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1 Introduction to Regular Variation
Regularly Varying Sequences and Random Variables

e A sequence, is called regularly varying ato with indexp € R if, for each\ > 0,

c n
lim 2 = )7,
n—oo  Cp

e A non-negative random variablé is called regularly varying with index if the tail
P{Z > n} is regularly varying ato with index—c«, a > 0.
Regular Variation and Weak Convergence
e Suppos€” is regularly varying with indexx.
e Forany\ > 0, with ¢,, = P{Z > n} ™' it follows that
enP{Z e n(A\,00)} = A7 =t pa (X, 00).

e This convergence can be formulated as a weak convergence:

enP{n™'Z €} i,

when restricted to any subset wherg is finite. That is, of the fornfe, o0), ¢ > 0.



2 Convergence in the spacd/l

The SpaceM,*
e Let (S, d) be a complete separable metric space with its Boriéld.

so Is the origin inS.

Bo,» = {s € S:d(s,s0) < r} (open ball of radius).

%o are the real-valued bounded continuous functionsSoranishing on some ball
BOJ-, r > 0.

M, = {Borel measureg on S with u(Bg ,.) < oo for eachr > 0}.

Convergence itMo: pn, — pin My if

/fdun — /fdp, forall f € %5.

Regularly Varying Measures

e A sequence of measures in My is regularly varying with index-« if there exists
a sequencécy, } of positive numbers, which is regularly varying with index> 0,
and a nonzer@ € M, such that

Cnln — W, IN M.
e A measurer € My is called regularly varying if the sequen¢e(n -)} is regularly

varying with index—c«. In this case the limiting measuresatisfies the scaling prop-
erty: forany\ > 0 and BorelseB C S\ {so}

H(AB) = A" u(B).

2.1 Regular Variation on R¢

Multivariate Regular Variation

e Let X be a random vector iR%.

e The distribution ofX is called multivariate regularly varying P{n"'X ¢ -} is
a regularly varying measure: there exists a nonzere Mo(R?) and a regularly
varying sequence,, with indexa > 0 such that

cnP{n'X € -} = p, in Mo (R?).

Multivariate Regular Variation Independent Components?

o LetZ = (Zi,...,Z4) be arandom vector iR? with iid regularly varying compo-
nents.

e Takec, = P{Z; >n}~".

e For any set of the forml; = {z : 2; > a} it follows that

_ P{Z1 > an _
enP{n"'Z € A} = ﬁ —a” " = pala,00),

whereas for any set which is a subset of sofng = {z : z; > €1,2; > €2,1 # j}

it follows that

]P{Zl > ne1}]P’{Zl > 77,62} N

0.
P{Zl > n}

enP{n'Z € Ay} <

The details are in [4]
2Seee.g.[1]



Multivariate Regular Variation Independent Components

e One can show tha@{n~'Z € -} is regularly varying with limiting measurg which
is concentrated on the union of the coordinate axis.

e More precisely,
enP{n'Z e -} = p, in Mo(R%),

with

w(B) = Z/OOO I{zex € B}ua(dz).

2.2 Regular Variation on D0, 1]
Regular Variation on D[0, 1] A Heavy-Tailed Lévy Process

e LetDJ[0, 1] be the space of cadlag functiofis 1] — R equipped with the Skorohod
Ji-metric.

e Consider a Lévy procesk with regularly varying Lévy measune
cnv(n,00) — 1,

for a regularly varying sequencs.

Regular Variation on DJ0, 1] A Heavy-Tailed Lévy Process

e Then, the heavy tailed heuristi@@ne big jump + the heaviest tail wins)an be made
precise by showing tha@&{n "' X € -} is regularly varying:

enP{n ' X €} =5 m, in My (DJ[0, 1]),

wherem is supported on step functions with one step.

1 o]
m(B) :/ / I{zI}; 1)(") € B}pa(dz)dr,
0 0
whereB is any Borel subset dD|[0, 1] \ {0}.

Stochastic Integrals (c.f. [5])
e Consider a Lévy procesk with regularly varying Lévy measune (index «).
e LetY be an adapted process with lighter tails than

E[ sup Y] < oo, somee > 0.
te[0,1]

e The stochastic integral proce@g - X); = fot Ysd X, is regularly varying with index
a. In particular

eP{n N (Y- X)e }—=m,  inMo(D[0,1]),
wherem is supported on step functions with one step.
m(B) = E[//[{YTzI[ﬂl](-) € B}uoz(dz)dT}7

whereB is any Borel subset dD[0, 1] C {0}.

