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Overview

Lecture 1 Heavy-Tailed Heuristics

– The One Big Jump Heuristics/The Heaviest Tail Wins/Breiman’s Lemma

– Applying the Heavy-Tailed Heuristics: Lévy Processes/Stochastic Integrals/Linear
Processes

Lecture 2 Regular Variation – the Technical Framework

– Regular Variation and Weak Convergence

– Convergence in the spaceM0

– The Quality of Heavy-Tailed Asymptotics

Lecture 3 Efficient Simulation of Heavy-Tailed Processes

– Introduction to Rare-Event Simulation

– Importance Sampling in a Heavy-Tailed Setting

– Markov Chain Monte Carlo in Rare-Event Simulation
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1 Lecture 1

The Objective
Heavy-tailed asymptotics and simulation are used to

• approximate the probability of extreme events,

• gain understanding of the underlying mechanism that is mostlikely to lead to extreme
events. For example,

– cumulative build-up,

– shocks transferred through a system,

– passage through bottleneck states,

– etc. . .

The Regular Variation Framework
We consider a regular variation framework where{Xn} is a sequence of random vari-

ables,An a sequence of events, and the probabilities{pn} where

pn = P{Xn ∈ An},
form a regularly varying sequence; for anyλ > 0,

lim
n→∞

p[λn]

pn
= λ−α,

for someα ≥ 0 called theindex of regular variation.

2 The Heavy-Tailed Heuristics

2.1 The One Big Jump Heuristic

The One Big Jump Heuristic

• Let {Zk} be independent and identically distributed (iid) random variables.

• SupposeP{Z1 > n} is regularly varying.

• Then, for each fixedk ≥ 1,

P{Z1 + · · ·+ Zk > n} ∼ kP{Z1 > n}, asn → ∞.

Notation: an ∼ bn if an/bn → 1.

Proof

• Suppose for simplicity thatZ1 ≥ 0.

• Lower bound (inclusion/exclusion):

P{Sk > n} ≥ P{∪n
k=1Zk > n} ≥ kP{Z1 > n} − k(k − 1)P{Z1 > n}2.

• Upper bound: (k = 2), ǫ > 0 arbitrary,

P{S2 > n} = 2P{Z1 + Z2 > n,Z2 ≤ ǫn}
+ P{Z1 + Z2 > n,Z1 > ǫn, Z2 > ǫn}

≤ 2P{Z1 > (1− ǫ)n}+ P{Z1 > nǫ}2

∼ 2(1− ǫ)−α
P{Z1 > n}.
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The One Big Jump Heuristic A General Version

• Let {Zk} be independent and identically distributed (iid) random variables.

• SupposeP{Z1 > n} is regularly varying and putSn = Z1 + · · ·+ Zn.

• Then, there is uniform convergence:

lim
n→∞

sup
x≥λn

∣
∣
∣
∣

P{Sn > x}
nP{Z1 > x} − 1

∣
∣
∣
∣
= 0,

for λn → ∞ sufficiently fast.1

• Ex: (α > 2): λn = a
√
n log n, a >

√
α− 2, (α = 2): λn/

√
n1+γ → ∞, γ > 0,

(α < 2): Sn/λn → 0, in probability.

2.2 The Heaviest Tail Wins

The Heaviest Tail Wins
Let Y andZ be random variables. SupposeP{Z > n} is regularly varying with index

−α andP{Y > n} = o(P{Z > n}).
Then2

P{Z + Y > n} ∼ P{Z > n}.

Proof
Suppose for simplicity thatZ andY are non-negative. For arbitraryǫ ∈ (0, 1),

P{Z + Y > n} = P{Z + Y > n, Z > (1− ǫ)n}+ P{Z + Y > n, Z ≤ (1− ǫ)n}
≤ P{Z > (1− ǫ)n}+ P{Y > ǫn}
= P{Z > (1− ǫ)n}+ o(P{Z > ǫn)})
∼ (1− ǫ)−α

P{Z > n}.
The reverse inequality is trivial whenY is non-negative.

2.3 Breiman’s Lemma

Breiman’s Lemma3

LetY andZ be independent random variables withY non-negative. SupposeP{Z > n}
be regularly varying with index−α andE[Y α+ǫ] < ∞ for someǫ > 0.

Then

P{Y Z > n} ∼ E[Y α]P{Z > n}.

Proof
Suppose for simplicity thatY is bounded bym. Then, by conditioning onY ,

P{Y Z > n} =

∫ m

0

P{Z > n/y}P{Y ∈ dy}

∼
∫ m

0

yα
P{Z > n}P{Y ∈ dy}

= E[Y α]P{Z > n}.

1These conditions are called the Nagaev conditions. Generalconditions under supexponentiality are given in [3].
2See [1].
3see [2]
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3 Applying the Heavy-Tailed Heuristics

3.1 Random Sums

Random Sums

• Let {Zk} be iid withP{Z1 > n} regularly varying with index−α.

• LetN be the random number of terms (N has sufficiently light tails, e.x. exponential),
independent of{Zk}.

• Determine the asymptotic decay ofP{SN > n}, whereSN =
∑N

k=1 Zk.

Random Sums

• Heuristic: Think ofN as “not very large”. Then,SN =
∑N

k=1 Zk is large, most
likely because precisely one of theZk ’s is large, so expect

P{SN > n} ∼ constP{Z1 > n}.

• What is the constant?

