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Abstract

We consider the domain of selfish and Lipschitz continuous preferences over a “rich” allocation

space and show that onto, strategyproof and allocation non-bossy social choice functions are

affine maximizers. Roberts (1979) proves this result for a finite set of alternatives and an

unrestricted valuation space. In this paper, we show that in a sub-domain of the unrestricted

valuations with the additional assumption of allocation non-bossiness, using the richness of the

allocations, the strategyproof social choice functions can be shown to be affine maximizers.

We provide an example to show that allocation non-bossiness is indeed critical for this result.

This work shows that an affine maximizer result needs certain amount of richness split across

valuations and allocations.

1 Introduction

Allocating divisible resources or tasks among competing agents is a classical economic problem. The

proliferation of the Internet and the rapid development of computing power have created a mar-

ketplace for electronic resources. The consumers in these markets are typically individuals, small

or medium businesses who pay the service providers for Internet connectivity. The frequencies of

mobile telephony or 2G/3G bandwidth are scarce resources and the businesses and service providers

often have different valuations for the resources which are private information. Designing mecha-

nisms that reveal the agents’ demands truthfully is therefore an important problem. There is an

extensive literature that deals with such applications (Yäıche et al., 2000; Sahasrabudhe and Kar,

2008; Wang et al., 2012). A similar resource allocation problem arises in the context of cloud

computing and cloud storage.

All these markets use money extensively for their services, and agents privately observe their

valuations or the costs of their tasks. Following the vast literature in this area, we use quasi-

linear utilities to model the payoffs. In addition, the valuations are private and selfish (an agent’s

∗We are grateful to Siddharth Chatterjee, Debasis Mishra and Shigehiro Serizawa for helpful discussions. We also

thank two anonymous reviewers and the Associate Editor for valuable comments.
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valuation is a function of her own resource share). However, the valuations are not assumed to

be increasing in the amount of the resources consumed. The following example shows that this

situation occurs often in practice. Consider an agent who requires a certain amount of resource

(to run her business optimally) say λ ∈ [0, 1] fraction of the divisible resource. However, there is

a resource maintenance cost that increases proportionally with the allocated resource. As long as

her allocation is δ(< λ), her returns are more than the cost and the valuation increases. But if she

is allocated more than a share of λ, the cost of maintaining the resource is more than the returns

and her valuation decreases. So the valuation has a peak in the amount of the resource share. In

a similar way we can construct examples where multiples of a particular amount of resource share

is desired by an agent and therefore the valuation can have multiple peaks.

The main result of this paper shows that the strategyproof and allocation non-bossy mechanisms

in this model must belong to the well-known affine maximizer class. An immediate consequence of

this result is that the payments are of a specific functional form.

In the following two subsections, we present the related literature and a panoramic sketch of

the proof respectively.

1.1 Relationship to the literature

Our paper is related to two different strands in the literature. The first deals with results that

characterize social choice functions (SCFs) that are affine maximizers. 1 The original result appears

in Roberts (1979). It considers a finite set of allocations A (with |A| ≥ 3) and an unrestricted

valuation domain. According to the result, an onto and strategyproof SCF must be an affine

maximizer. The case with |A| = 2 differs significantly from the |A| ≥ 3 case and is addressed in

Marchant and Mishra (2014). They show that the class of onto, strategyproof SCFs expands to the

class of generalized utility function maximizers. If the SCFs are required to satisfy an additional

independence condition, this class reduces to the class of affine maximizers. Carbajal et al. (2013)

extend this result to an infinite allocation space. They consider a compact set of allocations and

unrestricted continuous valuations and show that the affine maximizer result continues to hold.

All the results mentioned above require “sufficient” richness in the valuation space. In particular,

the valuation of an agent is required to depend on the allocations of all agents and therefore not

compatible with selfish valuations.

The assumption of selfish valuations constitutes a domain restriction; consequently the class of

strategyproof SCFs expands beyond that of the class of affine maximizers. This has been shown

in several papers. Lavi et al. (2003) considers combinatorial auction domains. They show that

strategyproof SCFs are ‘almost affine maximizers’ provided they satisfy an independence of ir-

relevant alternatives assumption. Mishra and Quadir (2014) characterizes strategyproof SCFs for

single object auctions. They show that this is a larger class than that of affine maximizers even

with the non-bossiness assumption. There are other characterization results for restricted domains,

e.g., Maya and Nisan (2012) for the two player cake-cutting problem, that show that the class of

strategyproof SCFs is larger than that of the affine maximizer class.

1The term ‘affine maximizer’ was coined in Meyer-ter Vehn and Moldovanu (2002).
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Our paper is also related to the literature on the division model introduced in Sprumont (1991).

In the single dimensional version of this model, a task has to be allocated amongst several agents.

Monetary compensation is not allowed and valuations are assumed to be single-peaked. A salient

allocation rule in this setting is uniform rule characterized in Sprumont (1991) and in several other

papers using a variety of axioms (see, e.g., Ching (1994)). Recently, this model has been extended

to multiple dimensions (Cho and Thomson, 2013; Morimoto et al., 2013).

Our paper differs from both strands of the literature with respect to the model and the results.

We consider a task / object allocation space that is separable into allocations for each agent. On

this domain, we consider arbitrary selfish valuations. The valuation space is a strict subclass of the

unrestricted valuations, but is different from the sub-domains considered in the literature above.

Furthermore, in contrast to the affine maximizer literature, we consider a ‘rich’ allocation space -

the set of allocations is a compact subset of [0, 1]n×m. In contrast to the division model, single-

peakedness is replaced by monetary transfers in quasi-linear form.

In this model, we show that an onto, strategyproof SCF belongs to the class of affine maximizers

if they satisfy the additional assumption of allocation non-bossiness. We observe that if ‘richness’

of the valuation domain is complemented with the ‘richness’ in the allocation space, then the affine

maximizer result is restored. We believe that this observation is important and novel.

1.2 Brief overview of the proof

The affine maximizer theorem in Roberts (1979) has been revisited several times with different

proofs (Dobzinski and Nisan, 2009; Lavi et al., 2009; Mishra and Sen, 2012; Carbajal et al., 2013).

Our proof builds on the arguments in Roberts (1979), Lavi et al. (2009) and Carbajal et al. (2013).

