Asymptotics and Simulation of Heavy-Tailed Processes

Henrik Hult

Workshop on Heavy-tailed Distributions and Extreme Value Theory ISI Kolkata January 14-17, 2013

Outline

Contents

1	Intr	oduction to Regular Variation	1	
2	Convergence in the space M_0			
	2.1	Regular Variation on \mathbf{R}^d	2	
		Regular Variation on $\mathbf{D}[0,1]$	3	
	2.3	Large Deviations for Empirical Measures	4	
3	The	Quality of the Asymptotic Approximations	5	

1 Introduction to Regular Variation

Regularly Varying Sequences and Random Variables

• A sequence c_n is called regularly varying at ∞ with index $\rho \in \mathbf{R}$ if, for each $\lambda > 0$,

$$\lim_{n \to \infty} \frac{c_{[\lambda n]}}{c_n} = \lambda^{\rho}.$$

 A non-negative random variable Z is called regularly varying with index α if the tail *P*{Z > n} is regularly varying at ∞ with index −α, α ≥ 0.

Regular Variation and Weak Convergence

- Suppose Z is regularly varying with index α .
- For any $\lambda > 0$, with $c_n = \mathbb{P}\{Z > n\}^{-1}$ it follows that

 $c_n \mathbb{P}\{Z \in n(\lambda, \infty)\} \to \lambda^{-\alpha} =: \mu_{\alpha}(\lambda, \infty).$

• This convergence can be formulated as a weak convergence:

$$c_n \mathbb{P}\{n^{-1}Z \in \cdot\} \xrightarrow{w} \mu_{\alpha}$$

when restricted to any subset where μ_{α} is finite. That is, of the form $(\epsilon, \infty), \epsilon > 0$.

2 Convergence in the space M_0

The Space M_0^1

- Let (\mathbf{S}, d) be a complete separable metric space with its Borel σ -field.
- s_0 is the origin in **S**.
- $B_{0,r} = \{s \in \mathbf{S} : d(s, s_0) < r\}$ (open ball of radius r).
- \mathscr{C}_0 are the real-valued bounded continuous functions on **S** vanishing on some ball $B_{0,r}, r > 0.$
- $\mathbf{M}_0 = \{ \text{Borel measures } \mu \text{ on } \mathbf{S} \text{ with } \mu(B_{0,r}^c) < \infty \text{ for each } r > 0 \}.$
- Convergence in $\mathbf{M}_0: \mu_n \to \mu$ in \mathbf{M}_0 if

$$\int f d\mu_n \to \int f d\mu, \qquad \text{for all } f \in \mathscr{C}_0.$$

Regularly Varying Measures

 A sequence of measures ν_n in M₀ is regularly varying with index −α if there exists a sequence {c_n} of positive numbers, which is regularly varying with index α ≥ 0, and a nonzero μ ∈ M₀ such that

$$c_n \nu_n \rightarrow \mu$$
, in \mathbf{M}_0 .

A measure ν ∈ M₀ is called regularly varying if the sequence {ν(n ·)} is regularly varying with index −α. In this case the limiting measure μ satisfies the scaling property: for any λ > 0 and Borel set B ⊂ S \ {s₀}

$$\mu(\lambda B) = \lambda^{-\alpha} \mu(B).$$

2.1 Regular Variation on \mathbf{R}^d

Multivariate Regular Variation

- Let X be a random vector in \mathbf{R}^d .
- The distribution of X is called multivariate regularly varying if $\mathbb{P}\{n^{-1}X \in \cdot\}$ is a regularly varying measure: there exists a nonzero $\mu \in \mathbf{M}_0(\mathbf{R}^d)$ and a regularly varying sequence c_n with index $\alpha \geq 0$ such that

$$c_n \mathbb{P}\{n^{-1}X \in \cdot\} \to \mu, \quad \text{in } \mathbf{M}_0(\mathbf{R}^d).$$

