
Discussion Papers in Economics

Local Incentive Compatibility with Transfers.

Debasis Mishra, Anup Pramanik, and Souvik Roy

January 2016

Discussion Paper 16-01

Indian Statistical Institute, Delhi
Economics and Planning Unit

7, S. J. S. Sansanwal Marg, New Delhi 110016, India

1

Local Incentive Compatibility with Transfers ∗

Debasis Mishra, Anup Pramanik, and Souvik Roy †

January 20, 2016

Abstract

We consider locally incentive compatible mechanisms with deterministic allocation

rules and transfers with quasilinear utility. We identify a rich class of type spaces,

which includes the single peaked type space, where local incentive compatibility does

not imply incentive compatibility. Our main result shows that in such type spaces,

a mechanism is locally incentive compatible and payment-only incentive compatible if

and only if it is incentive compatible. Payment-only incentive compatibility requires

that a mechanism that generates the same allocation at two types must have the same

payment at those two types. Our result works on a class of ordinal type spaces, which

are generated by considering a set of ordinal preferences over alternatives and then

considering all non-negative type vectors representing such preferences.

JEL Codes: D82, D44, D47

Keywords: local incentive compatibility; payment-only incentive compatibility; single

peaked type space; ordinal type space

∗We are grateful to Gabriel Carroll, Francois Maniquet, Benny Moldovanu, Rudolf Muller, Arunava Sen

and seminar audience at Bonn University, CORE, Indian Statistical Institute (Delhi), Maastricht University

for useful comments.
†Debasis Mishra - Indian Statistical Institute, New Delhi, Email: dmishra@isid.ac.in; Anup Pramanik

- Institute of Social and Economic Research, Osaka University, Email: anup.isid@gmail.com; Souvik Roy

- Indian Statistical Institute, Kolkata, souvik_roy2004@yahoo.com

1

1 Introduction

The fundamental principle in mechanism design is that an agent should have no incentive

to report any type in the type space other than his true type. However, in many settings,

verifying all possible incentive constraints of a mechanism may be too demanding. Further, a

reasonable behavioral assumption is that an agent of a particular type only misreports types

in a neighborhood of his true type which is strictly smaller than the entire type space. This

paper is concerned with weakening incentive compatibility to local incentive compatibility in

mechanism design problems with deterministic allocation rules and transfers with quasilinear

utility.

In an important contribution, Carroll (2012) shows that in convex type spaces every lo-

cally incentive compatible mechanism is incentive compatible - his result also works with ran-

domized allocation rules. While convexity may be a reasonable assumption that is satisfied

by many type spaces, there are important type spaces that are non-convex. For instance, if

types are such that the underlying ordinal preferences over alternatives satisfy single-peaked

property, we get a non-convex type space. We give an example to show that the result in

Carroll (2012) is no longer true in such non-convex type spaces.

However, we show that this break down is only due to violation of a particular type of

(non-local) incentive constraint. We consider the notion of payment-only incentive compat-

ibility. Suppose s and t are two types where the allocation decision of a mechanism is the

same. Payment-only incentive compatibility requires that an agent of type s should have

no incentive to report t to this mechanism. Since types s and t have identical allocation

decisions, payment-only incentive compatibility can be equivalently stated as requiring that

the payment decisions at s and t should also be the same. It is well known that payment-only

incentive compatibility is necessary for incentive compatibility. However, it is not implied

by local incentive compatibility.

We identify a large class of non-convex type spaces where local incentive compatibility

along with payment-only incentive compatibility is equivalent to incentive compatibility. 1

We call such type spaces top connected ordinal type spaces. Ordinal type spaces are defined by

taking a set of permissible strict linear orders over alternatives and considering the closure of

all non-negative type vectors that represent these orders. Thus, restriction on the underlying

set of strict linear orders translates to restrictions on type spaces. Top connectedness is a

technical property on the permissible set of strict linear orders.

Two familiar ordinal domain restrictions satisfy our top connectedness property: (a) set

of all single peaked orderings and (b) a particular set of single crossing orderings. In other

1 We also require a mild range condition on the allocation rule.

2

words, in the type space constructed by taking the closure of all types representing the strict

linear orders in these domains, local incentive compatibility and payment-only incentive

compatibility will imply incentive compatibility.

While single peakedness and single crossing property are well motivated restrictions on

preferences in ordinal environment, they are equally important restrictions in our cardinal en-

vironment. For instance, single peaked type restriction may make sense in certain scheduling

problems and location problems. Consider a scheduling problem, where a supplier is deciding

on delivery of products to various firms on days of the week. Each firm will have a best day

of the week and as the delivery day goes away from the best day, the value of the firm for

the products is likely to decrease because of delivery delay costs or inventory-holding costs.

Note that we are imposing these restrictions on the underlying preferences over alternatives

(delivery dates in this example) - preferences over transfers is still determined using quasi-

linear utility functions. Also, our results apply to both public and private good allocation

problems in quasilinear setting. 2

An allocation rule is said to be implementable if there exists a payment function such

that the resulting mechanism is incentive compatible. Well known results on revenue equiva-

lence (Chung and Olszewski, 2007) in this setting implies that for every implementable rule,

a payment rule that makes it incentive compatible is uniquely determined up to an additive

constant. Hence, the question of verifying whether a mechanism is incentive compatible

or not can be broken down into two parts: (a) verify whether the allocation rule is imple-

mentable or not and (b) check if the payment rule corresponds to the payment rule prescribed

by the revenue equivalence formula. As a result, the local incentive compatibility question

of a mechanism can be rephrased in terms of local implementability.

A well known result in Rockafellar (1970) and Rochet (1987) shows that implementability

is equivalent to a condition called cycle monotonicity. With deterministic allocation rules, a

weaker cycle monotonicity condition, called 2-cycle monotonicity, is known to be necessary

and sufficient for implementability in convex type spaces (Saks and Yu, 2005; Ashlagi et al.,

2010) and in single peaked type spaces (Mishra et al., 2014). Archer and Kleinberg (2008)

define local implementability of an allocation rule as follows: an allocation rule is locally

implementable if for every type in the type space, it is 2-cycle monotone in an arbitrary

neighborhood around that type. In a result parallel to Carroll (2012), Archer and Kleinberg

(2008) show that local implementability implies implementability in convex type spaces - see

2An example of a public good provision problem where agents have single peaked types is locating a

public facility on a street. Again, it is not difficult to think that transfers are involved in these problems -

in the form of tax or subsidy to participating agents.

3

also Archer and Kleinberg (2014). 3

We show that in any polygonally connected type space, if local implementability implies

implementability, then local incentive compatibility implies incentive compatibility. This

implies that we cannot hope to extend our main result if we use the notion of local imple-

mentability. In particular, in the single peaked type space, a local implementable allocation

rule may not be implementable.

Relation to Literature. In the auction design literature with transfers and quasilinear

utility, a long standing research agenda has been to identify a minimal set of incentive

constraints that will imply overall incentive compatibility - see discussions on relaxed problem

in Chapter 7 of Fudenberg and Tirole (1991), Armstrong (2000), and Chapter 6 in Vohra

(2011). While most of this literature was not very explicit about the local versus global

incentive compatibility problem, Carroll (2012) was the first to provide a general definition

and a result in a broad set of mechanism design settings. The analogous results for local

implementability were shown in Archer and Kleinberg (2008) - see also Archer and Kleinberg

(2014). Berger et al. (2010) show that the results in Archer and Kleinberg (2008) can be

extended to certain connected type spaces under strong additional technical conditions. A

recent paper by Fotakis and Zampetakis (2013) also show that the local implementability

result in Archer and Kleinberg (2008) can be extended to some non-convex type spaces.

The type spaces discussed in our paper is not related to theirs. Moreover, they discuss local

implementability and our main focus is on type spaces where local incentive compatibility

does not imply incentive compatibility.

The local to global incentive compatibility issue is also central in the principal-agent

literature, but the central issue in both the literature is quite different. In the principal-agent

literature, the incentive constraints are complicated because of the structure of the utility

function and uncertainty over the outcome space - see a recent take on this in Kirkegaard

(2014). On the other hand, the incentive constraints in our paper is complicated due to the

presence of multidimensional type spaces.

The rest of the paper is organized as follows. We introduce the notion of local incentive

compatibility formally in Section 2 followed by a motivating example in Section 2.1. Section

3 introduces the notion of payment-only incentive compatibility and states the main result

with a detailed description of type spaces where the main result works. Section 4 discusses

the notion of local implementation. We conclude in Section 5. All the omitted proofs are

3Unlike Carroll (2012), this result requires the allocation rule to be deterministic. For randomized allo-

cation rules, Archer and Kleinberg (2008) consider a stronger version of local implementability, and show it

to be sufficient for implementability in convex type spaces.

4

relegated to an Appendix at the end.

2 Local Incentive Compatibility

There is a single agent and a finite set of alternatives A. 4 The type of the agent is a vector

in R|A|. The type space (possible set of types) of the agent is a set T ⊆ R|A|. If the agent

has type t ∈ T , then his valuation for any alternative a ∈ A is denoted by t(a).