The first two papers consider finite alternative space, while the last considers an uncountable

compact alternative space with continuous valuations. As we have remarked earlier, all these papers

require richness in the valuation space that is ruled out by the selfish valuations assumption. A

critical element of these proofs is the construction of a value difference set for any two distinct

allocations which is then shown to be a half-space. In the selfish valuation domain, this idea cannot

be applied directly since there can exist two distinct allocations x and y whose i-th components xi
and yi are identical. The value difference set for these two allocations will have zero at the i-th

component for all vectors and will cease to have the half-space property.

In order to overcome this difficulty, we construct a subset of the allocation space called the

distinct component set (DCS) that has distinct elements in each of the components. We show the

existence of a maximal DCS and show that it is dense 2 in the allocation space. Our proof proceeds

by establishing the affine maximizer result on this maximal and dense DCS and then extending it

to the full allocation space. The allocation non-bossiness assumption is used critically to establish

the appropriate monotonicity condition required for the result.

The rest of the paper is organized as follows. We present the formal model in Section 2, state

the main result in Section 3 and provide its proof in Section 4. We make a remark about the

revenue equivalence result in Section 5. In Section 6, we discuss a more general result that can be

2A set D is dense in a metric space X, if every x ∈ X either belongs to D or is a limit point of D.
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proved using the same proof. We conclude the paper in Section 7.

2 The Model and Definitions

Let N = {1, . . . , n}, n ≥ 2 be the set of agents. There is a set J = {1, . . . ,m} of perfectly divisible

tasks (or objects) to be allocated among the agents. Let xij ∈ [0, 1], i ∈ N, j ∈ J be the fraction of

task j assigned to agent i. We assume that each task is fully allocated, i.e.,
∑

i∈N xij = 1,∀j ∈ J .

Let xi ≡ (xi1, . . . , xim) ∈ [0, 1]m denote the fractions of the tasks allocated to agent i. An allocation

x is therefore a matrix where the rows and columns correspond to the agents and tasks respectively.

The (i, j)-th element of this matrix is xij , as explained above. Formally, we define the set of

allocations to be:

A = {z ∈ [0, 1]n×m :
∑

i∈N

zij = 1,∀j ∈ J}

Observe that the allocations in A are separable, i.e., it can be split into allocations for each agent,

and is compact.

A valuation function for agent i is a Lipschitz continuous 3 map ui : A → R. It is selfish if,

ui(xi, x−i) = ui(xi, x
′
−i), for all (xi, x−i), (xi, x

′
−i) ∈ A. Let x ∈ A. If ui is selfish, we can write

ui(x) = ui(xi) without loss of generality. Selfishness implies that the valuation of an agent depends

only on the task portions assigned to her, and does not depend on the task portions assigned to

other agents.

Definition 1 (Arbitrary Selfish Valuations) The set of all selfish valuations is the domain of

arbitrary selfish valuations (ASV). It is denoted by U .

We do not put any further restrictions on valuation functions. In particular, we do not assume

that the valuation function is increasing (i.e., ui(xi) ≥ ui(x
′
i) whenever xi > x′i

4) or additively

separable across tasks (i.e., for every agent i there exists uij : [0, 1] → R for every task j such

that ui(xi) =
∑

j∈J uij(xij)). Note that imposing these conditions would restrict the domain

beyond ASV. We are not sure whether the affine maximizer result continues to hold in these

further restricted domains.

In addition to the utility that an agent derives from the tasks assigned to her, she can also

be compensated with (or charged) money. Moreover, the overall utility function is quasi-linear in

money, i.e., given by ui(xi) + pi, where pi is agent i’s monetary compensation.

We assume that the agent valuations are private information and must be elicited. The goal of

the paper is to identify collective outcomes that induce agents to reveal their private information

truthfully. The following definitions are standard in mechanism design literature.

Definition 2 (Social Choice Function) A social choice function (SCF) F is a mapping from

the set of valuation profiles to the set of allocations, i.e., F : Un → A.

3A function f : A ⊆ R
m → R is Lipschitz continuous if ∃K ∈ R such that for all x, y ∈ A, |f(x)−f(y)| ≤ K||x−y||.

4Here xi > x′

i ⇒ xij > x′

ij , for all j ∈ J .
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Definition 3 (Strategyproofness) A SCF F is strategyproof if there exist transfers pi : U
n →

R, i ∈ N , such that for all u = (ui, u−i) ∈ Un,

ui(F (ui, u−i)) + pi(ui, u−i) ≥ ui(F (u′i, u−i)) + pi(u
′
i, u−i), ∀ u′i ∈ U, i ∈ N.

A strategyproof SCF induces truth-telling in dominant strategies.

The problem of characterizing strategyproof SCFs in allocation problems with selfish preferences

presents special difficulties because agents can affect the allocations of other agents without affecting

their own. An axiom that addresses this issue in a“minimal”way is that of allocation non-bossiness.

The non-bossiness axiom was introduced in Satterthwaite and Sonnenschein (1981), and has been

used widely in the literature on incentive compatibility. 5

Definition 4 (Allocation Non-Bossiness) An SCF F satisfies allocation non-bossiness (ANB)

if ∀i ∈ N , ∀u−i ∈ Un−1 and ∀ui, u
′
i ∈ U with Fi(ui, u−i) = Fi(u

′
i, u−i) implies F (ui, u−i) =

F (u′i, u−i), where Fi(·) is the i-th component of F (·).

Suppose an agent’s allocation is unaffected by a change in her valuation. According to ANB,

this must not change the allocation of any other agent. A well-known fact about strategyproofness

is that a change in an agent’s valuation that does not affect her allocation, does not also affect her

payment. Therefore, the “if” part of non-bossiness together with strategyproofness ensures that

the change in the agent’s valuation does not change her overall utility. In such a situation, the

allocations of other agents is not allowed to change. We place no restrictions on the payments of

the other agents, so that their utilities may change.

It is important to distinguish our version of non-bossiness from a related notion which we refer

to as outcome non-bossiness. In a quasi-linear domain, an outcome comprises of the allocation and

payments. An SCF is outcome non-bossy if the following holds: if an agent does not change her

outcome by changing her own valuation, she does not change the outcomes of the other agents.

Outcome non-bossiness and strategyproofness imply allocation non-bossiness. Outcome non-

bossiness is therefore a stronger requirement than allocation non-bossiness. In fact, affine maximiz-

ers (defined below), in general, do not satisfy outcome non-bossiness.