• By conditioning onN :

P{SN > n} =

∞∑

k=1

P{N = k}P{Z1 + · · ·+ Zk > n}

∼
∞∑

k=1

P{N = k}kP{Z1 > n}

= E[N ] P{Z1 > n}.

See e.g. [7] for more details.

3.2 Infinitely Divisible Random Variables

Infinitely Divisible Laws

• X has an infinitely divisible law if, for eachn, there are iid random variablesY1,n, . . . , Yn,n

such that

X d= Y1,n + · · ·+ Yn,n.

• The Lévy-Itô decomposition states thatX can be represented in law as a sum of three
independent parts

X d= µ+
N∑

k=1

Zk + small jumps+ Gaussian.

whereZk ≥ 1 is distributed according toν(·)/ν(1,∞), ν is the Lévy measure, and
N has a Poisson distribution with meanν(1,∞).
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Infinitely Divisible Laws

• Supposeν(n,∞) is regularly varying with index−α, soP{Z1 > n} is regularly
varying with index−α.

• Then

X d= µ+

N∑

k=1

Zk + small jumps
︸ ︷︷ ︸

light tails

+ Gaussian.
︸ ︷︷ ︸

light tails

• The random sum
∑N

k=1Zk satisfies

P

{ N∑

k=1

Zk > n
}

∼ E[N ] P{Z1 > n} = ν(1,∞)
ν(n,∞)

ν(1,∞)
= ν(n,∞).

• Theheaviest tail winsargument implies that

P{X > n} ∼ ν(n,∞).

The reverse implication also holds, even under subexponentiality, see [4].

3.3 Stochastic Integrals

Stochastic Integrals4

• Consider a Lévy processX with regularly varying Lévy measureν (indexα).

• Let Y be an adapted process with lighter tails thanν:

E[ sup
t∈[0,1]

Y α+ǫ
t ] < ∞, someǫ > 0.

• Consider tail probabilitiesP{
∫ 1

0
YtdXt > n}

Stochastic Integrals
Decomposing the Lévy process as

Xt
d=

Nt∑

k=1

∆Xτk + St
︸︷︷︸

small jumps

+ Wt
︸︷︷︸

Gaussian

,

the stochastic integral becomes

∫ 1

0

YtdXt
d=

N1∑

k=1

Yτk∆Xτk +

∫ 1

0

YtdSt

︸ ︷︷ ︸

light tails

+

∫ 1

0

YtdWt

︸ ︷︷ ︸

light tails

,

theheaviest tail winsargument tells us that
∑Nt

k=1 Yτk∆Xτk is the most important term (if
it has heavy tails).

4This part is based on [5]

5



Stochastic Integrals Studying
∑Nt

k=1 Yτk∆Xτk

• Each termYτk∆Xτk is a product of independent rv’s soBreiman’s Lemma implies
that each term satisfies

P{Yτk∆Xτk > n} ∼ E[Y α
τk
]P{∆Xτk > n}.

• The termsYτk∆Xτk , k = 1, 2, . . . are not independent, but theone big jump heuris-
tic tells us that, most likely, only one∆Xτk is large, so one expects that

P{
∫ 1

0

YtdXt > n} ∼ P{
N1∑

k=1

Yτk∆Xτk > n} ∼ E[N1]P{Yτ∆Xτ > n}

∼ E[Y α
τ ]E[N1]P{∆Xτ > n} = E[Y α

τ ]ν(n,∞),

whereτ is the time of the big jump.

3.4 Linear Processes

Moving Average Processes

• MA(2) process: Let{Zk} be iid regularly varying (α) andA0, A1 constants. Put

Xk = A0Zk + A1Zk−1, k ≥ 1.

• Theone big jump heuristic implies that

P{X1 > n} ∼ P{A0Z1 > n}+ P{A1Z0 > n} ∼ (Aα
0 + Aα

1 )P{Z1 > n}.

Linear Processes5

• For the linear process

Xk =
∞∑

j=0

AjZk−j ,

with E[Zk] = 0 if α > 1, it is necessary that the coefficients decay sufficiently fast.

• If
∑

|Aj |α−ǫ < ∞, for someǫ > 0, α ≤ 2,
∑

|Aj |2 < ∞, α > 2,

then

P{Xk > n} ∼
∑

j

Aα
j I{Aj > 0}P{Z1 > n}.

Moving Average Processes Random Coefficients

• If A0, A1 are random, non-negative, and independent of{Zk} with E[Aα+ǫ
k ] < ∞,

k = 0, 1, thenBreiman’s Lemma together with theone big jump heuristic implies
that

Xk = A0Zk + A1Zk−1, k ≥ 1

satisfies

P{X1 > n} ∼ P{A0Z1 > n}+ P{A1Z0 > n}
∼ (E[Aα

0 ] + E[Aα
1 ])P{Z1 > n}.

5See [8] for details.
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Linear Processes Random Coefficients6

• In the case of random (non-negative) coefficients{Aj} that are (essentially) indepen-
dent of{Zk} the conditions:

∑

EAα−ǫ
j < ∞, and

∑

EAα+ǫ
j < ∞, someǫ > 0, α ∈ (0, 1) ∪ (1, 2),

E
(∑

Aα−ǫ
j

)α+ǫ

α−ǫ

< ∞, α = 1 or 2,

E
(∑

A2
j

)α+ǫ

2
< ∞, α > 2,

imply that

P{Xk > n} ∼
∑

j

E[Aα
j ]P{Z1 > n}.
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