An allocation rule is a map f : T → A. Note that we only consider deterministic

allocation rules. A payment rule is a map p : T → R. A (direct) mechanism M consists

of an allocation rule f and a payment rule p. If the agent has type t but reports s to the

mechanism, then his net utility is given by

t(f(s)) − p(s),

where we assumed quasilinearity to evaluate utility from payments.

An agent of type t cannot manipulate to a type s if

t(f(t)) − p(t) ≥ t(f(s)) − p(s).

Definition 1 A mechanism (f, p) is incentive compatible if for all t ∈ T , t cannot

manipulate to s for all s ∈ T .

To define local incentive compatibility, we define the notion of a neighborhood. For every

ǫ > 0 and every t ∈ T , let Bǫ(t) := {s ∈ T : ||s − t|| < ǫ} be the open |A|-dimensional ball

around t contained in T .

Definition 2 A mechanism M ≡ (f, p) is locally incentive compatible if for every

t ∈ T there exists an ǫ > 0 such that for all s ∈ Bǫ(t), t cannot manipulate to s and s cannot

manipulate to t.

Local incentive compatibility requires that for every type t, there is an open ball Bǫ(t),

where ǫ can depend on t, such that the (pair of) incentive constraints between t and every

type in Bǫ(t) hold. This notion of local incentive compatibility was introduced in Carroll

(2012). 5 He showed that if a type space is convex, then local incentive compatibility implies

incentive compatibility. We start off by giving an example of an important non-convex type

space, where local incentive compatibility is no longer equivalent to incentive compatibility.

4This is without loss of generality since all the results generalize, albeit with extra notation, to a setting

with multiple agents.
5Naturally, one can define other plausible notions of local incentive compatibility too. For discussions on

how this particular definition compares to some other notions, see Carroll (2012).

5

2.1 A Motivating Example

Consider the following type space. Let ≻ be a strict linear order over the set of alternatives.

A strict preference ordering P is single peaked with respect to ≻ if for every a, b ∈ A with

b ≻ a ≻ P (1) or P (1) ≻ a ≻ b, where P (1) is the highest ranked alternative in P , we have

aPb. A type t ∈ R|A| represents an ordering P if for all a, b ∈ A, t(a) > t(b) if and only if

aPb. Let D≻ denote the set of all single peaked preference orderings and T≻ be the closure

of all non-negative types representing types in D≻.

As discussed earlier, the single peaked type space T≻ is a natural type space in many

problems. We show that in the single peaked type space, local incentive compatibility does

not imply incentive compatibility. 6

Example 1

Let A = {a, b, c} and D≻ be the following domain of orderings.

P 1 P 2 P 3 P 4

a b b c

b a c b

c c a a

Note that D≻ is single peaked with respect to a ≻ b ≻ c. We consider the following

mechanism on T≻. We partition T≻ as T 1 ∪ T 2 ∪ T 3 ∪ T 4 ∪ T 5 ∪ T 6, where each T j,

j ∈ {1, . . . , 6} is defined below in Table 1 along with the values of f and p in them.

Notice that the mechanism in Table 1 in not incentive compatible - types in T 1 and T 6

both get the alternative a, but types in T 1 pay 2 and types in T 6 pay zero. However, types

in T 1 and T 6 are not local to each other, which allows us to show that this mechanism is

locally incentive compatible.

Claim 1 The mechanism (f, p) in Table 1 is locally incentive compatible but not incentive

compatible.

The proof of Claim 1 is in the Appendix. This example illustrates that there are important

type spaces where local incentive compatibility does not imply incentive compatibility. In our

6Carroll (2012) provides a necessary condition on type spaces where every randomized locally incentive

compatible mechanism is incentive compatible. This necessary condition is violated by the single peaked

type space. Since we restrict attention to deterministic mechanisms, this necessary condition cannot be

applied in our setting. Example 1 directly shows that local incentive compatibility does not imply incentive

compatibility in single peaked type space.

6

type space f(·) p(·)

T 1 := {t : t(a) − t(b) ≥ 2 and t(a) > t(b) ≥ t(c)} a 2

T 2 := {t : t(a) − t(b) < 2 and t(a) > t(b) ≥ t(c)} b 0

T 3 := {t : t(b) ≥ max(t(a), t(c))} b 0

T 4 := {t : t(c) − t(b) ≥ 1 and t(c) > t(b) ≥ t(a)} c 1

T 5 := {t : t(c) − t(b) < 1 and t(c) ≥ t(b) > t(a)} b 0

T 6 := {t : t(c) − t(b) < 1 and t(c) > t(b) = t(a)} a 0

Table 1: A locally incentive compatible mechanism

main result in the next section, we introduce a notion of non-local incentive compatibility,

which along with local incentive compatibility implies incentive compatibility in such type

spaces.

3 The Main Result

We state and prove our main result in this section. We start out by introducing a new notion

of (non-local) incentive compatibility.

Definition 3 A mechanism (f, p) is payment-only incentive compatible if for every

pair of types s, t with f(s) = f(t), we have

t(f(t)) − p(t) ≥ t(f(s)) − p(s).

It is easy to verify that payment-only incentive compatibility is equivalent to the following

condition on payments.

Observation 1 A mechanism (f, p) is payment-only incentive compatible if and only if for

every pair of types s, t with f(s) = f(t), we have p(s) = p(t).

Notice that an incentive compatible mechanism is payment-only incentive compatible.

Obviously, payment-only incentive compatibility is not a local condition as it takes care of

some non-local incentive constraints also. However, its implications from a design perspective

is innocuous - it requires the domain of the payment function to be the set of alternatives

instead of the type space. In other words, local incentive compatibility along with payment-

only incentive compatibility still requires us to verify only local incentive constraints once

the domain of the payment function is changed. Thus, the nature of the verification problem

for the designer remains the same, though the verification of the mechanism is now easier.

7

3.1 Top Connected Domains

We now identify a class of type spaces where local incentive compatibility along with payment-

only incentive compatibility implies incentive compatibility. We give two important non-

convex type spaces that are covered by our general result.

To introduce our type spaces, we state below some definitions. Let P the set of all strict

orderings over A. A domain is any subset D ⊆ P. A type t ∈ R|A| is strict if t(a) 6= t(b) for

all a, b ∈ A. Every strict type induces an ordering in P. We say a strict type t represents an

ordering P ∈ P if for every a, b ∈ A, t(a) > t(b) if and only if aPb. For any ordinal domain

D ⊆ P, let V (D) be the set of all strict types in R
|A|
+ representing orderings in D - note that

though we required our strict type to be non-negative, we can state and prove our results

without this restriction. A type space T is an ordinal type space if there exists a domain

D such that T = cl(V (D)), where cl(V (D)) is the closure of the set V (D). Hence, an ordinal

type space consists of the closure of union of a finite number of cones in R|A|, with each cone

representing an ordering in the domain.

Given an ordering P and an alternative a, we denote by r(P, a) the rank of a in P .

A sequence of orderings (P 1, . . . , P k) is a-improving for an alternative a if for every j ∈

{1, . . . , k − 1}, r(P j, a) ≥ r(P j+1, a).

We say two orderings P and P ′ are adjacent if there exists a, b ∈ A such that r(P, a) =

r(P, b) + 1, r(P ′, a) = r(P, b), r(P ′, b) = r(P, a), and for all c ∈ A \ {a, b}, r(P, c) = r(P ′, c).

A sequence of orderings (P 1, . . . , P k) is connected if for every j ∈ {1, . . . , k − 1}, P j

and P j+1 are adjacent.

Definition 4 A domain D is top connected if for every a ∈ A, there exists a P ∈ D

such that

• Richness. r(P, a) = 1 and

• Monotone Connectedness. for every P ′ ∈ D, there exists an a-improving connected

sequence (P ′ ≡ P 1, . . . , P k ≡ P).

We give an example to illustrate top-connectedness. Let A = {a, b, c, d} and consider

the set of preference orderings shown in Table 2. Notice that for every x ∈ A, there is

a preference ordering P in Table 2, where r(P, x) = 1. Further, for any P ′ 6= P , we can

construct a sequence of connected orderings such that the position of x is improving in

the sequence. As an example, consider d ∈ A and note that r(P 8, d) = 1. Now, consider

P 5 and note that r(P 5, d) = 3. But consider the sequence (P 5, P 7, P 8) and notice that

8

P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8

a b b b c c c d

b a c c b b d c

c c a d d a b b

d d d a a d a a

Table 2: Top connected domain.

r(P 5, d) > r(P 7, d) > r(P 8, d). Further P 8 and P 7 are adjacent and P 7 and P 5 are adjacent.

We discuss some specific domains that are top connected later. We require the following

range condition for our main result.

Definition 5 An allocation rule f : T → A satisfies strict type range (STR) condition

if for every a ∈ A, there is a strict type t ∈ T such that f(t) = a.

Note that STR is stronger than ontoness since we require the alternative to be chosen

at some strict type. Before we state our main result, we state a notion of local incentive

compatibility that is commonly used in ordinal voting models without transfers (Carroll,

2012; Sato, 2013a,b), but it is relevant for our ordinal type spaces also.