A salient class of SCFs introduced in Roberts (1979) is that of affine maximizers, defined as

follows.

Definition 5 (Affine Maximizers) An SCF F : Un → A belongs to the class of affine max-

imizers if there exists wi ≥ 0, i ∈ N , not all zero, and a continuous function κ : A → R such

that,

F (u) ∈ argmax
x∈A

(

∑

i∈N

wiui(x) + κ(x)

)

.

The continuity of the valuations and the compactness of the set of allocations ensures that the

class of affine maximizers is non-empty.

5For matching, see e.g., (Svensson, 1999; Pápai, 2000), and for exchange economies, see e.g., (Goswami et al.,

2013; Momi, 2013). For a comprehensive discussion of the non-bossiness axiom, see Thomson (2014).
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3 Main Result

In this section, we present the central result of the paper.

Theorem 1 (Affine Maximizers for Selfish Valuations) If n ≥ 3, every onto 6, ANB and

strategyproof SCF F : Un → A is an affine maximizer. If n = 2, the result holds without the ANB

assumption.

The ASV assumption ensures that onto affine maximizers exist. Our next claim shows the

existence of affine maximizers with the properties mentioned in Theorem 1. The proof is deferred

to the Appendix.

Claim 1 There exist affine maximizers that are onto, strategyproof and ANB.

The ANB assumption is necessary for our result. We provide an example to show the existence

of non-affine maximizer SCFs that are strategyproof and bossy.

Example 1 (Serial Dictator with a Threshold) For simplicity, we illustrate a SCF F with

three agents, N = {1, 2, 3} and one task, i.e., m = 1 (see Figure 1). The arguments can clearly be

extended to a setting with arbitrary n and m. Let t be an arbitrary real number referred to as the

threshold. The SCF F is defined below.

For any valuations profile (u1, u2, u3), the SCF picks x∗1 ∈ argmaxx1∈[0,1] u1(x1). Ties are broken

in favor of the largest value of x∗1. In order to determine the allocations of agents 2 and 3, we need

to consider the two following cases.

Case 1: u1(x
∗
1) ≤ t: Then x∗2 ∈ argmaxx2∈[0,1−x∗

1
] u2(x2) with ties broken as before, and

x∗3 = 1− x∗1 − x∗2.

Case 2: u1(x
∗
1) > t: In this case, the role of agents 2 and 3 is reversed, i.e., x∗3 ∈

argmaxx3∈[0,1−x∗

1
] u3(x3) with ties broken as before, and x∗2 = 1− x∗1 − x∗3.

Clearly F is onto. It is bossy because agent 1 can change the allocations of agents 2 and 3

without changing her own allocation. This is illustrated in Figure 1 - for the valuation profiles

(u1, u2, u3) and (u′1, u2, u3), the allocations are [0.5 0.3 0.2]⊤ and [0.5 0.2 0.3]⊤ respectively.

Strategyproofness of F follows from standard arguments. We claim that F is not an affine

maximizer. To see this, we repeat the arguments from Equations 8 to 9 with x = [0.5 0.3 0.2]⊤ and

y = [0.5 0.2 0.3]⊤to get,

w2u2(0.3) + w3u3(0.2) + κ([0.5 0.3 0.2]⊤) = w2u2(0.2) +w3u3(0.3) + κ([0.5 0.2 0.3]⊤)

⇒ κ([0.5 0.3 0.2]⊤) = κ([0.5 0.2 0.3]⊤) since u2(0.3) = u2(0.2), u3(0.2) = u3(0.3).

Pick u′3 which agrees with u3 everywhere except [0.15, 0.25] and is shown by the dashed line in the

figure. By definition, F (u1, u2, u
′
3) = [0.5 0.3 0.2]⊤. However,

6An SCF F : Un → A is onto, if for all x ∈ A, there exists u ∈ Un such that F (u) = x.
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Figure 1: An example to illustrate the necessity of ANB.

w1u1(0.5) + w2u2(0.3) + w3u
′
3(0.2) + κ([0.5 0.3 0.2]⊤)

< w1u1(0.5) + w2u2(0.2) + w3u
′
3(0.3) + κ([0.5 0.2 0.3]⊤),

since u2(0.2) = u2(0.3) = 0.2 but 0.2 = u′3(0.3) > u′3(0.2) = 0 and κ is same at these two allocations.

Hence, F is not an affine maximizer. �

4 Proof of the Theorem

In order to present the proof, we need to define an important property. Since allocations are

decomposable into components for every agent and valuations are selfish, it is possible for the

component of agent i to be identical in two different allocations. To account for this possibility

we need the following modification of the notion of positive association of differences (PAD) which

appears in Roberts (1979).

Definition 6 (PAD-DC) An SCF F satisfies positive association of differences for distinct com-

ponents (PAD-DC) if ∀u, u′ ∈ Un,

[F (u) = x and u′i(xi)− ui(xi) > u′i(yi)− ui(yi),∀y ∈ A \ {x} and yi 6= xi,∀i ∈ N ] ⇒ [F (u′) = x].

Let x be an allocation and u be a valuation profile such that F (u) = x. Such a profile exists

because of the onto-ness of F . If we consider all other allocations in A, there will be an allocation

z ∈ A such that xj = zj for some j ∈ N . Since valuations are selfish, u′j(xj)−uj(xj) = u′j(zj)−uj(zj)

and the conclusion F (u′) = x cannot be inferred from PAD. However, if u′i(xi)− ui(xi) > u′i(yi)−

ui(yi),∀yi 6= xi, we can conclude F (u′) = x from PAD-DC. Of course, for the ASV domain, PAD-DC

implies PAD, i.e., PAD-DC is a stronger property than PAD.

The next result shows that PAD-DC is an implication of ANB and strategyproofness.
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Lemma 1 If n ≥ 3, every ANB, strategyproof SCF satisfies PAD-DC. For n = 2, every strate-

gyproof SCF satisfies PAD-DC.

Proof : We prove the lemma in three steps. Let F be strategyproof and ANB.

Step 1: Pick any i ∈ N and let (ui, u−i), (u
′
i, u−i) ∈ Un be such that F (u) = x, and suppose

∀y ∈ A \ {x}, u′i(xi)− ui(xi) > u′i(yi)− ui(yi), for all yi 6= xi. We claim Fi(u
′
i, u−i) = xi.

