Asymptotics and Simulation of Heavy-Tailed Processes

Henrik Hult

Workshop on Heavy-tailed Distributions and Extreme Value Theory ISI Kolkata January 14-17, 2013

Overview

Lecture 1 Heavy-Tailed Heuristics

- The One Big Jump Heuristics/The Heaviest Tail Wins/Breiman's Lemma
- Applying the Heavy-Tailed Heuristics: Lévy Processes/Stochastic Integrals/Linear Processes

Lecture 2 Regular Variation - the Technical Framework

- Regular Variation and Weak Convergence
- Convergence in the space \mathbf{M}_0
- The Quality of Heavy-Tailed Asymptotics

Lecture 3 Efficient Simulation of Heavy-Tailed Processes

- Introduction to Rare-Event Simulation
- Importance Sampling in a Heavy-Tailed Setting
- Markov Chain Monte Carlo in Rare-Event Simulation

Outline

Contents

1	Lecture 1 The Heavy-Tailed Heuristics		2 2
2			
	2.1	The One Big Jump Heuristic	2
	2.2	The Heaviest Tail Wins	3
	2.3	Breiman's Lemma	3
3	Арр	lying the Heavy-Tailed Heuristics	4
	3.1	Random Sums	4
	3.2	Infinitely Divisible Random Variables	4
	3.3	Stochastic Integrals	5
	3.4	Linear Processes	6

1 Lecture 1

The Objective

Heavy-tailed asymptotics and simulation are used to

- approximate the probability of extreme events,
- gain understanding of the underlying mechanism that is most likely to lead to extreme events. For example,
 - cumulative build-up,
 - shocks transferred through a system,
 - passage through bottleneck states,
 - etc...

The Regular Variation Framework

We consider a regular variation framework where $\{X_n\}$ is a sequence of random variables, A_n a sequence of events, and the probabilities $\{p_n\}$ where

$$p_n = \mathbb{P}\{X_n \in A_n\},\$$

form a regularly varying sequence; for any $\lambda > 0$,

$$\lim_{n \to \infty} \frac{p_{[\lambda n]}}{p_n} = \lambda^{-\alpha},$$

for some $\alpha \geq 0$ called the *index of regular variation*.

2 The Heavy-Tailed Heuristics

2.1 The One Big Jump Heuristic

The One Big Jump Heuristic

- Let $\{Z_k\}$ be independent and identically distributed (iid) random variables.
- Suppose $\mathbb{P}\{Z_1 > n\}$ is regularly varying.
- Then, for each fixed $k \ge 1$,

$$\mathbb{P}\{Z_1 + \dots + Z_k > n\} \sim k\mathbb{P}\{Z_1 > n\}, \quad \text{as } n \to \infty.$$

Notation: $a_n \sim b_n$ if $a_n/b_n \to 1$.

Proof

- Suppose for simplicity that $Z_1 \ge 0$.
- Lower bound (inclusion/exclusion):

$$\mathbb{P}\{S_k > n\} \ge \mathbb{P}\{\bigcup_{k=1}^n Z_k > n\} \ge k\mathbb{P}\{Z_1 > n\} - k(k-1)\mathbb{P}\{Z_1 > n\}^2.$$

• Upper bound: $(k = 2), \epsilon > 0$ arbitrary,

$$\mathbb{P}\{S_2 > n\} = 2\mathbb{P}\{Z_1 + Z_2 > n, Z_2 \le \epsilon n\} \\ + \mathbb{P}\{Z_1 + Z_2 > n, Z_1 > \epsilon n, Z_2 > \epsilon n\} \\ \le 2\mathbb{P}\{Z_1 > (1 - \epsilon)n\} + \mathbb{P}\{Z_1 > n\epsilon\}^2 \\ \sim 2(1 - \epsilon)^{-\alpha} \mathbb{P}\{Z_1 > n\}.$$

The One Big Jump Heuristic A General Version

- Let $\{Z_k\}$ be independent and identically distributed (iid) random variables.
- Suppose $\mathbb{P}\{Z_1 > n\}$ is regularly varying and put $S_n = Z_1 + \cdots + Z_n$.
- Then, there is uniform convergence:

$$\lim_{n \to \infty} \sup_{x \ge \lambda_n} \left| \frac{\mathbb{P}\{S_n > x\}}{n \mathbb{P}\{Z_1 > x\}} - 1 \right| = 0,$$

for $\lambda_n \to \infty$ sufficiently fast.¹

• Ex: $(\alpha > 2)$: $\lambda_n = a\sqrt{n\log n}, a > \sqrt{\alpha - 2}, (\alpha = 2)$: $\lambda_n/\sqrt{n^{1+\gamma}} \to \infty, \gamma > 0, (\alpha < 2)$: $S_n/\lambda_n \to 0$, in probability.

