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Introduction to Regular Variation

Regularly Varying Sequences and Random Variables

m A sequence ¢, is called regularly varying at oo with index p € R
if, for each A > 0,

. Cpan]
lim — =
n— o0 Cn

AP,

m A non-negative random variable Z is called regularly varying with
index « if the tail P{Z > n} is regularly varying at co with index
—a, o > 0.

Henrik Hult KTH Royal Institute of Technology

Asymptotics and Simulation of Heavy-Tailed Processes



Introduction to Regular Variation

Regular Variation and Weak Convergence

m Suppose Z is regularly varying with index «.
m For any \ > 0, with ¢, = P{Z > n}~1 it follows that

chP{Z e n(A,00)} = A7% = pa(A, 00).
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Introduction to Regular Variation

Regular Variation and Weak Convergence

m Suppose Z is regularly varying with index «.
m For any \ > 0, with ¢, = P{Z > n}~1 it follows that

chP{Z e n(A,00)} = A7% = pa(A, 00).

m This convergence can be formulated as a weak convergence:
chP{n71Z € 3 % pg,

when restricted to any subset where 1, is finite. That is, of the
form (e, 00), € > 0.
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Convergence in the space Mg

The Space Mgt

m Let (S, d) be a complete separable metric space with its Borel
o-field.

B Sg is the origin in S.
B By, ={seS:d(s,so) <r} (open ball of radius r).

B % are the real-valued bounded continuous functions on S
vanishing on some ball By, r > 0.

® Mo = {Borel measures . on S with u(Bg ;) < oc for each r > 0}.

1The details are in [4]
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Convergence in the space Mg

The Space Mgt

m Let (S, d) be a complete separable metric space with its Borel
o-field.

B Sg is the origin in S.
B By, ={seS:d(s,so) <r} (open ball of radius r).

B % are the real-valued bounded continuous functions on S
vanishing on some ball By, r > 0.

® Mo = {Borel measures . on S with u(Bg ;) < oc for each r > 0}.
m Convergence in Mg: pun — w1 in Mg if

/fdun — /fdu, forall f € %.

1The details are in [4]
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Convergence in the space Mg

Regularly Varying Measures

m A sequence of measures v, in Mg is regularly varying with index
—a if there exists a sequence {c,} of positive numbers, which is
regularly varying with index « > 0, and a nonzero p € Mg such
that

Cnln — W, N Mg.
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Convergence in the space Mg

Regularly Varying Measures

m A sequence of measures v, in Mg is regularly varying with index
—a if there exists a sequence {c,} of positive numbers, which is
regularly varying with index « > 0, and a nonzero p € Mg such
that

Cnln — W, N Mg.

m A measure v € My is called regularly varying if the sequence
{v(n-)} is regularly varying with index —a. In this case the
limiting measure p satisfies the scaling property: for any A > 0
and Borel setB € S\ {so}

1(AB) = A" u(B).
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Convergence in the space Mg
[ Jolele)

Regular Variation on Rrd

Outline

Convergence in the space Mg
m Regular Variation on R¢
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Convergence in the space Mg
o] le]e)

Regular Variation on Rrd

Multivariate Regular Variation

m Let X be a random vector in RY.

m The distribution of X is called multivariate regularly varying if
P{n=1X € -} is a regularly varying measure: there exists a
nonzero p € Mo(RY) and a regularly varying sequence c,, with
index « > 0 such that

chP{n"X € .} —p, in Mo(R?).
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Convergence in the space Mg
OOoeo

Regular Variation on Rrd

Multivariate Regular Variation

Independent Components?

mLetZ =(Z,,...,2Z4) be arandom vector in RY with iid regularly
varying components.
m Take cp = P{Z; > n} L.
m For any set of the form A; = {x : x; > a} it follows that
P{Z, > an} o

Cn ]P’{n_lZ € A|} = m — a = /la(a,OO),

whereas for any set which is a subset of some
Aij = {X:Xi >e1,X > e,i #]} it follows that

