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1 Introduction

The motive of this paper is to construct a function that is an 'upward' (that is, from the

North-East direction) bound for an in�nite family of functions that explain how Type I errors

respond to Type II errors (or conversely). The purpose behind such a construction (which

we call as the Binding Frontier) is to invert this function and �x the probabilities of Type

I and Type II errors to implicitly solve for a satis�cing sample size. This will ensure that

our 'errors are contained'. Methods of sample size determination that weigh Type I errors

against Type II errors almost always rely on assumptions on the functional forms of densities

under the null and the alternative hypotheses, or some methods to estimate those densities

(or use Bayesian priors). I will demonstrate that with binding frontiers, one neither needs

to assume any density functional form, nor does one need to estimate any density (or use

Bayesian priors).

Adaptive/dynamic sampling procedures that rely on stopping rules have important ap-

plications to surveys of animal, plant, mineral, and fossil-fuel resources and may also have

applications to other �elds such as epidemiology and quality control (see Thompson (2012)).1

These methods, however, have limited application in the �elds of experimental economics

and psychology, where the nature of experiments are such that the entire focus of the re-

searcher is required by the process of data generation,2 so that any analysis of the said data

can only be done at a later stage. In short, it is practically impossible to generate data and

do the analysis at the same time, given the human and managerial limitations. It is thus,

often advisable to be 'prepared' with several pilot experiments before conducting the �nal ex-

periment to generate the required data. Clearly, the sampling requirements for experiments

in economics and psychology are often di�erent from those of the purer sciences.

Researchers frequently impose assumptions (mostly that of normality) in the distribution

of outcome variables (in the parametric approaches), or rely on the conditions of asymptotic

normality (in many non-parametric approaches) to determine sample sizes (see Beal (1989);

Cochran (1977; 2009); Chow et al. (2008); Kraemer and Thiemann (1987); Noether (1987);

1These processes of determination of (expected) sample sizes have been discussed in Wald (1947), and
Berger (1985), and are observed to have advantages over non-sequential methods in terms of lower expected
sample sizes, and more controllable precision (see Thompson (2012)). Chow et al. (2008) report that
sample-size calculations based on the above processes (see Pocock (1977); O'Brien and Fleming (1979); and
Chick and Frazier (2012)) have functional forms very similar to the central expression proposed in this paper
(although they are not free from terms involving z�=2, and z� , of the normal variate).

2The process of data generation includes (carefully) reading out experimental instructions to each group
(often large enough) of subjects, interviewing subjects, making them �ll questionnaires (this is also true for
�eld data collection required by household surveys for income, consumption and other data) among still other
facets of organization that require constant attention. Simply put, organizing experiments and ensuring their
smooth running, often tend to be very involving processes. Given the already heavy managerial requirements
on data generation, the additional task of on-the-spot sample size determination could be daunting.
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and Thompson (2012)). Alternatively, researchers also frequently allocate subjects equally

(uniformly) among the di�erent treatment groups. In this paper, we ask if it is possible to

work out a feasible sample-size when no assumption can be made about the distribution of

the outcome variable in question. I propose a non-parametric approach that does not rely

on asymptotic normality in the determination of sample sizes.

2 Tests Concerning Means

Let Z1; :::; Zn, constitute a random sample from a population given either by a common

density (or distribution) f0, with the parameter vector �0 and mean �0 (under the null hy-

pothesis, H0), or f1, with the parameter vector �1 and mean �1 (> �0, under our alternate

hypothesis, H1). Further, while �0 and �1, need not have the same dimension, we assume

that the variances of the two population densities are identical (although higher order mo-

ments de�ning skewness, kurtosis and so on, may signi�cantly di�er). The random variable
�Z = Z1+:::+Zn

n
, is accordingly assumed to have mean �0 (under H0, and associated with the

density f̂0, with the parameter vector �̂0) or �1 (under H1, and associated with the density

f̂1, with the parameter vector �̂1). For example, if f0(z;�0) is the normal density with

�0 = (�0; �0), then f̂0(�z; �̂0) is the normal density with �̂0 = (�0; �0=
p
n). Our decision

rule is: do not reject H0, if �z � �0 + c, our critical value (and reject otherwise). Thus, our
decision function assumes the following (simple) form

d(�z) =

(
�0 for �z � �0 + c
�1 for �z > �0 + c

(1)