Definition 6 A mechanism (f, p) defined on an ordinal type space cl(V (D)) is adjacent

incentive compatible if for every P, P ′ ∈ D such that P and P ′ are adjacent, and for

every s, t ∈ cl(V ({P, P ′})), t cannot manipulate to s.

Adjacent incentive compatibility is a notion of local incentive compatibility that is specific

to our ordinal type spaces. It requires that a type in a cone corresponding to a specific

ordering cannot manipulate to a type in a cone corresponding to the same ordering or an

adjacent ordering. As we show below in our main result, this is equivalent to local incentive

compatibility in top connected type spaces.

Theorem 1 Suppose D is a top connected domain and T = cl(V (D)). Let f : T → A be a

deterministic allocation rule satisfying STR and (f, p) be a mechanism defined on type space

T . Then, the following statements are equivalent.

1. (f, p) is locally incentive compatible and payment-only incentive compatible.

2. (f, p) is adjacent incentive compatible and payment-only incentive compatible.

3. (f, p) is incentive compatible.

9

Proof : Obviously, 3 ⇒ 1. We only show 1 ⇒ 2 and 2 ⇒ 3. For 1 ⇒ 2, consider the

following elementary fact.

Fact 1 Suppose P, P ′ ∈ D are adjacent. Then, cl(V ({P, P ′})) is a convex set.

Proof : Since P and P ′ are adjacent, there exists a, b ∈ A such that r(P, a) = r(P, b) + 1,

r(P ′, a) = r(P, b), r(P ′, b) = r(P, a), and for all c ∈ A \ {a, b}, r(P, c) = r(P ′, c). Now,

choose s, t ∈ cl(V ({P, P ′})). By definition, s and t only differ in their ranking of a and b,

which are consecutively ranked in P and P ′. As a result, any convex combination of s and

t will lie in cl(V ({P, P ′})). �

Now, let (f, p) be a locally incentive compatible mechanism in T = cl(V (D)), where D

is top connected. Now, choose any P, P ′ ∈ D such that P, P ′ are adjacent. By Carroll

(2012), we know that local incentive compatibility in a convex type space implies incentive

compatibility. Hence, (f, p) restricted to cl(V ({P, P ′})) is incentive compatible by Fact 1.

As a result, (f, p) is adjacent incentive compatible.

We now show 2 ⇒ 3. Let (f, p) be an adjacent incentive compatible and payment-only

incentive compatible mechanism. Since (f, p) is payment-only incentive compatible, we have

p(t) = p(t′) for all t, t′ ∈ T with f(t) = f(t′). Hence, with a slight abuse of notation, we

write p as a map p : A → R. Consider any type s ∈ T and let f(s) = a. Choose an arbitrary

b ∈ A. We need to show that

s(a) − s(b) ≥ p(a) − p(b).

We do the proof in two steps.

Step 1. In this step, we show that there exists an ordering P̄ ∈ D such that r(P̄ , b) = 1

and a type t̄ representing P̄ such that f(t̄) = b.

By STR, there is a strict type t ∈ T such that f(t) = b. Let P̃ ∈ D be an ordering such

that t ∈ V ({P̃}). By top-connectedness, there exists an ordering P̄ such that r(P̄ , b) = 1

and a b-improving connected sequence (P̃ ≡ P 1, . . . , P k ≡ P̄).

Since P 1 and P 2 are adjacent, there is some pair of alternatives x, y ∈ A such that

r(P 1, y) = r(P 1, x) + 1, r(P 2, x) = r(P 1, y), r(P 2, y) = r(P 1, x), and r(P 2, z) = r(P 1, z)

for all z ∈ A \ {x, y}. Note that since the sequence is b-improving, x 6= b. Let t1 ≡ t and

construct t2 as follows by choosing ǫ > 0 but sufficiently close to zero:

t2(z) =

t1(z) if z /∈ {x, b},

t1(z) + ǫ if z = b,

t1(y) − ǫ if z = x.

10

Observe that t2 represents P 2 - t2 is constructed by lowering t1(x) to t1(y) − ǫ, increasing

t1(b) by ǫ and keeping all values unchanged from t1. Further, t2 can be constructed since t1

is a strict type.

Since P 1 and P 2 are adjacent, by adjacent incentive compatibility,

t1(b) − p(b) ≥ t1(f(t2)) − p(f(t2))

t2(f(t2)) − p(f(t2)) ≥ t2(b) − p(b).

Adding these incentive constraints, we get

t2(f(t2)) − t1(f(t2)) ≥ t2(b) − t1(b) = ǫ.

By definition of t2, the above inequality can only be satisfied if f(t2) = b. Hence, f(t2) = b.

Now, we repeat this procedure inductively. For some j ∈ {1, . . . , k − 1}, suppose we

have found a type tj representing the ordering P j such that f(tj) = b. Since P j and P j+1

are adjacent, there is some pair of alternatives x, y ∈ A such that r(P j, y) = r(P j, x) + 1,

r(P j+1, x) = r(P j, y), r(P j+1, y) = r(P j, x), and r(P j+1, z) = r(P j, z) for all z ∈ A \ {x, y}.

Note that since the sequence is b-improving, x 6= b. We construct tj+1 as follows by choosing

ǫ > 0 but sufficiently close to zero:

tj+1(z) =

tj(z) if z /∈ {x, b},

tj(z) + ǫ if z = b,

tj(y) − ǫ if z = x.

Again, using an argument similar to above with adjacent incentive compatibility (by adding

incentive constraints corresponding to tj and tj+1), we can show that f(tj+1) = b. Using

induction, we thus conclude that there is a type t̄ ≡ tk representing P̄ ≡ P k such that

f(t̄) = b. Note that r(P̄ , b) = 1.

Step 2. We complete the proof in this step. Let P be an ordering such that s ∈ cl(V ({P})).

Let s1 be a strict type representing P such that s1 is arbitrarily close to s. Let f(s1) = a1.

Since s1 is arbitrarily close to s and represents the same ordering as s, adjacent incentive

compatibility implies that

s(a) − s(a1) ≥ p(a) − p(a1). (1)

By top connectedness, there is a b-improving connected sequence (P ≡ P 1, . . . , P k ≡ P̄).

Now, we construct a sequence of types (s1, . . . , sk) such that for all j ∈ {1, . . . , k}, sj repre-

sents P j.

11

Since P 1 and P 2 are adjacent, there is some pair of alternatives x, y ∈ A such that

r(P 1, y) = r(P 1, x) + 1, r(P 2, x) = r(P 1, y), r(P 2, y) = r(P 1, x), and r(P 2, z) = r(P 1, z) for

all z ∈ A \ {x, y}. Note that since the sequence is b-improving, x 6= b. Now, construct s2 as

follows by choosing ǫ > 0 but sufficiently close to zero:

s2(z) =

s1(z) if z 6= x,

s1(y) − ǫ if z = x.

Observe that s2 represents P 2 and s1(z) ≥ s2(z) for all z ∈ A with strict inequality holding

for z = x and equality holding for z 6= x. Since s1 is a strict type, we can construct s2 by

lowering s1(x) to a value just below s1(y) and keeping all other values of alternatives the

same.

Denote f(s2) ≡ a2. Since P 1 and P 2 are adjacent, adjacent incentive compatibility gives,

s1(a1) − s1(a2) ≥ p(a1) − p(a2).

We now construct the sequence inductively using the above procedure - having defined

sj, we define sj+1 by exactly the same procedure as we did for constructing s2 from s1.

Let f(sj) ≡ aj for all j ∈ {1, . . . , k}. As before incentive compatibility implies for every

j ∈ {1, . . . , k − 1},

sj(aj) − sj(aj+1) ≥ p(aj) − p(aj+1).

Adding over all j ∈ {1, . . . , k − 1} and telescoping the right hand side, we get

k−1
∑

j=1

[

sj(aj) − sj(aj+1)
]

= [s1(a1) − sk−1(ak)] +
k−2
∑

j=1

[

sj+1(aj+1) − sj(aj+1)
]

≥ p(a1) − p(ak).

By construction, sj(aj+1) ≥ sj+1(aj+1) for all j ∈ {1, . . . , k−2}. Hence, the above inequality

implies

s1(a1) − sk−1(ak) ≥ p(a1) − p(ak). (2)

Now, both sk and t̄ represent P̄ . Hence, adjacent incentive compatibility gives,

sk(ak) − sk(b) ≥ p(ak) − p(b), (3)

where we used the fact that f(t̄) = b. Adding Inequalities 2 and 3, and using the fact that

sk(ak) ≤ sk−1(ak), we get

s1(a1) − sk(b) ≥ p(a1) − p(b). (4)

12

Since (P ≡ P 1, . . . , P k ≡ P̄) is a b-improving connected sequence, by construction sj(b) =

sj+1(b) for all j ∈ {1, . . . , k − 1}. As a result, we have s1(b) = sk(b) and using Inequality 4,

we get

s1(a1) − s1(b) ≥ p(a1) − p(b). (5)

Adding Inequalities 5 and 1, we get

s(a) + [s1(a1) − s(a1)] − s1(b) ≥ p(a) − p(b). (6)

This can be rewritten as

[s(a) − s(b)] + [s1(a1) − s(a1)] − [s1(b) − s(b)] ≥ p(a) − p(b).

