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1 Lecturel

The Objective
Heavy-tailed asymptotics and simulation are used to

e approximate the probability of extreme events,

e gain understanding of the underlying mechanism that is fit@dy to lead to extreme
events. For example,

cumulative build-up,
— shocks transferred through a system,

passage through bottleneck states,
— etc...

The Regular Variation Framework
We consider a regular variation framework wh¢r€,, } is a sequence of random vari-
ables,A,, a sequence of events, and the probabilifigs} where

pn = P{Xn € An}7
form a regularly varying sequence; for aky> 0,
lim P2 \—e

n—o00  Ppn

for somea > 0 called theindex of regular variation.

2 The Heavy-Tailed Heuristics

2.1 The One Big Jump Heuristic
The One Big Jump Heuristic
e Let{Z;} be independent and identically distributed (iid) randomalzes.
e SupposeP{Z; > n} is regularly varying.
e Then, for each fixed > 1,
P{Z, + - -+ Z >n} ~ kP{Z1 >n}, asn— oco.

Notation: an ~ by if an/bn — 1.

Proof
e Suppose for simplicity thaZ; > 0.
e Lower bound (inclusion/exclusion):
P{Six > n} > P{Up_,Zx > n} > kP{Z1 > n} — k(k — 1)P{Z1 > n}*.
e Upper bound: k = 2), e > 0 arbitrary,
P{Ss > n} = 2P{Z1 + Z> > n, Z> < en}
+P{Z1+Z>>n,Z1 > en, Zy > en}

<2P{Z; > (1 —e)n} + P{Z1 > ne}?
~2(1—¢€) “P{Z1 > n}.



The One Big Jump Heuristic A General Version
e Let{Z;} be independent and identically distributed (iid) randomalzes.
e SupposeéP{Z; > n} is regularly varying and put,, = Z1 + - - - + Z,.
e Then, there is uniform convergence:

lim sup P{S > o}

w22 9] =0,
n—00 4>\, nP{Z > z}

for A, — oo sufficiently fast:
e EX: (@ > 2): Ay = av/nlogn,a > Va—2, (a=2): \/vVnitT = 00,y > 0,
(a < 2): Sp/An — 0, in probability.
2.2 The Heaviest Tail Wins

The Heaviest Tail Wins

LetY andZ be random variables. SuppdB€Z > n} is regularly varying with index
—aandP{Y > n} = o(P{Z > n}).

Ther?

P{Z+Y >n} ~P{Z > n}.

Proof
Suppose for simplicity that andY” are non-negative. For arbitragye (0, 1),

P{Z+Y >n}=P{Z+Y>n,Z>1—en}+P{Z+Y >n,Z<(1—-¢€)n}
<P{Z > (1—-¢€)n} +P{Y > en}
=P{Z > (1 —¢)n} + o(P{Z > en)})
~(1—¢€) "P{Z > n}.

The reverse inequality is trivial whéeyi is non-negative.

2.3 Breiman’s Lemma

Breiman’s Lemma®

LetY andZ be independent random variables witmon-negative. Suppo®{Z > n}
be regularly varying with index-oe and E[Y “*¢] < oo for somee > 0.

Then

P{YZ > n} ~ E[Y*]P{Z > n}.

Proof
Suppose for simplicity thalt” is bounded byn. Then, by conditioning ofy,

P{YZ >n} = /m P{Z > n/y}P{Y € dy}

~ /m y*P{Z > n}P{Y € dy}

= E[Y*|P{Z > n}.

These conditions are called the Nagaev conditions. Geoeralitions under supexponentiality are given in [3].
2See [1].
3see [2]



3 Applying the Heavy-Tailed Heuristics
3.1 Random Sums
Random Sums
o Let{Z;} beiid withP{Z; > n} regularly varying with index-c..

e Let N be the random number of term¥ (has sufficiently light tails, e.x. exponential),
independent of Z; }.

e Determine the asymptotic decay®{Sx > n}, whereSy = S"1_, Zk.

Random Sums

e Heuristic: Think of N as “not very large”. ThenSy = Zszl Z is large, most
likely because precisely one of thig s is large, so expect

P{Sny > n} ~ constP{Z; > n}.

e What is the constant?

e By conditioning onV:

P{SN >n}=§:P{N=k‘}P{Z1+~--+Zk >n}

~ iP{N = kYkP{Z, > n}
— Ei[N] P{Z: > n}.