We are looking for a general sample size expression for a family of density pairs f̂0 and f̂1,

that have identical variance3 (although still higher order moments associated with skewness

and kurtosis, and so on, may be di�erent) and are permissible for our testing procedure

associated with d(�z) above.4 Our test is illustrated in Figure 1 where the dark shaded region

is the probability of a Type I error, and the light shaded region is the probability of a Type

3The implicit assumption here being that the e�ect of any experimental treatment is only limited to the
�rst moment of any density and that the higher order moments remain unchanged. However, the derivations
we present, more generally account for changes in the functional forms of densities brought about by the
treatment, provided that the variance remains the same (that is, we still allow for higher order moment
changes in skewness, kurtosis and so on). For example, the introduction of mid-day meal programs in
schools are implicitly assumed only to shift students' mean grades upward, and that the dispersion around
the higher mean grades remain the same. Additionally see List et al. (2011).

4This rules out other densities that may be associated with outcomes of clinical trials that often produce
a multitude of results (di�erent e�ects of a pill etc.), and consequently need alternate descriptions of Type
I and Type II errors.
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II error.

2.1 The Error Tradeo� Frontier

Let pi be our Type i error (i 2 fI; IIg). It is clear that the size of the Type I and II errors
(i.e. the values of pI and pII), would require the calculation of the areas of the shaded regions

in Figure 1. Further, the calculation of the shaded regions itself requires the knowledge of

the exact functional forms of the densities f̂0 and f̂1 (and therefore the information on �̂0

and �̂1). Suppose we know these functional forms, then for each value of c (the critical

distance from the mean assumed under the null), it is possible to get a pair of realizations

(pI ; pII). Each pair is a unique point on the Type I-Type II error space. Thus, varying c,

generates a locus of points (pI ; pII), which we call as the Error Tradeo� Frontier as shown

in Figure 2.

The Error Tradeo� Frontier therefore, is an exact understanding of how one of the errors

responds to changes in the other. In particular, how pII responds to pI above, can be

summarized by the function g(n);f̂0;f̂1 : (0; 1) 7�! (0; 1), where pII = g(n);f̂0;f̂1(pI).
5 It is clear

that the function g should be indexed by the density pair f̂0 and f̂1; since the functional

5Note that we have used open intervals here, for we are not particularly interested in the end-points.
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form of g would depend on that of f̂0 and f̂1 (every point on the frontier pII = g(n);f̂0;f̂1(pI),

essentially represents a pair of shaded regions obtained from the areas under f̂0 and f̂1 in

the relevant intervals). We now establish the result that g(n);f̂0;f̂1 is non-increasing.

Proposition 1 The Error Tradeo� Frontier g(n);f̂0;f̂1 : (0; 1) 7�! (0; 1) is always non-

increasing for any density pair f̂0 and f̂1 permissible under d(�z).

Proof. Trivial. Let F̂0 and F̂1 be the respective cumulative distributions of f̂0 and f̂1. Pick

any c0 associated with a given (p0I ; p
0
II). Now choose any c

00 > c0 so that p00I � p0I (where

p00I is associated with c
00). This follows from the fact that F̂0 is non-decreasing. Similarly,

p00II � p0II (where p00II is associated with c00) follows from the fact that F̂1 is non-decreasing.

Thus if p00I � p0I then p00II � p0II along the Error Tradeo� Frontier. This completes the proof.

At this stage, we are tempted to believe that methods of sample size determination

that weigh Type I errors against Type II errors6 must necessarily need assumptions on the

functional forms of f̂0 and f̂1, or rely on some methods of estimating them (or use Bayesian

6See Lipsey (1990). Useful perspectives on this 'act of balancing' can be found in Brown (1983); Cascio
and Zedeck (1983); Nagel and Neef (1977); and Schneider and Darcy (1984).
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priors). I will demonstrate that with the Binding Frontier (the �nal frontier that we will

construct and also the one that we are ultimately interested in), this is not the case.

