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Abstract

The climate sensitivity of electricity demand in India is likely to be highly sensitive

to growth in income. Thus, both intensive and extensive adjustments in cooling and

heating will play an important role in determining future climate change impacts on

electricity demand. This chapter utilizes a national level panel dataset of 28 Indian

states for the period 2005-2009 to show that (1) electricity demand is positively related

to temperatures in summers and negatively related to temperatures in winters; (2) the

effect of temperature increase on demand in summers is higher in a hotter climate as

people adapt with the use of higher cooling equipment whereas there is a higher neg-

ative response to temperature increase in winters in colder climates as people adapt

using higher heating equipment; (3) the effects of both the hotter and the colder cli-

mates on electricity demand are expected to be more pronounced at the higher income

levels. The preferred estimates indicate that climate change will increase electricity

demand by 6.9 percent with 4 percent p.a. GDP growth and 8.6 percent with 6 per-

cent p.a. GDP growth in 2030 over the reference scenario of no climate change. This

reflects the fact that the estimated marginal effect of a hotter climate is greater when

income is higher. The results suggest that over 50 percent of the climate change im-

pacts will be due to extensive adjustments and that electricity demand models that do

not account for extensive adjustments are likely to underestimate the climate change

impacts on electricity demand especially in developing countries like India where the

current penetration of air- conditioning equipment is very low.

1 Introduction

This chapter aims to understand how India’s electricity demand will be affected by changes

in its climate, weather and income. To what extent does the weather sensitivity of electricity
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demand depend on climate and the level of income? Due to growth, the impact of climate

change in India will be time-varying. We saw in chapter 2 that the rising part of the U-shaped

temperature-electricity curve of Delhi is becoming steeper over time implying an increase in

cooling demand per unit increase in summer temperatures. In this Chapter, I extend the

analysis to the all-India level, enabling the use of the large climatic and income variations

across states to assess the dependence of the temperature-electricity demand relation on the

level of income and climate.

I estimate the relationship between daily electricity demand, daily temperature (a key

indicator of weather), climate and income across 28 spatially differentiated Indian states1

using state-level panel data for the period 2005-2009. This is the first econometric study

that estimates the impact of climate change on the electricity demand in the case of India.

This research is novel in that it uses high frequency daily data to analyze the dynamics of

adjustment across differentiated Indian states by modeling India’s electricity demand within

a panel framework using state and region fixed-effect models.

The study finds that the climate sensitivity of electricity demand in India is likely to be

highly sensitive to its income growth. Between 2009 and 2030, India’s GDP will double if it

grows at 4 percent p.a. and treble if it grows at 6 percent p.a. According to my preferred

estimates, in a reference scenario with no climate change, electricity demand in India is

expected to surge by 105 percent with 4 percent p.a. GDP growth and by 224 percent

with 6 percent p.a. GDP growth by 2030. If India’s climate warms by 10C during this

period, then the demand for electricity is likely to increase by 119 percent with 4 percent

p.a. income growth, and by 252 percent with 6 per cent p.a. income growth by 2030.

Thus, as a result of climate change, electricity demand is estimated to be 6.9 percent higher

than in the reference scenario with 4 percent p.a. GDP growth and 8.6 percent higher

than in the reference scenario with 6 percent p.a. GDP growth by 2030. This reflects

the fact that the estimated marginal effect of a hotter climate is greater when income is

higher. Over 50 percent of the climate change impacts on demand are due to extensive

adjustments in cooling and heating requirements. Thus, electricity demand models that

do not account for extensive adjustments are likely to underestimate the climate change

impacts on electricity demand, particularly in developing countries such as India where,

unlike in the case of developed countries, the penetration of cooling technologies is very low

at present. In 2007, for instance, approximately only 2 percent of households had access

to air-conditioners as against 87 percent in the U.S. ([Sivak, 2009]). However, in a warmer

and a richer future economy, there is bound to be rapid adoption of energy-using equipment

([Wolfram et al., 2012]). [Akpinar-Ferrand and Singh, 2010] for example, have shown air-

1The India is made up of 27 states and one union territory, namely, Chandigarh.
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conditioning to be a significant preventive mechanism in avoiding extremely hot days and

that it should be considered a key climate adaptation strategy for India.

As I have shown in Chapter 2 there is a non-linear relationship between temperature

and electricity demand as the electricity demand is positively related to temperatures in

summer and negatively related to temperatures in winters. Therefore, climate change is ex-

pected to reduce electricity consumption in winters and increase electricity consumption

in summers. Also, climate change will affect electricity demand by changing how peo-

ple will respond along both extensive and intensive margins of adjustment (see review by

[Auffhammer and Mansur, 2012]). For instance, in the short run, during summer, people

may adapt by using existing cooling equipment more intensively on a hot day while, in the

long run, they may choose to buy an air-conditioner to mitigate expected reduction in com-

fort due to changed climate [Sailor and Pavlova, 2003]. Thus, while the long-term climate

will determine the space-conditioning equipment stock in different states, the daily external

weather or temperature determines the utilization of the equipment for heating or cooling.

To capture both intensive and extensive adjustments due to climate change, I estimate the

impact of daily weather as well as long-term climate on electricity demand in India.

This study estimates the non-linear relationship by a piecewise linear function using

two segments: one for the summer where temperature is above the predetermined reference

temperature, and another one for winters where temperature is below the same reference

temperature. The approach assumes a V-shaped temperature-electricity curve with the

minimum electricity demand point occurring at the reference temperature. I use cooling

degree days (CDD) and heating degree days (HDD) that describe the deviation of daily

mean temperature from a reference temperature2 as a measure of severity of hot and cold

weather respectively. For this study, I estimate the transition point of electricity demand

from heating to cooling as 20.3 from the observed data. This reference temperature fits the

data best as it minimizes the residual sum of squares in the estimated piecewise regression.

I determine the slope of the rising segment by relating daily electricity demand and daily

CDD in summers. I determine the slope of the falling segment by relating daily electricity

demand and daily HDD in winters.

Thus, I use the daily CDD and HDD to analyze weather-related electricity demand.

