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1 Introduction to Regular Variation

Regularly Varying Sequences and Random Variables

• A sequencecn is called regularly varying at∞ with indexρ ∈ R if, for eachλ > 0,

lim
n→∞

c[λn]

cn
= λ

ρ
.

• A non-negative random variableZ is called regularly varying with indexα if the tail
P{Z > n} is regularly varying at∞ with index−α, α ≥ 0.

Regular Variation and Weak Convergence

• SupposeZ is regularly varying with indexα.

• For anyλ > 0, with cn = P{Z > n}−1 it follows that

cnP{Z ∈ n(λ,∞)} → λ
−α =: µα(λ,∞).

• This convergence can be formulated as a weak convergence:

cnP{n
−1

Z ∈ ·} w→ µα,

when restricted to any subset whereµα is finite. That is, of the form(ǫ,∞), ǫ > 0.
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2 Convergence in the spaceM0

The SpaceM0
1

• Let (S, d) be a complete separable metric space with its Borelσ-field.

• s0 is the origin inS.

• B0,r = {s ∈ S : d(s, s0) < r} (open ball of radiusr).

• C0 are the real-valued bounded continuous functions onS vanishing on some ball
B0,r , r > 0.

• M0 = {Borel measuresµ onS with µ(Bc
0,r) < ∞ for eachr > 0}.

• Convergence inM0: µn → µ in M0 if
∫

fdµn →

∫

fdµ, for all f ∈ C0.

Regularly Varying Measures

• A sequence of measuresνn in M0 is regularly varying with index−α if there exists
a sequence{cn} of positive numbers, which is regularly varying with indexα ≥ 0,
and a nonzeroµ ∈ M0 such that

cnνn → µ, in M0.

• A measureν ∈ M0 is called regularly varying if the sequence{ν(n ·)} is regularly
varying with index−α. In this case the limiting measureµ satisfies the scaling prop-
erty: for anyλ > 0 and Borel setB ⊂ S \ {s0}

µ(λB) = λ
−α

µ(B).

2.1 Regular Variation onR
d

Multivariate Regular Variation

• Let X be a random vector inRd.

• The distribution ofX is called multivariate regularly varying ifP{n−1X ∈ ·} is
a regularly varying measure: there exists a nonzeroµ ∈ M0(R

d) and a regularly
varying sequencecn with indexα ≥ 0 such that

cn P{n−1
X ∈ ·} → µ, in M0(R

d).

Multivariate Regular Variation Independent Components2

• Let Z = (Z1, . . . , Zd)
′ be a random vector inRd with iid regularly varying compo-

nents.

• Takecn = P{Z1 > n}−1.

• For any set of the formAi = {x : xi > a} it follows that

cn P{n−1
Z ∈ Ai} =

P{Z1 > an}

P{Z1 > n}
→ a

−α = µα(a,∞),

whereas for any set which is a subset of someAi,j = {x : xi > ǫ1, xj > ǫ2, i 6= j}
it follows that

cn P{n−1
Z ∈ Ai,j} ≤

P{Z1 > nǫ1}P{Z1 > nǫ2}

P{Z1 > n}
→ 0.

1The details are in [4]
2See e.g.[1]
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Multivariate Regular Variation Independent Components

• One can show thatP{n−1Z ∈ ·} is regularly varying with limiting measureµ which
is concentrated on the union of the coordinate axis.

• More precisely,

cnP{n
−1

Z ∈ ·} → µ, in M0(R
d),

with

µ(B) =

d
∑

k=1

∫

∞

0

I{zek ∈ B}µα(dz).

2.2 Regular Variation onD[0, 1]

Regular Variation on D[0, 1] A Heavy-Tailed Lévy Process3

• Let D[0, 1] be the space of càdlàg functions[0, 1] → R equipped with the Skorohod
J1-metric.

• Consider a Lévy processX with regularly varying Lévy measureν:

cnν(n,∞) → 1,

for a regularly varying sequencecn.

Regular Variation on D[0, 1] A Heavy-Tailed Lévy Process

• Then, the heavy tailed heuristics(one big jump + the heaviest tail wins)can be made
precise by showing thatP{n−1X ∈ ·} is regularly varying:

cnP{n
−1

X ∈ ·} → m, in M0(D[0, 1]),

wherem is supported on step functions with one step.

m(B) =

∫ 1

0

∫

∞

0

I{zI[τ,1](·) ∈ B}µα(dz)dτ,

whereB is any Borel subset ofD[0, 1] \ {0}.

Stochastic Integrals (c.f. [5])

• Consider a Lévy processX with regularly varying Lévy measureν (indexα).

• Let Y be an adapted process with lighter tails thanν:

E[ sup
t∈[0,1]

Y
α+ǫ
t ] < ∞, someǫ > 0.