2.2 Family of Error Tradeo� Frontiers

It is clear that for a given n (since we have a �xed sample), a decrease in one error would

not decrease the other. In reality, we can only make conjectures on the speci�cations of

density pairs f̂0 and f̂1 (and do not observe either). In general, the exact shape and position

of a given frontier g(n);f̂0;f̂1 , will depend on the functional forms of the density pairs (how

one error exactly responds to the other depends on the density speci�cations under H0 and

H1). Figure 3 displays this non-increasing relation between pI and pII for four di�erent

(arbitrary) density pairs named A, B, C and D that share the same variance and sample

size and are permissible under d(�z). The �rst challenge is that since there are an in�nite

number of frontiers for a given sample size, we do not know what the 'outermost' (in the

North-Eastern region) frontier looks like, since if we did, then we would want to just �x

pI and pII , and invert that frontier to implicitly solve for n (this will be explained in more

detail in a while). The second challenge is that we do not know if the outermost frontier

is uniquely determined. As shown in Figure 3, while for some points (pI ; pII), frontier D

is the outermost frontier, for others frontier C is the outermost frontier. The next section

addresses these challenges and presents the main result of this paper.

3 The Binding Frontier

We ask if it is possible to construct a function !(n) : (0; 1) 7�! (0; 1) that binds every

frontier for all points (pI ; pII), from the North-East direction for a given sample size n. In

other words, we are looking for an upper envelope or a band which is independent of the

speci�cations of f̂0 and f̂1. Figure 4 illustrates this problem.

A �rst impression is that a frontier should exist, for the function pII = !(n)(pI) = 1� pI ,
does work well for a valid frontier. However, such a frontier is not meaningful since points like

(0:5; 0:5) on the error space are not very useful. We will thus need additional requirements

on !(n). The most obvious of these is that it should be dependent on n (what else are we

implicitly solving for?). The second additional requirement will be that once we invert !(n)

to implicitly solve for n, the sample size, it must be non-increasing in both pI and pII (as

is desirable of other known sample size formulae), since the more con�dent we want to be

(the lower the pi), the higher will be the data requirement. A �nal requirement is that the

expression of n must be scale-invariant (say, a function of �=(�1 � �0)).
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3.1 The Construction

Let � be the (maximum permissible) size of the Type I error. Let c be a non-negative

constant such that pI = 1 � F̂0(�0 + c) = P ( �Z � �0 > cj� = �0) � �. In other words,

according to our decision function, the null is rejected whenever �Z > �0 + c. We now prove

the following lemma.

Lemma 1 The probability of a Type I error does not exceed � when we �x � equal to
�2Z
nc2
.

Proof. The inequality P ( �Z � �0 + c) � P (�0 � c � �Z � �0 + c) � P (�0 � c < �Z < �0 + c)

follows from the fact that the LHS spans more values. Further, the Chebyshev's inequality

guarantees that P (�0� c < �Z < �0+ c) = P (j �Z��0j < c) � 1�
�2Z
nc2
. These two inequalities

can be combined to get P ( �Z � �0 + c) � 1 � �2Z
nc2
. Finally, subtracting each side of this

inequality from unity, gives us P ( �Z��0 > cj� = �0) �
�2Z
nc2
. The LHS of this �nal inequality

is in fact the probability of a Type I error. Fixing � equal to
�2Z
nc2

completes the proof.

It is important to note that we made no assumption on the parameter vector �̂0; or

the functional form of the density f̂0 (and hence the distribution function F̂0), in the deter-

mination of pI (the Type I error) above. The value of c above, can be thought of as the

critical distance from the mean assumed under the null hypothesis. We similarly de�ne k to

be the critical distance from the mean assumed under the alternate hypothesis, and apply

the Chebyshev's inequality to prove the following lemma de�ning � to be the (maximum

permissible) size of the Type II error.

Lemma 2 The probability of a Type II error does not exceed � when we �x � equal to
�2Z
nk2
.

Proof. Trivial. The steps involved are exactly the same as in the proof of Lemma 1 above.

For �0 = 0, the steps have been deferred to the Appendix, and make no assumption on the

parameter vector �̂1 or the functional form of density f̂1 in the calculation of pII = F̂1(�1�k).

Figure 1 illustrates how c and k are related as per the requirements of our decision

function, with the regions of Type I and Type II errors labeled respectively as I and II. We

are now in a position to prove the central theorem of this paper.

