, r)

measures the net default incentive as a proportion of the net return, π(k, r) at t = 0. Clearly

if the average net default incentive φ(k, r) is positive, a borrower with loan size k will strictly

prefer to default at t = 0 and thus a loan of size of k that promises the MFI an aggregate

repayment of k(1 + r) cannot be sustained.
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In Appendix A we prove Lemma 2 which shows that for any k1, k2, such that 0 < k2 < k1 <

k0(r), we have φ(k2, r) < φ(k1, r). Given Lemma 2, it follows that if a project of size k > 0

is r-feasible, then a project of size k′ < k is also r-feasible. The following proposition fully

characterizes the set of project sizes that are r-feasible under individual lending.

Let kI(r) > 0 satisfy

φ(kI(r), r) = 0.

Note that φ(k, r) → ∞ as k → k0(r). Since φ(k, r) is an increasing function of k (Lemma

2), kI(r) > 0 exists if and only if limk→0 φ(k, r) < 0.12 Furthermore, Lemma 2 also ensures that

kI(r) is uniquely defined.

Proposition 1. A project of positive size k is r-feasible if and only k is not too large, i.e.

0 < k ≤ kI(r).

Proof. Now at t = 0, under an IFR, the ND constraint is satisfied if and only if k ≤ kI(r).
Since the net default payoff from the IFR contract is decreasing in time (see the proof of Lemma

1), it then follows that for a project size k to be r-feasible, it must be the case that k ≤ kI(r).

Proposition 1 thus shows that given r, kI(r) is the maximum project size that is r-feasible.

Remark 1. A.1(ii) plays an important role in Proposition 1 as it ensures that φ(k, r) is an

increasing function of k. This, in turn, ensures that the set of r-feasible project choices k is a

convex set, namely the interval [0, kI(r)]. In the absence of A.1(ii), kI(r) needs to be defined as

the supremum of all k such that φ(kI(r), r) = 0. Moreover, in such a case, it will not be true

that if k is r-feasible, then any k′ < k is also r-feasible.

Remark 2. It might be of interest to note that in this set up, an IFR scheme does strictly

better than an one shot repayment scheme in which the borrower repays the loan in a single

installment. To see this, let kIOSR(r) be the supremum of project sizes that is feasible under a

one shot contract. Let tOSR be the date the repayment is made when the project size is kIOSR(r).

Since the borrower prefers not to default at tOSR, we have (1− tOSR)b(kIOSR) + tOSRF (kIOSR) ≤
π(kIOSR, r). By A.1(i), we have F (kIOSR) > b(kIOSR) and thus π(kIOSR, r) > b(kIOSR). This gives

us φ(kIOSR, r) < 0 = φ(kI(r), r). From Lemma 2, we then have kIOSR < kI(r).

Remark 3. It is easy to extend the present formulation to allow for any possible dynamic

incentive considerations that may arise if, in case of default, a borrower is denied loans in

the future. Letting V denote the utility loss to the borrower arising out of this possibility, it is

straightforward to see that the no default condition in such a case can be written as b(k, r)−V ≤
π(k, r) and the maximum project size k will then satisfy φ(k, r) = V

π(k,r) . As is clear, the presence

of such considerations will reduce the net benefit of default and will allow larger project sizes to

be r-feasible.

Remark 4. How does kI(r) compare with the efficient project size k∗(c)? It is easy to check that

a necessary and sufficient condition for kI(r) to be strictly less than k∗(c) is that φ(k∗(c), r) > 0.

This condition is likely to hold, (a) higher the value of b(k), (b) lower the value of π(k, r) and

(c) higher the interest rate r (thus if φ(k∗(c), 0) > 0 then kI(r) < k∗(c) for all r).

12If F ′(0) is finite, then limk→0 φ(k, r) < 0 iff b′(0) < F ′(0) − 1 − r, and when F ′(0) is infinite, the condition

is limk→0
b′(k)
F ′(k) < 1.
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Proposition 1 essentially establishes two properties of feasible repayment schedules, namely

that they involve (a) immediate and frequent repayment, as well as (b) front-loaded repayments.

At this point it may be in order to examine how these two results hold up under alternative

model specifications. We shall argue that while the property that feasible repayment schemes

are front-loaded is qualified, the property that they involve immediate and frequent repayment

goes through.

First, consider a scenario where the borrowers have strictly concave utility functions or have

positive time discount factors. Under such a scenario, an IFR scheme, in general, will fail to be

optimal. This is because alternative repayment schemes that shift some of the repayments to

later instants (while keeping aggregate repayment unchanged) will be preferred by a borrower

with diminishing marginal utility of income or who discounts the future. However, even in such

a scenario, an optimal scheme must necessarily be characterized by ‘gradual’ repayments in that

payments are made ‘a little at a time’ (Jain and Mansuri, 2003).

Next we consider the alternative default payoff function discussed earlier, where in case of

default, there is a one shot penalty of p > 0, but the borrower can continue her project without

loss of efficiency. Under this specification, it is possible to show that the incentive to default

is decreasing over time, so that it is sufficient to consider default incentives at t = 0. This

gives the result that a project size of k can be sustained if and only if p ≥ k(1 + r), so that an

analogue of Proposition 1 will hold.

Proposition 1 tells us that if at r = c, kI(c) < k∗(c), then the efficient project size of k∗(c) is

not feasible under individual lending even when the lender makes zero profit. Strategic default

considerations thus have serious efficiency implications. It is then natural to ask whether group

contracts allows us to implement more ‘efficient’ project sizes. To this, we now turn.

4 Group Lending and Social Capital

We will consider group lending in the presence of dynamic joint liability. Under dynamic

joint liability, the entire group is held responsible (and penalized) in case of default: first, if

some borrowers default, then all existing projects are necessarily dissolved, and second, group

members who are yet to receive their loans are denied any future loans.13

One important objective in examining group lending is to study the complex role played

by social capital in ensuring repayment (Aghion and Morduch, 2005, pp. 123-125). Given that

the empirical findings in this respect are quite mixed (as discussed earlier in Section 2.3), we

seek to understand the trade-offs involved here. Without being too formal about it, let social

capital capture the strength of the social ties present among the borrowers.14 We take the

viewpoint that while such social ties may help sustain sanctions against defaulting borrowers,15

thus improving incentives for repayment, it can also encourage default in case close social ties

in small village communities make social sanctions difficult to impose.

We begin by considering the positive aspects of social capital, namely the fact that a de-

13We shall later argue that while such a strict form of joint liability is convenient for expositional reasons, all
our results hold even with a much weaker form of liability regime.

14Townsend (1994), Udry (1990) and Fafchamps and Lund (2003), among others, discuss various aspects of
mutual insurance, risk pooling, gift giving and receiving, etc.

15Such social sanctions may involve exclusion from inputs, trade credit, social and religious events, day-to-day
courtesies, communal assets, informal insurance networks, etc. See de Quidt et al (2012) for a discussion of
possible alternative formulations of social capital.
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faulting member may be sanctioned by other members of the group. In the present paper such

sanctions however, are assumed to be only imposed by those borrowers who are adversely af-

fected following the default decision. These include borrowers who are yet to obtain a loan, and

may also include borrowers who have obtained a loan, but have already repaid substantially, so

that they would prefer not to default. We assume that each such affected member can invoke

a penalty of f on each of the deviating borrowers.

While we follow Besley and Coate (1993), among others, in imposing such social sanctions

exogenously, the present formulation can perhaps be best interpreted as a reduced form ap-

proximation of a model where such penalties are imposed as part of optimal threat strategies.

Such an interpretation makes sense in a scenario where, for example, social penalties involve

exclusion from scarce community assets. In such cases social sanctions may involve no loss of

efficiency, and would be easier to sustain as an equilibrium outcome. Sustaining such sanctions,

however is much harder in situations where such sanctions are efficiency reducing, e.g. if it

involves exclusion from mutual insurance networks. In such scenarios, one then needs to appeal

to social preferences, in particular the presence of altruistic punishers (see, among others, Fehr

and Schmidt (1999), Gintis et al. (2005), and the references therein) to sustain such sanctions.

We next discuss the negative aspects of social capital, i.e. the fact that “borrowers in a

group-lending arrangement may collude against the bank and undermine the bank’s ability to

harness social collateral” (Aghion and Morduch, 2005, pp. 125). In a micro-finance context

where borrowers communicate with one another, it seems natural to allow for some collusion.16

We argue that the observed differences in the impact of social capital on repayment performance

can be traced to differences in the extent of collusion. We thus examine two scenarios with

different degrees of collusion among the borrowers, limited and complete.

As discussed earlier, in the first scenario, borrowers cannot make transfers to each other and

collusion thus simply involves not invoking the social sanction whenever all borrowers benefit

from a coordinated default. Under complete collusion, we however allow borrowers to make

such transfers among one another. Following Ghatak (2000), one can appeal to non-pecuniary

forms of transfers, e.g. providing free labor services and the use of agricultural implements, to

justify such side transfers. Furthermore, collusion is formalized very simply in that the group

maximizes the aggregate payoff and thus decisions are made keeping the interest of the group

in mind. Clearly, in case of complete collusion, social sanctions will never be imposed in case

of default.17

While the diversity of the results in the empirical literature on social capital suggests that

both of these scenarios are possible, the issue of when is collusion likely to be complete, i.e.

whether side transfers are feasible, is a complex one. A more detailed analysis of this issue is,

however, beyond the scope of the present paper.

4.1 Two Stage Lending Schemes

For the analysis in this section, we shall take the group size n to be exogenously given. In what

follows, we first study two stage group contracts in the presence of dynamic joint liability.

16One extreme example of such borrower collusion is from India where a woman defrauded MFIs to the tune
of five hundred thousand rupees by setting up groups with the sole objective of appropriating the loan amount
(Srinivasan, 2009).

17In the Grameen, for example, there seems to be some effort at fostering a group identity. At least
three of the resolutions (12, 13 and 14), emphasize group payoff and joint welfare maximization. Source:
http://www.grameen-info.org, accessed May 7, 2009.
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In two-stage group lending arrangements, the set of borrowers are divided into two groups,

1 and 2. The first group of borrowers, (n−m) in size, receives a loan of k each at t1 = 0, while

the remaining m borrowers receive k each at some later date t2 > 0.

Let yi(ti + τ, k), τ ∈ [0, 1], denote a repayment schedule faced by a borrower in group i, i =

1, 2, receiving her loan k at date ti. We represent such a scheme by < n,m, t2, k, yi(tiτ, k) >.

As before, we assume that there is limited liability on part of the borrowers so that the

repayment obligations at any date can not exceed the aggregate returns generated till that date.

We will further assume that the lender gets the same payoff from each individual loan, thus

ruling out cross-subsidization by the lender. Finally, we assume that yi(ti + τ, k) ≥ 0, i = 1, 2

for all τ ∈ [0, 1].

4.2 Two Stage Lending Schemes without Side Payments

In this sub-section we examine a scenario where side transfers are not possible, so that only

‘limited collusion’ can be sustained.

Fix any two stage lending scheme with repayment obligations given by yi(ti+τ, k). Let P i(t)

denote the continuation payoff to a borrower in group i at time t, assuming that no member of

the group ever defaults on her loan. Similarly, given a default at t, let Di(t) denote the default

payoff of a borrower in group i at t, gross of social sanctions. Since default by any member

leads to the liquidation of all existing projects, as well as denial of future loans, it follows that

Di(t) depends only on t and not on either the number, or the identity of those who default.

A borrower is said to be active at t, if he is yet to complete his project at that date. We

assume that social sanctions at any date t are imposed only by the members that are active

at that date. Let L(t) denote the set of active borrower at t for whom P i(t) ≥ Di(t). The

members of L(t) are those who are adversely affected if default were to take place at t. Our

assumption of limited collusion simply requires that a defaulting member be sanctioned only

by the members of L(t), i.e. by those who are adversely affected because of a default. Let l(t)

denote the size of L(t) and f > 0 denote the social sanction that can be imposed on a defaulting

borrower.18

A two stage lending scheme < n,m, t2, k, yi(ti + τ, k) > satisfies the no default condition if,

for all t ∈ [0, 1 + t2], and for an active borrower in group i, i = 1, 2,

Di(t) > P i(t) implies that Di(t)− l(t)f ≤ P i(t). (7)

We should note that if Di(t) ≤ P i(t), then a borrower in group i will prefer not to de-

fault even if no social sanctions are imposed on her and thus the no default condition will be

automatically satisfied for such a borrower.