Multivariate Regular Variation Independent Components²

- Let $Z = (Z_1, \ldots, Z_d)'$ be a random vector in \mathbf{R}^d with iid regularly varying components.
- Take $c_n = \mathbb{P}\{Z_1 > n\}^{-1}$.
- For any set of the form $A_i = \{x : x_i > a\}$ it follows that

$$c_n \mathbb{P}\{n^{-1}Z \in A_i\} = \frac{\mathbb{P}\{Z_1 > an\}}{\mathbb{P}\{Z_1 > n\}} \to a^{-\alpha} = \mu_{\alpha}(a, \infty),$$

whereas for any set which is a subset of some $A_{i,j} = \{x : x_i > \epsilon_1, x_j > \epsilon_2, i \neq j\}$ it follows that

$$c_n \mathbb{P}\{n^{-1}Z \in A_{i,j}\} \le \frac{\mathbb{P}\{Z_1 > n\epsilon_1\}\mathbb{P}\{Z_1 > n\epsilon_2\}}{\mathbb{P}\{Z_1 > n\}} \to 0.$$

¹The details are in [4]

²See e.g.[1]

Multivariate Regular Variation Independent Components

- One can show that $\mathbb{P}\{n^{-1}Z \in \cdot\}$ is regularly varying with limiting measure μ which is concentrated on the union of the coordinate axis.
- More precisely,

$$c_n \mathbb{P}\{n^{-1}Z \in \cdot\} \to \mu, \quad \text{in } \mathbf{M}_0(\mathbf{R}^d),$$

with

$$\mu(B) = \sum_{k=1}^d \int_0^\infty I\{ze_k \in B\} \mu_\alpha(dz).$$

2.2 Regular Variation on D[0, 1]

Regular Variation on D[0, 1] A Heavy-Tailed Lévy Process³

- Let $\mathbf{D}[0,1]$ be the space of càdlàg functions $[0,1] \to \mathbf{R}$ equipped with the Skorohod J_1 -metric.
- Consider a Lévy process X with regularly varying Lévy measure ν :

$$c_n \nu(n,\infty) \to 1,$$

for a regularly varying sequence c_n .

Regular Variation on D[0, 1] A Heavy-Tailed Lévy Process

Then, the heavy tailed heuristics (one big jump + the heaviest tail wins) can be made precise by showing that P{n⁻¹X ∈ ·} is regularly varying:

 $c_n \mathbb{P}\{n^{-1}X \in \cdot\} \to m, \quad \text{in } \mathbf{M}_0(\mathbf{D}[0,1]),$

where m is supported on step functions with one step.

$$m(B) = \int_0^1 \int_0^\infty I\{z I_{[\tau,1]}(\cdot) \in B\} \mu_\alpha(dz) d\tau$$

where B is any Borel subset of $\mathbf{D}[0, 1] \setminus \{0\}$.

Stochastic Integrals (c.f. [5])

- Consider a Lévy process X with regularly varying Lévy measure ν (index α).
- Let Y be an adapted process with lighter tails than ν :

$$E[\sup_{t\in[0,1]}Y_t^{\alpha+\epsilon}]<\infty,\qquad\text{some }\epsilon>0.$$

• The stochastic integral process $(Y \cdot X)_t = \int_0^t Y_s dX_s$ is regularly varying with index α . In particular

 $c_n \mathbb{P}\{n^{-1}(Y \cdot X) \in \dot{f} \to m, \quad \text{in } \mathbf{M}_0(\mathbf{D}[0,1]),$

where m is supported on step functions with one step.

$$m(B) = E \left[\int \int I\{Y_{\tau} z I_{[\tau,1]}(\cdot) \in B\} \mu_{\alpha}(dz) d\tau \right],$$

where B is any Borel subset of $\mathbf{D}[0, 1] \subset \{0\}$.