The sums of daily CDD and HDD over a year constitute the indicators for heat and cold

stress, respectively, as well as the description of a state’s climate. I determine the cooling

degree day index (CDDI) and heating degree day index (HDDI) of each state as the average

2The reference temperature is defined as the outdoor temperature at which the cooling (or heating)
systems do not need to run in order to maintain comfort conditions. When the outdoor temperature is
below/above the reference temperature, the cooling/heating systems need to operate, resulting therefore in
increased energy requirements.
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of the annual cooling degree days and heating degree days, respectively, during 2005-2009

in order to analyze the impact of long-term climate on electricity demand. I allow the

slope of the rising part of the curve to depend on the climate by interacting CDD with the

CDDI in summers and the slope of the falling part of the curve to depend on the climate

by interacting HDD with the HDDI in winters. I have utilized this method since a higher

positive response to temperature increase is expected in summers in a hotter climate as

people adapt by installing more cooling equipment, while a higher negative response to

temperature increase is expected in winters in a colder climate as people adapt by installing

more heating equipment. I also expect the effects of both the hotter and the colder climate

to be more pronounced at higher income levels. [DePaula and Mendelsohn, 2010] analyzed

the interaction between income distribution and climate change impacts in Brazil using

cross-sectional household level data and found that the temperature elasticity of electricity

consumption varies significantly across income classes. Thus, I have included a three way

interaction of CDD, CDDI and income in summers and HDD, HDDI and income in winters

in the study to investigate the impact of income on the climate sensitivity of electricity

demand in India.

I have conducted the climate change analysis using near-term (2030/2016-2035) and mid-

term (2050/2045-2065) scenarios for South Asia developed by the Intergovernmental Panel

on Climate Change and that are presentated in Working Group-1 of the Fifth Assessment

Report. With the whole temperature distribution shifting rightwards with global warming,

there has been an increase in the cooling degree days and reduction in the heating degree

days. Consequently, the CDDI will increase while the HDDI will fall. In this Chapter,

I combine the estimated electricity demand model with predicted changes in both daily

degree days and long-term climate to develop estimates of the changes related to electricity

demand in India. With that aim in mind, Section 2 of the Chapter describes the data

sources and reports summary statistics. Section 3 presents the econometric approach while

Section 4 describes the results. Section 5 assesses the magnitude of my estimates of the

effect of climate change. In Section 6, I present the conclusions and policy implications of

my findings.

2 Data and Summary Statistics

2.1 Data Sources

I base the empirical results of the study on daily data for the period 2005 through 2009 for

the 28 states. The dependent variable is the daily electricity demand of the state, measured

4



in million kilowatt hour (MKWh), as obtained by the operator of the national electricity

grid, the National Load Dispatch Centre (NLDC). The electricity consumption reported by

the NLDC is restricted electricity demand, which is equal to the electricity supplied by the

utilities. To obtain the unrestricted electricity demand, I add the state electricity supply

shortage to the electricity consumption data of NLDC. For Delhi and the eastern states, I

have obtained the observed daily shortage respectively from the Delhi Transco Ltd. and the

NLDC. For the other states, the observed daily shortage3 data is only available from 2008

onwards; therefore, I use the monthly shortage data published by the Central Electricity

Authority (CEA) of India to derive an approximate electricity supply shortage for each day

for the period before 2008.

The explanatory variables fall into three categories: (1) climate and weather variables;

(2) socio-economic characteristics; and (3) seasonal factors. The first category of explanatory

variables is climate and weather variables. I convert the mean daily temperature into cooling

degree days (CDD) during summer (with the mean temperature above 20.30C) and heating

degree days (HDD) during winter (when the mean temperature is below 20.30C). The CDD

and HDD quantify the difference between the daily mean temperatures above or below a

reference temperature. I calculate the HDD on day d on the basis of the relation: HDDd=min

(0,Td-20.3), where Td is the mean temperature on day d. I calculate the CDD on day d on

the basis of the relation: CDD=max (0,Td-20.3 ). As a measure of climate during summer,

I use the average of the annual cooling degree days during 2005-2009 or the state cooling

degree day index (CDDI). As a measure of climate during winter, I use the absolute value of

the average of the annual heating degree days during 2005-2009 or the state heating degree

day index (HDDI). I define the CDDI and HDDI as

CDDIit = 1/5

(
d=1825∑
d=1

max(0, Tid − 20.3)
)

HDDIit = 1/5

(
−
d=1825∑
d=1

min(0, Tid − 20.3)
)

The daily rainfall is the other weather variable. I construct both state-level daily tem-

perature and daily rainfall using the 10× 10 gridded daily dataset published by the Indian
Meteorological Department4 (IMD).

3The daily shortage data comprises five components: shedding due to transmission and distribution
constraints; shedding by discoms in theft-prone areas; shedding in order to restrict overdrawal; shedding due
to grid constraints; and shedding in order to restrict under-frequency operations.

4For Delhi and Chandigarh that are not identified in this gridded dataset due to their small size, I have
obtained station-level data from the website www.tutiempo.net/en/climate/India.
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The second set of variables that the study uses are socio-economic variables: income,

population and electricity prices. I use the gross domestic product per capita of a state as

an indicator of income and its stage of development. I take the annual real GDP (1999-

2000 prices) of the state and population from the Ministry of Statistics and Programme

Implementation. I construct the annual electricity price of the state using data from the

Central Electricity Authority (CEA) of India. First, I calculate the state electricity prices

for each sector - Agriculture, Commerce, Industry and Residential Use- by taking the simple

average over different categories5 (voltage and phases). I construct the average electricity

price for a state by taking the weighted average of the prices in these four sectors with the

share of electricity sales of each sector in total sales taken as weights.

The final category of regressors consists of variables accounting for industrial seasonality

and agricultural seasonality. In the agricultural sector (that accounts for 18 percent of total

electricity demand), energy requirements for water-pumping depend on a state’s agricultural

season and rainfall pattern. To capture agricultural seasonality, I control for agricultural

pumpsets and include an interaction of pumpsets with accumulated rainfall in the past 7 days.