Suppose not, i.e., Fi(u
′
i, u−i) = zi 6= xi. By assumption, u′i(xi) − ui(xi) > u′i(zi) − ui(zi).

However, strategyproofness of F implies u′i(xi)−ui(xi) ≤ u′i(zi)−ui(zi)
7, which is a contradiction.

Hence Fi(u
′
i, u−i) = xi.

Step 2: Consider the case n ≥ 3. Since Step 1 is true for every i ∈ N,ui, u
′
i ∈ U, u−i ∈ Un−1,

ANB implies that F (u′i, u−i) = x. If n = 2, it is trivially true since there are only two components

in each allocation x1 and x2, which are row vectors of length m and their sums equal the ‘all-one’

vector of length m. Hence, if x1 does not change, nor does x2.

Step 3: We use these arguments for every player. Fix u, u′ ∈ Un as in the definition of

PAD-DC, i.e., F (u) = x and u′i(xi) − ui(xi) > u′i(yi) − ui(yi), ∀y ∈ A \ {x}, yi 6= xi,∀i ∈ N . We

have shown that F (ui, u−i) = x implies F (u′i, u−i) = x. We repeat Steps 1 and 2 above for the

transition from the value profile (u′i, u−i) to (u′i, u
′
j , u−ij) and conclude that F (u′i, u

′
j , u−ij) = x.

Proceeding in this manner we conclude that F (u′) = x, as needed. �

The next claim will be used repeatedly in the proof. It is a counterpart of Claim 1 in Lavi et al.

(2009). Their argument cannot be used directly because of the domain restriction used in this

paper.

Claim 2 Let F satisfy PAD-DC, and fix u, u′ ∈ Un. Then,

[F (u) = x and u′i(xi)− u′i(yi) > ui(xi)− ui(yi) whenever yi 6= xi,∀i ∈ N ] ⇒ [F (u′) 6= y]

Proof : Suppose not, i.e., F (u′) = y. We will construct a valuation u′′i ∈ U, i ∈ N such that an

application of PAD-DC to the transition u′ → u′′ will yield F (u′′) = y. On the other hand, its

application to the transition u → u′′ would imply F (u′′) = x, leading to a contradiction.

We need to construct u′′ to satisfy:

u′′i (yi)− u′i(yi) > u′′i (zi)− u′i(zi),∀zi 6= yi,∀i ∈ N (1)

and,

u′′i (xi)− ui(xi) > u′′i (zi)− ui(zi),∀zi 6= xi,∀i ∈ N. (2)

7Let pi(·), i ∈ N be the payment function that makes F strategyproof. The required inequality is obtained by

summing the following inequalities which are consequences of strategyproofness:

ui(xi) + pi(ui, u−i) ≥ ui(zi) + pi(u
′

i, u−i),

u
′

i(zi) + pi(u
′

i, u−i) ≥ u
′

i(xi) + pi(ui, u−i).
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Pick a pair of allocations x and y such that the LHS of the implication of the claim occurs, i.e.,

F (u) = x and u′i(xi)− u′i(yi) > ui(xi)− ui(yi) whenever yi 6= xi,∀i ∈ N . A simple rearrangement

of the terms yields, β = ui(xi) − u′i(xi) < ui(yi) − u′i(yi) = α. Let δ = α − β which is positive by

assumption. The difference of this u′′i from that in Lavi et al. (2009) is that the construction here

must also satisfy Lipschitz continuity of u′′i . We will choose u′′i such that (a) u′′i (xi)−u′i(xi) = β+δ/4

and (b) u′′i (yi)− u′i(yi) = α− δ/4.

We show that it is possible to construct such a u′′i in the ASV domain using the fact that any

arbitrary selfish valuation is admissible. There are only three possibilities: (1) α > β > 0, (2)

α > 0, β < 0, and (3) 0 > α > β. Since ui, u
′
i are continuous functions, they must have minima

over [0, 1]m. Denote these by m,m′ respectively, and let m̄ = min{m,m′}. Define:

s = sup
xi∈[0,1]m

sup
{−→e :||−→e ||=1}

max

{

lim
t→0−

∣

∣

∣

∣

ui(xi + t−→e )− ui(xi))

t

∣

∣

∣

∣

, lim
t→0+

∣

∣

∣

∣

ui(xi + t−→e )− ui(xi))

t

∣

∣

∣

∣

}

s′ = sup
xi∈[0,1]m

sup
{−→e :||−→e ||=1}

max

{

lim
t→0−

∣

∣

∣

∣

u′i(xi + t−→e )− u′i(xi))

t

∣

∣

∣

∣

, lim
t→0+

∣

∣

∣

∣

u′i(xi + t−→e )− u′i(xi))

t

∣

∣

∣

∣

}

,

where −→e is a unit vector in R
m. Therefore s and s′ are the maximum rates of change of the

functions ui and u′i. Since ui, u
′
i are Lipschitz continuous, the directional derivatives of the functions

are bounded at any point x. Hence the limits in the above equations will be finite, i.e., s, s′ < ∞.

Let s = max{s, s′}. In order to construct u′′i , we proceed as follows. Let,

u′′i (zi) =

{

u′i(xi) + β + δ/4 for zi = xi
u′i(yi) + α− δ/4 for zi = yi

Define,

s̄(xi, yi, s) = max

{

|u′′i (xi)− (m̄− δ)|

||xi − yi||/2
,
|u′′i (yi)− (m̄− δ)|

||xi − yi||/2
, s

}

.

With this definition, pick ŝ > s̄. We now complete the specification of the function u′′i :

u′′i (zi) =



























u′i(xi) + β + δ/4 for zi = xi
u′i(yi) + α− δ/4 for zi = yi
u′′i (xi)− ŝ||zi − xi|| for zi : ||zi − xi|| ≤ (u′′i (xi)− (m̄− δ))/ŝ

u′′i (yi)− ŝ||zi − yi|| for zi : ||zi − yi|| ≤ (u′′i (yi)− (m̄− δ))/ŝ

m̄− δ otherwise

The construction has the following features:

1. It has a ‘conical’ peak both at xi and yi.

2. The slopes of u′′i around xi and yi are chosen so that the difference function u′′i − u′i is

maximized at yi and u′′i − ui is maximized at xi within these conical regions.