We say that a two-stage group arrangement with project size k is r-feasible if there exists a

repayment scheme < yi(ti + τ, k) > such that

• the no default condition in (7) is satisfied for all borrowers in group i = 1, 2, and

• for each borrower, the lender receives a payoff of k(1 + r).

18In an earlier version of the paper, L(t) was defined as those set of borrowers who are strictly worse off because
of a default decision. While the qualitative results under these two different assumptions are virtually identical,
under the present formulation, the set of feasible projects will shown to be a closed set. This, in turn, ensures
the existence of the optimal contracts studied in Section 5.
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Given r ≥ c, the last condition ensures that the MFI breaks even.

Remark 5. Consider a group lending scheme with simultaneous lending, so that group members

are all provided a loan amount k at t1 = 0. If k > kI(r), then b(k) > π(k, r) and thus all

borrowers will be better off defaulting on their loans and not invoking the social sanctions.

Simultaneous group lending thus can not improve upon individual lending. For group lending to

do better, lending then has to be sequential so that t2 > 0.

To characterize the set of project sizes k that are r-feasible under such a two stage arrange-

ment, we begin by describing the immediate and frequent repayment (IFR) pertaining to each

group. For any borrower i who receives a loan of size k at date ti, this is given by

yi(ti + τ, k) =

{
F (k), if 0 < τ ≤ k(1+r)

F (k) ,

0, otherwise.
(8)

In Appendix B, we state and prove Lemma 3 that shows that in search of a feasible scheme,

it is sufficient to restrict attention to IFR schemes. Thus Lemma 3, together with Remark

5, establishes that a combination of sequential lending with IFR is the interesting class of

institutions to examine.

Let kL(r) satisfy

φ(kL(r), r) = 1.

If kI(r) > 0, then it follows that kL(r) is uniquely defined (this is because of Lemma 2 and

the fact that as k increases to k0(r) > 0, where recall that π(k0(r), r) = 0, φ(k0(r), r) goes to

infinity.) Furthermore, kL(r) > kI(r).

We now show that a necessary condition for a project size k to be r-feasible, is that k can

not be more than kL(r).

First, note that in an IFR scheme, the default payoff for each borrower is decreasing in time.

Thus, for the feasibility of such a scheme, it is sufficient to check the default incentives of the

borrowers at exactly three dates: t = {0, t2, 1}.
Now at t = 0, if there is a default, this will adversely affect the remaining m members as

they would be denied any future loan. These borrowers will thus impose a penalty f on any

defaulting members. Thus, the maximum payoff that a defaulting member gets at t = 0 is

b(k) −mf . The continuation payoff for a borrower, however, is π(k, r). Thus, the no default

condition at t = 0 is

b(k)−mf ≤ π(k, r). (9)

Now consider the date t2 at which the remaining m borrowers receive their loans. Since

k > kI(r), for the second group of members not to default, the first group of borrowers must

impose the social sanction. Thus, as in (9), we must also have

b(k)− (n−m)f ≤ π(k, r). (10)

Now for group 2 borrowers to be sanctioned by the first group, default at t2 must adversely

affect the borrowers in that group. Since the continuation payoff of the first group of borrowers

at any date is at most π(k, r), it follows that at t2, for group 1 members to impose the sanction,

a necessary condition is

b(k)(1− t2) ≤ π(k, r). (11)

14



Finally, at t = 1, since the first group of borrowers would have completed their projects, no

further sanctions will be forthcoming from this group. Thus, at t = 1, the no default condition

for a borrower in the second group is simply

b(k)t2 ≤ π(k, r). (12)

Adding equations (11) and (12), one obtains b(k) ≤ 2π(k, r) as a necessary condition for k

to be r-feasible. This is equivalent to φ(k, r) ≤ 1, i.e. k ≤ kL(r), thus establishing the claim.

It may be of interest to observe that kL(r) is independent of the magnitude of either f , or n.

Thus, no matter how large either f or n is, project size larger than kL(r) can not be r-feasible.

The next proposition establishes sufficient conditions on f and n for which project size kL(r)

is in fact r-feasible.

Proposition 2. Assume that b(kL(r))−π(kL(r), r) ≤ nf
2 .19 Then, under limited collusion and

a two stage sequential lending scheme, a project of size k is r-feasible if and only if k ≤ kL(r).

Before we turn to proving this result, a couple of remarks might be useful.

Remark 6. Since for any f > 0 (no matter how small), it is always possible to choose n large

enough such that the condition in Proposition 2 is satisfied, it follows that the conclusion of

Proposition 2 holds as long as the choice of n is unrestricted for the MFI.

Remark 7. It is of interest to examine the maximum r-feasible project size when nf is small,

so that b(kL(r))− π(kL(r), r) > nf
2 . It is straightforward to argue that the maximum r-feasible

project size in that case is given by the maximum k̂ for which b(k̂)− π(k̂, r) = nf
2 .

Proof of Proposition 2. Necessity is already proved.

To prove sufficiency, recall that nf
2 ≥ [b(kL(r))− π(kL(r), r)]. Consider any k > 0 such that

φ(k, r) ≤ 1. We will show that there exists a two stage procedure under which k is r-feasible.

The interesting case to consider is when k > kI(r), since for k ≤ kI(r), we can always choose a

trivial two-stage group where all borrowers obtain their loans at the same time.

Let t2 ∈ (0, 1) satisfy

t2b(k) = π(k, r). (13)

Since k > kI(r), it follows that b(k) > π(k, r) and thus equation (13) has a unique solution

t2 ∈ (0, 1).

Consider now a two stage procedure in which half of the n borrowers receive their loan at

t = 0, while the remaining borrowers receive their loan at t2. Every borrower has a repayment

obligation given by the IFR corresponding to (k, r).

Since nf
2 ≥ [b(kL(r)) − π(kL(r), r)], and b(k) − π(k, r) is increasing in k, it follows that at

k ≤ kL(r), equations (9) and (10) will both be satisfied as long as a defaulting member faces a

sanction of nf
2 .

Now, in the event of any default at t = 0, sanctions will be imposed by the members who

are yet to get get their loan as they will be adversely affected. Given (9), none of the borrowers

receiving their loans at t = 0 is thus going to default.

19Strictly speaking, this condition assumes that n is even. When n is odd, Proposition 2 holds whenever
b(k)− π(k, r) ≤ (n−1)f

2
. In the sufficiency part, we then take the two sub-groups to be of size n− 1, and n+ 1.
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Next consider t = t2. We show that default at this date by any member in the second group

must adversely affect all members in the first group who obtained their loan at t = 0.

Two cases need to be considered:

Case (i). t2 ≥ k(1+r)
F (k) : In this case, at t2, the first set of borrowers would have already repaid

their loans, and therefore, their continuation payoff at this date equals F (k)(1 − t2), which is

strictly greater than b(k)(1− t2).

Case (ii). t2 < k(1+r)
F (k) : In this case, the continuation no default payoff to any such borrower

at t2 is exactly π(k, r). Now the default payoff at t2 equals b(k)(1− t2) which, by equation (13),

equals b(k) − π(k, r). Since φ(k, r) = b(k)
π(k,r) − 1 ≤ 1, it follows that b(k) − π(k, r) ≤ π(k, r).

Thus, default at t2 will adversely affect the first set of borrowers.

Thus in either case a default by any member of the second group adversely affects all

members in the first group, and a defaulting borrower at this date will attract a social penalty

of f from all n/2 borrowers in the first group. Thus, a group 2 member will not default at t2.

Finally, consider t = 1. If at this date, the second group has already repaid their loans, then

their continuation payoff is F (k)t2, which is strictly greater than b(k)t2. On the other hand,

if at t = 1, the second set of borrowers are yet to pay back their loans, the continuation no

default payoff to a borrower in this group is then exactly π(k, r) while by defaulting she will

get b(k)t2. Using equation (13), it then follows that a borrower can not be strictly better off by

defaulting.

Remark 8. As in the individual lending scheme, a sequential joint liability scheme does strictly

better when coupled with IFR, rather than with an one shot repayment scheme. To see this, let

km be the maximum project size that is feasible with one shot repayment under limited collusion.

Let tm be the date at which the second group of borrowers obtain their loans. First note that

tm ≤ 1
2 . Otherwise, with tm > 1/2, at the time, when the second group of borrowers have to

pay back, the first group of borrowers would have completed their projects by then, and hence

default by the second group of borrowers will not attract any social sanction. Thus for any

k > kIOSR(r), borrowers in the second group will default. Now with tm ≤ 1
2 , and the fact that

tmF (km) ≥ km(1 + r), we have F (km)
km(1+r) ≥ 2. Now, φ(kL(r), r) = 1 implies that b(kL(r))

π(kL(r),r)
= 2.

Since b(k) < F (k), we thus have F (kL(r))
kL(r)(1+r)

< 2 ≤ F (km)
km(1+r) . Because of strict concavity of F (k),

it then follows that the km must be strictly less than kL(r).

We end this section with a brief discussion of the role played by some of the assumptions

made earlier in Proposition 2, namely that repayments are non-negative, that cross-subsidizing

is not allowed and that dynamic joint liability holds.

In case negative repayments are possible (so that the MFI may pay the borrower), one can

show that any project size that yields a strictly positive payoff to a borrower is feasible using

schemes in which every borrower pays the MFI an amount F (k) at every instant the project is

active. When all borrowers have completed their projects, the MFI then returns the amount

F (k) − k(1 + r) to each of the borrowers (the proof is available on request). Such a scheme

however is problematic on several counts, e.g. since it requires the MFI to credibly commit to

returning the amount due to the borrowers. Such schemes would also be ruled out in case there

is free entry by the MFIs. This is because such schemes would require higher repayments by

the borrowers at some point of time. But at such points they may be lured away by competing

MFIs, causing such schemes to unravel.
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Proposition 2 also depends on the assumption that the lender is not allowed to cross-

subsidize. Otherwise one can sustain a project size k > kL, where both the borrowers obtain

their loan simultaneously, but are required to repay different amounts. Then the borrower with

the smaller repayment obligation may have little incentive to default herself and will therefore

impose the social sanction in case of default by the other borrower. Now if the social sanction f

is large, then this threat will ensure that the other borrower does not default either. Of course,

since such schemes treat borrowers asymmetrically, such contracts might be unacceptable to

the borrowers. Further, in the presence of free entry by MFIs, such schemes would unravel as

the borrowers with higher repayment obligations may be lured away by other MFIs.

Finally, note that in our framework, there is dynamic joint liability so that once any group

member defaults, all projects are dissolved. Such a scheme would then be ex post inefficient

if default were to take place in equilibrium. However, given the current set up (with no uncer-

tainties in production), no borrower defaults along an equilibrium and therefore, the outcome

is efficient ex ante, as well as ex post.

More importantly however, it can be shown that weaker forms of dynamic joint liability

suffices for our analysis. Consider default at time t by some borrower j, leading to borrower

j’s project being liquidated. Consider now a non-defaulting borrower. For such a borrower,

assume instead a weaker form of joint liability under which such a borrower is allowed to

continue with her project, but is subject to some penalty, e.g. that arising out of static joint

liability (whereby non-defaulters are supposed to repay for the defaulters also). As long as the

resultant continuation payoff is assumed to be less than the continuation payoff of this borrower

in case there was no default, such a borrower will impose the social sanction on the defaulting

borrower and Proposition 2 will continue to hold.

4.3 Two Stage Group Lending Schemes with Side Payments

We next study group lending schemes under ‘complete collusion’ that allows for side transfers

among borrowers. We model this situation simply, by taking the group as a single entity that

decides on its default decision, so as to maximize the aggregate group payoff.