2.2 The Heaviest Tail Wins

The Heaviest Tail Wins

Let Y and Z be random variables. Suppose $\mathbb{P}\{Z > n\}$ is regularly varying with index $-\alpha$ and $\mathbb{P}\{Y > n\} = o(\mathbb{P}\{Z > n\})$.

Then²

$$\mathbb{P}\{Z+Y>n\} \sim \mathbb{P}\{Z>n\}.$$

Proof

Suppose for simplicity that Z and Y are non-negative. For arbitrary $\epsilon \in (0, 1)$,

$$\mathbb{P}\{Z+Y>n\} = \mathbb{P}\{Z+Y>n, Z>(1-\epsilon)n\} + \mathbb{P}\{Z+Y>n, Z\leq (1-\epsilon)n\}$$
$$\leq \mathbb{P}\{Z>(1-\epsilon)n\} + \mathbb{P}\{Y>\epsilon n\}$$
$$= \mathbb{P}\{Z>(1-\epsilon)n\} + o(\mathbb{P}\{Z>\epsilon n)\})$$
$$\sim (1-\epsilon)^{-\alpha}\mathbb{P}\{Z>n\}.$$

The reverse inequality is trivial when Y is non-negative.

2.3 Breiman's Lemma

Breiman's Lemma³

Let Y and Z be independent random variables with Y non-negative. Suppose $\mathbb{P}\{Z > n\}$ be regularly varying with index $-\alpha$ and $E[Y^{\alpha+\epsilon}] < \infty$ for some $\epsilon > 0$.

Then

$$\mathbb{P}\{YZ > n\} \sim E[Y^{\alpha}]\mathbb{P}\{Z > n\}.$$

Proof

Suppose for simplicity that Y is bounded by m. Then, by conditioning on Y,

$$\begin{split} \mathbb{P}\{YZ > n\} &= \int_0^m \mathbb{P}\{Z > n/y\} \mathbb{P}\{Y \in dy\} \\ &\sim \int_0^m y^\alpha \mathbb{P}\{Z > n\} \mathbb{P}\{Y \in dy\} \\ &= E[Y^\alpha] \mathbb{P}\{Z > n\}. \end{split}$$

¹These conditions are called the Nagaev conditions. General conditions under supexponentiality are given in [3]. ²See [1].

³see [2]

3 Applying the Heavy-Tailed Heuristics

3.1 Random Sums

Random Sums

- Let $\{Z_k\}$ be iid with $\mathbb{P}\{Z_1 > n\}$ regularly varying with index $-\alpha$.
- Let N be the random number of terms (N has sufficiently light tails, e.x. exponential), independent of $\{Z_k\}$.
- Determine the asymptotic decay of $\mathbb{P}\{S_N > n\}$, where $S_N = \sum_{k=1}^N Z_k$.

Random Sums

• Heuristic: Think of N as "not very large". Then, $S_N = \sum_{k=1}^N Z_k$ is large, most likely because precisely one of the Z_k 's is large, so expect

$$\mathbb{P}\{S_N > n\} \sim \operatorname{const} \mathbb{P}\{Z_1 > n\}.$$

- What is the constant?
- By conditioning on N:

$$\mathbb{P}\{S_N > n\} = \sum_{k=1}^{\infty} \mathbb{P}\{N = k\}\mathbb{P}\{Z_1 + \dots + Z_k > n\}$$
$$\sim \sum_{k=1}^{\infty} \mathbb{P}\{N = k\}k\mathbb{P}\{Z_1 > n\}$$
$$= E[N] \mathbb{P}\{Z_1 > n\}.$$

See e.g. [7] for more details

3.2 Infinitely Divisible Random Variables

Infinitely Divisible Laws

• X has an infinitely divisible law if, for each n, there are iid random variables $Y_{1,n}, \ldots, Y_{n,n}$ such that

$$X \stackrel{\mathrm{d}}{=} Y_{1,n} + \dots + Y_{n,n}.$$

• The Lévy-Itô decomposition states that X can be represented in law as a sum of three independent parts

$$X \stackrel{\mathrm{d}}{=} \mu + \sum_{k=1}^{N} Z_k + \text{ small jumps } + \text{ Gaussian.}$$

where $Z_k \ge 1$ is distributed according to $\nu(\cdot)/\nu(1,\infty)$, ν is the Lévy measure, and N has a Poisson distribution with mean $\nu(1,\infty)$.