Theorem 1 Let t = (�1��0)
�Z

, then � = !(n)(�) =
�

1
(t
p
n)�(1=

p
�)

�2
is a binding frontier.

Proof. From Lemma 1, we have P (Type I error) � �2Z
nc2

= �, or c = �Zp
�n
. From Lemma

2, we have P (Type II error) � �2Z
nk2

= �. Putting k equal to �1 � �0 � c, where c = �Zp
�n

(from Lemma 1), as per the requirements of our decision function (see Figure 1) completes

the proof.
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The theorem above, needs an explanation. t = j�1��0j
�Z

is the treatment e�ect.7 It should

be noted that while I have written g(n);f̂0;f̂1 in terms of pI and pII ; I have intentionally written

!(n), in terms of � and �, because it helps us immediately distinguish both the errors from

their respective upper bounds (� and � are (by construction) respectively the upper bounds

on pI and pII). Formally, what we have shown is that
R
R
!(n)(�)d� �

R
R
g(n);f̂0;f̂1(pI)dpI for

any permissible region R � (0; 1).8 Now the purpose of our construction is clear, since all

the Error Tradeo� Frontiers and the Binding Frontier are shown for a given sample size

in Figure 4. One can therefore, choose a point (�0; �0) on the Binding Frontier, and stay

assured that pI and pII are captured under the outermost Error Tradeo� Frontiers within

the rectangle that (�0; �0) forms with the axes. Algebraically, this is equivalent to �xing the

values of � and � on the curve � = !(n)(�), and implicitly solving for n to ensure that 'the

errors are contained' for that given sample size. We present this application of Theorem 1

in the following corollary.

Corollary 1 If sample size is determined according to the rule:

n! =
�2Z

(�1 � �0)2

�
1p
�
+

1p
�

�2
; (2)

then the statements P (Type I error) � �, and P (Type II error) � �, are simultaneously

true, regardless of the functional forms of the densities f̂0 and f̂1.

Proof. Follows trivially from writing the Binding Frontier as � = !(n)(�) =
�2Z

n(�1��0�
�Zp
�n
)2

and solving for n.

We solve a quadratic equation in
p
n above and focus on the greater root (that is

p
n!)

since the other root may take negative values, for often there are cases (particularly in

the areas of drug-screening and genome analysis) where � > � is more desirable than the

converse.9 Now, before we trace out our Binding Frontier, it will be helpful to discuss a

direct application of the term n! in equation (2) above.

7t here is similar to the expression known as Cohen's d, which is known as the 'e�ect size' (see Cohen
(1977)).

8This statement only means that since � � pI and � � pII whenever � = !(n)(�) and pII = g(n);f̂0;f̂1(pI),
the area under the function !(n) in the error space should not be less than the area under g(n);f̂0;f̂1 (as is our

requirement). Note that we have implicitly assumed here that g(n);f̂0;f̂1 is well behaved. When integrating

g(n);f̂0;f̂1 is not straight forward (we only know that g(n);f̂0;f̂1 is non-increasing and nothing more), one may

represent the area with a summation sign (rather than the integral sign). The term
P
R

g(n);f̂0;f̂1(pIj)�pIj , for

example, shows that the summation is done over the index j, in the region R of the integral
R
R
!(n)(�)d�.

9An example is worth mentioning here. What would be more a more harmful outcome for a person
interested in buying a car? Predicting that a car was a bad buy when it was not (incorrect rejection of the
null)?; or predicting that a car is not a bad buy when it actually is (incorrect failure to reject the null)?.
Clearly, one would desire � < � here. To provide yet another example of multiple sclerosis (MS) trials in the
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3.2 An Application: Two Person Bargaining Games

To see how this works in the context of a two-person bargaining game,10 in the expression

for n! above, we �x the (maximum) probabilities of Type I error (�) and Type II error (�)

to be 0:05 and 0:10 respectively. For this bargaining protocol involving a pair of subjects,

we need a unique random variable that represents the outcome of any given pair. Let xij

represent the share of the jth subject in the ith pair (j 2 f1; 2g). So the ith pair of shares is
represented by (xi1; x

i
2); where x

i
1+x

i
2 = 1: Since jxi1�0:5j = jxi2�0:5j, we can de�ne, without

loss of generality zi = jxi1� 0:5j. Then let �Z = Z1+:::+Zn
n

(where n is the number of observed

pairs). �Z measures the average deviation of the negotiated shares from the equal division

solution (0:5; 0:5). Suppose that the population mean of this variable is �0. Now, consider

the test of the null hypothesis that �0 = 0 (i.e. the equal division solution is the population

mean). The question is: what would be the minimum sample that is required for such a

test to have reasonable power against an alternative hypothesis that the population mean is