The latter determines soil moisture and, therefore, the demand for pumping. I obtain data

on annual electricity using state agricultural pumpsets from the CEA. Industrial electricity

consumption (that accounts for about 45 percent of total demand) is largely temperature-

insensitive. However, there can be industrial seasonality due to business cycles, dependence

on agriculture for its supply of raw materials and product demand. To capture industrial

seasonality, I derive a state-specific monthly index of industrial production6 (MIIP). First,

I calculate the percentage deviation from the average in the MIIP at all-India level for each

month and year7. I take the average of the five percentage deviations from the average in

MIIP obtained for each month during 2005-2009 as an indicator of the industrial seasonality

for that month at all-India level. I multiply this all-India indicator of industrial seasonality

by the share of industrial electricity consumption in the total electricity consumption of a

state and the share of the state’s industrial output in the industrial output of India in order

to get a measure of state-specific MIIP . I take the data on the all-India monthly index of

5Since power requirement varies among consumers in terms of voltage and phases, the CEA computes the
average rates of electricity supply for various categories of consumers. For instance, in the case of industries,
it computes electricity prices for three different types: three-phase small-scale 400V; three-phase large-scale
11 KV, and three-phase very large-scale 33 KV. For domestic consumers, it gives prices for 230 V single-
phase or 400 V three-phase used for lighting, air-conditioning, water heating, cooking, etc. For agricultural
consumers, it reports prices for 230 V single-phase and 400 V three-phase used for running tube wells and
pump sets. For commercial consumers, it gives prices of 230 V single-phase and 400 V three-phase used for
equipment and appliances.

6Data on state-level MIIP is not available for most states.
7For instance, if in January 2005, the MIIP is 120 while the average MIIP in 2005 is 100, then the

percentage deviation for January in 2005 is +20%
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industrial production and the share of the state’s industrial output in the industrial output

of India from the Ministry of Statistics and Programme Implementation. I obtain the share

of industrial electricity consumption in the total electricity consumption of a state from the

CEA.

2.2 Summary Statistics.

Table (1) reports state-level summary statistics of all variables. The sample comprises a

balanced panel of 28 states and a total of 51,128 observations. For each state, there are

1819 daily observations during the years 2005-2009 after allowing for the necessary lags (i.e.,

the sum of rainfall in the past seven days). Over the period, mean state daily electricity

demand increased from 60 MKWh in 2005 to 79 MKWh in 2009 while the mean state daily

temperature increased from 24.3 to 25 degree Celsius8. About 78 percent of the sample ob-

servations represent the cooling demand with the observed mean temperature above 20.30C

while 22 percent represent the heating demand with the observed mean temperature below

20.30C. This shows an almost equal variation in temperature in summers and winters. The

average CDD is 6.8, which is higher than the average absolute value of HDD at 3.8, reflecting

relatively mild winters and hot summers.

Since India, given its vast size, displays a large variation in terms of its climate among

states, the CDDI too varies significantly from a low of 417 to a high of 2712 degree days.

Similarly, the HDDI varies between 0 and 1927 degree days. Equally important, the real

gross state domestic product per capita over the period too varies significantly, from a low

of INR 7500 to a high of INR 89300. At the same time, the mean state real gross state

domestic product per capita increased by 30 percent from approximately INR 25,300 in 2005

to INR 33,000 in 2009.

I plot all the states in the two-dimension space of gross domestic product per capita

and climate for the year 2009. Figure (1) presents a scatter plot of state gross domestic

product per capita versus CDDI. The plot shows that most states are hot with a high value

of the CDDI. While the states in the top right of the scatter plot are both hot and rich,

the states in the bottom right are hot but poor. Figure (2) presents a scatter plot of state

gross domestic product per capita versus HDDI. The plot shows that most states (except the

northern states) experience mild winters with a low value of the HDDI. The northern states,

on the other hand, with both high CDDI and HDDI, are characterized by strong temperature

variation during the different seasons. The southern states, with the highest CDDI and zero

8The annual mean temperature of India in 2009 was about +.91 degrees Celsius above the average
temperature (recorded during the 1961-1990 period) and was the warmest year since 1902. This superseded
the earlier five warmest years: 2002(0.71), 2006(0.60), 2003(0.56), 2007(0.55), and 2004(0.51) (GOI 2009).
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Table 1: State-level Summary Statistics
Variables Mean Standard deviation Max Min Obs

2005-2009 2009 change overall Within

from 2005 state

Daily Electricity Demand (MKWH) 69.53 79 19 78.22 16.31 431.5 0.1 51128

Climate and Weather

Daily mean Temperature (oC) 24.5 25 0.66 5.5 4.9 39 0.6 51128

Daily CDD ([Temp-20.3]*D(T>20.3)) 6.5 6.8 0.4 3.3 3 18.7 .001 40034

Daily HDD ([Temp-20.3]*D(T<20.3)) -4.3 -3.8 -0.6 3.4 2.7 0.00 -19.7 11094

Cooling Degree Day Index (CDDI) 1864 1864 - 542 0 2712 417 51128

Heating Degree Day Index (HDDI) 328 328 - 408 0 1927 0 51128

Rainfall (sum of last 7 days (mm)) 31.78 27.8 7 51.4 49 703 0 50932

Socio-Economic

GDPPC (Rs) 29000 33000 7600 15315 3231 89300 7500 51128

Population (million) 40.3 41.5 2.3 42.3 1.3 195 0.94 51128

Price(Paise/KWH) 269 243 -60 67 37 458 133 51128

% Villages Electrified 83.6 84.6 2.6 19 2.3 100 30.4 51128

Agriculture Pumps (thousand) 555.8 577.5 49.6 800.6 41.6 3116.6 0 51128

State MIIP 7554 -4082 51128

Note: All entries are simple averages over all 28 states.

HDDI experience only slight seasonal variations in temperature. The western and the eastern

states experience mild winters and hot summers while the north-eastern states experience

mild winters and mild summers.