The possibility of such side transfers have two opposing effects on the repayment incentives.

On one hand, since the group acts as a single entity, it follows that social sanctions will never

be invoked in this case. This effect, which is in line with Aghion and Morduch (2005, pp. 125),

tends to increase default incentives. On the other hand, if the group decides to default early, it

takes into account the possible loss such default will inflict on the members who will be denied

loans in the future. This effect will then dampen default incentives of the group. Interestingly,

however, we show that when n is large such that the condition in Proposition 2 holds, the first

effect always dominates and the maximum loan size that is feasible under complete collusion, is

strictly less than kL(r). Even in this case, however, group lending schemes allow one to sustain

higher loan sizes compared to that under individual lending.

As earlier, we denote a two-stage scheme by< n,m, t2, k, yi(ti+τ, k) > in which yi(ti+τ, k) ≥
0 for τ ∈ [0, 1] and i = 1, 2. Since side transfers are possible, to check for default incentives at

any time t, one needs to compare the aggregate default payoff of the group and compare it with

the non-default continuation payoff for the entire group. Since the social sanction will never be

imposed by the group, the magnitude of f does not have any effect on the repayment behavior

of the group.

Given < n,m, t2, k, yi(ti + τ, k) >, let PG(t) denote the aggregate continuation payoff of the
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group assuming the group never defaults on its repayment obligations and DG(t) denote the

group’s aggregate default payoff at t.

A two-stage group arrangement < n,m, t2, k, yi(ti + τ, k) > is said to be r-feasible if for all

t ∈ [0, 1 + t2],

• PG(t) ≥ DG(t), and

•
∫ 1
τ=0 y

i(ti + τ, k)dτ = k(1 + r) for i = 1, 2.

In such a case, we say that a project size k is r-feasible under a two stage procedure with

side transfers.

As in Lemma 3, it can be shown that in our search for an optimal two stage group lending

arrangement, it is sufficient to restrict attention to IFR schemes.20

Given such a two stage scheme, to check for the no default conditions for the group, consider

t = 0, when the first group of borrowers, numbering n−m, receive their loans. If they default,

the group will have an aggregate payoff of (n −m)b(k) and thus the group will not default at

t = 0 if

(n−m)b(k) ≤ nπ(k, r). (14)

Consider now the date t2 at which the remaining m borrowers receive their loans. Now if the

group plans to default at this date, the net payoff is given by (n−m)b(k)(1−t2)+mb(k), whereas

the maximal possible continuation payoff at t2 in case of no default is nπ(k, r). A necessary

condition for default to be unprofitable at t2 is then (n − m)b(k)(1 − t2) + mb(k) ≤ nπ(k, r)

which can be re-written as

nb(k)− t2(n−m)b(k) ≤ nπ(k, r). (15)

Dividing both sides of the preceding inequality by nπ(k, r) and recalling that φ(k, r) =
b(k)
π(k,r) − 1, we find, after rearranging terms that φ(k, r) ≤ t2(n−m)b(k)

nπ(k,r) . Whereas from (14) it

follows that (n−m)b(k)
nπ(k,r) ≤ 1. Combining the preceding two inequalities, it then follows that

φ(k, r) ≤ t2(n−m)b(k)

nπ(k, r)
≤ t2. (16)

Finally, at t = 1, the default payoff is mb(k)t2, while the maximum continuation payoff for

these m borrowers is at most mπ(k, r). For default to be non-profitable at date t = 1, it is

therefore necessary that

t2 ≤ π(k, r)

b(k)
. (17)

Equations (16) and (17) thus imply that for feasibility of a scheme, t2 should neither be

too late (otherwise default incentives at t = 1 are too large), nor too early (otherwise default

incentives at t = t2 are too large).

We now provide a set of necessary conditions for a project size k to be r-feasible.

Let k1(r) and k2(r) satisfy

φ(k1(r), r) =
π(k1(r), r)

b(k1(r))
; and φ(k2(r), r) =

k2(r)(1 + r)

F (k2(r))
,

20The proof is available upon request.
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respectively. In Lemma 4 (Appendix C), we show that (a) k ≤ k1(r) if and only if φ(k, r) ≤
φ(k,r)
b(k) , and (b) k ≤ k2(r) if and only if φ(k, r) ≤ k(1+r)

F (k) . Given Lemma 4, it then follows that

k1(r) and k2(r) are well defined. Further, Lemma 4 also establishes that kC(r), defined as

solving

kC(r) = min{k1(r), k2(r)},

is well defined and satisfy φ(k, r) ≤ min{π(k,r)
b(k) ,

k(1+r)
F (k) } if and only if k ≤ kC(r).

Proposition 3 below shows that for any n, if a project of size k is r-feasible, then k ≤ kC(r).

The converse, however, does not necessarily hold. The difficulty arises because with n being

a fixed integer and φ(k, r) taking values in a continuum, it may not be possible to satisfy the

default constraints at all the dates using only finitely many group compositions.21 On the other

hand, if the choice of n was unrestricted, one can prove

Proposition 3. (a) [Necessity.] If a project of size k is r-feasible, then the project size k

cannot be too large, i.e. k ≤ kC(r).

(b) [Sufficiency.] If for a project of size k it is the case that k < kC(r),22 then there exists

a group size n and a group lending arrangement < n,m, t2 > with immediate and frequent

repayment for which a project of size k is r-feasible.

Proof. Please see Appendix D.

Remark 9. Interestingly, for the complete collusion case, it is not necessarily the case that for

every parameter configuration, the maximum r-feasible project size using a one shot repayment

i strictly less than kC(r). Consider for example, F (k) = 2
√
k, b(k) = 3F (k)

4 . Then at r = 0, it

is possible to check that kC(0) solves φ(k, 0) = k
F (k) and equals k = 1. The project size of k = 1,

however, is feasible using a one shot repayment scheme and a two stage arrangement in which

n = 3, m = 1 and t2 = 1
2 .

We now use Propositions 1, 2 and 3, to compare the maximal loan size that can be sustained

under various lending schemes and various scenarios. Recalling that kI(r) (respectively kL(r))

is the maximum loan size that is r-feasible under individual lending (respectively two-stage

lending with limited collusion), we have

Proposition 4. kL(r) ≥ kC(r) ≥ kI(r), with both inequalities being strict whenever kI(r) > 0.

Proof. Suppose that kI(r) > 0, then kI(r) is given by φ(kI(r), r) = 0. Moreover, since

φ(kC(r), r) > 0 and φ(k, r) is increasing in k, we have kC(r) > kI(r). From the definition

of kC(r) , we have φ(kC(r), r) ≤ kC(r)(1+kC(r))
F (kC(r))

< 1 = φ(kL(r), r) and thus by Lemma 2,

kC(r) < kL(r).

One interesting implication of the fact that kC(r) < kL(r), is that if nf
2 is large enough so

that Proposition 2 holds, then larger loan sizes can be sustained under group lending in case

collusion is limited, a result that is consistent with Abbink et. al. (2006), Wydick (1999), Gine

21If one is willing to ignore the integer issue and treat n as a continuous variable, then it is easy to modify the
present proof of Proposition 3 and show that for any n, a project size k is r-feasible if and only if k ≤ kC(r).

22It might be of some interest to note that while kC(r) satisfies the necessary condition for feasibility, it is not
possible to construct a two stage feasible arrangement if φ(kC(r)) is an irrational number (see the proof of the
Proposition 3).
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and Karlan (2010) and Ahlin and Townsend (2007), who find that the extent of default increases

as cooperation among group members increase.

The intuition of this result is not straightforward as there are two countervailing forces at

work here. First, the fact that social sanctions have no bite under complete collusion, makes

loans harder to recover, the fact that default decisions take group payoffs into account, makes

loans easier to recover. Which effect should dominate? Given any f > 0, if n is large enough,

then aggregate social sanction can be made large enough to control default incentives under

limited collusion. Since social penalties have no bite in the case of complete collusion, it then

follows that a larger project size is r-feasible under limited collusion. On the other hand, if n

or f are small, then aggregate social sanctioning has a very limited role in constraining default

under limited collusion. Thus, in this case the first effect is negligible, so that a higher project

size will be feasible under the complete collusion case.

4.4 Sequential Lending and IFR: An Interactive Effect

This subsection demonstrates that a scheme involving both sequential group lending and IFR

amounts to more than the sum of its parts (i.e. IFR and sequential group lending), in the sense

that the interaction between the two generates significant synergies in terms of the maximal

r-feasible project size k.

Consider a situation where 1 + b′(0) ≥ F ′(0) and b′(0) ≥ 1. Since, ∀k, F (k) − k ≤ b(k), it

follows that F (k)− k(1 + r) ≤ b(k), i.e. kI(r) = 0. It then follows from Proposition 1 that for

every r ≥ 0, no positive positive project size is r-feasible under individual lending with IFR.

Next consider group lending with one shot repayment. Since limk→0 F
′(k) = limk→0

F (k)
k ≤ 2,

by strict concavity, F (k)
k < 2 for k > 0. Whereas by mimicking the argument in Remark 8,

it can be shown that irrespective of whether collusion is limited, or complete, for any k to be

feasible, it must be the case that F (k)
k(1+r) ≥ 2, so that F (k)

k ≥ 2. Thus no positive project size is

r-feasible under either limited or complete collusion using one shot repayment contracts.

Consider now group lending using IFR. It can be shown that even under these conditions, a

combination of these two can not only sustain a strictly positive project size, but possibly even

the efficient one (see Propositions 2 and 3 for sufficient conditions, and the example below).

Thus, there exists a broad range of parameter values for which neither IFR, nor sequential

lending can sustain any positive project size by themselves, but a combination can sustain

strictly positive amounts, thus establishing the existence of an interactive effect.

The following example illustrates. Let F (k) = 2(1 − 1
ek

), b(k) = F (k)
2 and let c = 0.23

Clearly, F ′(0) = 2, b′(0) = 1 and the efficient project size k∗(0) is given by ek
∗(0) = 2. Since

1+b′(0) = F ′(0), it follows that kI(0) = 0. Moreover, since F ′(0) = 2, it follows that F (k)/k < 2

for all k > 0. Hence, under limited collusion, and r ≥ 0, no positive project size can be sustained

when the lender uses sequential lending with one shot repayment. However, straightforward

computations show that at φ(k∗(0), 0) < 1, and thus even the efficient project size, i.e. k∗(0),

is r-feasible under limited collusion with sequential lending scheme and IFR, as long as nf
2

is large enough. We next show that for this example, under complete collusion, a strictly

positive level can be sustained when IFR and sequential lending is combined. This follows since

φ(0, 0) = b′(0)
F ′(0)−1−1 = 0 < min{ k

F (k) ,
F (k)−k
b(k) }k=0 = min{ 1

F ′(0) ,
F ′(0)−1
b′(0) } = 1

2 , so that kC(0) > 0.

23The condition c = 0 is made for ease of exposition alone. The example readily generalizes for strictly positive
c.
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Note that this interactive effect not only provides a justification for considering a framework

with both IFR and sequential group lending, further, this provides an explanation as to why,

in reality, these two schemes often go together (in particular in case of those MFIs following

the Grameen I mechanism). Moreover, this result has significant implications for empirical

analysis as it suggests that any empirical work that examines either IFR or sequential lending

in isolation, may significantly underestimate the power of sequential lending when combined

with IFR.

4.5 Multi-stage group lending schemes

So far, our analysis has focussed on the situation where the lender is restricted to use group

lending schemes with a limited number of stages, in particular schemes with two stages. While

this appears to be a reasonable assumption empirically, it is of some interest to analyze how our

results would be modified if the lender could use a group lending scheme with any number of

stages. An earlier version of this paper had a detailed analysis of this issue. For completeness,

we report the main findings here (the proofs are available on request).

