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Overview

Lecture 1 Heavy-Tailed Heuristics
m The One Big Jump Heuristics/The Heaviest Tail Wins/Breiman’s
Lemma
m Applying the Heavy-Tailed Heuristics: Lévy Processes/Stochastic
Integrals/Linear Processes

Lecture 2 Regular Variation — the Technical Framework

m Regular Variation and Weak Convergence
m Convergence in the space My
m The Quality of Heavy-Tailed Asymptotics

Lecture 3 Efficient Simulation of Heavy-Tailed Processes

m Introduction to Rare-Event Simulation
m Importance Sampling in a Heavy-Tailed Setting
m Markov Chain Monte Carlo in Rare-Event Simulation
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Lecture 1

The Heavy-Tailed Heuristics
m The One Big Jump Heuristic
m The Heaviest Tail Wins
m Breiman’s Lemma

Applying the Heavy-Tailed Heuristics
m Random Sums
m Infinitely Divisible Random Variables
m Stochastic Integrals
m Linear Processes
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Lecture 1

The Objective

Heavy-tailed asymptotics and simulation are used to
m approximate the probability of extreme events,

m gain understanding of the underlying mechanism that is most
likely to lead to extreme events. For example,
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Lecture 1

The Objective

Heavy-tailed asymptotics and simulation are used to
m approximate the probability of extreme events,

m gain understanding of the underlying mechanism that is most
likely to lead to extreme events. For example,
m cumulative build-up,
m shocks transferred through a system,
m passage through bottleneck states,
m etc...
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Lecture 1

The Regular Variation Framework

We consider a regular variation framework where {X,} is a sequence

of random variables, A, a sequence of events, and the probabilities
{pn} where

Pn = P{Xn S An},
form a regularly varying sequence; for any A > 0,

jim Pl _
n—oo  Pp

)\7(1

)

for some « > 0 called the index of regular variation.
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The Heavy-Tailed Heuristics
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The One Big Jump Heuristic
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The Heavy-Tailed Heuristics
m The One Big Jump Heuristic
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The Heavy-Tailed Heuristics
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The One Big Jump Heuristic

The One Big Jump Heuristic

m Let {Z} be independent and identically distributed (iid) random
variables.

m Suppose P{Z; > n} is regularly varying.
m Then, for each fixed k > 1,

P{Zy +---+Zc > n} ~kP{Zy >n}, asn— oo.

Notation: an ~ by if an/bn — 1.
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The Heavy-Tailed Heuristics
[e]e] Te]

The One Big Jump Heuristic

Proof

m Suppose for simplicity that Z, > 0.
m Lower bound (inclusion/exclusion):
P{Sk > n} > P{UL_,Z > n} > kP{Z; > n} —k(k — 1)P{Z; > n}>.
m Upper bound: (k = 2), € > 0 arbitrary,
P{S; > n} =2P{Z; + Z, > n,Z, < en}
+P{Z1+2Z, >n,Z; >en,Z; > en}

<2P{Zy > (1 —€)n} +P{Z; > ne}?
~2(1—-€)“P{Z; > n}.
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The Heavy-Tailed Heuristics
[eJele] ]

The One Big Jump Heuristic

The One Big Jump Heuristic

A General Version

m Let {Z} be independent and identically distributed (iid) random
variables.

m Suppose P{Z; > n} is regularly varying and put
Sh=Z1+ -+ Zn.

m Then, there is uniform convergence:

lim sup P{Sn > x}

—~— "L _1| =0,
n—ooy>y, |NP{Zy > x}

for Ay — oo sufficiently fast.
B Ex: (o > 2): \hy =ay/nlogn, a > va -2,
(@ =2): A\n/VNnHY = 00,7 >0,
(o < 2): Sp/ Ay — 0, in probability.
1These conditions are called the Nagaev conditions. General conditions under
supexponentiality are given in [3].
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The Heavy-Tailed Heuristics
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The Heaviest Tail Wins
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The Heavy-Tailed Heuristics

® The Heaviest Tail Wins
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The Heavy-Tailed Heuristics

oeo

The Heaviest Tail Wins

The Heaviest Tail Wins

Let Y and Z be random variables. Suppose P{Z > n} is regularly
varying with index —a. and P{Y > n} = o(P{Z > n}).
Then?