�1 > 0? We will, as an example, consider the alternative hypothesis to be �1 = 0:02. It is

clear that the sample size that has reasonable power for this alternative hypothesis would

also have at least that much power for any �1 > 0:02. We have � = 0:05; � = 0:10; �0 = 0

and �1 = 0:02. The only limitation is that we do not know the value of �Z . This will, in

general, involve getting an estimate from a previous (pilot) study under conditions similar

to the �nal experiment. To estimate �Z , we use a pilot study that had 14 subjects (7 pairs)

in the control group. In this sample, �̂Z = 0:0075592. Using this value gives us n
� = 8:33

� 9 pairs (18 subjects). Note that c equals 0:01 for this value of n. In other words, with just
18 subjects, we can be 95% con�dent that the average outcome is the 50%-50% split (and

not a 51%-49% split).

In other words, when we �x � and � equal to 0:05 and 0:10 respectively in the expression

for n!, we are assured that the actual probabilities of Type I and Type II errors (whatever

they equal) do not exceed these respective values, regardless of the densities f̂0 or f̂1, that

could have potentially generated the data (in general, we need information on the functional

forms of f̂0 and f̂1 to calculate the actual probabilities of Type I and Type II errors).

An important point concerns the estimation of �Z . According to Thompson (2012),

"a bothersome aspect of sample size formulas such as these is that they depend on the

area of biostatistics, the current standard of care for MS is nearly worthless, so it is reasoned that as long
as a new drug is not explicitly harmful, then there is no loss in accepting it to replace the current standard:
thus the Type I error can be quite large. Conversely, these patients really need quality treatment, so it is
unacceptable to fail a drug that works: hence the Type II error should be small (5% or lower).

10These are simultaneous move games where two players engage in face to face negotiation to determine
how to split a pie of unit size between themselves. They share the pie as per the negotiation. If they fail to
reach a negotiation, each individual gets nothing.
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population variance, which generally is unknown. In practice, one may be able to estimate

the population variance using a sample variance from past data from the same or a similar

population." (Sampling, Chapter 4, Pages 54-55 ).11 The use of stopping rules and dynamic

sampling is often impractical and out of the question for most experimental economists.

This is simply because most experiments are such that they need to be conducted before the

data analyses. The process of dynamic sampling, on the other hand, requires that the data

are analyzed as and when they are generated during the experiment to determine sequential

estimates of sample sizes. This undoubtedly adds several challenges to the already involving

task of conducting an experiment.

A further important point is to notice that n! is a linear transformation of �̂
2
Z , and

therefore a random variable itself. One can therefore, easily work out 95% con�dence intervals

for n!, directly from the bootstrapped con�dence intervals for �̂
2
Z (see Thompson, 2012, and

Mooney and Duval, 1993).

The above calculations can be easily replicated for ultimatum and dictator games, and

those involving sequential bargaining (based on the pilot results). For a general J- person

bargaining experiment (one where J individuals of a group bargain over a unit pie), one may

apply the method above with zi = jxi1 � (1=J)j=J , or the mean deviation for each group of
J individuals. We have explained the calculations in this subsection with J = 2 above.

4 Properties of the Sample Size Expression

In this section, we discuss some of the properties satis�ed by the expression n!, that are

commonly known for other (standard) sample size estimates (See Gore (1981); Kirby et al.

