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The Objective

Heavy-tailed asymptotics and simulation are used to

approximate the probability of extreme events,
gain understanding of the underlying mechanism that is most
likely to lead to extreme events. For example,

cumulative build-up,
shocks transferred through a system,
passage through bottleneck states,
etc. . .
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The Regular Variation Framework

We consider a regular variation framework where {Xn} is a sequence
of random variables, An a sequence of events, and the probabilities
{pn} where

pn = P{Xn ∈ An},

form a regularly varying sequence; for any λ > 0,

lim
n→∞

p[λn]

pn
= λ−α,

for some α ≥ 0 called the index of regular variation.
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The One Big Jump Heuristic

The One Big Jump Heuristic

Let {Zk} be independent and identically distributed (iid) random
variables.

Suppose P{Z1 > n} is regularly varying.

Then, for each fixed k ≥ 1,

P{Z1 + · · ·+ Zk > n} ∼ kP{Z1 > n}, as n → ∞.

Notation: an ∼ bn if an/bn → 1.
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The One Big Jump Heuristic

Proof

Suppose for simplicity that Z1 ≥ 0.

Lower bound (inclusion/exclusion):

P{Sk > n} ≥ P{∪n
k=1Zk > n} ≥ kP{Z1 > n} − k(k − 1)P{Z1 > n}2.

Upper bound: (k = 2), ǫ > 0 arbitrary,

P{S2 > n} = 2P{Z1 + Z2 > n,Z2 ≤ ǫn}
+ P{Z1 + Z2 > n,Z1 > ǫn,Z2 > ǫn}

≤ 2P{Z1 > (1 − ǫ)n} + P{Z1 > nǫ}2

∼ 2(1 − ǫ)−α
P{Z1 > n}.
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The One Big Jump Heuristic

The One Big Jump Heuristic
A General Version

Let {Zk} be independent and identically distributed (iid) random
variables.
Suppose P{Z1 > n} is regularly varying and put
Sn = Z1 + · · ·+ Zn.
Then, there is uniform convergence:

lim
n→∞

sup
x≥λn

∣
∣
∣
∣

P{Sn > x}
nP{Z1 > x} − 1

∣
∣
∣
∣
= 0,

for λn → ∞ sufficiently fast.1

Ex: (α > 2): λn = a
√

n log n, a >
√
α− 2,

(α = 2): λn/
√

n1+γ → ∞, γ > 0,
(α < 2): Sn/λn → 0, in probability.

1These conditions are called the Nagaev conditions. General conditions under
supexponentiality are given in [3].
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The Heaviest Tail Wins

The Heaviest Tail Wins

Let Y and Z be random variables. Suppose P{Z > n} is regularly
varying with index −α and P{Y > n} = o(P{Z > n}).
Then2

P{Z + Y > n} ∼ P{Z > n}.

2See [1].
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The Heaviest Tail Wins

Proof

Suppose for simplicity that Z and Y are non-negative. For arbitrary
ǫ ∈ (0, 1),

P{Z + Y > n} = P{Z + Y > n,Z > (1 − ǫ)n} + P{Z + Y > n,Z ≤ (1 − ǫ)n}
≤ P{Z > (1 − ǫ)n} + P{Y > ǫn}
= P{Z > (1 − ǫ)n} + o(P{Z > ǫn)})
∼ (1 − ǫ)−α

P{Z > n}.

The reverse inequality is trivial when Y is non-negative.
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Breiman’s Lemma

Breiman’s Lemma3

Let Y and Z be independent random variables with Y non-negative.
Suppose P{Z > n} be regularly varying with index −α and
E [Yα+ǫ] < ∞ for some ǫ > 0.
Then

P{YZ > n} ∼ E [Yα]P{Z > n}.