P{Z1 > ney }P{Z; > ney} R

0.
IP{Z]_ > n}

cnP{n'Z e A} <

2See e.g.[1]
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Convergence in the space Mg
oooe

Regular Variation on Rrd

Multivariate Regular Variation

Independent Components

m One can show that P{n=1Z ¢ .} is regularly varying with limiting
measure p which is concentrated on the union of the coordinate
axis.

m More precisely,
cP{n~tz € .} = p, in Mo(RY),

with

d e e]
w(B) = 2/0 I{zex € B}jua(dz).
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Convergence in the space Mg

[ Jolele)

Regular Variation on D[0, 1]

Outline

Convergence in the space Mg

m Regular Variation on D[0, 1]
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Convergence in the space Mg

o] le]e)

Regular Variation on D[0, 1]

Regular Variation on D|0, 1]

A Heavy-Tailed Lévy Process®

m Let D[O, 1] be the space of cadlag functions [0,1] — R equipped
with the Skorohod J;-metric.

3See [2, 4]
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Convergence in the space Mg

o] le]e)

Regular Variation on D[0, 1]

Regular Variation on D|0, 1]

A Heavy-Tailed Lévy Process®

m Let D[O, 1] be the space of cadlag functions [0,1] — R equipped
with the Skorohod J;-metric.

m Consider a Lévy process X with regularly varying Lévy measure
v

chv(n,00) — 1,

for a regularly varying sequence c.

3See [2, 4]

Henrik Hult KTH Royal Institute of Technology

Asymptotics and Simulation of Heavy-Tailed Processes



Convergence in the space Mg

oOoeo

Regular Variation on D[0, 1]

Regular Variation on D|0, 1]

A Heavy-Tailed Lévy Process

m Then, the heavy tailed heuristics (one big jump + the heaviest
tail wins) can be made precise by showing that P{n=1X € -} is
regularly varying:

cP{n~ X € -} = m, in Mo(DI0, 1]),
where m is supported on step functions with one step.
1 0o
m(B) = / / {2l 1() € Blua(dz)dr,
0 Jo

where B is any Borel subset of D[0, 1] \ {0}.
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Convergence in the space Mg

oooe

Regular Variation on D[0, 1]

Stochastic Integrals (c.f. [5])

m Consider a Lévy process X with regularly varying Lévy measure
v (index «).
m Let Y be an adapted process with lighter tails than v:

E[sup Y. "] < oo, some € > 0.
te[0,1]

B The stochastic integral process (Y - X); = fot YsdXs is regularly
varying with index «. In particular

cP{nY(Y -X) e } -»m, in Mo(D[0, 1]),
where m is supported on step functions with one step.
m(B) = E{//I{YTZI[TJ](-) € B}ua(dz)df},

where B is any Borel subset of D[0, 1] C {0}.
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Convergence in the space Mg

[ JoleJe]ele]
Large Deviations for Empirical Measures

Outline

Convergence in the space Mg

m Large Deviations for Empirical Measures
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Convergence in the space Mg

O®0000
Large Deviations for Empirical Measures

Large Deviations for the Empirical Measure (c.f. [6])

m Let {Z} be iid with a regularly varying distribution on RY with
limiting measure p and « > 1.
m The empirical measure is

n
Nn - Z (Sn—lzk 5
k=1

where ¢, is a unit point mass at z.
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Convergence in the space Mg

O®0000
Large Deviations for Empirical Measures

Large Deviations for the Empirical Measure (c.f. [6])

m Let {Z} be iid with a regularly varying distribution on RY with
limiting measure p and « > 1.
m The empirical measure is

n
Nn - Z (Sn—lzk 5
k=1

where ¢, is a unit point mass at z.

m Consider N, as a random element taking values in the space of
Np of point measure on R? \ {0} equipped with the vague
topology.
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Convergence in the space Mg