P{Z +Y >n} ~P{Z >n}.

2See [1].
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The Heavy-Tailed Heuristics

ooe

The Heaviest Tail Wins

Proof

Suppose for simplicity that Z and Y are non-negative. For arbitrary
e €(0,1),

P{Z+Y >n}=P{Z+Y>nZ>A—-e)n}+P{Z+Y >n,Z <(1-¢)n}
<P{Z > (1 —¢€)n} +P{Y >en}
=P{Z > (1 —-¢€)n} + o(P{Z > en)})
~(1-¢€)7°P{Z > n}.

The reverse inequality is trivial when Y is non-negative.
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The Heavy-Tailed Heuristics
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Breiman's Lemma
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H The Heavy-Tailed Heuristics

® Breiman's Lemma
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The Heavy-Tailed Heuristics

oeo

Breiman's Lemma

Breiman’s Lemma3

Let Y and Z be independent random variables with Y non-negative.
Suppose P{Z > n} be regularly varying with index —« and

E[Y *"¢] < oo for some € > 0.

Then

P{YZ > n} ~ E[Y“]P{Z > n}.

Ssee [2]
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The Heavy-Tailed Heuristics

ooe

Breiman's Lemma

Proof

Suppose for simplicity that Y is bounded by m. Then, by conditioning
ony,

P{YZ >n} = /m P{Z > n/y}P{Y edy}

- /myap{z > nIP{Y € dy}
0
— E[Y*P{Z > n}.
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Applying the Heavy-Tailed Heuristics
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Random Sums
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Applying the Heavy-Tailed Heuristics
m Random Sums
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Applying the Heavy-Tailed Heuristics
(o] 1o}

Random Sums

Random Sums

m Let {Z} beiid with P{Z; > n} regularly varying with index —a.
m Let N be the random number of terms (N has sufficiently light
tails, e.x. exponential), independent of {Z}.

m Determine the asymptotic decay of P{Sy > n}, where
N
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Applying the Heavy-Tailed Heuristics
(oe] )

Random Sums

Random Sums

m Heuristic: Think of N as “not very large”. Then, Sy = ZE:l Zy is
large, most likely because precisely one of the Z’s is large, so
expect

P{Sn > n} ~ const P{Z; > n}.

® What is the constant?
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Applying the Heavy-Tailed Heuristics
(oe] )

Random Sums

Random Sums

m Heuristic: Think of N as “not very large”. Then, Sy = ZE:l Zy is
large, most likely because precisely one of the Z’s is large, so
expect

P{Sn > n} ~ const P{Z; > n}.

m What is the constant?
m By conditioning on N:

P{Sy > n} = i]P’{N =k}P{Z; +---+2Z¢ >n}
k=1

~ ip{m — k}kP{Z; > n}
k=1

= Ei[N]]P’{Zl > n}.

See e.g. [7] for more details.
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Applying the Heavy-Tailed Heuristics
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Applying the Heavy-Tailed Heuristics

m Infinitely Divisible Random Variables
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Applying the Heavy-Tailed Heuristics

(o] le]

Infinitely Divisible Random Variables

Infinitely Divisible Laws

m X has an infinitely divisible law if, for each n, there are iid random
variables Y1, ..., Ynn such that

X =Yin++ Yoo

m The Lévy-Itd decomposition states that X can be represented in
law as a sum of three independent parts

N

X £+ Z+ smalljumps + Gaussian.
k=1

where Z, > 1 is distributed according to v(-)/v(1, o), v is the
Lévy measure, and N has a Poisson distribution with mean
v(1, 00).
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Applying the Heavy-Tailed Heuristics

o]e] )

Infinitely Divisible Random Variables

Infinitely Divisible Laws

m Suppose v(n, o) is regularly varying with index —«, so
P{Z, > n} is regularly varying with index —a.
m Then
N
o . .
X £+ Z+ smalljumps + Gaussian,
k=1 light tails light tails

m The random sum S°}_, Z, satisfies

p{ > 2> 0} ~ ENIB{Z1 > n) = 1(1,00) A0 — (. o).

~— | —

v(1,00
m The heaviest tail wins argument implies that
P{X > n} ~ v(n,o0).