Infinitely Divisible Laws

- Suppose $\nu(n,\infty)$ is regularly varying with index $-\alpha$, so $\mathbb{P}\{Z_1 > n\}$ is regularly varying with index $-\alpha$.
- Then

$$X \stackrel{\mathrm{d}}{=} \mu + \sum_{k=1}^{N} Z_k + \underbrace{\text{small jumps}}_{\text{light tails}} + \underbrace{\text{Gaussian.}}_{\text{light tails}}$$

• The random sum $\sum_{k=1}^{N} Z_k$ satisfies

$$\mathbb{P}\left\{\sum_{k=1}^{N} Z_{k} > n\right\} \sim E[N] \mathbb{P}\{Z_{1} > n\} = \nu(1,\infty) \frac{\nu(n,\infty)}{\nu(1,\infty)} = \nu(n,\infty).$$

• The heaviest tail wins argument implies that

$$\mathbb{P}\{X > n\} \sim \nu(n, \infty).$$

The reverse implication also holds, even under subexponentiality, see [4].

3.3 Stochastic Integrals

Stochastic Integrals⁴

- Consider a Lévy process X with regularly varying Lévy measure ν (index α).
- Let Y be an adapted process with lighter tails than ν :

$$E[\sup_{t\in[0,1]}Y_t^{\alpha+\epsilon}]<\infty,\qquad\text{some }\epsilon>0.$$

• Consider tail probabilities $\mathbb{P}\{\int_0^1 Y_t dX_t > n\}$

Stochastic Integrals

Decomposing the Lévy process as

$$X_t \stackrel{\mathrm{d}}{=} \sum_{k=1}^{N_t} \Delta X_{\tau_k} + \underbrace{S_t}_{\text{small jumps}} + \underbrace{W_t}_{\text{Gaussian}},$$

the stochastic integral becomes

$$\int_0^1 Y_t dX_t \stackrel{\mathrm{d}}{=} \sum_{k=1}^{N_1} Y_{\tau_k} \Delta X_{\tau_k} + \underbrace{\int_0^1 Y_t dS_t}_{\text{light tails}} + \underbrace{\int_0^1 Y_t dW_t}_{\text{light tails}},$$

the **heaviest tail wins** argument tells us that $\sum_{k=1}^{N_t} Y_{\tau_k} \Delta X_{\tau_k}$ is the most important term (if it has heavy tails).

⁴This part is based on [5]

Stochastic Integrals Studying $\sum_{k=1}^{N_t} Y_{\tau_k} \Delta X_{\tau_k}$

• Each term $Y_{\tau_k} \Delta X_{\tau_k}$ is a product of independent rv's so **Breiman's Lemma** implies that each term satisfies

$$\mathbb{P}\{Y_{\tau_k}\Delta X_{\tau_k} > n\} \sim E[Y_{\tau_k}^{\alpha}]\mathbb{P}\{\Delta X_{\tau_k} > n\}$$

• The terms $Y_{\tau_k} \Delta X_{\tau_k}$, k = 1, 2, ... are not independent, but the **one big jump heuris**tic tells us that, most likely, only one ΔX_{τ_k} is large, so one expects that

$$\mathbb{P}\left\{\int_{0}^{1} Y_{t} dX_{t} > n\right\} \sim \mathbb{P}\left\{\sum_{k=1}^{N_{1}} Y_{\tau_{k}} \Delta X_{\tau_{k}} > n\right\} \sim E[N_{1}]\mathbb{P}\left\{Y_{\tau} \Delta X_{\tau} > n\right\}$$
$$\sim E[Y_{\tau}^{\alpha}]E[N_{1}]\mathbb{P}\left\{\Delta X_{\tau} > n\right\} = E[Y_{\tau}^{\alpha}]\nu(n,\infty),$$

where τ is the time of the big jump.