3see [2]
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Breiman’s Lemma

Proof

Suppose for simplicity that Y is bounded by m. Then, by conditioning
on Y ,

P{YZ > n} =

∫ m

0
P{Z > n/y}P{Y ∈ dy}

∼
∫ m

0
yα

P{Z > n}P{Y ∈ dy}

= E [Yα]P{Z > n}.
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Random Sums

Random Sums

Let {Zk} be iid with P{Z1 > n} regularly varying with index −α.

Let N be the random number of terms (N has sufficiently light
tails, e.x. exponential), independent of {Zk}.

Determine the asymptotic decay of P{SN > n}, where
SN =

∑N
k=1 Zk .
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Random Sums

Random Sums

Heuristic: Think of N as “not very large”. Then, SN =
∑N

k=1 Zk is
large, most likely because precisely one of the Zk ’s is large, so
expect

P{SN > n} ∼ const P{Z1 > n}.
What is the constant?
By conditioning on N:

P{SN > n} =

∞∑

k=1

P{N = k}P{Z1 + · · ·+ Zk > n}

∼
∞∑

k=1

P{N = k}kP{Z1 > n}

= E [N]P{Z1 > n}.
See e.g. [7] for more details.
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Infinitely Divisible Random Variables

Infinitely Divisible Laws

X has an infinitely divisible law if, for each n, there are iid random
variables Y1,n, . . . ,Yn,n such that

X d= Y1,n + · · ·+ Yn,n.

The Lévy-Itô decomposition states that X can be represented in
law as a sum of three independent parts

X d= µ+

N∑

k=1

Zk + small jumps + Gaussian.

where Zk ≥ 1 is distributed according to ν(·)/ν(1,∞), ν is the
Lévy measure, and N has a Poisson distribution with mean
ν(1,∞).
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Infinitely Divisible Random Variables

Infinitely Divisible Laws

Suppose ν(n,∞) is regularly varying with index −α, so
P{Z1 > n} is regularly varying with index −α.
Then

X d= µ+
N∑

k=1

Zk + small jumps
︸ ︷︷ ︸

light tails

+ Gaussian.
︸ ︷︷ ︸

light tails

The random sum
∑N

k=1 Zk satisfies

P

{ N∑

k=1

Zk > n
}

∼ E [N]P{Z1 > n} = ν(1,∞)
ν(n,∞)

ν(1,∞)
= ν(n,∞).

The heaviest tail wins argument implies that

P{X > n} ∼ ν(n,∞).

The reverse implication also holds, even under subexponentiality, see [4].
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Stochastic Integrals

Stochastic Integrals4

Consider a Lévy process X with regularly varying Lévy measure
ν (index α).

Let Y be an adapted process with lighter tails than ν:

E [ sup
t∈[0,1]

Yα+ǫ
t ] < ∞, some ǫ > 0.

Consider tail probabilities P{
∫ 1

0 YtdXt > n}

4This part is based on [5]
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Stochastic Integrals

Stochastic Integrals

Decomposing the Lévy process as

Xt
d=

Nt∑

k=1

∆Xτk + St
︸︷︷︸

small jumps

+ Wt
︸︷︷︸

Gaussian

,

the stochastic integral becomes

∫ 1

0
Yt dXt

d=

N1∑

k=1

Yτk∆Xτk +

∫ 1

0
Yt dSt

︸ ︷︷ ︸

light tails

+

∫ 1

0
Yt dWt

︸ ︷︷ ︸

light tails

,

the heaviest tail wins argument tells us that
∑Nt

k=1 Yτk∆Xτk is the
most important term (if it has heavy tails).
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Stochastic Integrals

Stochastic Integrals
Studying

∑Nt
k=1 Yτk ∆Xτk

Each term Yτk∆Xτk is a product of independent rv’s so
Breiman’s Lemma implies that each term satisfies

P{Yτk∆Xτk > n} ∼ E [Yα
τk
]P{∆Xτk > n}.