Over the five years of the study period, relatively little variation within states is evident,

for population, agricultural pumpsets, percentage of villages electrified and real electricity

price that are used as control variables though they vary significantly between states.

3 Empirical Strategy

This section describes the econometric framework that I use to assess the temperature and

climate sensitivity of electricity demand. In Chapter 2, I estimated the U-shaped temper-

ature electricity curve that varies over time for Delhi using the semi-parametric variable
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Figure 1:
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Figure 2:
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coeffi cient approach. In this chapter, I estimate the observed non-linear relationship be-

tween electricity consumption and temperature using a piecewise linear regression method.

As external temperatures deviate above or below the reference temperature, the electricity

demand increases proportionally. The V-shaped temperature-electricity curve is estimated

with the minimum electricity demand point occurring at the reference temperature. I have

selected the reference temperature of 20.3 Celsius as it minimizes the residual sum of squares

and fits the observed data best9. I determine the upward sloping segment of the curve by

regressing the daily electricity demand on the daily CDD in summers. I allow the slope of

this rising segment to depend on climate and income by including interactions of CDDI and

GDPPC with CDD. Similarly I determine the downward sloping segment of the curve by

regressing daily electricity demand on daily HDD in winters. I allow the slope of this falling

segment to depend on climate and income by including interactions of HDDI and GDPPC

with HDD.

The first prediction of my empirical model is that electricity demand is positively related

to temperatures in summers and negatively related to temperatures in winters. I first es-

timate a natural log electricity demand regression, which includes weather variables (CDD

and HDD) plus controls for socio-economic characteristics and seasonal factors without in-

teractions, as follows:

ln(Eid) = θi + κQ + υw + δ ln(GDPPCit) + η ln(Popit) + γ ln(priceit)

+ϑ ln(Pumpit) + ρ ln(Pumpit) ∗ (Rain in Week)id + ω(Rain in Week)id

+π(Major Hol)id + αHDDid + βCDDid + εid (1)

where ln(Eid) is the log of total electricity demand of a state i on day d. θi is a state-

specific fixed effect allowing an idiosyncratic daily electricity demand for each state. It

accounts for factors such as climate, geography, state-specific policies and natural resource

endowments, which are fixed for a state over time. The term θi sweeps out the variation

between states with estimates based on only the variation within each state. κQ is a quarter

fixed effect allowing for general shocks in daily electricity demand affecting all states each

quarter. This captures industrial and agricultural seasonality that might influence daily

electricity demand during a year. υw is a day of week fixed effect that captures the weekly

9The commonly used reference temperature in the literature is 18 degrees Celsius. This threshold varies
from region to region. In the case of India, though I searched between 17-220C, I found the residual sum
of squares to be minimum in the interval 20.3—210C. In chapter 2, I found that the minimum temperature
threshold interval for Delhi has shifted from approximately 20-220C in the 2000-05 period to about 18.5-200C
in the 2006-09 period.
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periodicity of electricity demand. For example, there may be lower demand on weekends.

ln(GDPPCit) is the log of gross domestic product per capita of a state in year t, ln(Popit)

is the log of the population of a state in year t, ln(priceit) is the log of the electricity

price of a state in year t, Major Hol is a dummy variable that takes the value one for

a major holiday, and zero otherwise 10 , ln(Pumpit) is the log of the number of electricity

using agricultural pumpsets of a state in the year t , Rain in Week measures the sum of

daily rainfall in millimeters (mm) in the past 7 days and is interacted with the number of

agricultural pumpsets. CDDid =max (0,Tid-20.3 ) is the cooling degree days on day d for

state i . It takes a positive value in summers when temperature is above 20.30C and zero

in winters when temperature is below or equal to 20.30C. HDDid=min (0,Tid-20.3) is the

heating degree days on day d for state i . It takes a negative value in winters and zero in

summers. The last term, εid, in equation (1) is the stochastic error term.

I expect β > 0 and α < 0 . This prediction is quite straightforward and is confirmed by the

existing literature ([Al-Zayer and Al-Ibrahim, 1996]; [Sailor and Muñoz, 1997]; [Valor et al., 2001];

[Sailor, 2001]; [Pardo et al., 2002]; [Mirasgedis et al., 2007]).

Prediction 2 of my model states that the effect of the temperature increase in summers is

generally higher in a hotter climate as people adapt with higher cooling equipment. Similarly,

a higher negative response to temperature increases in winters is to be expected in colder

climates as people adapt with higher heating equipment. To evaluate this prediction, I

estimate Model B that includes an interaction of CDDid with CDDIi and an interaction of

HDDid with HDDIi .I estimate the model as

ln(Edid) = θi + κQ + υw + υ′Xid

+α1HDDid ∗HDDIi + β1CDDid ∗ CDDIi + εid (2)

where X includes all controls for socio-economic characteristics and seasonal factors as

in eq (1). It is worthy of note that, in Model B, I drop the independent terms of HDD and

CDD, the reason being that the slope of the rising segment of the V-shaped curve will be

zero if the CDDI is zero and the slope of the falling segment will be zero if the HDDI is

zero. The marginal effect of daily temperature on the log of electricity demand is α1∗HDDIi
if Tid ≤ 20.30C and β1 ∗ CDDIi if Tid > 20.30C. I expect β1 > 0 and α1 < 0. I base the

estimates of β1 and α1 in this model on within-state variations in CDD and HDD and

between-state variation in the CDDI and HDDI.
10A major holiday is one that is declared to be a holiday for all government employees (on account of

national or religious events). Minor holidays are the 2 additional days of holidays that government employees
are entitled to select for minor religious festivals from a list of scheduled holidays.
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According to Prediction 3 of my model, the effects of both the hotter and the colder

climates are expected to be more pronounced at the higher income levels. Thus, I include

a three-way interaction of CDD, CDDI and ln GDPPC in summers and HDD, HDDI

and ln GDPPC in winters to study the impact of income on the climate sensitivity of

electricity demand in India. In other words, income and climate will interact to determine

the temperature sensitivity of the electricity demand in a given state. To evaluate this

hypothesis, I estimate Model C as:

ln(Edid) = θi + κQ + υw + υ′Xid

+α1HDDid ∗HDDIi + β1CDDid ∗ CDDIi
+α2HDDid ∗HDDIi ∗ ln(GDPPCit)
+β2CDDid ∗ CDDIi ∗ ln(GDPPCit) + εid (3)

The marginal effect of daily temperature on the log of electricity demand is α1 ∗HDDIi
+α2HDDIi ∗ ln(GDPPCit) if Tid ≤ 20.30C and η1 ∗ CDDIi + η2 ∗ CDDIi ∗ ln(GDPPCit)
if Tid > 20.30C. We expect α2 < 0 and η2 > 0 .