Since s1 is arbitrarily close s, Inequality 6 reduces to

s(a) − s(b) ≥ p(a) − p(b),

which is the required incentive compatibility condition. �

3.2 Remarks on Theorem 1

We present some brief remarks on Theorem 1.

Richness of Type Space. Our type space is the closure of the set of all non-negative

types representing a top-connected domain D. This ensures some amount of richness in the

type space. In Carroll (2012), richness is achieved by assuming convexity of the type space.

At the same time, the proof of Theorem 1 goes through even if we do not include all the

types representing D. Suppose there is an upper bound β on the maximum value on any

alternative. Then, T can be defined as

T := {t ∈ cl(V (D)) : max
a∈A

t(a) ≤ β}.

Theorem 1 holds if the type space is modified to be T .

How Useful are Ordinal Type Spaces? Top connectedness is a general condition

satisfied by many domains. We explicitly describe some interesting domains in the next

section - this includes the single peaked type space discussed earlier. The conventional way

of imposing type space restrictions in mechanism design (in quasilinear environment) is to

13

impose geometric restrictions - for instance, connectedness or convexity. In that sense, our

ordinal type space restriction is a novelty. However, we do not see any reason to believe why

either restriction is more compelling than others. Given that preferences over transfers are

separable using quasilinearity, it sounds plausible that agents first think of ordinal restriction

on the preferences over alternatives and then consider cardinal types that respect this ordinal

restriction.

Imposing such restrictions on preferences is standard in mechanism design literature with-

out money (Barbera, 2010). Introducing transfers in some of those problems is a natural

extension. For instance, consider the celebrated single peaked domain discussed in Moulin

(1980) and Sprumont (1991). Application of this problem includes various public and pri-

vate good allocation problems - e.g., locating a public facility on a street, allocating pollution

limits to firms in a country, and various scheduling problems (as we discussed earlier). Our

type space considers the same problems but with transfers and quasilinear utility. Recent

papers which discuss mechanism design in such type spaces include Mishra et al. (2014);

Carbajal and Muller (2015).

The Range Condition. We now present an example to show that the STR condition

is required for Theorem 1 to hold. The following example gives a mechanism in the single

peaked type space that violates STR and incentive compatibility, but satisfies local incentive

compatibility and payment-only incentive compatibility.

Example 2

Let A = {a, b, c} and D be the following domain.

P 1 P 2 P 3 P 4

a b b c

b a c b

c c a a

We consider the following mechanism on cl(V (D)).

f(t) =

a if t(a) − t(b) > 1 and t(a) > t(b) ≥ t(c)

b if t(a) − t(b) ≤ 1, t(a) ≥ t(b) ≥ t(c) and ¬(t(a) − 1 = t(b) = t(c))

c if t(a) − 1 = t(b) = t(c)

b otherwise

14

p(t) =

1 if f(t) = a

0 if f(t) = b

0 if f(t) = c

The mechanism partitions the type space into four parts. Types representing P 1 are

partitioned into three parts and the remaining types (representing P 2, P 3, P 4) constitute the

fourth part. A type s representing P 4 prefers c to b, but it is allocated b by the mechanism

(at zero payment). It can manipulate by reporting a type to get the alternative c (at

zero payment). Hence, the mechanism (f, p) is not incentive compatible. However, the

incentive constraints violated here are not local. Further, the mechanism satisfies payment-

only incentive compatibility, but the allocation rule f does not satisfy STR (outcome c is

not attained by any type in the interior of the cone representing the orderings). These

observations are formally proved in the following claim, whose proof can be found in the

Appendix.

Claim 2 Let (f, p) be the above mechanism.

1. (f, p) is locally incentive compatible and payment-only incentive compatible but not

incentive compatible.

2. The allocation rule f does not satisfy STR.

3.3 Domains Satisfying Top Connectedness

In this section, we show two important domains where Theorem 1 holds: (a) the domain

consisting of all single peaked preferences (b) a single crossing domain. To show this, we

provide a sufficient condition for a domain to be top connected. We then show that this

sufficient condition holds in these domains.

To introduce our sufficient condition, we begin with some definitions. These defini-

tions have been borrowed from the local incentive compatibility literature in voting envi-

ronment (Sato, 2013b). Since we study ordinal type spaces, they turn out to be relevant

for us also. For any preference ordering P and any alternative a ∈ A, let r(P, a) denote

the rank of a in P . We say P ′ is a (a, b)-swap of P if r(P, x) = r(P ′, x) for all x /∈ {a, b},

r(P, a) = r(P, b) − 1, r(P ′, a) = r(P ′, b) + 1. In other words, if a and b are consecutively

ranked in P with a ranked above b, the preference ordering obtained by just swapping the

positions of a and b is called an (a, b)-swap of P . Note that if P ′ is an (a, b)-swap of P for

some a, b ∈ A, then P and P ′ are adjacent.

The following definition is borrowed from Sato (2013b).

15

Definition 7 A distinct sequence of orderings (P 1, . . . , P k) is without restoration if for

every j ∈ {1, . . . , k − 1}, P j and P j+1 are adjacent and there exists no distinct j, j′ ∈

{0, 1, . . . , k} and x, y ∈ A such that P j+1 is a (x, y)-swap of P j and P j′+1 is a (y, x)-swap

of P j′.

A domain D is connected without restoration if for every P, P ′ ∈ D, there exists a

sequence of distinct orderings (P = P 0, P 1, . . . , P k, P k+1 = P ′) without restoration.

The without restoration property requires that no pair of alternatives is swapped more than

once along a sequence of adjacent orderings.

Now, consider the following richness condition on the domain, which also appeared in the

definition of top connectedness.

Definition 8 A domain D is rich if for every a ∈ A, there exists P ∈ D such that

r(P, a) = 1.

Richness and connectedness without restoration are sufficient for top connectedness.

Since many domains are known to satisfy connectedness without restoration, and richness is

easy to verify, this gives us an easy method to check top connectedness.

Lemma 1 If D is rich and connected without restoration, then it is top connected.

Proof : Choose any a ∈ A. By richness, there is a P ∈ D such that r(P, a) = 1. Now, choose

any P ′ ∈ D. Since D is connected without restoration, there is a sequence of preferences

(P ′ = P 0, P 1, . . . , P k, P k+1 = P) without restoration such that for all j ∈ {1, . . . , k}, P j ∈ D.

Since r(P, a) = 1 and the sequence of preferences is without restoration, we have r(P j, a) ≥

r(P j+1, a) for all j ∈ {0, 1, . . . , k}. Hence, D is top connected. �

An immediate consequence of Lemma 1 is that the single peaked domain (with respect

to a given strict linear order) is top connected.

Proposition 1 The single peaked domain is top connected.

Proof : Sato (2013b) shows that the single peaked domain is connected without restoration.

Clearly, it is a rich domain. Hence, Lemma 1 proves the claim. �

This shows that Theorem 1 applies to the important single peaked type space. It can

be shown that many extensions of the single peaked domain, like the single peaked domain

16

on a tree (Demange, 1982) and some multidimensional versions of the single peaked do-

main (Reffgen, 2015), are also rich and connected without restoration. Hence, our main

result applies to such domains too.

We now identify another top connected type space. This type space corresponds to the

following domain of orderings.

Definition 9 A set of preferences D is a single crossing domain if there exists a strict

linear order ≻ on the set of alternatives and a strict linear order ⊳ on the set of preferences

D such that for all a, b ∈ A and for all P, P ′ ∈ D,

• a ≻ b, P ⊳ P ′, and aPb implies aP ′b

• a ≻ b, P ⊳ P ′, and bP ′a implies bPa.

Single crossing domains are a well studied domain in voting and political economy (Saporiti,

2009). They can also be a plausible domain restriction in models with transfers. For instance,

suppose A is the set of products in the market and ≻ reflects the ranking of products in terms

of reputation. A preference of a consumer may or may not be sensitive to the reputation of

the product. Single crossing ensures that the set of possible preferences of a consumer for

the products can be ordered on how sensitive they are to reputation of the products. This is

captured by the ordering ⊳.

For any ordering P over A and any ordering ≻ over A, let X(P,≻) := {(a, b) : a ≻ b, aPb}.

Clearly, a set of preferences D is a single crossing domain if and only if there exists a strict

linear order ≻ on the set of alternatives and a strict linear order ⊳ on the set of preferences

D such that for any P, P ′ ∈ D with P ⊳ P ′, we have X(P,≻) (X(P ′,≻) (notice the strict

inclusion). We will denote a single crossing domain as D≻,⊳.

A single crossing domain D≻,⊳ := {P 1, . . . , P l} with P 1 ⊳ . . . ⊳ P l is a successive

single crossing domain if for every j ∈ {1, . . . , l − 1}, |X(P j,≻)| + 1 = |X(P j+1,≻)|.