³See [2, 4]

2.3 Large Deviations for Empirical Measures

Large Deviations for the Empirical Measure (c.f. [6])

- Let $\{Z_k\}$ be iid with a regularly varying distribution on \mathbb{R}^d with limiting measure μ and $\alpha > 1$.
- The empirical measure is

$$N_n = \sum_{k=1}^n \delta_{n^{-1}Z_k},$$

where δ_z is a unit point mass at z.

- Consider N_n as a random element taking values in the space of N_p of point measure on R^d \ {0} equipped with the vague topology.
- Then, the sequence $\mathbb{P}\{N_n \in \cdot\}$ is regularly varying:

$$c_n \mathbb{P}\{N_n \in \cdot\} \to m, \quad \text{in } \mathbf{M}_0(\mathbf{N}_p),$$

with $m(B) = \int I\{\delta_z \in B\} \mu(dz)$.

Large Deviations for the Empirical Measure Keeping Track of Time

• We may keep track of time in the sense that

$$N_n = \sum_{k=1}^n \delta_{\left(\frac{k}{n}, n^{-1}Z_k\right)}$$

• Then, the sequence $\mathbb{P}\{N_n \in \cdot\}$ is regularly varying:

$$c_n \mathbb{P}\{N_n \in \cdot\} \to m, \quad \text{in } \mathbf{M}_0(\mathbf{N}_p),$$

with

$$m(B) = \int_0^1 \int_{\mathbf{R}^d} I\{\delta_{(t,z)} \in B\} \mu(dz) dt.$$

Moving Averages

• MA(2) process: Let $\{Z_k\}$ be iid regularly varying $(\alpha > 1, \mu)$ and $A_0 > 0, A_1 < 0$ constants. Put

$$X_k = A_0 Z_k + A_1 Z_{k-1}, \qquad k \ge 1, S_n = X_1 + \dots + X_n$$

• Tempted to consider $S^{(n)}(t) = n^{-1}S_{[nt]}$ as an element in $\mathbf{D}[0,1]$ and study the convergence in $\mathbf{M}_0(\mathbf{D}[0,1])$ of

$$c_n \mathbb{P}\{S^{(n)} \in \cdot\}.$$

• WARNING: loosing tightness. Why?

Moving Averages Loosing tightness

• By the **one big jump heuristic** you expect $S^{(n)}$ to be large because

$$X_k \approx A_0 Z_k$$
, and $X_{k+1} \approx A_1 Z_k$

• For the partial sum process S_n you expect

$$S_k \approx A_0 Z_k$$
, and $S_{k+1} \approx (A_0 + A_1) Z_k$,

so it takes two big jumps of opposite sign within a short period of time... loosing tightness in D[0, 1].

Moving Averages The Empirical Measure Level

- The problem with tightness can be resolved on the empirical measure level.
- We may consider

$$N_n = \sum_{k=1}^n \delta_{(\frac{k}{n}, n^{-1}X_k, n^{-1}X_{k-1})}.$$

• Then, the sequence $\mathbb{P}\{N_n \in \cdot\}$ is regularly varying:

$$c_n \mathbb{P}\{N_n \in \cdot\} \to m, \quad \text{in } \mathbf{M}_0(\mathbf{N}_p),$$

with

$$m(B) = \int_0^1 \int_{\mathbf{R}^d} I\{\delta_{(t,A_0z,0)} + \delta_{(t,0,A_1z)} \in B\} \mu(dz) dt.$$

3 The Quality of the Asymptotic Approximations

The Quality of Asymptotic Approximations

- The heavy-tailed asymptotics presented here are based on the heavy-tailed heuristics.
- One can anticipate that the approximations are good far out in the tail. How far?
- We will provide a small numerical study to illustrate the quality of the asymptotic approximations.

Asymptotic Approximations $\alpha = 2$

Let $\{Z_k\}$ be iid $\mathbb{P}\{Z > z\} = (1+z)^{-\alpha}$, z > 0. Put $S_n = Z_1 + \cdots + Z_n$. Approximate $\mathbb{P}\{S_n > b\}$ by $n\mathbb{P}\{Z > b\}$.