For robustness checks, I estimate a less restrictive model using region fixed-effects instead

of state fixed-effects. I estimate Model D as:

ln(Edid) = Ri + κQ + υw + υ′Zid
+α1HDDid ∗HDDIi + η1CDDid ∗ CDDIi
+α2HDDid ∗HDDIi ∗ ln(GDPPCit)
+η2CDDid ∗ CDDIi ∗ ln(GDPPCit) + εid (4)

where Z includes all controls inX and two additional regressors, the proportion of villages

electrified, and the share of industry in the gross domestic product of a state. Ri captures

unobserved region-level heterogeneity by region fixed-effects. It accounts for factors which

are fixed for a region over time. This model is likely to suffer from omitted variable bias

as there are factors such as state-specific policies that may also be correlated with other

explanatory variables such as income which may influence electricity demand significantly

though this model does not account for them. The key advantage of this model is that

it estimates coeffi cients using variation across states within a region, and variation within

states over time. This would result in more precise estimates for the variables which are

observed annually such as GDPPC, population, and price as the variation within a state
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over time is relatively much less than variation across states.

4 Regression Results

Table (2) summarizes results from all the models. The Table shows the marginal effects and

associated standard errors of all the variables at sample means. Table A1 in the appendix

reports the full estimation results. I use a range of models in order to explore the sensitivity

of calculated coeffi cients to the equation specification. All models are estimated by ordinary

least squares OLS. I report Newey-West type standard errors by Driscoll and Kraay (1998)

that allow for autocorrelated and cross-sectionally correlated errors of the general form.

Column (1) of Table (2) reports the estimates of the basic model without interactions

as in eq(1). In column (2), I interact HDD with the HDDI and CDD with the CDDI and

estimate eq(2). In addition to the weather and climate interaction in column (2), column

(3) adds the interaction of HDD with the HDDI and GDPPC and CDD with the CDDI

and GDPPC to estimate eq(3). Column (4) estimates a region fixed-effects model as in

eq(4). The R2 value in all models is essentially unity; however, this is an artifact of the

inclusion of state or region dummies. I prefer the full interacted state fixed-effect Model

C over other models as it has the lowest standard errors for most of the coeffi cients. For

purposes of robustness checks, I also estimated (but do not report for brevity) models with

state-by-quarter fixed-effects and state-specific trends and find the results of the study to

remain substantively unchanged.

Of primary interest here is the impact of change in the weather (CDD, HDD) and cli-

mate (HDDI, CDDI) on electricity demand. The basic results remain similar across models

although in the more restricted state fixed-effect models (column (1-3)), the coeffi cients

and standard errors of weather and climate variables are smaller than those in the region

fixed-effects regression (column (4)), suggesting that unobserved state differences (for e.g.,

state-specific policies) may have biased the parameter estimates in the column (4).

As discussed above, the impact of temperature on electricity demand is non-linear with

the slope going from negative or zero at low temperatures to positive impacts with increases

in temperature. This pattern is borne out clearly in Table (2). The impact of a 10C

change in temperature in winters (when temperature is below 20.30C) is small but negative

and significant across all specifications. The impact of a 10C change in temperature in

summers (when temperature is above 20.30C) is large and positive and significant across all

specifications.

The magnitude of the coeffi cient of the CDD exceeds the coeffi cient of the HDD in all the
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Table 2: Marginal Effect of Determinants of Electricity Demand at Sample Mean
State Fixed-Effect Region Fixed-Effect

(1) (2) (3) (4)
Model A Model B Model C Model D

VARIABLES
Key Variables
HDD -0.00586*** -0.00111*** -0.00162*** -0.0152***

(0.000994) (0.000246) (0.000236) (0.000711)
CDD 0.0196*** 0.0147*** 0.0145*** 0.0196***

(0.000911) (0.000876) (0.000839) (0.000872)
CDDI 0.00554*** 0.00544*** 0.00736***

(0.000330) (0.000316) (0.000328)
HDDI 0.00135*** 0.00197*** 0.0184***

(0.000298) (0.000286) (0.000862)
Log(GDPPC) 1.130*** 1.132*** 1.131*** .706***

(0.0212) (0.0208) (0.0192) (.0069)
Control Variables
Log(Population) 0.109 0.111 0.168** 0.883***

(0.104) (0.113) (0.0817) (0.00430)
Log(Price) 0.0114 0.0125 0.0104 -0.188***

(0.0102) (0.0109) (0.0106) (0.00815)
MIIP 1.51e-05*** 1.80e-05*** 1.88e-05*** 2.01e-05***

(2.17e-06) (2.27e-06) (2.34e-06) (2.29e-06)
% Villages Elect 0.00984***

(0.000112)
Industry Share 0.0257***

(0.000403)
Major Holiday 0.000923 0.00223 -0.0157***

(0.00382) (0.00368) (0.00542)
Log(Agr_Pumpsets) 0.0100** 0.00986** 0.0122*** 0.0400***

(0.00487) (0.00502) (0.00420) (0.00272)
Rainfall_Weeksum -0.000506*** -0.000522*** -0.000465*** -0.000387***

(4.58e-05) (4.63e-05) (4.67e-05) (8.94e-05)
Observations 50,932 50,932 50,932 50,932
R-squared 0.993 0.993 0.994 0.97
State FE YES YES YES NO
Quarter FE YES YES YES YES
Day of Week FE YES YES YES YES
Region FE NO NO NO YES

Driscoll and Kraay (1998) Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1
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models. The results indicate a seasonal heterogeneity in how people will respond to climate

change along intensive margins of adjustment. For example, for the preferred Model C of this

study, a 10C increase in temperature in summer increases expected daily electricity demand

by 1.5 per cent (as a result of greater usage of cooling equipment) while a 10C increase in

temperature in winter reduces electricity demand by about 0.2 percent (due to lower usage

of heating equipment) at the sample mean of income and climate.