Successive single crossing domains were introduced in Carroll (2012).

Proposition 2 A rich successive single crossing domain is top connected.

Proof : We will show that a rich successive single crossing domain is connected without

restoration, and by Lemma 1, we will be done. Let D≻,⊳ := {P 1, . . . , P l} be a rich successive

single crossing domain with P 1 ⊳ P 2 ⊳ . . . ⊳ P l. Pick P j, P k ∈ D≻,⊳ with j < k. The

sequence of preferences (P j, P j+1, . . . , P k) satisfies the fact that for any j′ ∈ {j, j+1, . . . , k−

1}, P j′ and P j′+1 are adjacent - this follows from the definition of successive single crossing

domain. Now, assume for contradiction, there is some pair of alternatives x, y ∈ A such that

17

they are swapped more than once in this sequence. But the single crossing property requires

that if x ≻ y, once xP k′

y for some P k′

in the sequence, it must remain xP l′y for all l′ > k′.

Hence, getting swapped more than once will violate the single crossing property. This means

that every successive single crossing domain is connected without restoration. �

This shows that Theorem 1 applies to a rich successive single crossing type space. Every

successive single crossing domain need not be rich. However, there is a rich successive single

crossing domain. In Appendix B, we describe an algorithm to construct one rich successive

single crossing domain.

3.4 Discussions on Non-Ordinal Type Spaces

We have not been able to identify sufficiently interesting non-ordinal type spaces where

Theorem 1 holds. We give below an example to illustrate the difficulty in such type spaces.

Suppose A = {a, b} and consider the type space shown in Figure 1 - the type space is

shown in dashed and dotted areas and it does not include the boundaries of the region shown.

t(a)

t(b)

1

1

f(t) = a

f(t) = b

Figure 1: An example with two alternatives

The allocation rule f chooses a and b in the regions shown in Figure 1. Take the payment

rule p(t) = 0 for all t. Hence, the mechanism (f, p) is payment-only incentive compatible. It

is now easy to verify that (f, p) is locally incentive compatible (note boundaries of the region

are not included).

18

But it is not incentive compatible since a type in the region where f(t) = b but t(a) > t(b)

can manipulate to a type s where f(s) = a.

Though this type space is not convex, it is full-dimensional and connected. Still, we

do not get the richness required for local incentive compatibility and payment incentive

compatibility to imply incentive compatibility.

Appendix C contains two specific non-ordinal type spaces. In one of them, we show that

our main result (Theorem 1) can be extended. When we generalize that type space, we see

that the main result does not extend any more. We defer elaborate discussions on these type

spaces to Appendix C because they are very specific type spaces, and may not be of general

interest.

4 Local Implementation

In quasilinear environment, instead of analyzing a mechanism (f, p), one can consider imple-

mentability of the allocation rule f .

Definition 10 An allocation rule f is implementable if there exists a payment rule p

such that (f, p) is incentive compatible.

Because of well know revenue equivalence results, for every implementable allocation rule,

the corresponding payment rule can be identified up to an additive constant in connected

type spaces (Chung and Olszewski, 2007). As a result, if we want to verify if a mechanism

is incentive compatible or not, it is enough to verify implementability of the allocation rule.

The payment rule can be verified to match with the payment rule prescribed by the revenue

equivalence formula.

If the objective of local incentive compatibility is to make the process of verification of

incentive compatibility easier, this can also be accomplished by verifying the implementability

of the allocation rule. We investigate this question in this section and come up with two

interesting conclusions. First, we formally establish a connection between these two parallel

strands of local verifications. Second, our results establish that an analogue of our main

result (Theorem 1) is not possible if we consider the notion of local implementation.

We now formally define the notion of local implementation. Definition 10 has an existen-

tial qualifier. We can remove this by using the well known characterization of implementabil-

ity due to Rochet (1987). First, for any allocation rule f , we define ℓf(s, t) := t(f(t))−t(f(s))

for every pair of types s, t in the type space.

19

Definition 11 An allocation rule f is cyclically monotone if for every finite sequence

of types (t1, . . . , tk), we have
k

∑

j=1

ℓf(tj , tj+1) ≥ 0,

where (k + 1) ≡ 1.

Fact 2 An allocation rule is implementable if and only if it is cyclically monotone.

Fact 2 is true in every type space (Rockafellar, 1970; Rochet, 1987).

Definition 12 An allocation rule f is strongly locally implementable if for every

t ∈ T , there exists an ǫ > 0 such that f restricted to Bǫ(t) is implementable.

Equivalently, f is strongly locally implementable if for every t ∈ T , there exists an ǫ > 0

such that f restricted to Bǫ(t) is cyclically monotone.

This notion of strong local implementation was introduced in Archer and Kleinberg (2008).

However, it is not the counterpart of local incentive compatibility since local incentive com-

patibility requires that for every t in the type space, there is an ǫ > 0 such that for every

s ∈ Bǫ(t), incentive constraints between s and t must hold - it is silent about incentive

constraints among other types in Bǫ(t). Local incentive compatibility can be generalized in

the context of implementation using a weaker form of cycle monotonicity.

Definition 13 An allocation rule f is locally implementable if for every t ∈ T , there

exists an ǫ > 0 such that for all s ∈ Bǫ(t), we have

ℓf(s, t) + ℓf(t, s) ≥ 0.

This notion of local implementation is also discussed in Archer and Kleinberg (2008), who

called it weak local implementation and showed that this may not imply implementability

in convex type spaces if the allocation rule is a randomized allocation rule. However, if the

allocation rule is deterministic, a locally implementable allocation rule is implementable in

a convex type space (Archer and Kleinberg, 2008).

Hence, in convex type spaces with deterministic allocation rules, (a) a locally imple-

mentable allocation rule is implementable (Archer and Kleinberg, 2008) and (b) a locally

incentive compatible mechanism is incentive compatible (Carroll, 2012). Our objective here

is to show that local implementation implying implementation is a stronger result than local

incentive compatibility implying incentive compatibility in a large class of domains.

20

Definition 14 A type space T is a locally implementable (LIM) type space if every

locally implementable allocation rule f : T → A is implementable.

A type space T is a locally incentive compatible (LIC) type space if every locally

incentive compatible mechanism (f, p) defined on T is incentive compatible.

We identify sufficient conditions on type spaces where every LIM type space is a LIC

type space. We do this for the following type spaces.

Definition 15 A k-tuple of points (s1, . . . , sk) will be called a polygonal connection

from s to t in T if s1 = s, sk = t and for every j ∈ {1, . . . , k − 1}, the line segment

{λsj + (1 − λ)sj+1 : λ ∈ [0, 1]} is in T .

The type space T is polygonally connected if for every pair of points s, t ∈ T , there is a

polygonal connection from s to t.

Every open connected set is polygonally connected. This leads to the main result of this

section.

Theorem 2 Suppose type space T ⊆ R|A| is polygonally connected. If T is an LIM type

space, then it is an LIC type space.

Proof : Consider a mechanism M ≡ (f, p) in a polygonally connected type space T , which

is locally incentive compatible. Choose a type t ∈ T , ǫ > 0, and s ∈ Bǫ(t). By local incentive

compatibility,

t(f(t)) − p(t) ≥ t(f(s)) − p(s)

s(f(s)) − p(s) ≥ s(f(t)) − p(t).

Adding these incentive constraints, gives us

ℓf(s, t) + ℓf(t, s) =
[

t(f(t)) − t(f(s))
]

+
[

s(f(s)) − s(f(t))
]

≥ 0.

This shows that f is locally implementable. Since T is a LIM domain, f is implementable.

This implies that there exists a payment rule q : T → R such that (f, q) is incentive com-

patible.

Now, choose any pair of points s, t ∈ T . By polygonal connectedness, there exists a

sequence of points (s = s1, . . . , sk = t) in T such that for each j ∈ {1, . . . , k − 1}, the

line segment joining sj and sj+1 lie in T . Now, consider any j ∈ {1, . . . , k − 1} and the

21

line segment Lj joining sj and sj+1. Now, (f, p) restricted to Lj is also locally incentive

compatible in Lj . Since Lj is convex, by Carroll (2012), (f, p) restricted to Lj is incentive

compatible. Also, (f, q) restricted to Lj is incentive compatible.

Now, we apply revenue equivalence.

Definition 16 An implementable allocation rule f : T → A satisfies revenue equiva-

lence if for every p : T → R and q : T → R such that (f, p) and (f, q) are incentive

compatible, there exists a constant α such that

p(t) = q(t) + α ∀ t ∈ T.

Since Lj is convex, revenue equivalence holds (Rockafellar, 1970). 7 As a result, we have

p(sj+1) − p(sj) = q(sj+1) − q(sj).

Summing the above equations for all j ∈ {1, . . . , k − 1}, and telescoping, we get

p(sk) − p(s1) = q(sk) − q(s1).

Using s = s1 and t = sk, we get p(t) − p(s) = q(t) − q(s).