First, in the case of limited collusion, we demonstrated that for any f > 0, and (k, r) such

that π(k, r) > 0, one can always choose n large enough and a group lending scheme with S

stages, S ≥ 2, in which the project size k is r-feasible, demonstrating the power of sequential

lending. The role of sequentiality is critical here, as the multi-stage nature of the scheme ensures

that by the time the penultimate group of borrowers complete their projects, the final group

of borrowers would be nearing the end of their own projects, and would have no incentive to

default. Moreover, we find that the corresponding repayment scheme need not be too protracted.

However, in an environment of complete collusion, the result is strikingly different. Indeed, we

showed that for any given (k, r), if a project size k is r-feasible, then it must be that φ(k, r) is

no more than 2.24 This result thus strengthens our intuition that complete collusion may have

serious efficiency costs, even when rather complex schemes are allowed for.

We end this section by pointing out a connection between the group liability contract under

complete collusion, and the contract under a scenario where there is only one single borrower

who can, however, undertake more than one possible project.25 Assume that there are n projects

of the type that we have considered so far. Then, using our earlier analysis, it follows that if the

MFI funds all the n projects at t = 0, then because of the incentive constraints, each project

can be funded up to at most kI(r), i.e. the maximal r-feasible level under individual lending.

The lender, however, can improve matters by financing only n−m of the projects at t = 0, and

fund the remaining m projects at some appropriate date later on, provided the borrower does

not default on any of the existing projects. It is clear that this situation is isomorphic to the

situation of group lending with complete collusion and thus from Proposition 3, such staggered

financing will enable larger k to be r-feasible for each of these projects.

24The exact statements and the proofs of these assertions are available upon request.
25We thank the editor of this journal and one of the reviewers for bringing this point to our attention.

21



5 Endogenous choice of r, k, the number of borrowers, group

composition, and lending schemes

In this section, we endogenously solve for several variables of interest, including the decision

regarding whether to opt for individual, or group lending. We therefore consider a scenario

where, under individual lending, the MFI decides on (i) the common loan size k for each of the

borrowers, (iii) the common rate of interest r on each loan, and (iii) N , the number of borrowers

that it wants to lend to. Further, in case of a group lending arrangement, the lender also has

to decide on the number of groups, say m, as well as the size of each group, call it n, so that

the total number of borrowers lent to, M = mn.26

The objective behind developing this framework is to then use it to analyze several questions

of interest and possible policy relevance in the next section. To keep the analysis tractable and

simple, when considering the group lending regime, we will only consider a scenario with limited

collusion. The task of characterizing the optimal contract in the case of complete collusion turns

out to be significantly more complicated. And, although, it can be shown27 that the optimal

project size is strictly greater than that obtained under individual lending, the comparative

statics results are not easy to get.

Turning to the payoff function of the MFI, we allow for the possibility that the MFI is socially

motivated, i.e. it cares for its borrowers, which is, as discussed earlier, a natural assumption

in this context. Thus the gross utility of the MFI from lending to a single borrower, denoted

W (k, r; c, β) = (r−c)k+βπ(k, r), puts some weight on the borrower’s payoff π(k, r), where this

weight is captured by β ∈ [0, 1). For β = 0, we have a profit-maximizing MFI.

We will need the following assumption.

A.2. F (k)− µb(k), is strictly concave in k, for all µ ∈ [0, 1].

Note that A.2 is satisfied whenever either b(k) is convex, or b(k) = γF (k), γ ∈ (0, 1).

For ease of exposition, we begin by fixing N under individual lending, as well as n and m

under group-lending, and then characterize the optimal choices of (k, r) under both regimes.

These results are then used to develop a framework in which one can endogenously solve for

n,m and N .

5.1 Individual lending

Consider the MFI’s optimization problem given the total number of borrowers, N . From sym-

metry, the optimization problem of the MFI simplifies to maximizing the per borrower payoff,

i.e.

max
k,r

W (k, r; c, β) = [(r − c)k + βπ(k, r)],

subject to the no default constraint

0 ≥ φ(k, r),

obtained from Proposition 1.28

26We are grateful to the Editor of this journal and to a referee who suggested that we study these questions.
27A proof is available upon request.
28Given our specification, it is possible that at the optimum, the per borrower profit of the MFI, i.e. (r − c)k,

could be negative. To ensure that the MFI makes a non-negative profit for each borrower, one can introduce an
additional constraint, namely (r− c)k ≥ 0, in the MFI’s optimization problem. This will not qualitatively affect
any of our results.
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It is easy to check that at the optimal solution, denoted (kI , rI), the no default constraint

for a borrower must bind. Otherwise φ(kI , rI) > 0, since β < 1, by increasing the interest

rate slightly the MFI can increase its overall payoff, while ensuring that the ND constraint is

satisfied. Thus given φ(kI , rI) = 0, it follows that rkI = F (kI) − kI − b(kI). Substituting this

into W (k, r; c, β), one can rewrite the per borrower payoff to the lender as

F (kI)− kI(1 + c)− (1− β)b(kI).

The choice of kI then solves29

F ′(kI)− (1− β)b′(kI) = 1 + c. (18)

Finally, rI is given from the equation that φ(kI , rI) = 0, so that

rI =
F (kI)

kI
− 1− b(kI)

kI
.

Note that (kI , rI) is independent of N . Further, relating the optimal choice (when r, k are both

endogenous) with Proposition 1, we find that kI = kI(rI), i.e. the MFI selects the maximal

rI -feasible project size.

Let WI = W (kI , rI ; c, β) denote the per borrower payoff of the MFI under the optimal

individual lending contract.

5.2 Group lending with limited collusion

Assume now that the MFI decides to lend to a group consisting of n borrowers with limited

collusion possibilities. Then, to maximize per borrower MFI payoff W (k, r; c, β), the lender will

choose (kg, rg) to maximize

W (k, r; c, β) = [(r − c)k + βπ(k, r)],

subject to the no default constraint obtained from Proposition 2, i.e.

1 ≥ φ(k, r).

We shall focus on the case where
ngf

2 ≥ b(kg) − π(kg, rg), thus ensuring that kg is r-feasible

(Remark 10 discusses the situation when this condition fails).

As before, the no default constraint binds at the optimum. Thus the choice of (kg, rg)

satisfies φ(kg, rg) = 1, which yields
b(kg)

π(kg ,rg) = 2. Using this condition, one can rewrite the per

borrower objective function of the lender as

F (kg)− kg(1 + c)− (1− β)
b(kg)

2
.

The optimal kg is then obtained from

F ′(kg)− (1− β)
b′(kg)

2
= 1 + c, (19)

29The second order condition is satisfied since for all k, F ′′(k)− (1− β)b′′(k) < 0 (from (A.2)).
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and rg can be solved using the fact that φ(kg, rg) = 1, or that

rg =
F (kg)

kg
− 1− b(kg)

2kg
.

Note that (kg, rg) do not depend on either the number of groups, or on group composition, as

long as the condition
ngf

2 ≥ b(kg)− π(kg, rg) is satisfied. Further, comparing the outcome with

Proposition 2, we find that kg = kL(rg), i.e. the MFI selects the maximal rg-feasible project

size.

Let Wg = W (kg, rg; c, β) denote the per borrower payoff of the MFI under the optimal group

lending contract with limited collusion.

Remark 10. How will our results change if
ngf

2 < b(kg)− π(kg, rg), so that Proposition 2 does

not apply? Recall from Remark 6 that in such a situation, the no default condition (ND) will

be given by π(k, r) ≥ b(k) − nf
2 . Further, the ND constraint must be binding at the optimum,

so that we have π(k, r) = b(k)− nf
2 . Using this information, the per borrower payoff to MFI in

the group lending case can be written as

F (k)− k(1 + c)− (1− β)[b(k)− nf

2
].

Since nf
2 is independent of k, it then follows immediately that the optimal k is identical to kI , the

optimal project size under individual lending. Therefore the use of a group lending arrangement

does not confer any efficiency gain. Of course, the lender’s payoff under group lending is still

higher since the presence of positive social sanctioning will allow the lender to charge a higher

interest rate. In what follows, however, we abstract from this possibility and assume that under

the group lending regime, the per borrower payoff to MFI is Wg.

5.3 Comparing project size and per borrower payoff under the two regimes

We first observe that kg > kI .
30 If not, then from equation (19), we have

0 = F ′(kg)− (1 + c)− (1− β)
b′(kg)

2
> F ′(kg)− (1 + c)− (1− β)b′(kg)

≥ F ′(kI)− (1 + c)− (1− β)b′(kI)

where the first inequality follows as b′(k) > 0, and the second inequality follows as we have

assumed that kI ≥ kg and F ′′(k) − (1 − β)b′′(k) < 0 (from A.2). This, however contradicts

equation (18).

Second, note that the per borrower payoff of the MFI is higher under group-lending, i.e.

Wg > WI . Note that Wg ≥ WI since (kI , rI) satisfies the no default condition under group-

lending, so that (kI , rI) is feasible under the group lending regime as well. The strict inequality

follows since the optimal choice has kg > kI .

How does the payoffs of the borrower compare under these two arrangements? Since op-

timally φ(kI , rI) = 0, it follows that under the individual lending regime, the payoff to the

borrower π(kI , rI) equals b(kI). On the other hand, since φ(kg, rg) = 1 under the optimal group

30Without further restrictions on F (k) and b(k), we have been unable to compare the optimal choices of rg
and rI .
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lending contract, the payoff to the borrower π(kg, rg) equals
b(kg)

2 . Thus, even though kg > kI ,

the borrower’s payoff in the group lending contract need not be higher than that under the

individual contract (see the example below). Intuitively, a relaxation of the no default con-

straint under group lending improves the lender’s options. This not only allows it to increase

project size, but also possibly ask for higher interests. Depending on which effect dominates,

the borrower’s payoff may either increase, or decrease.

The following numerical example explicitly solves for the optimal (k, r) under both scenarios.

It also shows that depending on the parameter values, a group lending arrangement could

provide the borrower with a a lower payoff.

Example 1. Let F (k) = 2k1/2, b(k) = γF (k) where 0 < γ < 1, β = 0, c = 0. It can be easily

checked that under individual lending the optimal choice involves kI = (1 − γ)2 and rI = 1.

The net payoff from a given borrower then is rIkI = (1− γ)2. Now observe that at the optimal

individual contract, the payoff to the borrower is b(kI) which equals 2γ(1 − γ). Under group

lending, the optimal choice involves kg = (2−γ)2

4 > (1− γ)2 and rg = 1. Further, the net payoff

to a given borrower equals rgkg = (2 − γ)2/4. The payoff to the borrower under group lending

equals b(kg)/2 which equals γ(2−γ)
2 .

Clearly, π(kI , rI) = b(kI) = 2γ(1 − γ) > γ(2−γ)
2 =

b(kg)
2 = π(kg, rg) if and only if γ < 2/3.

This example thus suggests that the borrowers’ utility is higher under individual lending relative

to group lending if and only if the moral hazard problem (parametrized by γ), is relatively small.

5.4 Optimal Choice of lending regime

In this sub-section, we develop a framework which not only endogenies the choice of n,m and

N , but moreover compares the relative profitability of these two regimes for the MFI.

To this end, we posit costs involved in lending to the borrowers. Under individual lending

with N borrowers, the lending cost is denoted C(N). This cost is transactional and arises

in the process of disbursement of loans, as well as the collection of the interest payments.

Under sequential lending, there is an additional cost arising out of the fact that with loans

being staggered, there would be diseconomies of scale. Further, the longer overall repayment

period in this case adds to coordination costs since additional meetings have to be held, and

the MFI has to deal with borrowers at different phases of project maturity. Furthermore, it is

conceivable (although we do not model it here) that some unanticipated exogenous shocks may

force a borrower to default involuntary. Under a group arrangement, such shocks will then lead

to other projects being liquidated and/or social sanctions being invoked, thus increasing the

overall cost of group lending. In general, then, one will expect group lending arrangements to

have an additional cost component that depends on n, the number of borrowers in the group.

We denote this component of the cost as λG(n), λ > 0, so that with m groups this cost becomes

λmG(n). Thus the total costs under group lending is C(mn)+λmG(n). We assume that C(N)

and G(n) are increasing and convex in their respective arguments, with C(0) = G(0) = 0.