The response to the CDDI and HDDI captures the adjustment along the extensive margin

due to climate change. Across specifications, the marginal impacts of CDDI and HDDI are

positive and significant. For my preferred specification (Model C), I estimate an average of

a 0.5 percent and 0.2 percent increase in electricity demand for a 100-degree day increase in

the CDDI and HDDI, respectively. In Model D, the marginal effect is slightly higher at 0.7

percent for the CDDI (with the same standard error as in Model C) whereas it is significantly

higher at 1.8 percent for the HDDI (though very noisy).

The results provide useful insights on how the intensive adjustments may depend on the

extensive adjustments due to climate change. In Model B, when I include only the two-way

interaction term of CDD and CDDI in summers and HDD and HDDI in winters, both the

interactions are significant and have the expected signs. The interaction of CDD with CDDI

is positive signifying that a hotter climate will lead to more space-cooling equipment and

higher temperature sensitivity. The interaction of HDD with HDDI is negative signifying

that the colder climate will lead to more space-heating equipments and higher negative

temperature sensitivity.

In Models C and D, the interaction of the CDD with the gross domestic income per capita

and CDDI is positive and significant at the p<.01 level. The sizes of the coeffi cients suggest

that the interaction effect of the CDDI with income that I have identified is quite large.

Thus, I expect the effects of hotter climate to be more pronounced at the higher income

levels. The interaction of the HDD with the gross domestic income per capita and HDDI is

negative and significant at the p<.11 level in Model C. Model D (estimated with region fixed

effects), which includes both the two-way interaction of HDD and HDDI and the three-way

interaction of HDD, HDDI and income, lead to a positive and significant coeffi cient on the

three-way interaction term. This may indicate misspecification in the model as the variation

in the HDDI is less (with many states having zero HDDI) and it may not be enough to

estimate this effect. Thus, I drop the three-way interaction of HDD, GDPPC and HDDI in

Model D to get meaningful estimates of the coeffi cients.

Although these results provide good insight into the magnitude and importance of each

interaction effect, a visual inspection of the marginal effect of temperature at various combi-

nations of climate and income may be more helpful in recognizing the presence of interactions.
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Figure 3:

Figures (3) and (4) present the temperature sensitivity in summers and winters, respectively,

from Model C. At the mean income (INR 29,234) and CDDI of 2000, a 1 degree increase in

temperature in summer increases expected daily electricity demand by about 1.6 per cent.

At the highest level of income (INR 89,355) in the sample and CDDI of 2000, a 1 degree

increase in temperature in summer increases expected daily electricity demand by about

3.6 per cent. At the mean income (INR 29,234) and HDDI of 500, a 1 degree increase in

temperature in winter decreases expected daily electricity demand by about 0.2 per cent. At

the highest level of income (INR 89,355) in the sample and HDDI of 500, a 1 degree increase

in temperature in winter decreases expected daily electricity demand by about 0.4 per cent.

I draw the following conclusions based on the above results. The degree to which electric-

ity demand in a given state is sensitive to changes in climate will depend both on its climate

type and on the level of its economic development. As people’s standard of living improves,

their use of air conditioners and other temperature-controlling equipment tool will increase,

thus increasing their sensitivity to climate change. As discussed earlier, the overall impact of
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Figure 4:

climate change will be jointly determined by both intensive and extensive adjustments. The

study finds that the interaction of income with the CDDI and CDD in summers has a much

higher impact on electricity demand than the interaction of income with the HDDI and HDD

in winters. As income determines how people adapt to climate change, both global warming

and income growth will have asymmetric effects on electricity consumption in summers and

winters. The results also indicate that an increase in temperature in summers has an im-

pact on electricity consumption which is seven times the size of the impact of an equivalent

increase in temperature on electricity consumption in winters and that an increase in net

electricity demand would therefore be the likely result of climate change.

The control variables in Table (2) provide a rich set of results in and of themselves. The

coeffi cients of the socio-economic variables such as GDPPC, population, price and pumpsets

turn out to be more precise with much smaller standard errors in the region fixed-effects

regression than the state fixed-effects regressions. The reason is the much larger variance

in the socio-economic variables across states within a region than within a state over time,

which results in greater residual variation and more precise estimates in the region fixed-effect

model than in the state fixed-effect model.

Electricity demand is higher in the wealthier states than in the poorer states. A 1 percent
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increase in income per capita results in about 1-0.7 percent increase in daily electricity

demand in most models. Interestingly, the elasticity of electricity demand with respect

to GDPPC is higher than elasticity of electricity demand with respect to temperature and

climate. As expected, price has a significant negative impact and population has a significant

positive impact on electricity demand in the region fixed-effects regression. A 1 percent higher

electricity price results in about 0.2 percent decrease in daily electricity demand. A 1 percent

increase in population results in almost 0.9 percent increase in the daily electricity demand

of a state. As expected, in the state fixed-effect models, price and population (with a small,

within-state variation) turns out to be insignificant in most models. Most models suggest

that higher the use of agricultural pumpsets higher the electricity demand; that rainfall

has a significant negative impact on electricity demand; that the interaction of pumpsets

with accumulated rainfall in the last thirty days is negative and significant; that on holidays,

Saturdays and Sundays, expected electricity demand is estimated to be somewhat lower than

the average level; that the index of industrial seasonality has a positive impact on electricity

demand; that an increase in the proportion of villages electrified results in an increase in

electricity demand; that higher industrial share in the income of a state increases electricity

demand.