Thus, we have shown that for any pair of types s, t ∈ T , p(t) − p(s) = q(t) − q(s) ≤

t(f(t)) − t(f(s)), where the last inequality came from incentive compatibility of (f, q). But

this implies that (f, p) is also incentive compatible. �

We do not know if the converse of Theorem 2 holds. But Theorem 2 also holds (with

identical proof) if we allow for randomization. Further, it also holds if we strengthen the

notion of local incentive compatibility and local implementability in the lines of Definition

12.

An immediate corollary of Theorem 2 is that there are top connected type spaces that

are not LIM type space.

Corollary 1 The single peaked type space is not an LIM type space.

Proof : If the single peaked type space is an LIM type space, by Theorem 2, it is an LIC

type space. By Claim 1, Example 1 contains a locally incentive compatible mechanism that

is not incentive compatible. This is a contradiction. �

One wonders if imposing the range condition STR helps. Theorem 2 can be restated

with the STR condition, i.e., if every locally implementable allocation rule satisfying STR is

7See also, Krishna and Maenner (2001); Milgrom and Segal (2002); Chung and Olszewski (2007);

Heydenreich et al. (2009).

22

implementable in a type space, then every locally incentive compatible mechanism (f, p) with

f satisfying STR is incentive compatible in that type space. The same proof of Theorem 2

goes through. Since the allocation rule in Example 1 satisfies STR, we again conclude that

in the single peaked type space there are locally implementable allocation rules satisfying

STR that are not implementable.

5 Conclusion

In an important class of non-convex type spaces, we show that if we restrict attention to

deterministic mechanisms, then local incentive compatibility along with payment-only in-

centive compatibility implies incentive compatibility. We also show a relationship between

local implementation and local incentive compatibility. A natural future research direction

is to study the implication of randomization and Bayesian incentive compatibility in various

non-convex type spaces.

Appendix A: Omitted Proofs

Proof of Claim 1

Proof : As argued, earlier (f, p) is not incentive compatible. We say that a type t can

manipulate to a type s if misreporting s leads to higher net utility in the mechanism (f, p).

We consider all possible cases of misreport and verify the possible manipulations in this

mechanism.

Case 1: Suppose the true type of the agent is t ∈ T 1. Truthful reporting in the mechanism

gives the agent a net utility of t(f(t)) − p(t) = t(a) − 2. Obviously, misreporting to another

type in T 1 does not change the net utility. If he reports s ∈ T 2∪T 3∪T 5, then the f(s) = b and

p(s) = 0. Hence, the net utility of the agent is t(b)− 0 = t(b). By definition, t(a)− 2 ≥ t(b),

and hence, t cannot manipulate to s ∈ T 2 ∪ T 3 ∪ T 5.

If t manipulates to a type in T 4, then he gets a net utility of t(c) − 1. But t(a) − 2 ≥

t(b) ≥ t(c) implies that t cannot manipulate to a type in T 4 also. This shows that t cannot

manipulate to a type in T 1 ∪ T 2 ∪ T 3 ∪ T 4 ∪ T 5.

However, if t reports a type in T 6, then he gets a net utility of t(a), whereas truthtelling

gives him a net utility of t(a) − 2.

Case 2. Suppose the true type of the agent is t ∈ T 2. Truthful reporting in the mechanism

23

gives the agent a net utility of t(f(f)) − p(t) = t(b). Clearly, misreporting to another type

in T 2 does not change the net utility. Since t(a) > t(b) ≥ t(c) and payments are all non-

negative, misreporting to a type that gives either b or c as outcome will not be beneficial.

Hence, t cannot manipulate to a type in T 3 ∪T 4 ∪T 5. Also, by misreporting to a type in T 1

gives the agent a net utility of t(a)−2. By definition, t(a)−2 < t(b). Hence, misreporting to a

type in T 1 is also not beneficial. Thus, t cannot manipulate to a type in T 1∪T 2∪T 3∪T 4∪T 5.

However, misreporting to a type in T 6 gives the agent a net utility of t(a), which is strictly

higher than t(b).

Case 3. Suppose t ∈ T 3. Truthful reporting in the mechanism gives the agent a net utility

of t(f(t)) − p(t) = t(b). Since t(b) ≥ max(t(a), t(c)) and payments in the mechanism are

non-negative, t cannot manipulate to any other type.

Case 4. Suppose t ∈ T 4. Truthful reporting in the mechanism gives the agent a net utility

of t(f(t)) − p(t) = t(c) − 1. By definition, t(c) − 1 ≥ t(b) ≥ t(a). Since payments in the

mechanism are always non-negative, t cannot manipulate to any other type.

Case 5. Suppose t ∈ T 5. Truthful reporting in the mechanism gives the agent a net utility

of t(f(t)) − p(t) = t(b). Since t(c) ≥ t(b) > t(a) and payments in the mechanism are non-

negative, no manipulation to a type s such that f(s) ∈ {a, b} is not beneficial. On the other

hand, if t manipulates to a type s with f(s) = c, then s ∈ T 4, and his net utility is t(c)− 1.

But, by definition, t(c) − 1 < t(b). Hence, t cannot manipulate to any other type.

Case 6. Suppose t ∈ T 6. Truthful reporting in the mechanism gives the agent a net util-

ity of t(f(t)) − p(t) = t(a). Since t(c) ≥ t(b) = t(a) and payments in the mechanism are

non-negative, no manipulation to a type s such that f(s) ∈ {a, b} is possible. On the other

hand, if t manipulates to a type s with f(s) = c, then s ∈ T 4, and his net utility is t(c)− 1.

But, by definition, t(c) − 1 < t(a). Hence, t cannot manipulate to any other type.

This shows that the only manipulation possible in the mechanism is when the true type

t ∈ (T 1 ∪ T 2), the agent can manipulate to a type in T 6. But note that every type in s ∈ T 6

satisfies s(c) > s(a) = s(b). But t(a) > t(b) ≥ t(c). Hence, there exists an ǫ > 0 such that

every t′ ∈ Bǫ(t) satisfies t′ /∈ T 6. Similarly, there exists ǫ > 0 such that every t′ ∈ Bǫ(s)

satisfies t′ /∈ (T 1 ∪ T 2). This shows that (f, p) is locally incentive compatible. �

24

Proof of Claim 2

Proof : Proof of 1. We consider the following cases to complete the proof.

Case 1: t ∈ Ta. Truthful reporting in the mechanism gives the agent a net utility of

t(f(t))− p(t) = t(a)− 1. Obviously, misreporting to another type in Ta does not change the

net utility.

If he reports s ∈ Tb, then the f(s) = b and p(s) = 0. Hence, the net utility of the agent

is t(b) − 0 = t(b). Since for all t ∈ Ta, t(a) − 1 > t(b), t cannot manipulate to s ∈ Tb.

If he reports s ∈ Tc, then the f(s) = c and p(s) = 0. Hence, the net utility of the agent

is t(c). Since for all t ∈ Ta, t(a) − 1 > t(c), t cannot manipulate to s ∈ Tc.

This shows that t cannot manipulate to a type in Ta ∪ Tb ∪ Tc.

Case 2: t ∈ Tc. Truthful reporting in the mechanism gives the agent a net utility of

t(f(t)) = t(c). Obviously, misreporting to another type in Tc does not change the net utility.

If he reports s ∈ Ta, then the f(s) = a and p(s) = 1. Hence, the net utility of the agent

is t(a) − 1. Since for all t ∈ Tc, t(c) = t(a) − 1, t cannot manipulate to s ∈ Ta.

If he reports s ∈ Tb, then the f(s) = b and p(s) = 0. Hence, the net utility of the agent

is t(b). Since for all t ∈ Tc, t(c) = t(b), t cannot manipulate to s ∈ Tb.

This shows that t cannot manipulate to a type in Ta ∪ Tb ∪ Tc.

Case 3: t ∈ Tb. Truthful reporting in the mechanism gives the agent a net utility of

t(f(t))− p(t) = t(b). Obviously, misreporting to another type in Tb does not change the net

utility.

If he reports s ∈ Ta, then the f(s) = a and p(s) = 1. Hence, the net utility of the agent

is t(a) − 1. Since for all t ∈ Tb, t(b) ≥ t(a) − 1, t cannot manipulate to s ∈ Ta.

However, t can manipulate to s ∈ Tc only if t(c) > t(b) ≥ t(a). This shows that (f, p)

is not incentive compatible. However if t(c) > t(b) ≥ t(a), there exists an ǫ > 0 such that

every s ∈ Bǫ(t) satisfies s(c) > s(b) ≥ s(a). Therefore (f, p) is locally incentive compatible.

Since (f, p) is also payment-only incentive compatible, we are done.

Proof of 2. Since there does not exist a strict type t such that f(t) = c, f violates the

STR condition. �

25

Appendix B: An Algorithm to Construct a Rich Successive Single Crossing

Domain

Here, we provide an algorithm to explicitly construct a rich successive single crossing domain.

For our construction, we assume that the underlying ordering over A to be ≻. Let P 1 be the

preference ordering which is the reverse ordering of ≻. We now describe how we construct a

sequence of orderings that constitute our domain. The construction is inductive. Suppose we

have found a preference ordering P j. Then, we adopt the following procedure to construct

P j+1 or stop. We say that a pair of alternatives a, b ∈ A are inconsistent between P j and ≻

if a ≻ b and bP ja. If a and b are not inconsistent between P j and ≻, then they are consistent

between P j and ≻.