3. It is flat outside these conical regions and is small enough so that u′′i − u′i at these points

are smaller than that at yi and u′′i − ui at these points are smaller than that at xi. This

ensures that yi and xi are the global maximizers of the difference functions u′′i −u′i and u′′i −ui
respectively.
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According to the construction, u′′i satisfies Equations (1) and (2). Also, the supremum of all possi-

ble directional derivatives of u′′i is ŝ. Hence u′′i is Lipschitz continuous. This concludes the proof. �

u′′i
u′i

ui

β

α

δ/4

xiyi

δ/4

m̄− δ

Figure 2: Illustration of an example construction (Claim 2).

Figure 2 illustrates an example construction of u′′i for a specific ui and u′i and m = 1.

One of the central ideas of our proof is to show that F is an affine maximizer on a suitably

chosen dense subset of the allocation set A. The proof is completed by extending the result to the

entire set of allocations using the continuity of the valuations. The following definition is critical

for the choice of the dense subset.

Definition 7 (Distinct Component Set) A set S ⊆ A is called a distinct component set (DCS)

if for every distinct x, y ∈ S, xi 6= yi, ∀i ∈ N .

We consider the DCSs that contain a specific allocation x. Denote the set of all DCSs containing

x by Dx. Our next result shows that a Maximal and Dense DCS (MD-DCS) exists in Dx.

Proposition 1 For every x ∈ A, there exists a maximal element in Dx which is dense in A.

The proof of this proposition is deferred to the Appendix.

Pick an arbitrary x ∈ A and an MD-DCS Dx. All the following results until Claim 10 refer to x

and Dx. Claims 3 to 11 have counterparts in Lavi et al. (2009) and Roberts (1979) and we follow

their arguments closely. At certain places new constructions are required because of the special

nature of our domain. We point this out at the appropriate places.

The value difference set for any pair of distinct allocations y, z ∈ Dx is defined as follows.

P (y, z) = {α ∈ R
n : ∃ u ∈ Un s.t. u(y)− u(z) = α and F (u) = y}.

The set P (y, z) is non-empty since F is onto. The next claim shows that the positive quadrant

starting from a point in P (y, z) is always contained in P (y, z).

Claim 3 If α ∈ P (y, z), and δ > 0 ∈ R
n, then α+ δ ∈ P (y, z), for all distinct y, z ∈ Dx.

10



Proof : We are given that α ∈ P (y, z). By definition of P (y, z), there exists

u ∈ Un such that F (u) = y and u(y) − u(z) = α. Construct u′ ∈ Un such that

u′i(yi) − ui(yi) = δi > u′i(wi) − ui(wi),∀wi 6= yi, zi,∀i ∈ N,w ∈ A, where δi > 0 and

u′i(zi) − ui(zi) = 0,∀i ∈ N . This function u′ can be constructed in exactly the same manner

as u′′i in Claim 2. By PAD-DC, F (u′) = y, and by construction, u′(y) − u′(z) = α + δ. Hence

α+ δ ∈ P (y, z), as needed. �

Claim 4 For every α, ǫ ∈ R
n, ǫ > 0, and for all y, z ∈ Dx,

(a) α− ǫ ∈ P (y, z) ⇒ −α /∈ P (z, y).

(b) α /∈ P (y, z) ⇒ −α ∈ P (z, y).

Proof : (a) Suppose, for contradiction, −α ∈ P (z, y). Then, there exists u ∈ Un such that

u(z)−u(y) = −α and F (u) = z. Since α−ǫ ∈ P (y, z), there exists u′ such that u′(y)−u′(z) = α−ǫ

and F (u′) = y. But u′(y)− u′(z) < u(y)− u(z). This is a contradiction, since F (u) 6= z according

to Claim 2.

(b) 8 Let By and Bz be two disjoint open balls centered at y and z respectively, i.e., By =

{k : |k − y| < ǫ1}, Bz = {k : |k − z| < ǫ2}, for some ǫ1, ǫ2 > 0. These exist since y and

z do not match in any of their components. Choose a u ∈ Un such that u(y) − u(z) = α and

ui(yi)− ui(wi) > uyi (yi)−uyi (wi), for all u
y ∈ F−1(y), w ∈ A \ ({y} ∪Bz), and yi 6= wi,∀i ∈ N . We

also want u to satisfy: ui(zi) − ui(wi) > uzi (zi) − uzi (wi), for all u
z ∈ F−1(z), w ∈ A \ ({z} ∪ By),

and zi 6= wi, i ∈ N . The function u can be constructed in exactly the same way as u′′i in Claim 2.

We now argue that F (u) ∈ {y, z}. If not, then F (u) either belongs to A \ ({y} ∪ Bz) or

A \ ({z} ∪ By). In both cases, Claim 2 and the earlier inequalities imply F (u) 6= w, which is

a contradiction. Since we have shown F (u) ∈ {y, z} and u(y) − u(z) = α /∈ P (y, z), we have

F (u) = z. Since u(z)− u(y) = −α, it follows that −α ∈ P (z, y). �

The next result shows the relationship between the sum of the interiors of two value difference

sets with that of a third.

Claim 5 For every α, β, ǫα, ǫβ ∈ R
n, ǫα, ǫβ > 0, and ∀y, z, w ∈ Dx,

α− ǫα ∈ P (y, z) and β − ǫβ ∈ P (z, w) ⇒ α+ β − (ǫα + ǫβ)/2 ∈ P (y,w).

Proof : The proof proceeds in a similar way as in part (b) of Claim 4, by successive elimination

of possible allocations. We start by constructing three pairwise disjoint balls By, Bz, Bw around

y, z, w. This is possible since the points do not match in any of their components. Choose u ∈ Un

such that,

8This proof is constructive and inspired by the ‘flexibility’ condition of valuations in Carbajal et al. (2013).
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u(y)− u(z) = α− ǫα/2 (3)

u(z)− u(w) = β − ǫβ/2 (4)

ui(yi)− ui(li) > uyi (yi)− uyi (li),

∀uy ∈ F−1(y), l ∈ A \ ({y} ∪Bz ∪Bw), yi 6= li, i ∈ N

ui(zi)− ui(li) > uzi (zi)− uzi (li),

∀uz ∈ F−1(z), l ∈ A \ ({z} ∪Bw ∪By), zi 6= li, i ∈ N

ui(wi)− ui(li) > uwi (wi)− uwi (li),

∀uw ∈ F−1(w), l ∈ A \ ({w} ∪By ∪Bz), wi 6= li, i ∈ N

Such a function u can be constructed using arguments similar to those in Claim 4(b). Also, we can

conclude that F (u) ∈ {y, z, w}. Since α− ǫα ∈ P (y, z), Equation (3) and an application of Claim 2

yields F (u) 6= z. Similarly, since β − ǫβ ∈ P (z, w), Equation (4) and Claim 2 gives F (u) 6= w.