The reverse implication also holds, even under subexponentiality, see {4].
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Applying the Heavy-Tailed Heuristics
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Stochastic Integrals
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Applying the Heavy-Tailed Heuristics

m Stochastic Integrals
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Applying the Heavy-Tailed Heuristics

o] lele)

Stochastic Integrals

Stochastic Integrals®

m Consider a Lévy process X with regularly varying Lévy measure
v (index ).
m Let Y be an adapted process with lighter tails than v:

E[sup Y **] < oo, some ¢ > 0.
te[0,1]

m Consider tail probabilities P{fol YdX; > n}

4This part is based on [5]
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Applying the Heavy-Tailed Heuristics

ooeo

Stochastic Integrals

Stochastic Integrals

Decomposing the Lévy process as

t
LY DX+ S o+ W,

small jumps Gaussian

the stochastic integral becomes

1 1
/Ytdxt ZY DX, +/ YtdSt+/ YedW,
0 0

—_— Y
light tails light tails

the heaviest tail wins argument tells us that ZE‘:l Y, AX,, isthe
most important term (if it has heavy tails).
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Applying the Heavy-Tailed Heuristics

ocooe
Stochastic Integrals

Stochastic Integrals
Studying 3R, Yo, AXr,

m Each term Y, AX,, is a product of independent rv’s so
Breiman’s Lemma implies that each term satisfies

P{Y  AX;, >n} ~ E[YS]P{AX, > n}.

m Theterms Y, AX, ,k =1,2,... are not independent, but the
one big jump heuristic tells us that, most likely, only one AX,
is large, so one expects that

P{/l YdX; > n} ~ IP{ZI: Y, AX, >n} ~E[NJP{Y,AX, > n}
0 k=1
~ EIY2IEINJP{AX, > n} = E[Y]u(n, o),

where T is the time of the big jump.
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Applying the Heavy-Tailed Heuristics

Linear Processes
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Applying the Heavy-Tailed Heuristics

m Linear Processes
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Applying the Heavy-Tailed Heuristics

Linear Processes

Moving Average Processes

m MA(2) process: Let {Z,} be iid regularly varying («) and Ag, Az
constants. Put

Xk = AoZx + A1Zy_1, k>1.
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Applying the Heavy-Tailed Heuristics
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Linear Processes

Moving Average Processes

m MA(2) process: Let {Z,} be iid regularly varying («) and Ag, Az
constants. Put

Xk = AoZx + A1Zy_1, k>1.

m The one big jump heuristic implies that

P{X; > n} ~ P{AoZ; > n} + P{A1Zp > n} ~ (A§ + AT)P{Z; > n}.
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Applying the Heavy-Tailed Heuristics

Linear Processes

Linear Processes®

m For the linear process
o0
Xe = > AZc,
j=0

with E[Zx] = 0 if o > 1, it is necessary that the coefficients decay
sufficiently fast.
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Applying the Heavy-Tailed Heuristics

Linear Processes

Linear Processes®

m For the linear process
o0
Xe = > AZc,
j=0

with E[Zx] = 0 if o > 1, it is necessary that the coefficients decay
sufficiently fast.
m If

Z |Aj|*7¢ < oo, forsomee>0, «a<2,
SIAP <00, a>2
then

P{Xc > n} ~ Y A“I{A] > 0}P{Z; > n}.
j
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Applying the Heavy-Tailed Heuristics
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Linear Processes

Moving Average Processes

Random Coefficients

m If Ag, A; are random, non-negative, and independent of {Z,} with
E[A; 7] < 0o, k = 0,1, then Breiman’s Lemma together with
the one big jump heuristic implies that

Xk = AoZk + A1Zy 1, k>1
satisfies

P{X1 > n} ~ P{AoZ; > n} + P{A1Zp > n}
~ (E[AG] + E[A{])P{Z1 > n}.
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Applying the Heavy-Tailed Heuristics

Linear Processes

Linear Processes

Random Coefficients®

m In the case of random (non-negative) coefficients {A;} that are
(essentially) independent of {Z,} the conditions:

Z EA" ™ < oo, and ZEA}"*E < o0, some e >0, a € (0,1)U(L,2),
a+e
E(ZA;H) oo, a=1lor2,

ate

E(ZAJ?) 7 o0, a>2,

imply that

P{Xc > n} ~ Y E[A"]P{Z; > n}.
j

6See [6] for details.
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