We first consider the decision problem of the lender under individual lending. As argued

earlier in sub-section 5.1 earlier, for every borrower the MFI lends to, the optimal contract is

(kI , rI) and the optimal per borrower payoff is WI . With N borrowers, the net payoff of the

MFI is then given by

NWI − C(N).

Let N∗I denote the optimal number of borrowers under individual lending.
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Under the group lending regime, the per borrower payoff to the lender from a group equals

Wg. Therefore the total net payoff of the MFI when it lends to m groups, with each group

containing n borrowers, is given by

nmWg − C(mn)−mλG(n).

Let n∗ be the minimum even integer for which the no default condition holds, i.e. n∗f
2 ≥ b(kg)−

π(kg, rg). Since the lender’s maximand can equivalently be written as mn[Wg − C(mn)
mn −

λG(n)
n ],

it follows that at the optimal choice of m and n, n must equal n∗. The optimization problem

for the lender thus reduces to choosing an m so as to maximize

mn∗Wg − C(mn∗)−mλG(n∗).

Let (m∗, n∗) denote the optimal choice under the group lending scheme.

We now provide a simple condition that determines whether the lender prefers group or

individual lending. Let λ∗ satisfy

Wg −WI =
λ∗G(n∗)

n∗
. (20)

Given that Wg > WI , λ
∗ as defined in (20) is unique and strictly positive. We now argue that

the MFI prefers individual lending to group lending if and only if λ > λ∗.

First consider the case where λ > λ∗. If the lender uses the individual lending program

and lends to m∗n∗ borrowers, its net profit would have been m∗n∗WI − C(m∗n∗). Note that

this payoff exceeds that from group lending if and only if m∗n∗WI − C(m∗n∗) > m∗n∗Wg −
C(m∗n∗)−m∗λG(n∗), i.e. Wg −WI <

λG(n∗)
n∗ , which is true given that λ > λ∗.

Next consider the case where λ < λ∗. Let m be defined as
N∗I
n∗ , and consider a group lending

regime where the lender lends to m groups, each containing n∗ lenders. Since λ < λ∗, a similar

argument as above establishes that group lending will be the preferred choice for the MFI.31

Finally, note that under the group lending the marginal net benefit per borrower is simply

given by Wg− λG(n∗)
n∗ while the marginal net benefit per borrower is WI . Thus, ignoring integer

constraint on the choice of the borrowers, it follows that the total number of borrowers under

the group lending scheme mn∗ is strictly greater than N∗I if and only if λ < λ∗. We summarize

the above discussions in the following proposition.

Proposition 5. Consider the MFI’s choice over both the lending regimes, individual versus

group lending with limited collusion.

(i) The optimal project size is larger under group-lending, i.e. kg > kI .

(ii) A borrower’s payoff under group lending is strictly greater than that under individual lend-

ing if and only if b(kI) <
b(kg)

2 .

(iii) The MFI prefers the individual lending regime to the group lending regime if and only if

λ > λ∗, where λ∗ solves equation (20).

(iv) Outreach is higher under a group-lending mechanism if and only if the MFI prefers group-

lending to individual lending.

31This argument uses the fact N
n∗ is an integer. If this was not the case, one could choose m̂ to be the largest

integer for which m̂n∗ ≤ N and then use a mixed scheme, where m̂n∗ borrowers are served under the group
regime while the remaining borrowers N − m̂n∗ are served individually. The total payoff from this scheme must
be strictly higher than the individual regime whenever λ < λ∗.
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We should point out that this paper is one of the very few in the literature to compare the

outcomes, in particular project size and outreach, under individual and group lending. One of

the papers that does perform this exercise is de Quidt et. al. (2012) who compares the behavior

of for-profit MFIs with market power, with not-for-profit lenders. They consider a framework

with simultaneous lending and social capital. They find that the MFI prefers group contracts

when the social capital is large. In contrast to our results however, they find that borrowers

always prefer a group lending contract to an individual lending contract.

In the next section, we perform some comparative statics analysis, arguing that many of

these hinge on how they affect λ∗. Given Proposition 5(iii), note that one can interpret an

increase in λ∗ as indicating whether group lending becomes relatively more profitable compared

to individual lending. In the ensuing comparative statics analysis, we assume that n∗ satisfies
n∗f

2 > b(kg) − π(kg, rg). This assumption, which holds generically, ensures that small changes

in the parameters (like c, β etc.) do not change the optimal group size.

6 Comparative Statics: Some Policy Relevant Issues

6.1 Change in the opportunity cost of fund for the MFI

One motivation for this exercise comes from the fact that in India, policy makers have recom-

mended the provision of subsidized funds to MFIs (Malegam Committee Report, 2011). Clearly

such increased access to funding can be formalized as a decrease in c.

To examine the impact of a small decline in c, totally differentiate equations (18) and (19)

with respect to c, to get

dkI
dc

=
1

F ′′(kI)− (1− β)b′′(kI)
,

dkg
dc

=
1

F ′′(kg)− (1− β)b′′(kg)/2
.

From A.2, it is immediate that dkI
dc < 0 and

dkg
dc < 0. Thus with a decrease in c, the optimal

project size increases under both individual, as well as group lending regimes. Further, recalling

that the payoffs of all borrowers equal b(kI) under individual lending, and b(kg)/2 under group-

lending, the payoff to a borrower must also increase since project size increases under both

lending schemes.

To examine the effect on the per borrower payoff WI of the MFI, one can use the envelope

theorem to show that dWI
dc = −kI , and

dWg

dc = −kg, so that both WI and Wg increases with

a decline in c. Further, since kg > kI , Wg increases relatively more compared to WI , so that

Wg−WI increases. Thus from equation (20), it follows that λ∗ will increase for a small decrease

in c, and thus group lending becomes relatively more profitable.32

32This argument assumes that the constraint on n∗, namely n∗f
2
≥ b(kg) − π(kg, rg) is not binding. If this

constraint binds, one also needs to consider the effect of change in n∗. This is because with a fall in c, kg will
increase, and this will increase n∗. As long as, G(n)/n does not increase too quickly with n, this result, however,
is expected to hold.
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6.2 For-profit MFIs: Change in β

Given that the recent crisis in the MFI sector in Andhra Pradesh, India, was preceded by some

large MFIs entering the capital market (see de Quidt et al, 2012), the analysis of for-profit MFIs

and the possibility of mission drift have gained in importance. Using the framework developed

in the preceding section, such mission drift can be interpreted as a lowering of β.

How does a small change in β affect the outcome? Totally differentiating equations (18) and

(19) with respect to β, we find that

dkI
dβ

= − b′(kI)

F ′′(kI)− (1− β)b′′(kI)
,

dkg
dβ

= − b′(kg)/2

F ′′(kg)− (1− β)b′′(kg)/2
.

Given A.2, the optimal project size decreases under both individual, as well as group lending

regimes with a fall in β. Further, recalling that the payoffs of all borrowers equal b(kI) under

individual lending, and b(kg)/2 under group-lending, the payoff to a borrower must also decrease

since project size decreases under both lending schemes.

We next examine how a change in β affects the per borrower payoff W (k, r; c, β) of the MFI

under the two regimes. To this end, one can use the envelope theorem to show that under

individual lending dWI
dβ = ∂WI

∂β = b(kI), whereas
dWg

dβ =
∂Wg

∂β =
b(kg)

2 under group-lending. With

a decrease in β, both WI andWg will decline. However, Wg will decline relatively more compared

to WI , if and only if b(kI) <
b(kg)

2 .33 Thus, under the same conditions, λ∗ will decrease following

a small decrease in β, and group-lending becomes relatively less attractive to the MFI.

6.3 Ceiling on the interest rate r

Our analysis so far has assumed that the lender is free to choose r, the interest rate on the

loan. In many realistic scenarios, however, the MFI will be constrained to charge an interest

rate no higher than some exogenously specified rate r0, where r0 > c. In India, for example,

the Malegam Committee Report (2011) setup by the RBI stipulated a ceiling of 26% on MFI

interest rates. How does the lowering of such a ceiling affect the relative profitability of group

versus individual lending?

In order to obtain sharp predictions we assume that β = 0 and focus on the case where the

ceiling r0 is binding under both the lending arrangements, so that rg = rI = r0. Denote by

ki(r0), i = g, I, the optimal project sizes under group and individual lending. As before the no

default constraints bind in both cases so that φ(kI(r0), r0) = 0 and φ(kg(r0), r0) = 1. Thus,

∂Wg

∂r0
− ∂WI

∂r0
= kg(r0)− kI(r0) + (r0 − c)[

∂kg(r0)

∂r0
− ∂kI(r0)

∂r0
].

Since kg(r0) > kI(r0), this difference is strictly positive for r0 sufficiently close to c, More

generally, it is possible to show that
∂Wg

∂r0
− ∂WI

∂r0
> 0 if and only if34

F ′(kI)− b′(kI) > F ′(kg)− b′(kg)/2.
33See example 1 for this possibility.
34Totally differentiating the no default constraints, it is possible to check that

∂kg(r0)

∂r0
=

− kg(r0)

(b′(kg)/2−F ′(kg)+(1+r0))
and ∂kI (r0)

∂r0
= − kI (r0)

(b′(kI )−F ′(kI )+(1+r0))
. The result now follows from this.
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If the preceding condition holds, then λ∗ will decrease with a small decrease in r0, and thus

individual lending becomes relatively more profitable.

6.4 Reservation utility

So far we have assumed away the individual rationality constraint of the borrower. In a changing

economic environment, however, it will be of interest to explicitly allow for this constraint so

that one can study how a change in the reservation utility of a borrower affects the equilibrium

arrangements. If we denote by ū the reservation utility of the borrower, the optimization prob-

lem under both the lending regimes must now explicitly incorporate the individual rationality

constraint, namely that π(k, r)− ū ≥ 0, along with the corresponding incentive constraints.

As is expected, the optimal solution of course depends on the actual magnitude of ū. In

particular, under individual lending, one can show that there exists (uI , u
I), where uI = b(kI) <

uI = b(k∗(c)) such that (i) for ū < uI , the individual rationality constraint does not bind,

and the equilibrium payoff to the borrower equals uI > ū, (ii) for uI < ū < uI , the individual

rationality, as well as the incentive constraint bind, i.e. at the solution (kI , rI), we have b(kI) = ū

and φ(kI , rI) = 0, and (iii) for ū > uI , only the individual rationality constraint binds and the

solution is efficient in that the project size equals k∗(c).

Similarly, the solution under the group lending case, one can shown the existence of (ug, u
g)

with ug =
b(kg)

2 < ug = b(k∗(c)
2 such that (i) for ū < ug, only the incentive constraint φ(k, r) = 1

binds, and the equilibrium payoff to borrower equals ug =
b(k∗g)

2 , (ii) for ug < ū < ug, both

the constraints bind and the solution (kg, rg) is obtained from
b(kg)

2 = ū and φ(kg, rg) = 1, and

finally (iii) for ū > ug, only the individual rationality constraint binds, and the project size is

efficient, i.e. k∗(c). Further, since b(k∗(c))
2 < b(k∗(c)), it follows that ug < uI .35

How does a small increase in ū affect λ∗? Focussing on the case where the individual

rationality constraints bind for both of these cases, we have ū ∈ (ug, uI).36 For ū in this range,

both Wg and WI decreases with an increase in ū, however, Wg decreases at a faster rate than

WI . This is because for ū in this range, in the group lending contract, the project choice is k∗(c)

and thus |∂Wg

∂ū | = 1, while |∂WI
∂ū | < 1. Therefore, a small increase in ū will lead to a decrease in

λ∗ so that individual lending becomes relatively more profitable.37

6.5 Effects of increased competition: Transition to individual lending?

In recent years there has been a large increase in competition in the MFI sector all over the

world, including in India. While such competition has been linked to various issues in the

literature, e.g. double-dipping, default and even farmer suicides,38 a detailed analysis of all

such aspects is beyond the scope of the present paper.