The terms Yτk∆Xτk , k = 1, 2, . . . are not independent, but the
one big jump heuristic tells us that, most likely, only one ∆Xτk

is large, so one expects that

P{
∫ 1

0
Yt dXt > n} ∼ P{

N1∑

k=1

Yτk∆Xτk > n} ∼ E [N1]P{Yτ∆Xτ > n}

∼ E [Yα
τ ]E [N1]P{∆Xτ > n} = E [Yα

τ ]ν(n,∞),

where τ is the time of the big jump.
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Linear Processes

Moving Average Processes

MA(2) process: Let {Zk} be iid regularly varying (α) and A0,A1

constants. Put

Xk = A0Zk + A1Zk−1, k ≥ 1.

The one big jump heuristic implies that

P{X1 > n} ∼ P{A0Z1 > n}+ P{A1Z0 > n} ∼ (Aα
0 + Aα

1 )P{Z1 > n}.
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Linear Processes

Linear Processes5

For the linear process

Xk =

∞∑

j=0

Aj Zk−j ,

with E [Zk ] = 0 if α > 1, it is necessary that the coefficients decay
sufficiently fast.
If

∑

|Aj |α−ǫ < ∞, for some ǫ > 0, α ≤ 2,
∑

|Aj |2 < ∞, α > 2,

then

P{Xk > n} ∼
∑

j

Aα
j I{Aj > 0}P{Z1 > n}.

5See [8] for details.
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Linear Processes

Moving Average Processes
Random Coefficients

If A0,A1 are random, non-negative, and independent of {Zk} with
E [Aα+ǫ

k ] < ∞, k = 0, 1, then Breiman’s Lemma together with
the one big jump heuristic implies that

Xk = A0Zk + A1Zk−1, k ≥ 1

satisfies

P{X1 > n} ∼ P{A0Z1 > n} + P{A1Z0 > n}
∼ (E [Aα

0 ] + E [Aα
1 ])P{Z1 > n}.
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Linear Processes

Linear Processes
Random Coefficients6

In the case of random (non-negative) coefficients {Aj} that are
(essentially) independent of {Zk} the conditions:
∑

EAα−ǫ
j < ∞, and

∑

EAα+ǫ
j < ∞, some ǫ > 0, α ∈ (0, 1) ∪ (1, 2),

E
(∑

Aα−ǫ
j

) α+ǫ

α−ǫ

< ∞, α = 1 or 2,

E
(∑

A2
j

)α+ǫ

2
< ∞, α > 2,

imply that

P{Xk > n} ∼
∑

j

E [Aα
j ]P{Z1 > n}.

6See [6] for details.
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For Further Reading I

S. Resnick
Heavy-Tail Phenomena: Probabilistic and Statistical Modeling.
Springer, New York, 2006.

L. Breiman
On some limit theorems related to the arcsin law.
Theory Probab. Appl. 10, 323-331, 1965.

D. Denisov, A.B. Dieker, and V. Shneer
Large deviations for random walks under subexponentiality: the
big-jump domain.
Ann. Probab. 36(5), 1946-1991, 2008.
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For Further Reading II

P. Embrechts, C. Goldie, and N. Veraverbeke
Subexponentiality and infinite divisibility.
Z. Wahrsch. Verw. Gebiete 49, 335-347, 1979.

H. Hult and F. Lindskog
Extremal behavior of stochastic integrals driven by regularly
varying Lévy processes.
Ann. Probab., 35, 309-339, 2007.

H. Hult and G Samorodnitsky
Tail probabilities for infinite series of regularly varying random
vectors.
Bernoulli 14(3),838-864, 2008
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For Further Reading III

C. Klüppelberg and T. Mikosch
Large deviations for heavy-tailed random sums with applications
to insurance and finance.
J. Appl. Probab. 37(2), 293-308, 1997.

T. Mikosch and G. Samorodnitsky
The supremum of a negative drift random walk with dependent
heavy-tailed steps.
Ann. Appl. Probab. 10, 1025-1064, 2000.
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