5 Impact of Climate Change on Electricity Demand

In this section, I explore the effect of predicted climate change on electricity demand. I

calculate the predicted impact on electricity demand for each state as a difference between

predicted electricity demand under the reference scenario of no climate change and the

predicted electricity demand under the climate change scenario for two time-periods, short-

term (2030) and mid-term (2050). I then sum each state’s change in electricity demand

to calculate the impact on India. Although these short- and mid-term predictions have

important implications for analyzing the impact of global warming on electricity demand

because they are based on available data for the past five-years, these long-term forecasts may

not carry a very high degree of precision. In an uncertain world, the underlying assumptions

of our predictions may not hold true till 2030 and 2050. Hence, the results obtained in this

study should not be interpreted as exact forecasts but as roughly indicative of the direction

and magnitude of the effects that might be expected from climate change on electricity

demand.

According to the fifth assessment report by the Intergovernmental Panel on Climate

Change (IPCC), the mean surface temperature increase in South Asia is likely be in the

range of 1◦C to 1.5◦C (medium confidence) for the period 2016-2035 (relative to 1986-2005)
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and in the range of 1.5-3◦C (medium confidence) for the period 2046-2065. In line with these

scenarios, for the purposes of projections in this paper, I consider a uniform increase of 1◦C

in the mean temperature for 2030 and a uniform increase of 2◦C in the mean temperature

for 2050. I apply these scenarios uniformly by season and region to India in the calculations

that follow. In addition to these two uniform scenarios, I also predict the future electricity

demand under the reference scenario of no climate change.

I consider two different scenarios for future growth in the gross domestic product of

India: a) the target average growth rate in the twelfth Five-Year Plan of 6 percent per year

from 2010 to 2050; b) average annual growth rate of 4 percent per year from 2010 to 2050. I

assume population to grow at an average annual rate of 1.1 percent per year (medium UNDP

scenario). I assume that the individual states will grow at a rate that will enable them to

maintain their share in India’s GDP at the same mean share rate as during the 2005-2009

period. I assume the same for future state population projections. The percentage of villages

electrified, the number of agricultural pumpsets and the share of the industry in the state’s

GDP in each state increase linearly between 2010 and 2050 at the rate achieved during 2005-

2009. For other predictor variables such as-rainfall, prices, holiday and week day dummy,

and industrial seasonality index (MIIP), I assume the same values as in 2009.

Between 2009 and 2030, India’s GDP will double if it grows at the 4 percent p.a. and

treble if it grows at 6 percent p.a. According to the preferred Model C of this study, in a

reference scenario with no climate change, electricity demand in India is expected to double

(that is, increase by 105 percent) between 2009 and 2030 with 4 percent p.a. GDP growth and

more than treble (i.e., increase by 224 percent) with 6 percent p.a. GDP growth. Between

2009 and 2050, India’s GDP will increase by a factor of 4 if it grows at 4 percent p.a. and

by a factor of 10 if it grows at 6 percent p.a. The electricity demand is expected to become

4 times (i.e., increase by the factor of 3) with 4 percent p.a. GDP growth and 10 times (i.e.,

increase by the factor of 9) with 6 percent p.a. GDP growth by 2050.

Estimates of the impact of climate change: Results from the two models (C and D) are

given in Table(3). Although climate change will happen in future, I present climate change

impacts for the 2009 economy in order to compare the impacts with the richer economies of

2030 and 2050. The study finds that the climate sensitivity of electricity demand in India

is likely to be highly sensitive to income growth. In 2009, I expect a 1 degree increase in

the mean temperature to result in about 4—6 percent increase in the electricity demand over

the reference scenario of no climate change. In 2030, I expect a 1 degree increase in the

mean temperature to result in about 7—9 percent increase in the electricity demand over

the reference scenario with a 4 percent growth in the GDP and about 9—12 percent increase

in the electricity demand over the reference scenario with a 6 percent growth in the GDP.
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Table 3: Predicted Impact of Climate Change on Electricity Demand
State Fixed Effect (Model C) Region Fixed Effect (Model D)

GDP growth p.a from 2009
Year Intensive(I) / Scenario 4% 6% 4% 6%

Extensive (E)
2009 I 10c 2 2 2.5 2.5
2009 I+E 10c 4.4 4.4 5.9 5.9
2030 I 10c 3 3.7 3.8 4.9
2030 I+E 10c 6.9 8.6 8.95 11.6
2050 I+E 10c 9.4 13 12.1 17.7
2050 I+E 20c 21.6 30.7 28.5 43

In the most likely scenario of a mean temperature increase of about 20C by 2050, I expect

electricity demand to rise about about 22-29 percent higher with a 4 percent growth in the

GDP and about 31-43 percent higher over the reference scenario with a 6 percent growth in

the GDP. In 2030 and 2050, India will be a much richer economy; thus, I predict the impact

of a 1 degree increase in the mean temperature to be accordingly higher in comparison with

2009.

Table(3) also presents the contributions of intensive and extensive adjustments sepa-

rately in the event of an increase in total electricity demand due to climate change for the

years 2009 and 2030. i obtain the contribution of intensive adjustments by allowing the

temperature distribution to change where the CDD and HDD on each day is increased by

10c holding the CDDI and HDDI constant. The results suggest that the contribution of ex-

tensive adjustments is somewhat higher than that of intensive adjustments. Also the share

of extensive adjustments in total climate impacts increases with the level of income. For

example, according to the preferred Model C of my study, the share of extensive adjust-

ments in total impacts is about 54 percent in 2009 and 57 percent in 2030 (in the 6 percent

growth scenario). Of the total increase in electricity demand of 8.6 percent over the reference

scenario in 2030 under the 6 percent GDP growth scenario, I predict a 3.7 percent increase

due to intensive adjustments and 4.9 percent increase due to extensive adjustments. Thus,

extensive adjustments play an important role in determining the impact of climate change on

electricity demand in India. The results of the study suggest that electricity demand mod-

els that do not account for extensive adjustments are likely to underestimate the climate

change impacts on electricity demand, especially in developing countries like India, where

the current penetration of space conditioning equipment is very low.