Hence F (u) = y. Thus, α+ β − (ǫα + ǫβ)/2 = u(y)− u(w) ∈ P (y,w), as needed. �

The minimum translation factor is defined as follows:

γ(y, z) = inf{p ∈ R | p1 ∈ P (y, z)}, for all distinct y, z ∈ Dx.

Claim 6 For all distinct y, z ∈ Dx, γ(y, z) exists in R.

Proof : To show this, we need to show that the set {p ∈ R | p1 ∈ P (y, z)} is non-empty. Pick

u ∈ Un such that F (u) = y, and let p = maxi{ui(yi)− ui(zi)}. Increase all co-ordinates of u(y) to

obtain u′(y) such that u′i(yi) − u′i(zi) = p,∀i. Note that this possible since U is an ASV domain

and the fact that both y and z are chosen from Dx. By PAD-DC, F (u′) = y. Hence, the set

{p ∈ R | p1 ∈ P (y, z)} is non-empty, i.e., γ(y, z) < ∞. Also {p ∈ R | p1 ∈ P (y, z)} is bounded

from below, otherwise P (z, y) would be empty (by Claim 4(b)), i.e., γ(y, z) > −∞. Hence, γ(y, z)

is a real number. �

Claim 7 For all y, z, w ∈ Dx, the following holds:
(a) γ(y, z) = −γ(z, y).

(b) γ(y,w) = γ(y, z) + γ(z, w).

Proof : (a) Let γ(y, z) = p∗. Thus for any ǫ > 0, (p∗ + ǫ − (ǫ/2))1 ∈ P (y, z). By Claim 4,

(−p∗ − ǫ)1 /∈ P (z, y). On the other hand, by definition of γ(y, z), (p∗ − ǫ)1 /∈ P (y, z). Therefore,

Claim 4 implies (−p∗ + ǫ)1 ∈ P (z, y). Hence, −p∗ = inf{p | p1 ∈ P (z, y)} = γ(z, y), as needed.

(b) Fix ǫ > 0. We have (γ(y, z)+ǫ−(ǫ/2))1 ∈ P (y, z), and (γ(z, w)+ǫ−(ǫ/2))1 ∈ P (z, w). From

Claim 5, we have (γ(y, z)+γ(z, w)+2ǫ− (ǫ/2))1 ∈ P (y,w). Since ǫ is arbitrary, we take its limit to

zero to obtain, γ(y,w) ≤ γ(y, z)+ γ(z, w). Exchanging z and w, we get γ(y, z) ≤ γ(y,w)+ γ(w, z).
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Since γ(w, z) = −γ(z, w) (from part (a) above), we get, γ(y,w) ≥ γ(y, z) + γ(z, w). Hence,

γ(y,w) = γ(y, z) + γ(z, w), as needed. �

Unlike the standard affine maximizer results (Roberts, 1979; Lavi et al., 2009) in finite setting,

we require γ(·, ·) to satisfy a continuity property in ASV domain.

Claim 8 The minimum translation factor γ(y, z) is continuous in both arguments.

Proof : The continuity of γ(y, z) in z is a consequence of the assumption that the valuation

functions in the ASV domain are continuous. Since γ(y, z) = −γ(z, y), it is also continuous in y. �

Define the translated set C(y, z) = P (y, z) − γ(y, z)1 = {α − γ(y, z)1 | α ∈ P (y, z)}. Denote

the ‘interior’ of C(y, z) by C̊(y, z), i.e.,

C̊(y, z) = {α ∈ C(y, z) | α− ǫ ∈ C(y, z), for some ǫ > 0}.

Claim 9 C̊(y, z) = C̊(w, l), for all y, z, w, l ∈ Dx, y 6= z and w 6= l.

Remark: Note that this result includes the cases, C̊(y, z) = C̊(w, z) = C̊(w, y) = C̊(z, y). There-

fore, Claim 9 holds even when y, z, w, l are not all distinct.

Proof : Claim 5 yields the following:

P̊ (y, z) ⊆ P̊ (y, l)− β, ∀β ∈ P̊ (z, l)

P̊ (z, l) ⊆ P̊ (y, l)− α, ∀α ∈ P̊ (y, z)

Substituting y for z, and w for y in the second equation above, we get:

P̊ (y, l) ⊆ P̊ (w, l)− α, ∀α ∈ P̊ (w, y)

This implies,

P̊ (y, z) ⊆ P̊ (w, l) − (α+ β), where α ∈ P̊ (w, y), β ∈ P̊ (z, l).

In particular, this is true for α = (γ(w, y) + ǫ)1, and β = (γ(z, l) + ǫ)1, where ǫ > 0. Since, ǫ can

be made arbitrarily small, it follows that:

P̊ (y, z) ⊆ P̊ (w, l) − (γ(w, y) + γ(z, l))1

= P̊ (w, l) − (γ(w, y) + γ(y, l)− γ(y, l) + γ(z, l))1

= P̊ (w, l) − (γ(w, y) + γ(y, l) + γ(l, y) + γ(z, l))1

= P̊ (w, l) − (γ(w, l) + γ(z, y))1

⇒ P̊ (y, z)− γ(y, z)1 ⊆ P̊ (w, l) − γ(w, l)1

In the second and third equalities and in the final step above, we have used Claim 7. This proves

C̊(y, z) ⊆ C̊(w, l). Swapping the allocations y with w, and z with l and redoing the analysis, we

conclude that C̊(y, z) ⊇ C̊(w, l). Therefore C̊(y, z) = C̊(w, l), as needed. �

In view of this claim, we denote Cx = C̊(y, z) = C̊(w, l). Our next claim shows that this set is

also independent of x.
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Claim 10 Cx = Cy, ∀ x, y ∈ A.