35The detailed derivation of these results are available on request.
36It is easy to note that for ū > uI , kg = kI with Wg = WI and thus, for any λ > 0, individual lending must

be preferred by the lender.
37However, when ū is low, the effect of such an increase in ū is ambiguous and depends on uI and ug. For

instance when b(kI) = uI > ug =
b(kg)

2
and ū ∈ (ug, uI), an increase in ū leads to a decrease in the payoff from

group lending, while the lender’s payoff from the individual lending contract remains unchanged shifting λ∗ to
the left. In such situations, an increase in ū will make individual lending becomes relatively more profitable. The
opposite result, of course holds when ug > uI .

38We refer the readers to Guha and Roy Chowdhury, 2013, and de Quidt et al (2012), among others, for a
discussion of some of these issues.
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Here we focus on a phenomenon that was roughly contemporaneous with the increase in

MFI competition, namely a move away from group to individual lending in many cases. While

such a transition can of course be triggered by various reasons, e.g. by an exogenous coordinated

shock in the form of a cyclone as in case of Grameen I, we shall argue that our framework can

provide a rich explanation for this transition that links it to the increased competition among

MFIs.

To this end we focus on two possible effects of such increased competition, namely (i)

increased competition for donor funds, possibly resulting in a higher opportunity cost of fund

c for the MFIs, and (ii) an increase in the reservation utility of the borrowers, i.e. ū, as

the borrowers have access to competing MFIs. From the preceding analysis recall that with an

increase in c, as well as ū, there is a decrease in λ∗, so that individual lending becomes relatively

more attractive for the MFI. Similarly, a fall in the interest rate itself will have effects similar

to that of a decline in the interest rate ceiling, in which case individual lending will tend to

become relatively more profitable (see sub-section 6.3).

Another possible link would arise in case increased competition was also accompanied, as has

been suggested by some commentators, by mission drift, leading to a fall in β. Our analysis in

sub-section 6.2 would then suggest that such a decrease in β may make individual lending more

attractive for the MFI, with example 1 suggesting that this is more likely if the moral hazard

problem is relatively severe. Further, consider a scenario where the interest rate is exogenously

determined in the short run, though responsive to competitive pressures in the long run. In

that case an increase in the number of MFIs can be expected to lower the exogenously given

interest rates in the long run. Consequently, the analysis in section 6.3 suggests that this would

cause a shift towards individual lending.

We finally examine the effects of a change in social capital/sanctions on this trade-off between

group and individual lending (we are indebted to a referee for drawing our attention to this

possibility). This exercise is of some importance since, with the sustained process of urbanization

going on in most LDCs, it may be conjectured that social capital would decline among rural

borrowers. To begin with note that a change in f does not affect (kg, ng). However, from

Proposition 2 we know that the group size n∗ must satisfy n∗f
2 ≥ b(kg) − π(kg, rg). Thus, a

sustained fall in f will lead to an increase in n∗. Given that G(n) is convex and G(0) = 0, it

then follows from equation (20) that λ∗ will decrease. Consequently, with a decline in social

capital, individual lending will become relatively more attractive for the MFIs.

7 Conclusion

Given the recent success of various micro-finance programs, in particular the high rates of repay-

ment,39 there is a natural interest in examining whether the innovative institutional features, in

particular dynamic features like sequential financing and dynamic joint liability used by many

MFIs, play a role in their success.

We argue that a unified explanation of both these aspects can be built around dynamic

incentives, in particular the simple idea that sequential lending can help resolve problems arising

out of coordinated default. Further it helps clarify how social capital interacts with sequential

financing in incentivizing repayment. In fact, this is one of the few papers in the literature

39Hossein (1988), Morduch (1999) and Christen, Rhyne and Vogel (1994), all argue that the Grameen Bank
has a repayment rate in excess of 90 percent.
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that can help explain the fact that empirical findings regarding the impact of social capital is

decidedly mixed.

In addition, the present framework also provides an explanation for early and frequent

repayment schemes. Inter alia, it identifies a synergy between IFR and sequential lending,

arguing that a lending mechanism involving both is more than the sum of its parts. Moreover,

this synergistic effect has important implications for empirical analysis as well, suggesting that

while testing for the efficacy of group lending, any analysis that considers either sequential

lending or IFR in isolation, may seriously under-estimate the power of the two taken together.40

Further, the tractability of the basic model allows us to endogenize the choice of several

variables of interest, including the choice of loan scheme, one of the few papers in the literature

to do so. Finally, we put our theory to the test, examining if it can provide an explanation of

a somewhat puzzling fact, namely the switch from group to individual lending in recent years.

We trace this transition to the increase in MFI competition that happened at the same time.

Further, we show that the intuition for this result hinges on the basic theoretical point of our

paper, namely that the no default constraint is relaxed under group lending.

8 Appendix A: Lemma 2

Lemma 2 Consider k1, k2 such that 0 < k2 < k1 < k0(r). Under A.1(ii), φ(k2, r) < φ(k1, r).

Proof. Fix r and pick k1, k2 such that k2 < k1 < k0(r). Since ki < k0(r), we have π(ki, r) > 0

for i = 1, 2. We will show that φ(k2, r) < φ(k1, r). Since F (k) is strictly concave and F (0) = 0,

we have that F (k2)
k2

> F (k1)
k1

. Using this and the fact that π(ki, r) > 0 for i = 1, 2, it follows that

F (k2)

F (k1)
<
F (k2)− k2(1 + r)

F (k1)− k1(1 + r)
.

Since by A.1(ii), b(k2)
b(k1) ≤

F (k2)
F (k1) , we thus have

b(k2)

b(k1)
<
F (k2)− k2(1 + r)

F (k1)− k1(1 + r)
.

Using the definition of φ(k, r), it then follows that

φ(k2, r) =
b(k2)

F (k2)− k2(1 + r)
− 1 <

b(k1)

F (k1)− k1(1 + r)
− 1 = φ(k1, r).

9 Appendix B: Lemma 3

Lemma 3 Fix k > 0 such that π(k, r) > 0. Suppose that project size k is r-feasible under

limited collusion with a two stage group lending arrangement. Then, k is r-feasible in a two

stage group lending arrangement in which the lender uses only IFR contracts.

40In an earlier version of this paper we also briefly examine the effects of gestation lags and uncertainty
in project returns, arguing that the results in this paper are largely robust to these extensions. Preliminary
investigations suggest that allowing for uncertain returns with asymmetric information may yield a framework
that integrates the intuition developed in Jain and Mansuri (2003) into our framework, thus providing a unified
explanation of not only sequential lending and dynamic joint liability, but also the persistence of informal lenders.
In fact, similar results may obtain if the project involves gestation lags. We plan to take up these issues in future
work.
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Proof. Consider any repayment scheme yi(ti + τ, k) that satisfies limited liability and is

r-feasible.

Given yi, denote by P i
yi

(ti + τ) (resp. Di
yi

(ti + τ)) the continuation (resp. default payoffs,

gross of the of social sanctions) at ti+ τ , of a borrower in group i. Further, let lyi(t
i+ τ) denote

the number of borrowers who are affected adversely because of a default at ti+τ . We will abuse

notations slightly and denote the repayment scheme according to the IFR scheme simply by I.

Step 1. For any yi, P iI(t
i + τ) ≥ P i

yi
(ti + τ).

To see why this is true, first, consider a borrower in group 1 who receives the loan at t1 = 0.

For all t ≤ 1, the result is clearly true and follows from the arguments in Lemma 1. Now

for t ≥ 1, the continuation payoff of any borrower under an IFR scheme is zero. The fact

that the repayment scheme yi(ti + τ, k) ≥ 0, then establishes that the continuation payoff of

the borrower under any other repayment obligation can not be more than that under an IFR

scheme. A similar argument holds for the second group of borrowers who receive their loan at

t2.

Step 2. Di
yi

(ti + τ) = Di
I(t

i + τ).

This follows as Di
yi

(ti + τ) and Di
I(t

i + τ) both equal b(k)(1 + τ).

Note that Steps 1 and 2 together yield

Step 3. lyi(t
i + τ) ≤ lI(ti + τ).

From Steps 2 and 3 we have

Step 4. Di
yi

(ti + τ)− lyi(ti + τ)f ≥ Di
I(t

i + τ)− lI(ti + τ)f .

Finally, if P i
yi

(ti + τ) ≥ Di
yi

(ti + τ)− lyi(ti + τ)f , then

P iI(t
i + τ) ≥ P iyi(t

i + τ) (from Step 1)

≥ Di
yi(t

i + τ)− lyi(ti + τ)f

≥ Di
I(t

i + τ)− lI(ti + τ)f (from Step 4).

Thus, if at ti+τ , the no default condition is satisfied for some borrower given the repayment

scheme yi(ti + τ, k), it will also be satisfied under the IFR scheme. This proves Lemma 3.

Furthermore, it is straightforward to verify that under IFR, the net default incentive for an

individual borrower in group i is decreasing over time.

10 Appendix C: Lemma 4

Lemma 4 Under A.1, we have

(a) k ≤ k1(r) if and only if φ(k, r) ≤ φ(k,r)
b(k) , and

(b) k ≤ k2(r) if and only if φ(k, r) ≤ k(1+r)
F (k) .

Proof. (a) Recall that at k1(r), φ(k1(r), r) = π(k,r)
b(k) .

Since π(k,r)
b(k) = 1

1+φ(k,r) , and φ(k, r) is an increasing function of k (Lemma 2), it then imme-

diately follows that k ≤ k1(r) if and only if φ(k, r) ≤ π(k,r)
b(k) .
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(b) Recall that at k2(r), φ(k2(r), r) = k2(r)(1+r)
F (k2(r) . Observe that

φ(k, r) =
b(k)

F (k)− k(1 + r)
− 1 ≤ k(1 + r)

F (k)
, (∗∗)

if and only if

b(k)F (k) ≤ (F (k))2 − (k(1 + r))2.

Dividing both sides by (F (k))2, condition (∗∗) holds if and only if

b(k)

F (k)
+ (

k(1 + r)

F (k)
)2 ≤ 1.

Since (a) F (k) is a concave function of k, k(1+r)
F (k) is an increasing function of k and (b) by A.1(ii)

b(k)
F (k) is non-decreasing in k, it thus follows that if (∗∗) holds for some k > 0, then for k′ < k,

condition (∗∗) will hold as well.

11 Appendix D: Proposition 3

Proposition 3.

(a) [Necessity.] If a project size k is r-feasible, then k ≤ kC(r).

(b) [Sufficiency.] Suppose that k < kC(r), then there exists n and a group lending arrange-

ment < n,m, t2 > with IFR for which k is r-feasible.

Proof of Proposition 3.

(a) [Necessity.] Let < n,m, k, t2 > be the group arrangement with IFR repayment schemes

for which k is r-feasible. By Lemma 4, it is sufficient to show that k ≤ kC(r).

From equation (16) and (17) in the text, we have

φ(k, r) ≤ t2 ≤ π(k, r)

b(k)
.

From Lemma 4, it then follows that k ≤ k1(r).

We now show that k ≤ k2(r). Consider the default payoff of the group at t2. This is given

by

DG(t2) = (n−m)b(k)(1− t2) +mb(k).

Observe that the group’s continuation no default payoff at t2 depends on whether t2 is

greater than, or less than k(1+r)
F (k) . In particular, if t2 < k(1+r)

F (k) , then the continuation payoff is

nπ(k, r) while for t2 > k(1+r)
F (k) , the continuation payoff is (n−m)F (k)(1− t2) +mπ(k, r). Hence

the net default payoff for the group, for t2 < k(1+r)
F (k) equals

A(t2) = (n−m)b(k)(1− t2) +mb(k)− nπ(k, r).