3.4 Linear Processes

Moving Average Processes

- MA(2) process: Let {Z_k} be iid regularly varying (α) and A₀, A₁ constants. Put
 X_k = A₀Z_k + A₁Z_{k-1}, k ≥ 1.
- The one big jump heuristic implies that

$$\mathbb{P}\{X_1 > n\} \sim \mathbb{P}\{A_0 Z_1 > n\} + \mathbb{P}\{A_1 Z_0 > n\} \sim (A_0^{\alpha} + A_1^{\alpha})\mathbb{P}\{Z_1 > n\}.$$

Linear Processes⁵

• For the linear process

$$X_k = \sum_{j=0}^{\infty} A_j Z_{k-j},$$

with $E[Z_k] = 0$ if $\alpha > 1$, it is necessary that the coefficients decay sufficiently fast.

• If

$$\begin{split} \sum |A_j|^{\alpha-\epsilon} < \infty, \quad \text{for some } \epsilon > 0, \quad \alpha \leq 2, \\ \sum |A_j|^2 < \infty, \qquad \alpha > 2, \end{split}$$

then

$$\mathbb{P}\{X_k > n\} \sim \sum_j A_j^{\alpha} I\{A_j > 0\} \mathbb{P}\{Z_1 > n\}.$$

Moving Average Processes Random Coefficients

If A₀, A₁ are random, non-negative, and independent of {Z_k} with E[A_k^{α+ε}] < ∞, k = 0, 1, then Breiman's Lemma together with the one big jump heuristic implies that

$$X_k = A_0 Z_k + A_1 Z_{k-1}, \qquad k \ge 1$$

satisfies

$$\mathbb{P}\{X_1 > n\} \sim \mathbb{P}\{A_0 Z_1 > n\} + \mathbb{P}\{A_1 Z_0 > n\} \\ \sim (E[A_0^{\alpha}] + E[A_1^{\alpha}])\mathbb{P}\{Z_1 > n\}.$$

⁵See [8] for details.

Linear Processes Random Coefficients⁶

• In the case of random (non-negative) coefficients $\{A_j\}$ that are (essentially) independent of $\{Z_k\}$ the conditions:

$$\begin{split} \sum EA_j^{\alpha-\epsilon} &< \infty, \text{ and } \sum EA_j^{\alpha+\epsilon} < \infty, \text{ some } \epsilon > 0, \ \alpha \in (0,1) \cup (1,2), \\ & E\Big(\sum A_j^{\alpha-\epsilon}\Big)^{\frac{\alpha+\epsilon}{\alpha-\epsilon}} < \infty, \quad \alpha = 1 \text{ or } 2, \\ & E\Big(\sum A_j^2\Big)^{\frac{\alpha+\epsilon}{2}} < \infty, \quad \alpha > 2, \end{split}$$

imply that

$$\mathbb{P}\{X_k > n\} \sim \sum_j E[A_j^{\alpha}] \mathbb{P}\{Z_1 > n\}.$$

References

- S. Resnick Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer, New York, 2006.
- [2] L. Breiman On some limit theorems related to the arcsin law. Theory Probab. Appl. 10, 323-331, 1965.
- [3] D. Denisov, A.B. Dieker, and V. Shneer Large deviations for random walks under subexponentiality: the big-jump domain. Ann. Probab. 36(5), 1946-1991, 2008.
- P. Embrechts, C. Goldie, and N. Veraverbeke Subexponentiality and infinite divisibility.
 Z. Wahrsch. Verw. Gebiete 49, 335-347, 1979.
- [5] H. Hult and F. Lindskog Extremal behavior of stochastic integrals driven by regularly varying Lévy processes. Ann. Probab., 35, 309-339, 2007.
- [6] H. Hult and G Samorodnitsky Tail probabilities for infinite series of regularly varying random vectors. Bernoulli 14(3),838-864, 2008
- [7] C. Klüppelberg and T. Mikosch Large deviations for heavy-tailed random sums with applications to insurance and finance. J. Appl. Probab. 37(2), 293-308, 1997.
- [8] T. Mikosch and G. Samorodnitsky The supremum of a negative drift random walk with dependent heavy-tailed steps. Ann. Appl. Probab. 10, 1025-1064, 2000.

⁶See [6] for details.