Proof : Construct two points in Dx ∩Dy. Pick the first point z1 such that all its components are

different from the corresponding components of both x and y. This is possible to pick since both

x and y have finite number of components and both Dx and Dy are maximal sets. The second

point z2 is picked such that all its components are different from the corresponding components

of both x, y and z1. The argument of existence follows similarly. Therefore, we conclude that

Cx = C̊(z1, z2) = Cy, as needed. �

In view of Claim 10, the subscript in Cx can be removed. The next claim shows that this set is

convex.

Claim 11 C is convex.

Proof : Pick distinct α, β ∈ C. We will show (α+ β)/2 ∈ C. Since C is open, it follows that C is

convex. Fix distinct y, z, w ∈ D. By definition, α ∈ P̊ (y, z)− γ(y, z)1 and β ∈ P̊ (z, w) − γ(z, w)1.

Therefore, α+β ∈ (P̊ (y, z)+ P̊ (z, w))− (γ(y, z)1+ γ(z, w)1) ⊆ P̊ (y,w)− γ(y,w)1 (using Claims 5

and 7). Hence, α+ β ∈ C.

We show that if α ∈ C, then α/2 ∈ C. Suppose not, i.e., α/2 /∈ int(C(w, z)) for some w, z ∈ Dx

and x ∈ A. It can be either α/2 /∈ C(w, z) or α/2 ∈ bd(C(w, z)) 9. Therefore, for all δ ≥ 0, δ 6= 0,

we have α/2 − δ /∈ C(w, z). An immediate consequence of Claim 4 is −α/2 + δ ∈ C(z, w). Since

α ∈ C, there exists ǫα > 0 such that α− ǫα ∈ C(y, z) for some y, z ∈ Dx. Since −α/2+ δ ∈ C(z, w)

and δ is arbitrary, we can choose δ = ǫα/4 so that −α/2 + ǫα/2 − ǫα/4 ∈ C(z, w). Hence, we

conclude from Claim 5 that α+(−α/2)− ǫα/8 ∈ C(y,w), i.e., α/2 ∈ C. But this is a contradiction.

�

Since C = C̊(y, z) = C̊(z, y) is convex and C̊(y, z) = (cl(−C̊(z, y)))c (Claim 4) 10, it follows

that C is a convex half-space. Moreover, 0 /∈ C. Applying the separating hyperplane theorem, it

follows that there exists w ∈ R
n
≥0 \ {0} such that, w⊤α ≥ 0, for all α ∈ cl(C).

Construction of the κ(·) function Fix an arbitrary x0 ∈ A.

κ(x) =











γ(x0, x) · w
⊤1 if x0 ∈ Dx \ {x}

limxn→x0,xn∈Dx,∀n γ(xn, x) · w
⊤1 if x0 /∈ Dx

0 if x = x0

(5)

This function is well defined since γ(y, z) is continuous in both arguments (Claim 8) and Dx is dense

in A. Hence every allocation x0 ∈ A is either an element of Dx or a limit point of Dx. Therefore,

if F (u) = x, we have w⊤(u(x) − u(y) − γ(x, y)1) ≥ 0 for all y ∈ Dx. We consider two cases. If

9bd(S) denotes the boundary of S.
10cl(S) and Sc denote the closure and complement of S respectively.
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x0 ∈ Dx,

w⊤(u(x)− u(y)− (γ(x, x0) + γ(x0, y))1) ≥ 0

⇒ w⊤u(x) + γ(x0, x)w
⊤1 ≥ w⊤u(y) + γ(x0, y)w

⊤1

⇒ w⊤u(x) + κ(x) ≥ w⊤u(y) + κ(y).

If x0 /∈ Dx,

w⊤(u(x)− u(y)− (γ(x, xn) + γ(xn, y))1) ≥ 0, for some xn ∈ Dx

⇒ w⊤u(x) + γ(xn, x)w
⊤1 ≥ w⊤u(y) + γ(xn, y)w

⊤1

⇒ w⊤u(x) + lim
xn→x0,xn∈Dx,∀n

γ(xn, x)w
⊤1 ≥ w⊤u(y) + lim

xn→x0,xn∈Dx,∀n
γ(xn, y)w

⊤1

⇒ w⊤u(x) + κ(x) ≥ w⊤u(y) + κ(y).

Hence we have shown that if F (u) = x,

w⊤u(x) + κ(x) ≥ w⊤u(y) + κ(y),∀y ∈ Dx. (6)

Since Dx is dense in A, each allocation z ∈ A is either a member of Dx or its limit point. Claim 8

implies that κ is a continuous function. Let {yn} → z where yn ∈ Dx,∀n. Thus Equation (6) holds

for every yn. Taking limits we conclude that,

w⊤u(x) + κ(x) ≥ w⊤u(z) + κ(z),∀z ∈ A.

This concludes the proof. Q.E.D.

5 Revenue Equivalence

In this section, we show that the SCF F also satisfies revenue equivalence. This is an observation

based on the definition of revenue equivalence and a standard result (Rockafellar, 1997). The

following definition of revenue equivalence is standard in literature.

Definition 8 (Revenue Equivalence) An SCF F satisfies revenue equivalence if for any two

payment rules p and p′ that make F strategyproof, there exist functions αi : U
n−1 → R, such that,

pi(ui, u−i) = p′i(ui, u−i) + αi(u−i), ∀ui ∈ U,∀u−i ∈ Un−1,∀i ∈ N.

This essentially ensures that any two payment rules that make F strategyproof differ only

by a factor which is independent of individual agents’ valuations. The following result shows

that convexity and linearity of valuations is sufficient for a strategyproof SCF to satisfy revenue

equivalence.
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Theorem 2 (Rockafellar (1997); Krishna and Maenner (2001)) If the type space is convex

and the valuations are linear in type, then a strategyproof SCF satisfies revenue equivalence.

In our setting, since U is the ASV domain, it is clearly convex. Also the types of the agents are

their valuations, which implies, trivially, that the valuations are linear in its type. Hence, the above

result on revenue equivalence holds for F and we conclude that F satisfies revenue equivalence.

6 A More General Result

Our affine maximizer result rests on the fact that the allocation space is rich enough to admit a

maximal and dense subset Dx for each allocation x where selfish valuations generate sufficiently

rich value differences. A generalization of this result yields the following theorem, the proof of

which is omitted here.

Theorem 3 (Affine Maximizers for Selfish Valuations) Let the space of allocations A be sep-

arable into components for each agent and be compact. If there exists at least one collection of MD-

DCSs {Dx | x ∈ A} such that for all x, y ∈ A, |Dx∩Dy| ≥ 2, then an onto, ANB and strategyproof

SCF F : Un → A is an affine maximizer.