On the other hand, if t2 > k(1+r)
F (k) , the net payoff of the group from default equals

B(t2) = (n−m)b(k)(1− t2) +mb(k)− [(n−m)F (k)(1− t2) +mπ(k, r).
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It is easy to check that A(t2) is decreasing in t2 and since ∀k > 0, F (k) > b(k), B(t2) is increasing

in t2. Furthermore, A(t2) = B(t2) at t2 = k(1+r)
F (k) . Therefore, it follows that if A(t2) > 0 at

t2 = k(1+r)
F (k) , then for all t2 ∈ [0, 1], default must be profitable when the second group gets the

loan at t2. Thus the loan size k cannot be r-feasible. Consequently, if k is feasible, then at

t = k(1+r)
F (k) ,

A(
k(1 + r)

F (k)
) = (n−m)b(k)(1− k(1 + r)

F (k)
) +mb(k)− nπ(k, r) ≤ 0. (21)

Rearranging terms in (21) we have (n−m)b(k)+mb(k)−nπ(k, r) ≤ (n−m)b(k)k(1+r)
F (k) . Further

simplification leads to

n[b(k)− π(k, r)] ≤ (n−m)b(k)
k(1 + r)

F (k)
≤ nπ(k, r)

k(1 + r)

F (k)
,

where the final inequality follows from (14) in text (the default constraint at t = 0). Next

dividing through by nπ(k, r), we have

b(k)

π(k, r)
− 1 = φ(k, r) ≤ k(1 + r)

F (k)
.

Thus, by Lemma 4, k ≤ k2(r).

(b) [Sufficiency.] Suppose k < kC(r). If k ≤ kI(r), then a group consisting of n borrowers,

n ≥ 1, in which all borrowers are given the loan k at t = 0 is feasible. Therefore, assume that

k > kI(r). We now construct a feasible group lending arrangement such that k is r-feasible.

Since k < kC(r), by Lemma 4, φ(k, r) < min{π(k,r)
b(k) ,

k(1+r)
F (k) }.

For any ε > 0, let b(k)
π(k,r) + ε be a rational number. Since rational numbers are dense in reals,

it follows that one can choose an ε that is arbitrarily close to zero. Given such a choice of ε,

consider a pair of positive integers (n,m) (n and m depend on ε but we drop this dependence

for notational simplicity) such that

b(k)

π(k, r)
+ ε =

n

n−m
. (22)

Since k > kI(r), we have b(k)
π(k,r) > 1 and thus n > m.

Consider now a group consisting of n members of whom (n−m) are given a loan of size k

at t = 0. By construction of (n,m), the no default condition at t = 0 is given by

(n−m)b(k) ≤ nπ(k, r)

which is satisfied because of equation (22) and the fact that ε > 0.

Let the remaining m members of the group be given the loan at t2(ε), where t2(ε) satisfies

n[b(k)− π(k, r)] = (n−m)b(k)t2(ε).

Using the definition of (n,m) and recalling that φ(k, r) = b(k)
π(k,r) − 1, the above equation can be

rewritten as

φ(k) + ε[1− π(k, r)

b(k)
] = t2(ε). (23)
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It follows that for ε close to zero, t2(ε) is arbitrarily close to φ(k, r). Since φ(k, r) < k(1+r)
F (k) , it

then follows that one can choose ε sufficiently small such that t2(ε) < k(1+r)
F (k) . Given that the

repayment scheme is an IFR, it follows that at t2(ε), the (n −m) members in the first group

are yet to meet their repayment obligations. Thus the continuation payoff for the entire group

at t2(ε) equals nπ(k, r) and the no default condition at t = t2(ε) is given by

(n−m)b(k)(1− t2(ε)) +mb(k) ≤ nπ(k, r).

This is satisfied because of construction of t2(ε) (see equation (23)).

Finally, consider t = 1. If the second group members have already repaid their loan by this

date, then there is nothing more to prove. Otherwise, the loan is yet to be repaid and thus the

continuation payoff of the group equals mπ(k, r). Since φ(k, r) < π(k,r)
b(k) , for ε small, it follows

from equation (23) that t2(ε) < π(k,r)
b(k) for ε small and thus the no default condition is satisfied

at t = 1 as well.

12 Appendix E: Some Additional Proofs

12.1 Discussion of assumptions in Proposition 2

Here we discuss in greater details the role played by some of the assumptions made earlier

in Proposition 2, namely that repayments are non-negative, and that cross-subsidizing is not

allowed.

In case negative repayments are possible (so that the MFI may pay the borrower), we argue

that any project size that yields a strictly positive payoff to a borrower is feasible. Consider

the scheme in which every borrower pays the MFI an amount F (k) at every instant during the

entire period the project is active. When all borrowers have completed their projects, the MFI

then returns the amount F (k)− k to each of the borrowers. In case of default, all projects are

dissolved and the MFI also confiscates all of the payments that it has received till that point.

Under such a scheme, even when the first group of borrowers have completed their projects,

a default by members in the second group will adversely affect the payoffs of the first group,

leading to social sanctions. Therefore such a scheme can always deter willful default by the

second group of borrowers, enabling the lender to support any project size.

Such a scheme however is problematic on at least three counts. First, the implementation

of this scheme will require the MFI to credibly commit to returning the amount due to the

borrowers. Second, such a mechanism will be vulnerable to collusion between the MFI and

individual borrower(s). This is because if a borrower defaults, then under this scheme the MFI

will be able to save (n − 1)(F (k) − k), the amount that it is supposed to return to the other

non-defaulting borrowers. Now, if f is small, then the MFI may be able to bribe a borrower

(in the second group) to default just before she makes her final payment. Finally, under such a

scheme, once the first group of borrowers have completed their projects, they are at the mercy

of the second group and could be exploited by them. Anticipating this, the borrowers in the

first group may be better off defaulting immediately on their loans.

The validity of Proposition 2 also depends on the assumption that the lender is not allowed

to cross-subsidize. To see this, consider a project size k > kL(r). Now consider a scheme

with two borrowers where both of them obtains the loan immediately. However, the repayment
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obligation is such that borrower 1 only pays a fraction α of her project cost, while the second

borrower has to pay k, as well as the remaining share (1 − α)k of the project cost of the first

borrower. By choosing α small enough, one can always ensure that default by the second

borrower adversely affect the first borrower. This means that the first borrower will always

impose the social sanction. Now if the social sanction f is large, then the threat of this social

sanction will ensure that borrower 2 does not default on her loan either.

12.2 Proof of the claim in footnote 20

We provide a proof of the claim in footnote 20, via the following

Lemma. Consider the two-stage group arrangement under complete collusion. If < n,m, t2, k, yi(ti+

τ, k) > is feasible, then k can be sustained using IFR schemes.

Proof. Let PG(t, S) denote the aggregate continuation payoff for the group at time t given

the scheme S =< n,m, t2, k, yi(ti + τ, k) > and let PG(t, S′) denote the aggregate continuation

payoff for the group under S′, where S′ denotes the scheme < n,m, t2, k > in which a borrower

in group i repays according to the IFR corresponding to k. It is straightforward to check

that PG(t, S) ≤ PG(t, S′) for all t. Furthermore, letting DG(t, S) and DG(t, S′) denote the

aggregate default payoff under the two schemes S and S′ respectively, it is easy to see that

DG(t, S) = DG(t, S′) for any t. Therefore, it follows that if S satisfies the ND condition for all

t, then so must S′.

12.3 Proof of the claim for the multi-stage game with limited collusion

We consider the case where, under limited collusion, the MFI can endogenously decide on the

number of stages. We first make a formal claim and then prove it.

Proposition. Consider f > 0 and k such that 0 < k < k0(r). Then there exists n∗ ≥ 2

such that the project size k is r-feasible using an one cyclical multistage lending scheme with

n ≥ n∗ borrowers.

Proof. The proof is by construction and goes through even if the integer constraint is taken

into account. Fix any k such that k < k0(r), so that F (k) − k(1 + r) > 0. Let s ≥ 1 be the

smallest integer for which s(F (k) − k(1 + r)) > k(1 + r). Given f > 0, let m be the smallest

integer for which we have

b(k)−mf < F (k)− k(1 + r), (24)

where m is well-defined since group size n is endogenous. Consider now a group of n ≥ n∗

members where n∗ = m(s+ 1). Let ti, i = 0, 1, . . . , s be given by

t0 = 0, t1 =
k(1 + r)

sF (k)
, t2 =

2k(1 + r)

sF (k)
, . . . , ts =

sk(1 + r)

sF (k)
. (25)

The sequential lending scheme operates as follows, at every ti, at least m members of the

group are advanced a loan of k. Moreover, if at any date t ∈ [0, 1+ ts], any borrower defaults on

her repayment obligation, the lender liquidates all projects. Moreover, if the default date t is

less than ts, the lender makes no further loan to the members yet to receive their loans. Finally,

the repayment scheme for any borrower is just the IFR corresponding to the investment level

k.
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We now show that at any date t ∈ [0, 1 + ts], no groups of borrowers have an incentive to

default. To show this, it is sufficient to consider the default incentives at dates t = {0, t1, . . . , ts}
and t = {1, 1 + t1, 1 + t2 . . . , 1 + ts−1}.

The result is clearly true for all t ∈ {0, t1, . . . , ts−1}. Since default at any such date by any

group of borrowers would mean that at least m borrowers will not be granted a loan. Thus,

at the minimum, a defaulting borrower will attract a social penalty of mf . Because of (30), a

defaulting borrower must be strictly worse off.

Consider now the date ts = k(1+r)
F (k) in which the last set of m borrowers receive their loans.

Since ts = k(1+r)
F (k) , the borrowers who received their loans at t = 0 have already repaid their

loans and thus the continuation payoff of any such borrower is exactly F (k)(1− ts). The default

payoff for such a borrower at this date, however, is b(k)(1 − ts) which is strictly less than

F (k)(1 − ts) because of our assumption that F (k) > b(k). Clearly all such borrowers will be

adversely affected by any default decision in the group. Consequently, this group of borrowers

will necessarily invoke the social sanction on any defaulting borrower. As a result, the maximum

payoff to any defaulting borrower at such a date is at most b(k)−mf which by (24) is strictly

less than F (k)− k(1 + r).

Consider now date t = 1 + tj for j < s. At this date, some of the borrowers have already

completed their project and thus, will not invoke the social sanction. We now show that

the set of borrowers who got the loan at t = tj+1 will be adversely affected by the default

decision of any other borrower in the group. To see this note that (1 + tj) − (tj+1 − tj) =
sF (k)−k(1+r)

sF (k) + jk(1+r)
sF (k) > sF (k)−k(1+r)

sF (k) . This is strictly greater than k(1+r)
F (k) since our choice of

s satisfies s(F (k) − k(1 + r)) > k(1 + r). This implies that the group of borrowers receiving

their loans at t = tj have already repaid their loans and thus will be adversely affected by the

defaulting decision of any other borrower. Consequently, this set of borrowers will impose a

sanction of f on any defaulting borrower at t = 1 + tj . Thus, the net payoff of any defaulting

borrower is at most b(k)−mf which by (24) is strictly less than F (k)− k(1 + r).

12.4 Proof of the claim for the multi-stage game with complete collusion

We consider the case where, under complete collusion, the MFI can endogenously decide on the

number of stages. We first make a formal claim and then prove it.

Proposition. Consider 0 < k < k0(r) such that φ(k, r) > 2. Then, there is no one cyclical

scheme with side payments for which k is feasible.

Proof. An IFR lending scheme L((n1, n2, . . . , nm); (t0, t1, . . . , tm); k) involves n =
∑

j n
j

borrowers, in which nj borrowers get their loan of k at time tj , tj < tj+1. We normalize t0 = 0.

Moreover assume that a borrower receiving the loan at time tj has the repayment obligation

corresponding to the IFR starting at tj . We denote such a scheme by simply L(n, k).

Given any scheme L(n, k) and for any t, let PG(t) denote the aggregate continuation payoff

of the group assuming that the group never defaults on his loan. Furthermore, at t, the payoff

of an active borrower who received loan at tj (and is yet to complete his project) has a default

payoff of b(k)(1 + tj − t). Thus, at t, the aggregate default payoff of the group is given by

DG(t) =
∑
j∈n(t)

b(k)(1 + tj − t).
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where n(t) is the set of active borrowers at date t.