• If P j is the same ordering as ≻, we stop. Our domain is {P 1, . . . , P j}.

• If P j is different from ≻, then we define

A(P j,≻) := {{a, b} : |r(P j, a)−r(P j, b)| = 1 and a, b are inconsistent between P j and ≻}.

• Choose {x, y} ∈ A(P j,≻) such that for every {a, b} ∈ A(P j,≻), we have

min(r(P j, x), r(P j, y)) ≤ min(r(P j, a), r(P j, b)).

Let P j+1 be the ordering obtained as by swapping x and y and maintaining the positions

of other alternatives as in P j, i.e., r(P j+1, x) = r(P j, y), r(P j+1, y) = r(P j, x) and

r(P j+1, z) = r(P j, z) for all z ∈ A \ {x, y}. The procedure is then repeated.

Since P 1 is initialized, this sequence of ordering is well defined. Moreover, the sequence

will terminate since there will come a stage with preference ordering P j where A(P j,≻) will

be empty, and thus, P j will be the same ordering as ≻. Let (P 1, . . . , P l) be the sequence of

ordering constructed by this algorithm. We define ⊳ as the relation P 1 ⊳ P 1 ⊳ . . . ⊳ P l.

We show the following.

Claim 3 The domain D≻,⊳ := {P 1, . . . , P l} is a rich successive single crossing domain.

Proof : By construction, for every pair of alternatives a, b ∈ A with a ≻ b, if there is a

preference ordering P j ∈ D≻,⊳ with aP jb, then aP kb for all k > j. This ensures that D≻,⊳

is a single crossing domain. Further, for any j ∈ {1, . . . , k − 1}, P j and P j+1 are adjacent.

This ensures that D≻,⊳ is a successive single crossing domain.

26

We show that D≻,⊳ is rich. Pick any alternative a ∈ A. We will show that there exists

some P j ∈ {P 1, . . . , P k} such that r(P j, a) = 1. Let r(P 1, a) = ℓ. We show this using

induction on ℓ. If ℓ = 1, then we are done. Suppose ℓ > 1 and the claim is true for all k′ < ℓ.

Note that the claim is true if ℓ = |A| - this is because the terminating preference ordering

P k of the algorithm is ≻. Hence, ℓ < |A|.

Let b be an alternative such that r(P 1, b) = ℓ − 1. By the induction hypothesis, there is

a preference ordering P h ∈ {P 1, . . . , P k} such that r(P h, b) = 1. Without loss of generality,

let P h be such that for all h′ > h, we have r(P h′

, b) 6= 1. We argue that r(P h, a) = 2.

Assume for contradiction that r(P h, a) 6= 2. Then, r(P h, a) > 2. Let r(P h, c) = 2, where

c 6= a. Since r(P h+1, b) 6= 1 and P h and P h+1 are adjacent, it must be that r(P h+1, c) = 1

and r(P h+1, b) = 2. Since c and b are not consistent between P h and ≻, it must be that

bP 1c. This implies that bP 1aP 1c (since a and b are consecutively ranked in P 1). But note

that c and a are consistent between P h and ≻. By the definition of our procedure, there

must exist h′′ < h such that a and b are consistent between P h′′

and ≻ - this follows from

the fact that higher ranked inconsistent pairs are made consistent earlier in our procedure.

By the single crossing property, a and b must be consistent between P h and ≻. This is a

contradiction since a ≻ b and r(P h, b) = 1.

Hence, r(P h, a) = 2. Since P h and P h+1 are adjacent and r(P h+1, b) 6= 1, it must be that

r(P h+1, a) = 1. This shows that D≻,⊳ is rich. �

P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8 P 9 P 10 P 11

e d d c c c b b b b a

d e c d d b c c c a b

c c e e b d d d a c c

b b b b e e e a d d d

a a a a a a a e e e e

Table 3: A rich successive single crossing domain

We give an example in Table 3 of a rich successive single crossing domain constructed

from our procedure. This domain is single crossing with respect to the ordering ≻ over

alternatives where a ≻ b ≻ c ≻ d ≻ e and the preferences are ordered according to ⊳ as

P 1 ⊳ P 2 ⊳ P 3 ⊳ P 4 ⊳ P 5 ⊳ P 6 ⊳ P 7 ⊳ P 8 ⊳ P 9 ⊳ P 10 ⊳ P 11.

The rich successive single crossing domain produced by our algorithm has n(n−1)
2

+ 1

preference orderings as compared to 2n−1 preference orderings in the single peaked domain. 8

8 A proof of this fact is available upon request.

27

Hence, these domains are not the same.

Appendix C: Examples of Non-ordinal Type Spaces

We now discuss the implication of payment-only incentive compatibility in general type

spaces using some particular examples. The discussions below suggests that the equivalence

between local incentive compatibility along with payment-only incentive compatibility and

incentive compatibility is quite nuanced.

Consider an example with A = {a, b, c} and a type space where type of an agent assigns

a non-negative value to one of the alternatives and assigns zero to all the other alternatives.

Hence, the type space T is defined as follows:

T = {t ∈ R3
+ : for some x ∈ {a, b, c}, t(x) ≥ 0, t(y) = 0 ∀ y 6= x}.

Notice that T consists of the non-negative parts of three axes in R3. We will denote these

three parts of T as Ta, Tb, Tc and note that T = Ta ∪ Tb ∪ Tc and intersection of any two of

them contains only the origin.

Suppose (f, p) is a locally incentive compatible mechanism. For every x ∈ A, convexity

of Tx implies (by Carroll (2012)) (f, p) restricted to each Tx is incentive compatible. But this

alone is not sufficient to guarantee incentive compatibility. Consider the following mechanism

in Table 4. It is easy to verify that this mechanism is locally incentive compatible - one

easy way to see this is that the mechanism is incentive compatible on Ta, Tb, Tc and it is

incentive compatible on a small neighborhood around the origin. However, it is not incentive

compatible since a type t with t(b) > 0.5 gets a utility of t(b)− 0.5 from truthtelling but can

manipulate to a type s with s(a) ∈ [0.25, 0.5] to get a utility of t(b). This manipulation is

possible since the mechanism is not payment-only incentive compatible - if s(a) ∈ [0.25, 0.5]

we have f(s) = b and p(s) = 0 but when t(b) > 0.5 we have f(t) = b and p(t) = 0.5.

Type space f p

t(a) > 0.5, t(b) = t(c) = 0 f(t) = a p(t) = 0.5

t(a) ∈ [0.25, 0.5], t(b) = t(c) = 0 f(t) = b p(t) = 0

t(a) ∈ [0, 0.25), t(b) = t(c) = 0 f(t) = c p(t) = 0

t(b) > 0.5, t(a) = t(c) = 0 f(t) = b p(t) = 0.5

t(b) ∈ [0, 0.5], t(a) = t(c) = 0 f(t) = c p(t) = 0

t(c) ≥ 0, t(a) = t(b) = 0 f(t) = c p(t) = 0

Table 4: A locally incentive compatible mechanism

28

Payment-only incentive compatibility alone cannot get rid of this problem. To see this,

consider the modification of this mechanism in Table 5. Again, it is straightforward to verify

that the mechanism in Table 5 is locally incentive compatible and payment-only incentive

compatible. However, an agent with type t, where t(b) > 0 and t(a) = t(c) = 0, can still

manipulate to a type s, where s(a) ∈ [0.25, 0.5], s(b) = s(c) = 0.

Type space f p

t(a) > 0.5, t(b) = t(c) = 0 f(t) = a p(t) = 0.5

t(a) ∈ [0.25, 0.5], t(b) = t(c) = 0 f(t) = b p(t) = 0

t(a) ∈ [0, 0.25), t(b) = t(c) = 0 f(t) = c p(t) = 0

t(b) ≥ 0, t(a) = t(c) = 0 f(t) = c p(t) = 0

t(c) ≥ 0, t(a) = t(b) = 0 f(t) = c p(t) = 0

Table 5: A locally incentive compatible and payment-only incentive compatible mechanism

We now formally define this type space.

Definition 17 A type space T̄ ⊆ R|A| is a unique dichotomous type space if

T̄ := {t ∈ R
|A|
+ : for some x ∈ A, t(x) ≥ 0, t(y) = 0 ∀ y 6= x}.

Every type in a unique dichotomous type space has a unique alternative for which it gets

non-negative value and gets zero value on other alternatives. We need the following range

condition on the allocation rules.

Definition 18 An allocation rule f : T̄ → A satisfies strict range condition (SRC) if

for every a ∈ A, there exists t ∈ T̄ with t(a) ≥ 0, t(b) = 0 for all b 6= a such that f(t) = a.

Theorem 1 extends to the unique dichotomous type space using SRC.

Theorem 3 Suppose f : T̄ → A is an allocation rule satisfying SRC. Let (f, p) be a mecha-

nism defined over T̄ . Then, the mechanism (f, p) is locally incentive compatible and payment-

only incentive compatible if and only if it is incentive compatible.