• The stochastic integral process(Y ·X)t =
∫ t

0
YsdXs is regularly varying with index

α. In particular

cnP{n
−1(Y ·X) ∈ }̇ → m, in M0(D[0, 1]),

wherem is supported on step functions with one step.

m(B) = E
[

∫ ∫

I{YτzI[τ,1](·) ∈ B}µα(dz)dτ
]

,

whereB is any Borel subset ofD[0, 1] ⊂ {0}.

3See [2, 4]
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2.3 Large Deviations for Empirical Measures

Large Deviations for the Empirical Measure (c.f. [6])

• Let {Zk} be iid with a regularly varying distribution onRd with limiting measureµ
andα > 1.

• The empirical measure is

Nn =
n
∑

k=1

δn−1Zk
,

whereδz is a unit point mass atz.

• ConsiderNn as a random element taking values in the space ofNp of point measure
onR

d \ {0} equipped with the vague topology.

• Then, the sequenceP{Nn ∈ ·} is regularly varying:

cnP{Nn ∈ ·} → m, in M0(Np),

with m(B) =
∫

I{δz ∈ B}µ(dz).

Large Deviations for the Empirical Measure Keeping Track ofTime

• We may keep track of time in the sense that

Nn =
n
∑

k=1

δ( k

n
,n−1Zk)

.

• Then, the sequenceP{Nn ∈ ·} is regularly varying:

cnP{Nn ∈ ·} → m, in M0(Np),

with

m(B) =

∫ 1

0

∫

Rd

I{δ(t,z) ∈ B}µ(dz)dt.

Moving Averages

• MA(2) process: Let{Zk} be iid regularly varying (α > 1, µ) andA0 > 0, A1 < 0
constants. Put

Xk = A0Zk +A1Zk−1, k ≥ 1, Sn = X1 + · · ·+Xn.

• Tempted to considerS(n)(t) = n−1S[nt] as an element inD[0, 1] and study the
convergence inM0(D[0, 1]) of

cnP{S
(n) ∈ ·}.

• WARNING: loosing tightness. Why?

Moving Averages Loosing tightness

• By theone big jump heuristic you expectS(n) to be large because

Xk ≈ A0Zk, and Xk+1 ≈ A1Zk

• For the partial sum processSn you expect

Sk ≈ A0Zk, and Sk+1 ≈ (A0 +A1)Zk,

so it takes two big jumps of opposite sign within a short period of time. . . loosing
tightness inD[0, 1].
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Moving Averages The Empirical Measure Level

• The problem with tightness can be resolved on the empirical measure level.

• We may consider

Nn =
n
∑

k=1

δ( k

n
,n−1Xk,n

−1Xk−1)
.

• Then, the sequenceP{Nn ∈ ·} is regularly varying:

cnP{Nn ∈ ·} → m, in M0(Np),

with

m(B) =

∫ 1

0

∫

Rd

I{δ(t,A0z,0) + δ(t,0,A1z) ∈ B}µ(dz)dt.

3 The Quality of the Asymptotic Approximations

The Quality of Asymptotic Approximations

• The heavy-tailed asymptotics presented here are based on the heavy-tailed heuristics.

• One can anticipate that the approximations are good far out in the tail. How far?

• We will provide a small numerical study to illustrate the quality of the asymptotic
approximations.

Asymptotic Approximations α = 2
Let{Zk} be iidP{Z > z} = (1+z)−α, z > 0. PutSn = Z1+ · · ·+Zn. Approximate

P{Sn > b} by nP{Z > b}.

α = 2, n = 5

nP{Z > b} P{Sn > b} RE
b = 25 0.74e-2 1.05e-2 30%
b = 100 4.90e-4 5.34e-4 8%
b = 5000 1.999e-7 2.002e-7 0.16%

α = 2, n = 20

nP{Z > b} P{Sn > b} RE
b = 400 1.24e-4 1.38e-4 10%
b = 4000 1.249e-6 1.261e-6 1%

Asymptotic Approximations α = 4, α = 6
Let{Zk} be iidP{Z > z} = (1+z)−α, z > 0. PutSn = Z1+ · · ·+Zn. Approximate

P{Sn > b} by nP{Z > b}.

Illustrations of the One Big Jump

Illustrations of the One Big Jump

Illustrations of the One Big Jump
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Figure 1: Trajectories of a random walk exceeding the level.n = 5, b = 25, α = 2.
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Figure 2: Trajectories of a random walk exceeding the level.n = 20, b = 50, α = 4.
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Figure 3: Trajectories of a random walk exceeding the level.n = 20, b = 25, α = 4.
P{Sn > b} = 1.65e-4
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α = 4, n = 20

nP{Z > b} P{Sn > b} RE
b = 50 2.95e-6 4.90e-6 28%
b = 200 1.23e-8 1.36e-8 10%
b = 1000 1.99e-11 2.05e-11 3%

α = 6, n = 20

nP{Z > b} P{Sn > b} RE
b = 25 6.47e-8 1.18e-7 45%
b = 40 4.21e-9 6.15e-9 31%
b = 100 1.88e-11 2.26e-11 16%
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