$\alpha = 2, n = 5$							
	$n\mathbb{P}\{Z > b\}$	$\mathbb{P}\{S_n > b\}$	RE				
b = 25	0.74e-2	1.05e-2	30%				
b = 100	4.90e-4	5.34e-4	8%				
b = 5000	1.999e-7	2.002e-7	0.16%				
$\alpha = 2, n = 20$							
	$n\mathbb{P}\{Z > b\}$	$\mathbb{P}\{S_n > b\}$	RE				
b = 400	1.24e-4	1.38e-4	10%				
b = 4000	1.249e-6	1.261e-6	1%				

Asymptotic Approximations $\alpha = 4$, $\alpha = 6$

Let $\{Z_k\}$ be iid $\mathbb{P}\{Z > z\} = (1+z)^{-\alpha}$, z > 0. Put $S_n = Z_1 + \cdots + Z_n$. Approximate $\mathbb{P}\{S_n > b\}$ by $n\mathbb{P}\{Z > b\}$.

Illustrations of the One Big Jump

Illustrations of the One Big Jump

Illustrations of the One Big Jump

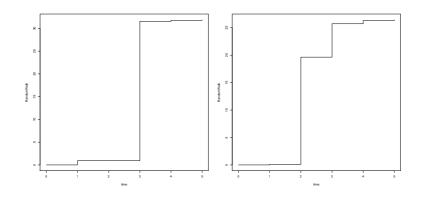


Figure 1: Trajectories of a random walk exceeding the level. $n = 5, b = 25, \alpha = 2$.

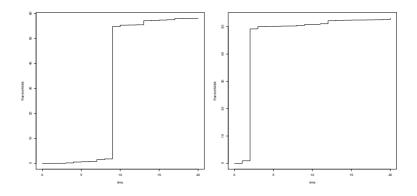


Figure 2: Trajectories of a random walk exceeding the level. $n = 20, b = 50, \alpha = 4.$

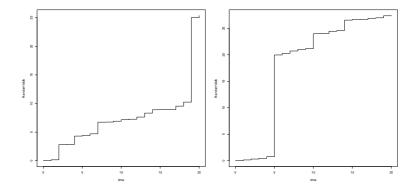


Figure 3: Trajectories of a random walk exceeding the level. $n=20, b=25, \alpha=4.$ $\mathbb{P}\{S_n>b\}=$ 1.65e-4

$\alpha = 4, n = 20$						
	$n\mathbb{P}\{Z > b\}$	$\mathbb{P}\{S_n > b\}$	RE			
b = 50	2.95e-6	4.90e-6	28%			
b = 200	1.23e-8	1.36e-8	10%			
b = 1000	1.99e-11	2.05e-11	3%			
$\alpha = 6, n = 20$						
	$n\mathbb{P}\{Z > b\}$	$\mathbb{P}\{S_n > b\}$	RE			
b = 25	6.47e-8	1.18e-7	45%			
b = 40	4.21e-9	6.15e-9	31%			
b = 100	1.88e-11	2.26e-11	16%			

References

- S. Resnick Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer, New York, 2006.
- [2] H. Hult and F. Lindskog Extremal behavior for regularly varying stochastic processes. Stochastic Process. Appl. 115, 249-274, 2005.
- [3] H. Hult, F. Lindskog, T. Mikosch, and G. Samorodnitsky Functional large deviations for multivariate regularly varying random walks Ann. Appl. Probab. 15(4), 2651-2680.
- [4] H. Hult and F. Lindskog Regular variation for measures on metric spaces. Publ. Inst. Math. 80, 121-140, 2006.
- [5] H. Hult and F. Lindskog Extremal behavior of stochastic integrals driven by regularly varying Lévy processes. Ann. Probab., 35, 309-339, 2007.
- [6] H. Hult and G Samorodnitsky Large deviations for point processes based on stationary sequences with heavy tails. J. Appl. Prob. 47, 1-40, 2010.