The extent of climate change effects on individual states will depend on their climate type

and level of income. Thus, Delhi, Chandigarh, Gujarat, Maharashtra, Haryana, Punjab,
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Kerala, Karnataka, Andhra Pradesh and Tamil Nadu can be categorized as relatively rich

and hot states with above average gross domestic product per capita and cooling degree

days. Bihar, Jharkhand, Orissa, Uttar Pradesh, Madhya Pradesh, Rajasthan, Chhattisgarh

and West Bengal, on the other hand, are relatively hot but poor states with above average

cooling degree days and below average gross domestic product per capita. Himachal Pradesh

with above average gross domestic product per capita and above average heating degree days

is a relatively rich and cold state. Uttarakhand and Jammu and Kashmir with below average

gross domestic product per capita and above average heating degree days are relatively poor

and cold states. Figures (5) and (6) show the predicted climate change impacts by state

across India in 2030.

The five rich and hot states-Delhi, Maharashtra, Gujarat, Andhra Pradesh and Tamil

Nadu-will therefore be the most affected in terms of electricity demand due to climate change

with an estimated impact of 11-17 percent. The next most affected group includes Karnataka,

Kerala, Haryana, Orissa and Chandigarh with the estimated impact at 8-12 percent. The

third most affected group comprises poor and hot states such as Bihar, Jharkhand, Uttar

Pradesh, Madhya Pradesh and all north-eastern states with the estimated impacts at 3-10

percent. The least affected states are the three cold states-Jammu and Kashmir, Himachal

Pradesh, and Uttarakhand. Jammu and Kashmir turns out to be the only state the net

electricity demand of which reduces by 1-5.5 percent due to climate change in 2030. In the

case of Himachal Pradesh and Uttarakhand, there will be an increase in electricity demand

but it would be less than 2 percent.

6 Conclusion

The empirical evidence from India in this study suggests that the climate sensitivity of

electricity demand in a developing country is likely to be highly sensitive to income growth.

I use a state-level panel dataset to estimate the effect of daily temperature (a key indicator

of weather) and long-term climate on electricity demand which is conditional on state or

region fixed-effects. My preferred estimates, using a 1 degree Celsius uniform climate change

scenario, indicate that climate change will increase electricity demand by 6.9 percent with 4

22



Figure 5:
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Figure 6:
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percent p.a. GDP growth and by 8.6 percent with 6 percent p.a. GDP growth in 2030 over

the reference scenario of no climate change. This reflects the fact that the estimated marginal

effect of a hotter climate on electricity demand is greater when income is higher among the

populace than otherwise. It points to the critical need to engage in electricity demand

management and boost effi ciency in use of electricity to become a low-energy consuming

society in the future.

The rapid increase in electricity demand due to climate change results from both intensive

and extensive adjustments in heating and cooling requirements. The findings of the study

suggest that over 50 percent of the climate change impacts will be due to extensive adjust-

ments. This highlights the importance of potential interactions between increasing cooling

degree days and increasing incomes, and the impact of the resulting long-term adjustments

(such as the higher penetration of air cooling devices) on the electricity sector. Electricity

demand models that do not account for extensive adjustments are likely to underestimate

the climate change impacts on electricity demand, especially in developing countries like

India where the current penetration of space conditioning equipment is very low.

Additionally, the analysis indicates considerable heterogeneity in the predicted impacts

across states. The nature and extent of the impacts will vary geographically, depending

on the climate and development status of the states. Thus, the states to be most affected

by climate change will be the rich and hot states. Further, research using data from other

countries and sectors would prove extremely useful in helping us understand not just how

climate and income changes in the future may impact electricity demand but also how historic

climatic and income differences across different parts of the world may have contributed to

existing differences in electricity demand between nations.
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Table 4: Estimates of Electricity demand Models 2005-2009
State Fixed-Effect Region Fixed-Effect

(1) (2) (3) (4)
Model A Model B Model C Model F

VARIABLES
Log(GDPPC) 1.130*** 1.132*** 1.019*** 0.551***

(0.0212) (0.0208) (0.0191) (0.00882)
Log(Population) 0.109 0.111 0.168** 0.883***

(0.104) (0.113) (0.0817) (0.00430)
Log(Price) 0.0114 0.0125 0.0104 -0.188***

(0.0102) (0.0109) (0.0106) (0.00815)
Log(Agr_Pumpsets) 0.0115** 0.0118** 0.0140*** 0.0454***

(0.00484) (0.00502) (0.00418) (0.00268)
MIIP 1.51e-05*** 1.80e-05*** 1.88e-05*** 2.01e-05***

(2.17e-06) (2.27e-06) (2.34e-06) (2.29e-06)
Major Holiday 0.000923 0.00161 0.00223 -0.0157***

(0.00382) (0.00378) (0.00368) (0.00542)
lpump_rainsum7 -4.85e-05*** -6.03e-05*** -5.72e-05*** -0.000169***

(1.11e-05) (1.12e-05) (1.12e-05) (1.68e-05)
Rainfall_Weeksum -1.34e-05 8.99e-05 0.000117 0.00133***

(0.000113) (0.000111) (0.000112) (0.000177)
HDD -0.00586***

(0.000994)
CDD 0.0196***

(0.000911)
HDDI*HDD -0.000337*** 0.00250 -0.00230***

(7.46e-05) (0.00192) (0.000108)
CDDI*CDD 0.000791*** -0.00772*** -0.0111***

(4.71e-05) (0.000433) (0.000538)
HDDI*HDD -0.000293+

*Log(GDPPC) (0.000188)
CDDI*CDD 0.000833*** 0.00120***
*Log(GDPPC) (4.34e-05) (5.28e-05)
% Villages elect 0.00984***

(0.000112)
Industry share 0.0257***

(0.000403)
Constant -8.791*** -8.873*** -8.789*** -18.11***

(1.770) (1.955) (1.429) (0.116)

Observations 50,932 50,932 50,932 50,932
R-squared 0.993 0.993 0.994 0.97
State FE YES YES YES NO
Quarter FE YES YES YES YES
Day of Week FE YES YES YES YES
Region FE NO NO NO YES
Driscoll and Kraay (1998) standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1, +p<.11
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