See e.g. [7] for more details.

3.2 Infinitely Divisible Random Variables

Infinitely Divisible Laws

e X has aninfinitely divisible law if, for each, there are iid random variablés ,,, ..., Y, »
such that

XéYI,n‘f"‘!‘Yn,n

e The Lévy-Itd decomposition states thétcan be represented in law as a sum of three
independent parts

N
X £ pu+Y" 7+ smalljumps+ Gaussian.
k=1

whereZ;, > 1 is distributed according to(-)/v(1, ), v is the Lévy measure, and
N has a Poisson distribution with meafi, co).



Infinitely Divisible Laws

e Supposev(n, o) is regularly varying with index-«, soP{Z; > n} is regularly
varying with index—a.

e Then
N
x4 Zi + small jumps+ Gaussian.
pA > Dt jumps+
k=1 light tails light tails

e The random sumy_r_, 7 satisfies
al v(n, o)
]P’{ I;Zk > n} ~ BINJE{Z1 > n} = v(1,00) 28 = v(n,o0).
e Theheaviest tail winsargument implies that
P{X > n} ~ v(n,oc0).

The reverse implication also holds, even under subexpiiigntsee [4].

3.3 Stochastic Integrals

Stochastic Integralé
e Consider a Lévy procesk with regularly varying Lévy measune (index «).
e LetY be an adapted process with lighter tails than

E[ sup Y] < oo, somee > 0.
te[0,1]

e Consider tail probabilitieﬁ’{fo1 YidX: > n}

Stochastic Integrals
Decomposing the Lévy process as

Ny
X2 AX, + S + W,
t; & t t

small jumps  Gaussian

the stochastic integral becomes

1 Ny 1 1
/Ytdxt%E YTkAXTk+/ Ytdst+/ YidWs,
0 k=1 0 0
N——

N——
light tails light tails

the heaviest tail winsargument tells us th@:,iv;1 Y. AX,, isthe mostimportant term (if

it has heavy tails).

“This part is based on [5]



Ny

Stochastic Integrals Studyingd ", ", Y-, AX,,

e EachtermY,, AX,, is aproduct of independent rv's &eiman’s Lemma implies
that each term satisfies

P{Y,, AX,, > n} ~ E[Y2]P{AX,, > n}.

e Thetermsy;, AX,, ,k=1,2,... are notindependent, but tbee big jump heuris-
tic tells us that, most likely, only onA X, is large, so one expects that

1 Ny
P{/ YidX: > n} ~ P Y AXs > n} ~ E[NMP{Y;AX, > n}
0 k=1

~ E[YF|E[N1]P{AX: > n} = E[Y]|v(n, o),

wherer is the time of the big jump.

3.4 Linear Processes
Moving Average Processes
e MA(2) process: Le{ Z, } be iid regularly varyingd) and Ao, A: constants. Put
Xi = AoZi + A1 Zi_1, k> 1.

e Theone big jump heuristic implies that

P{Xl > TL} ~ P{A()Zl > n} + P{A120 > n} ~ (AS + A?)P{Zl > n}

Linear Processes
e For the linear process
Xk = Z AjZy—j,
j=0
with E[Z;] = 0if o > 1, itis necessary that the coefficients decay sufficiently fas
o If
> A% < oo, forsomee >0, a<2,
SIAjP <00, a>2,
then
P{X) >n} ~ > AFI{A; > 0}P{Z: > n}.
J
Moving Average Processes Random Coefficients

e If Ao, A1 are random, non-negative, and independerft/af} with E[A; "] < oo,
k = 0,1, thenBreiman’s Lemma together with thene big jump heuristic implies
that

X =A0Zk + A1 Z—1, E>1
satisfies

P{Xl > n} ~ P{A()Zl > n} +]P’{A120 > n}
~ (E[Ag] + E[AT])P{Z1 > n}.

5See [8] for details.



Linear Processes Random Coefficients

¢ In the case of random (non-negative) coefficights } that are (essentially) indepen-
dent of{Z, } the conditions:

> EA;T < oo, and » | EAJTC < oo, somee > 0, a € (0,1) U (1,2),

ate
E(ZA]O-“E) T <oo, a=1or2,

ate

E(ZA?) 2 < oo, a>2,

imply that

P{X) >n} ~ > E[AJIP{Z1 > n}.

J
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