3See 2, 4]



2.3 Large Deviations for Empirical Measures
Large Deviations for the Empirical Measure (c.f. [6])

e Let {Z:} be iid with a regularly varying distribution oR¢ with limiting measureu
anda > 1.

e The empirical measure is

n
Nn = E 5n*12k7
k=1

whered,, is a unit point mass at.

e ConsiderN,, as a random element taking values in the spad¥ obf point measure
onR%\ {0} equipped with the vague topology.

e Then, the sequend®{ N,, € -} is regularly varying:
cnP{Nn € -} - m, in Mo(N,),
with m(B) = [ I{5. € B}u(dz).

Large Deviations for the Empirical Measure Keeping Track of Time

e We may keep track of time in the sense that
Nn = Zé(fﬂflzk)'
k=1

e Then, the sequend®{N,, € -} is regularly varying:
cnP{N, € -} = m, in Mo (IN,,),
with

m(B) :/0 /Rd I{d@,-) € B}u(dz)dt.

Moving Averages

e MA(2) process: Lef{ Z;} be iid regularly varyingd¢ > 1, u) and A4y > 0,41 < 0
constants. Put

Xk:AOzk—’—Ale*h kZLSnle-‘r-i—Xn
e Tempted to conside§™ (t) = n~'Sy,, as an element iD(0, 1] and study the
convergence itV (D[0, 1]) of
cnP{S™ € }.

o WARNING: loosing tightness. Why?

Moving Averages Loosing tightness
o By theone big jump heuristic you expects™ to be large because
Xi =~ AoZy, and Xpi1 =~ A1Zk
e For the partial sum process, you expect
Sk~ AoZr, and Siki1 =~ (Ao + A1) Zk,

so it takes two big jumps of opposite sign within a short perd time . . loosing
tightness inD[0, 1].



Moving Averages The Empirical Measure Level
e The problem with tightness can be resolved on the empiriezlsure level.

e We may consider

3

N, = 1) .
n (En=1xpn=1X5_1)
k=1

e Then, the sequend®{N,, € -} is regularly varying:
cnP{Nn € -} - m, in Mo(N,),

with

1
m(B) = / /Rd I{d(+,402,0) + 0(t,0,4,2) € B}u(dz)dt.
0

3 The Quality of the Asymptotic Approximations

The Quality of Asymptotic Approximations
e The heavy-tailed asymptotics presented here are base@ tredvy-tailed heuristics.
e One can anticipate that the approximations are good famatiei tail. How far?

e We will provide a small numerical study to illustrate the hyaof the asymptotic
approximations.

Asymptotic Approximations o = 2
Let{Zy}beidP{Z > z} = (14+2)" %,z > 0. PutS, = Z1+- - -+ Z,. Approximate
P{S, > b} by nP{Z > b}.

a=2,n=5
nP{Z > b} | P{S, > b} RE
b=25 0.74e-2 1.05e-2 30%

b =100 4.90e-4 5.34e-4 8%
b = 5000 1.999e-7 2.002e-7 | 0.16%
a=2,n=20
nP{Z > b} | P{S, > b} RE
b =400 1.24e-4 1.38e-4 10%
b = 4000 1.249e-6 1.261e-6 1%

Asymptotic Approximations oo = 4, o = 6

Let{Zy}beiidP{Z > 2z} = (14+2)"%, 2z > 0. PutS, = Z1+- - -+ Z,. Approximate
P{S, > b} by nP{Z > b}.
lllustrations of the One Big Jump

lllustrations of the One Big Jump

lllustrations of the One Big Jump



Figure 1: Trajectories of a random walk exceeding the levek 5, = 25, a = 2.

Figure 2: Trajectories of a random walk exceeding the levek 20,b = 50, a = 4.

o

Figure 3: Trajectories of a random walk exceeding the level= 20,b = 25,a = 4.
P{S, > b} = 1.65e-4



a=4,n=20
nP{Z > b} | P{S, > b} RE
b=150 2.95e-6 4.90e-6 28%
b =200 1.23e-8 1.36e-8 10%
b = 1000 1.99e-11 2.05e-11 3%
a=6,n=20
nP{Z > b} | P{S, > b} RE
b=25 6.47¢e-8 1.18e-7 45%
b =40 4.21e-9 6.15e-9 31%
b =100 1.88e-11 2.26e-11 | 16%
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