(2002); Cochran (2009); and Thompson (2012)). n! is clearly decreasing in � and � (a

property that the other (smaller) root did not satisfy), meaning that more con�dence will

require an increase in the sample size. It is also clear that the higher the variance observed

in the pilot study, the greater will be the required sample size in the �nal experiment for

given � and �. The fact that n! is also decreasing in the 'mean gap' (a term with which

11To address another (and a fortunately a less problematic) issue, one might also argue that the given
formula above, also requires �xing a given value of �1 and consequently needs justifying a well-identi�ed
value of the same. Fortunately, this is not a serious problem, for it is always feasible to �x �1 arbitrarily close
enough to �0, and work out the sample size accordingly. The chosen process will accordingly have at least
that much power for any value of �1, greater than that selected by us. For instance, the choice of �0 = 0,
in our bargaining example above, can be interpreted as 'absolutely fair'. �1 = 0:50 can be interpreted as
'absolutely unfair'. A choice of �1 = 0:05, can be interpreted as 'mostly fair'. We immediately know then
that any �z, signi�cantly di�erent from �1 = 0:05 will also be signi�cantly di�erent from �1 = 0:50. In other
words, a population known not to compromise on any element/aspect of fairness will surely not settle on
dictatorial outcomes. Such a problem is thus, frequently circumvented by experimenters involved even in
other �elds of drug testing and clinical trials (see Thompson (2012) and Chow et al (2008)).
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we refer to the di�erence j�1 � �0j) implies that the narrower the di�erence between the
means assumed under the null and the alternate hypotheses, the greater will be the sample

size requirement.12 Lastly, the control group size is scale-invariant: since n! is a function of
�Z

j�1��0j
.

Finally, in Figure 5, I show one possible Error Tradeo� Frontier, alongside our Binding

Frontier associated with the application discussed in the previous section. The equation

� = !(n)(�) can be written as follows�
1p
�
+

1p
�

�
= t
p
n! =

j�1 � �0j
p
n!

�Z
(3)

We �x t
p
n! above by �xing the values of �0, �1, n!, and �Z at 0, 0:05, 2 and 0:0075593

respectively (as in our example), and let � and � vary according to the above rule. This

generates a locus of points represented by the solid line in Figure 5. This is the Binding

Frontier. The dashed-line represents an Error Tradeo� Frontier, which we would have (say)

observed had we made assumptions on the actual distributions of �Z under H0 and H1. It is

clear that, for a given sample size, since � is an upper bound to the probability of Type I

12The denominator in the expression for
p
n! involves �1 � �0, whenever �1 > �0 and involves �0 � �1,

whenever �0 > �1. Both the cases can be combined to write
p
n in terms of j�1 � �0j.
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error, and �, an upper bound to the probability of Type II error, the Error Tradeo� Frontier

will always be bounded by the Binding Frontier (guaranteed by Lemmas 1 and 2). We make

do with the latter, simply because the former is not observed without assumptions on the

distribution. Note that an increase in n, will shift both the frontiers inward (and a decrease,

outward). An increase in �Z , on the other hand, will shift both the frontiers outward (and

a decrease, inward). An increase or decrease in the mean gap will have a similar e�ect as

that of the sample size n. An intersection between the two frontiers (at a �xed pair of Type

I and Type II error levels) can only be observed, if the Binding Frontier is associated with

a sample size greater than that of the Error Tradeo� Frontier. This di�erence between the

sample sizes can be thought of as a 'cost' of not knowing the actual distribution of Z (or the

cost of not making an assumption on the same). Since this cost will always remain, we refer

to our sample size as the satis�cing sample size since it displays a question of feasibility of

arriving at a sample size given limited or no information on the distribution of Z.

5 A Comparison With Existing Approaches and the

CLT

In what follows, we keep up with our practice of indexing sample size expressions for n with

the functional forms of the associated Tradeo� Frontiers. Sample size formulae of the type

ng = hf̂0;f̂1(�; �; �̂0; �̂1), are frequently dependent on � and � via terms like z�=2, and z�

(critical values of the standard normal variate), or t�=2;k (critical value of the t-distribution

with k degrees of freedom). Thus, the speci�cations of the underlying distributions become

important inputs in the determination of sample sizes (and the shapes as well as the positions

of the Error Tradeo� Frontiers). These speci�cations are either consequences of distribu-

tional assumptions, or the reliance on asymptotic normality. In both the cases, however,

the choices of � or � that translate to critical values like z�=2 and t�=2;k, involve a pro-

cess of inversion of cumulative distribution functions that often yield complex expressions

(and therefore add to the complexity of the functional forms of g(n);f̂0;f̂1 , the Error Tradeo�

Frontiers). For example, for the cumulative distribution function F of the standard normal

variate, a choice of � = 0:05 translates to F�1(1 � (�=2)) = F�1(0:975) = 1:96 = z�=2,

which in turn, helps us determine ng. Although, such processes are often aided by statistical

tables and computational software, there are often cases, where distributional assumptions

are questionable. Both � and � appear directly in the speci�cation of n! without being

a�ected by assumptions on functional forms (of underlying distributions). The sample size

expression for n! of this paper is fundamentally di�erent from all other expressions known
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for ng so far in the literature, since � and � represent upper bounds on Type I and Type II

errors, rather than their actual (desired) realizations.

The decision of avoiding distributional assumptions, however, has its costs. To give an

idea of the magnitude of the same, let us �x � and � respectively to 0:05 and 0:20.13 The

assumption that Z is distributed normally, leads us to a sample size of 15:68�2Z=(�1 � �0)2,
as against 45�2Z=(�1��0)2, suggested by n!.14 The latter is almost thrice that of the former
that rests on normality assumptions (the Error Tradeo� Frontier meets the Binding Frontier

at (�; �) = (0:05; 0:20)). Using the former sample size expression always entails a risk that

Z actually belongs to a di�erent (from normal) population, and may hence require a greater

sample size for (�; �) = (0:05; 0:20). The advantage of using the expression for n!, is that it

is a natural upper bound on all sample-size expressions that emanate from the knowledge of

distributions relevant to context - the sample size we choose will always exceed the minimum

size required by any density pair f̂0 and f̂1.

13The choice of (�; �) = (0:05; 0:20), was suggested by Cohen (1977, 1988). Related discussions are found
in Ray and Vermeulen (1999); van-Belle (2008); Freiman et al. (1986); Desu and Raghavarao (1990); and
Lwanga and Lemshow (1991).

14See Lehr (1992) and van-Belle (2008) for why the sample size expression under the normality assumption
is called a 'thumb-rule'.
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6 Conclusion

This paper is about a method aimed at containing Type I and Type II errors without making

assumptions on the underlying densities under H0 and H1 when techniques of dynamic

sampling are not feasible. In short, we are not weighing one error against the other, but

simply taming both together. Figure 6 e�ectively summarizes the motivation behind this

paper, by putting together an arbitrary family of Error Tradeo� Frontiers for a given sample

size, and the respective Binding Frontier for the same sample size. Choosing the point V on

the Binding Frontier at (�; �) = (0:041; 0:068) �xes the maximum permissible values of pI

and pII . Inverting !(n) with (�; �) = (0:041; 0:068) to implicitly work out n! ensures that the

pairs (pI ; pII) are contained in the region OPQRS. Areas of drug testing and drug screening

involving clinical trials may bene�t too from such an approach provided that the associated

outcomes are systematically aligned with our decision function. This paper discusses a new

approach in the determination of sample sizes for experiments in economics, psychology and

other social experiments, addressing the issue that the requirements of these experiments

are signi�cantly di�erent from those in clinical labs and scienti�c surveys.

7 Appendix: Proof of Lemma 2

Proof. For �0 = 0, we substitute for c from Lemma 1 for P ( �Z <
�Zp
�n
j� = �1): Also, for any

k, we know from Chebyshev's inequality that P (�1� k < �Z < �1+ kj� = �1) � 1�
�2Z
nk2
: Let

k = �1 � �Zp
�n
; so that P (

�Zp
�n| {z }

�1�k

< �Z < 2�1 �
�Zp
�n| {z }

�1+k

j� = �1) � 1 � �2Z
nk2
. But we know that

P ( �Z � �Zp
�n
j� = �1) � P (

�Zp
�n| {z }

�1�k

< �Z < 2�1 �
�Zp
�n| {z }

�1+k

j� = �1); since LHS spans more values.

On combining these inequalities we get P ( �Z � �Zp
�n
j� = �1) � 1�

�2Z
nk2
. The complement of

this event leads us to P ( �Z < �Zp
�n
j� = �1) �

�2Z
nk2
. The LHS here is in fact the probability of

a Type II error. Finally, �xing � equal to
�2Z
nk2
, gives us P (Type II error) � �2Z

nk2
= �. This

completes the proof.
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