Definition. A lending scheme satisfies the ND constraint at t iff

DG(t) ≤ PG(t).

We consider lending schemes that are not too protracted in that the last borrower to obtain

a loan does so at a time when the first set of borrower(s) are yet to complete their projects.

Definition. A lending scheme is said to be one-cyclical if tm < 1.

Definition. A lending schemes is said to have no bunching if for any ti, ti > 0, exactly one

borrower is given the loan.

It is easy to see that if a project of size k is feasible using a group lending arrangement,

then k is feasible using a lending scheme that has no bunching. The idea of this is quite

straightforward. Considering any feasible scheme that has bunching means that there exists

some ti > 0 such that at least at least two borrowers get their loans at ti. Construct now an

alternative scheme that is identical to the original scheme, except for the following differences:

(a) one of the borrowers bunched at ti, now receives her loan at ti − ε, where ti−1 < ti − ε < ti,

and (b) all the agents active at ti (i.e. yet to complete their projects), are also active at ti − ε.
Such an alternative scheme exists. Moreover, in this alternative scheme, there is no change in

the default incentives of the group for t ≤ ti−1, while such incentives are either unchanged, or

decreased for t > ti. Next consider default incentives at ti − ε. While it is true the default

incentive of the group is increased because a new borrower is given a loan at an earlier date,

ti− ε, this increase in default incentive can be made arbitrarily small by choosing ε to be small,

on the other hand since a default at ti − ε, at least one member in the group (who is supposed

to get loan at ti) will be denied loans, a default at ti− ε leads to a quantum drop in the default

payoff of the group. Consequently, in search of a feasible scheme, we can consider schemes in

which in a group of n members, (n − m) borrowers receive loan at t = 0 and the remaining

borrowers receive loan at ti, i = 1, 2, . . .m, where ti 6= ti+1.

Lemma *. A necessary condition for supporting a loan of size k in a group of n member

where (n−m) receive loan at t = 0 is

F (k)− k(1 + r)

b(k)
≥ 2n−m+ 1

4n−m− 1
.

Proof. Denote by ti
′

= ti − ti−1, and let π(k; r) = F (k)− k(1 + r).

t = t1 : b(k) + (1− t1′)b(k)(n−m) ≤ nπ(k; r),

t = t2 : b(k) + b(k)(1− t2′) + b(k)(n−m)(1− t1′ − t2′) ≤ nπ(k; r),

............ ..............

t = tm : b(k) + b(k)(1− tm′) + · · · b(k)(n−m)(1− t1′ − tm′) ≤ nπ(k; r),

t = 1 : t1
′
b(k) + . . .+ (t1

′
+ . . .+ tm

′
)b(k) ≤ mπ(k; r),

........ ............

t = 1 + tm−1 : tm
′
b(k) ≤ π(k; r).
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Note that the above conditions arise out of the ND conditions at t1, t2, ..., tm, 1, 1 + t1, · · · , 1 +

tm−1. At t = t1, for example, this necessary condition coincides with the ND constraint at t1

if the first n −m borrowers are still repaying their loans at t1. Otherwise, the corresponding

ND yields b(k) + b(k)(n − m)(1 − t1
′
) ≤ mπ(k; r) + (n − m)F (k)(1 − t1

′
), which yields the

same necessary condition (given that the borrower has already repaid). The other necessary

conditions follow a similar logic.

Multiplying the inequality at t = 1 by (n−m) and summing this with all the other inequal-

ities yields:

b(k) + 2b(k) + · · ·+ b(k)m+ (n−m)b(k)m ≤ π(k; r)[nm+ 1 + · · ·+ (m− 1) +m(n−m)],

i.e.
b(k)m(2n−m+ 1)

2
≤ π(k; r))m(4n−m− 1)

2
.

We are finally in a position to prove the proposition.

Proof. We begin by showing that a necessary condition for a one-cyclical scheme L(n, k) to

be feasible is that F (k)−k(1+r)
b(k) ≥ n+2

3n . Note that d
dm [2n−m+1

4n−m−1 ] < 0. Thus if there is a lending

scheme L(n, k) that satisfies the necessary conditions of the Lemma, then there is fully sequential

scheme which satisfies the necessary condition F (k)−k(1+r)
b(k) ≥ n+2

3n . The result now follows since
n+2
3n is decreasing in n, and limn→∞

n+2
3n = 1

3 .

12.5 Optimal (k, r) under Complete Collusion

Here, we briefly indicate how to solve for the optimal contracts in the presence of complete

collusion. In what follows, we ignore any integer constraint on n and assume instead that given

r, a project of size k is r-feasible as long as k ≤ kC(r) (see footnote 21 in the text). The lender’s

optimization problem can then be written as

max
k,r

[(r − c)k + βπ(k, r)],

subject to the following incentive constraints:

π(k, r)

b(k)
− φ(k, r) ≥ 0,

k(1 + r)

F (k)
− φ(k, r) ≥ 0.

It is straightforward to check that at the optimal solution, one (or possibly both) of the

constraints must bind and thus φ(k, r) must be strictly positive. To show that at the optimal

choice, the project size is strictly greater than kI , one can proceed as follows. Fix any r and

consider the choice of optimal project size k. Since r is fixed, at the optimal, it follows that the

first constraint will bind if k1(r) < k2(r) (where recall that k1(r) and k2(r) satisfy

φ(k1(r), r) =
π(k1(r), r)

b(k1(r))
; and φ(k2(r), r) =

k2(r)(1 + r)

F (k2(r))
,

respectively), while the second constraint will bind otherwise.
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First, let k1(r) ≤ k2(r). In this case, we have φ(k, r) = π(k,r)
b(k) . Simplifying and rearranging

terms, we get π(k, r)2 + b(k)π(k, r) − b(k)2 = 0. This gives us π(k, r) =
−b(k)+

√
(b(k))2+4(b(k))2

2 ,

or that

π(k, r) =
b(k)(

√
5− 1)

2
.

Using the above equation, we get (r− c)k = F (k)−k(1 + c)− b(k)(
√

5−1)
2 . Thus the per borrower

payoff to the lender can be written as F (k)−k(1+c)− (1−β)b(k)(
√

5−1)
2 . The first order condition

for the choice of k then is given by

F ′(k)− (1 + c)− (1− β)b′(k)(
√

5− 1)

2
= 0.

Since
√

5−1
2 < 1, it follows by comparing this with the first order condition for kI (see equation

(18) in the text) that the optimal choice of k must be strictly greater than kI .

Now assume that k1(r) > k2(r). In this case, the second constraint must bind, i.e, φ(k, r) =
k(1+r)
F (k) . Using the definition of φ(k, r) and simplifying, we then get b(k)

1+α(k,r) = π(k, r) where

α(k, r) = k(1+r)
F (k) . This gives us (r − c)k = F (k) − k(1 + c) − b(k)

1+α(k,r) . Using this information,

the per borrower lender’s payoff can be written as F (k)− k(1 + c)− (1− β) b(k)
1+α(k,r) . For any r,

the project choice k must then satisfy

F ′(k)− (1 + c)− (1− β)
b′(k)

1 + α(k, r)
+ (1− β)b(k)z(k, r) = 0,

where z(k) = [∂α(k,r)
∂k ][ 1

(1+α(k,r))2
] > 0. Thus, for any r, at the optimal choice of k, we must have

F ′(k)− (1 + c)− (1− β)b′(k) < 0.

Since kI satisfies F ′(kI) − (1 + c) − (1 − β)b′(kI) = 0, by A.2, it follows that the optimal

project size under group lending with complete collusion must be strictly greater than kI . This

follows since, given that the first order maximization conditions under both lending schemes

are independent of r, and that we have shown the result for arbitrary r, the result must be true

at optimal choice of r as well.

The preceding arguments suggest that, in general, it will be extremely complicated to get

a simple closed form solution for the equilibrium. Consequently the comparative statics results

for this model will not be easy to derive.

12.6 Proof of Remark 9

Here we state and prove a version of Proposition 3, where n can be chosen by the MFI and

the integer constraint is respected. For ease of exposition, we provide the proof for r = 0. The

proof for r > 0 is completely analogous.

Proposition 3* Consider project size k, such that 0 < k < k0. Then, under a two stage

arrangement with side transfers:

(i) [Necessity] if k is feasible, then k ≤ kC , and

(ii) [Sufficiency] if k < kC , then k is feasible using a two stage group lending arrangement.
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Proof. (i) Necessity: If k is feasible, then from equation (19) in the text, it follows that

φ(k) ≤ min{ k
F (k) ,

F (k)−k
b(k) }. From Lemma 5, it then follows that k ≤ kC .

(ii) Sufficiency: Suppose k < kC . If k ≤ kI , then a group consisting of n borrowers, n ≥ 1,

in which all borrowers are given the loan k at t = 0 is feasible. Therefore, assume that k > kI .

We now construct a feasible group lending arrangement that involves k.

Since k < kC , by Lemma 5, φ(k) < min{ k
F (k) ,

F (k)−k
b(k) }.

For any ε > 0, let b(k)
F (k)−k + ε be a rational number. Since rational numbers are dense in

reals, it follows that one can choose an ε that is arbitrarily close to zero.41 Given such a choice

of ε, consider a pair of positive integers (n,m)42 such that

b(k)

F (k)− k
+ ε =

n

n−m
. (26)

Since k > kI , we have b(k)
F (k)−k > 1 and thus m > 0 and n > m.

Consider now a group consisting of n members of whom (n−m) are given a loan of size k at

t = 0, and m receive their loans of k later. By construction of (n,m), the no default condition

at t = 0 is given by

(n−m)b(k) ≤ n[F (k)− k]

which is satisfied because of equation (32) and the fact that ε > 0.

Let the remaining m members of the group be given the loan at t2(ε), where t2(ε) satisfies

n[b(k)− (F (k)− k)] = (n−m)b(k)t2(ε).

Dividing through by (n−m)b(k), we have that

t2(ε) =
n

n−m
[1− F (k)− k

b(k)
] = [

b(k)

F (k)− k
+ ε][1− F (k)− k

b(k)
],

where the last equality follows from (32). Simplifying and recalling that φ(k) = b(k)
F (k)−k − 1, the

above equation can be rewritten as

φ(k) + ε[1− F (k)− k
b(k)

] = t2(ε). (27)

It follows that for ε close to zero, t2(ε) is arbitrarily close to φ(k). Since φ(k) < k
F (k) , it then

follows that one can choose ε sufficiently small such that t2(ε) < k
F (k) . Given that the repayment

scheme is an IFR, it follows that at t2(ε), the (n−m) members in the first group are yet to meet

their repayment obligations (as t2(ε) < k/F (k)). Thus the continuation payoff for the entire

group at t2(ε) equals n[F (k)− k] and the no default condition at t = t2(ε) is given by

(n−m)b(k)(1− t2(ε)) +mb(k) ≤ n[F (k)− k].

Re-arranging, the preceding equation becomes (n−m)b(k) +mb(k)− n[F (k)− k] ≤ t2(ε)(n−
m)b(k), which simplifies to n[b(k)− (F (k)−k)] ≤ t2(ε)(n−m)b(k), i.e. t2(ε) ≥ n

n−m [1− F (k)−k
b(k) ].

This is satisfied with an equality by the construction of t2(ε).

41Indeed, when b(k)
F (k)−k

is a rational number itself, one can choose ε to be zero.
42n and m depend on ε but we drop this dependence for notational simplicity.
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Finally, consider t = 1. If the second group members have already repaid their loan by

this date, then there is nothing more to prove. Otherwise, the loan is yet to be repaid and

thus the continuation payoff of the group equals m[F (k)−k]. Finally recall that φ(k) < F (k)−k
b(k) .

Consequently since from (33), t2(ε) is arbitrarily close to φ(k) for ε small enough, from continuity

it follows that t2(ε) < F (k)−k
b(k) for ε small enough. Thus the no default condition is satisfied at

t = 1 as well.
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