Proof : Let (f, p) be a locally incentive compatible and payment-only incentive compatible

mechanism, where f satisfies SRC. As before, for any x ∈ A, let Tx denote all the types in T̄

such that t(x) ≥ 0, t(y) = 0 for all y 6= x. Consider a type t such that f(t) = a and t ∈ Tb.

Local incentive compatibility along with convexity of Tb implies that (f, p) restricted to Tb

is incentive compatible (Carroll, 2012). Payment-only incentive compatibility allows us to

29

write p as a map p : A → R. Choose any c 6= a. For incentive compatibility of (f, p), we

need to show that t(a) − p(a) ≥ t(c) − p(c). If c = b, SRC implies that there is a type in Tb

where f chooses b. Since (f, p) restricted to Tb is incentive compatible, we get the desired

inequality. Else, c /∈ {a, b}. Then, t ∈ Tb implies that t(c) = 0. Now, the origin 0 ∈ Tx for

all x ∈ A. Let f(0) = z. Since (f, p) restricted to each Tx is incentive compatible, we can

write

t(a) − p(a) ≥ t(z) − p(z)

0 − p(z) ≥ 0 − p(c).

Adding these two inequalities, we get t(a) − p(a) ≥ t(z) − p(c) ≥ t(c) − p(c), where the last

inequality followed from the fact t(z) ≥ 0 = t(c). �

The result in Theorem 3 seems difficult to extend to other connected type spaces. For

instance, consider an example with three alternatives A = {a, b, c}. We say a type t ∈ R3
+

is dichotomous if there exists a non-negative number α ≥ 0 and a subset of alternatives

S ⊆ A such that t(a) = α for all a ∈ S and t(a) = 0 for all a /∈ S. Let T d be the set

of all dichotomous types. The dichotomous type space is a generalization of the unique

dichotomous type space. They were studied in Mishra and Roy (2013), who characterized

the implementable rules in this type space.

The dichotomous type space T d consists of rays from the origin. Local incentive compat-

ibility only ensures that along each ray incentive compatibility holds and around the origin

incentive compatibility holds. This is not sufficient to guarantee overall incentive compat-

ibility even with payment-only incentive compatibility and range conditions. To see this,

consider the example in Table 6. The mechanism (f, p) given in the example in Table 6

is locally incentive compatible - it can be easily verified from the fact that it is incentive

compatible along each of the rays and incentive compatible around a neighborhood of the

origin. It is also payment-only incentive compatible. However, it is not incentive compati-

ble. For instance, consider a type t with t(a) = t(b) = 0.55, t(c) = 0. From Table 6, we see

that f(t) = c and p(t) = 0, and hence, truthtelling generates a utility of zero. However, by

reporting a type s with s(b) = 0.55, s(a) = s(c) = 0, we have f(s) = b, p(s) = 0.5, which

generates a utility of 0.05 for the agent with type t. Hence, agent with type t manipulates

to s.

No reasonable range condition can fix these kind of problems in this type space. Essen-

tially, every ray corresponds to a subset of alternatives whose value is non-negative. Incentive

compatibility along the rays only ensures that there is a cutoff value below which the agents

gets an alternative outside this subset of alternative (giving zero value) and above which

30

Type space f p

t(a) > 0.6, t(b) = t(c) = 0 f(t) = a p(t) = 0.6

t(a) ∈ (0, 0.6], t(b) = t(c) = 0 f(t) = c p(t) = 0

t(b) > 0.5, t(a) = t(c) = 0 f(t) = b p(t) = 0.5

t(b) ∈ (0, 0.5], t(a) = t(c) = 0 f(t) = c p(t) = 0

t(a) = t(b) > 0.6, t(c) = 0 f(t) = a p(t) = 0.6

t(a) = t(b) ∈ (0, 0.6], t(c) = 0 f(t) = c p(t) = 0

t(c) > 0 f(t) = c p(t) = 0

t(a) = t(b) = t(c) = 0 f(t) = c p(t) = 0

Table 6: A locally incentive compatible and payment-only incentive compatible mechanism

he gets an alternative inside this subset of alternative (giving positive value). But this is

not enough for incentive compatibility in this type space. Mishra and Roy (2013) show that

incentive compatibility also implies that the cutoffs along these rays have to be carefully

chosen and the alternatives below and above these cutoffs have to be chosen in a particular

manner.

References

Archer, A. and R. Kleinberg (2008): “Truthful Germs are Contagious: A Local to

Global Characterization of Truthfulness,” in In Proceedings of the 9th ACM conference on

Electronic commerce (EC-08), Springer (Lecture Notes in Computer Science).

——— (2014): “Truthful Germs are Contagious: A Local to Global Characterization of

Truthfulness,” Forthcoming, Games and Economic Behavior.

Armstrong, M. (2000): “Optimal multi-object auctions,”The Review of Economic Studies,

67, 455–481.

Ashlagi, I., M. Braverman, A. Hassidim, and D. Monderer (2010): “Monotonicity

and Implementability,” Econometrica, 78, 1749–1772.

Barbera, S. (2010): “Strategy-proof Social Choice,” in Handbook of Social Choice and

Welfare, ed. by K. J. Arrow, A. K. Sen, and K. Suzumura, North-Holland, 441–449.

Berger, A., R. Müller, and S. H. Naeemi (2010): “Path-Montonicity and Incentive

Compatibility,” Working Paper, Maastricht University.

31

Carbajal, J. C. and R. Muller (2015): “Implementability under Monotonic Transfor-

mations in Differences,” Journal of Economic Theory, 160, 114–131.

Carroll, G. (2012): “When are Local Incentive Constraints Sufficient?” Econometrica, 80,

661–686.

Chung, K.-S. and W. Olszewski (2007): “A Non-Differentiable Approach to Revenue

Equivalence,” Theoretical Economics, 2, 1–19.

Demange, G. (1982): “Single-peaked Orders on a Tree,” Mathematical Social Sciences, 3,

389–396.

Fotakis, D. and E. Zampetakis (2013): “Truthfulness Flooded Domains and the Power

of Verification for Mechanism Design,” in Proceedings of the Workshop on Internet and

Network Economics (WINE), 202–215.

Fudenberg, D. and J. Tirole (1991): Game Theory, MIT Press, Cambridge.

Heydenreich, B., R. Muller, M. Uetz, and R. V. Vohra (2009): “Characterization

of Revenue Equivalence,” Econometrica, 77, 307–316.

Kirkegaard, R. (2014): “A Unifying Approach to Incentive Compatibility in Moral Hazard

Problems,” Working Paper, University of Guelph.

Krishna, V. and E. Maenner (2001): “Convex Potentials with an Application to Mech-

anism Design,” Econometrica, 69, 1113–1119.

Milgrom, P. and I. Segal (2002): “Envelope Theorems for Arbitrary Choice Sets,”

Econometrica, 70, 583–601.

Mishra, D., A. Pramanik, and S. Roy (2014): “Multidimensional Mechanism Design

in Single Peaked Type Spaces,” Journal of Economic Theory, 153, 103–116.

Mishra, D. and S. Roy (2013): “Implementation in Multidimensional Dichotomous Do-

mains,” Theoretical Economics, 8, 431–466.

Moulin, H. (1980): “On Strategyproofness and Single-peakedness,” Public Choice, 35, 437–

455.

Reffgen, A. (2015): “Strategy-proof social choice on multiple and multi-dimensional single-

peaked domains,” Journal of Economic Theory, 157, 349–383.

32

Rochet, J. C. (1987): “A Necessary and Sufficient Condition for Rationalizability in a

Quasi-linear Context,” Journal of Mathematical Economics, 16, 191–200.

Rockafellar, R. T. (1970): Convex Analysis, Princeton University Press.

Saks, M. E. and L. Yu (2005): “Weak Monotonicity Suffices for Truthfulness on Convex

Domains,” in Proceedings of 7th ACM Conference on Electronic Commerce, ACM Press,

286–293.

Saporiti, A. (2009): “Strategy-proofness and single-crossing,” Theoretical Economics, 4,

127 – 163.

Sato, S. (2013a): “Strategy-proofness and the reluctance to make large lies: the case of

weak orders,” Social Choice and Welfare, 40, 479–494.

——— (2013b): “A sufficient condition for the equivalence of strategy-proofness and non-

manipulability by preferences adjacent to the sincere one,” Journal of Economic Theory,

148, 259–278.

Sprumont, Y. (1991): “The Division Problem with Single-Peaked Preferences: A Charac-

terization of the Uniform Allocation Rule,” Econometrica, 59, 509–519.

Vohra, R. V. (2011): Mechanism Design: A Linear Programming Approach, Cambridge

University Press.

33

	dp15-07
	local
	Introduction
	Local Incentive Compatibility
	A Motivating Example

	The Main Result
	Top Connected Domains
	Remarks on Theorem 1
	Domains Satisfying Top Connectedness
	Discussions on Non-Ordinal Type Spaces

	Local Implementation
	Conclusion