7 Conclusions

From the results of this paper, it appears that in order to prove that strategyproof SCFs are affine

maximizers, perhaps a certain amount of richness is required, which may be split across the set of

valuations and allocations. We considered a sub-domain of the unrestricted valuations, namely the

domain of selfish valuations but a “rich” set of allocations to prove our affine maximizer result.

An interesting open question is whether our results extend to more restricted domains, e.g.,

domains with increasing valuations.
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Appendix

Proof of Claim 1

Proof : Pick an arbitrary onto affine maximizer and a tie-breaking rule t, i.e., t : A → R is an

injective mapping. The affine maximizer together with the tie-breaking rule produces an SCF F in

a natural way: at every valuation profile the tie-breaking rule picks a unique allocation from the

set of affine maximizers. We can use standard arguments in the literature to show that this SCF is

strategyproof. In particular, the following payment rule implements this SCF. For every i ∈ N :

pi(ui, u−i) =

{

1
wi

(

∑

j 6=iwjuj(F (u)) + κ(F (u)) + hi(u−i)
)

, wi > 0

0 wi = 0
(7)

Where hi is any arbitrary function of the valuations of all the agents except agent i. We claim that

F is ANB.

Assume for contradiction that F is bossy. Therefore, there exists some agent i such that

x = (xi, x−i) = F (ui, u−i) ∈ A(ui, u−i), where A(ui, u−i) is the set of affine maximizers when the

valuation profile is (ui, u−i), and y = (xi, y−i) = F (u′i, u−i) ∈ A(u′i, u−i). Now, from the definition

of affine maximizer when the valuation profile is (ui, u−i), we have:

wiui(xi) +
∑

j 6=i

wjuj(xj) + κ(x) ≥ wiui(xi) +
∑

j 6=i

wjuj(yj) + κ(y) (8)

⇒
∑

j 6=i

wjuj(xj) + κ(x) ≥
∑

j 6=i

wjuj(yj) + κ(y)
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Similarly, for valuation profile (u′i, u−i), we have:

wiu
′
i(xi) +

∑

j 6=i

wjuj(yj) + κ(y) ≥ wiu
′
i(xi) +

∑

j 6=i

wjuj(xj) + κ(x)

⇒
∑

j 6=i

wjuj(yj) + κ(y) ≥
∑

j 6=i

wjuj(xj) + κ(x)

Hence, we get:
∑

j 6=i

wjuj(yj) + κ(y) =
∑

j 6=i

wjuj(xj) + κ(x) (9)

Thus x, y ∈ A(u′i, u−i) and x, y ∈ A(ui, u−i). However, this contradicts the definition of the

tie-breaking rule t. If x is chosen over y at the valuation profile (ui, u−i), then y cannot be chosen

over x at the valuation profile (u′i, u−i). �

Proof of Proposition 1

Define a partial order % on Dx as follows. For all Ex, E
′
x ∈ Dx, Ex % E′

x ⇔ E′
x ⊆ Ex.

Lemma 2 (Dx,%) has a maximal element.

Proof : Consider an arbitrary chain, i.e., a linearly ordered subclass , in (Dx,%), say (B,% |B).

By definition, B ⊆ Dx and % |B is a restriction of % to B, which is complete and anti-symmetric.

Consider EB = ∪E∈BE.

We claim that EB ∈ Dx. Suppose not. Then ∃ x, y ∈ EB, x 6= y such that x and y are same at

least in one component. By definition of EB and considering the fact that (B,% |B) is a chain, it

must be true that ∃ Ex,y ∈ B such that x, y ∈ Ex,y. This contradicts the fact B ⊆ Dx.

Notice that EB % E, ∀ E ∈ B. Hence every chain in (Dx,%) has an upper bound in Dx. By

Zorn’s lemma, (Dx,%) has a maximal element. �

Lemma 3 There exists a D ∈ Dx such that D is dense in A.

Proof sketch: The proof is constructive. We first prove a claim that is used in the construction.

Define a grid as a collection of axis-parallel planes. Hence a grid splits the space A into several

cells. A open grid cell profile is the collection of the open cells induced by the grid (see Figure 3 for

an illustration in two dimensions).

Claim 12 For each finite open grid cell profile G of A, there exists CG ⊆ A such that,

(i) each cell of G has exactly one point of CG,

(ii) CG is a DCS.
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Figure 3: Illustration for the proof of Lemma 3.

Proof sketch: Define a random experiment which selects one point uniformly at random for every

open cell in the cell profile G, independent from every other cell. It is clear that it is a measure

zero event to pick two points which have at least one identical coordinate. Hence, there exists at

least one configuration which is a DCS. �

We start with x and call D1 = {x}. Draw axis parallel planes from x so that it divides A

into a finite open grid cell profile G1. Pick a DCS CG1
. This is possible by the above claim.

Note that {x} ∪ CG1
is also a DCS. Let us call these set of points D2. Now we draw axis

parallel planes from each of the points in D2, consider the corresponding finite grid cell profile

G2 and pick a DCS CG2
and construct D3 in a similar way. We claim that D := ∪∞

i=1Di is

dense in A. Clearly D ∈ Dx by construction. It is easy to show that for every z ∈ A and ǫ > 0,

there exists a nǫ, large enough, such that ∃ y ∈ Dnǫ having ||y−z|| < ǫ. This concludes the proof. �

Pick a D ∈ Dx dense in A. Define, χD = {Ex ∈ Dx | Ex % D}. It is clear that every element

of χD is dense in A. Also D ∈ χD, therefore, χD 6= ∅.

Lemma 4 (χD,% |χD
) has a maximal element.

The argument of the proof of this lemma is similar to Lemma 2. We show that this maximal

element is a maximal element in the set of all DCSs.

Lemma 5 Every maximal element of (χD,% |χD
) is a maximal element of (Dx,%).

Proof : Suppose not. Fix a maximal element θχD
of (χD,% |χD

) that is not maximal in (Dx,%).

Therefore, there exists some θ ∈ Dx such that θ ≻ θχD
. By definition, θχD

% D. By transitivity

of order relation θ ≻ D, which implies θ ∈ χD. This contradicts the maximality of θχD
in

(χD,% |χD
). �

Hence, there exists a maximal element of Dx which is dense in A, as needed.
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