O®0000

Large Deviations for Empirical Measures

Large Deviations for the Empirical Measure (c.f. [6])

m Let {Z} be iid with a regularly varying distribution on RY with
limiting measure p and « > 1.
m The empirical measure is

n
Nn - Z (Sn—lzk 5
k=1

where ¢, is a unit point mass at z.
m Consider N, as a random element taking values in the space of
Np of point measure on R? \ {0} equipped with the vague

topology.
m Then, the sequence P{Ny € -} is regularly varying:
chP{Nn € -} - m, in Mo(Np),
with m(B) = [1{d, € B}u(dz).
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Convergence in the space Mg

00@000
Large Deviations for Empirical Measures

Large Deviations for the Empirical Measure

Keeping Track of Time

m We may keep track of time in the sense that

n
Nn = Z 5(%7n_1zk)'
k=1

m Then, the sequence P{Ny € -} is regularly varying:
cnP{Nn € -} = m, in Mo(Np),

with

m(B) = /0 /Rd {0t,2) € B}u(dz)dt.
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Convergence in the space Mg

000e00
Large Deviations for Empirical Measures

Moving Averages

m MA(2) process: Let {Z\} be iid regularly varying (o > 1, ) and
Ag > 0,A; < 0 constants. Put

Xk:AOZk_FAleflv kzlvsnle++Xn
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Convergence in the space Mg

000e00
Large Deviations for Empirical Measures

Moving Averages

m MA(2) process: Let {Z\} be iid regularly varying (o > 1, ) and
Ag > 0,A; < 0 constants. Put

Xk:AOZk_FAleflv kzlvsnle++Xn

m Tempted to consider S("(t) = n~1Sy, as an element in D[0, 1]
and study the convergence in My(D[0, 1]) of

cnP{S™M e 1.
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Convergence in the space Mg

000e00
Large Deviations for Empirical Measures

Moving Averages

m MA(2) process: Let {Z\} be iid regularly varying (o > 1, ) and
Ag > 0,A; < 0 constants. Put

Xk:AOZk_FAleflv kzlvsnle++Xn

m Tempted to consider S("(t) = n~1Sy, as an element in D[0, 1]
and study the convergence in My(D[0, 1]) of

cnP{S™M e 1.

m WARNING: loosing tightness. Why?
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Convergence in the space Mg

0000@0

Large Deviations for Empirical Measures

Moving Averages

Loosing tightness

m By the one big jump heuristic you expect S(™ to be large
because

Xk ~ AgZk, and Xk+1 ~ A1Zx
m For the partial sum process Sy you expect
Sk ~ ApZx, and Sy~ (Ao + Al)Zk,

so it takes two big jumps of opposite sign within a short period of
time. . . loosing tightness in D[O0, 1].
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Convergence in the space Mg

O0000e

Large Deviations for Empirical Measures

Moving Averages

The Empirical Measure Level

m The problem with tightness can be resolved on the empirical
measure level.

m We may consider

n

Nn = Z 5(%7n_1xk,n_lxk—1)'
k=1

m Then, the sequence P{N, € -} is regularly varying:
cnP{Nn € -} - m, in Mo(Np),
with

1
m@) = [ [ 10eneo +dcons € Blu(d)at
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The Quality of the Asymptotic Approximations

The Quality of Asymptotic Approximations

m The heavy-tailed asymptotics presented here are based on the
heavy-tailed heuristics.

m One can anticipate that the approximations are good far out in
the tail. How far?

m We will provide a small numerical study to illustrate the quality of
the asymptotic approximations.
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The Quality of the Asymptotic Approximations

Asymptotic Approximations

a=2

Let {Z} beidP{Z >z} =(1+2z)"*z>0.PutS,=2Z;+---+ Z,.
Approximate P{S, > b} by nP{Z > b}.

a=2,n=5
nP{Z > b} | P{S, > b} RE
b=25 0.74e-2 1.05e-2 30%
b =100 4.90e-4 5.34e-4 8%
b =5000 | 1.999e-7 2.002e-7 | 0.16%
a=2,n=20
nP{Z > b} | P{S, > b} RE
b =400 1.24e-4 1.38e-4 10%
b =4000 | 1.249e-6 1.261e-6 1%
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Asymptotic Approximations

a=4,a=6

The Quality of the Asymptotic Approximations

Let {Z} beidP{Z >z} =(1+2z)"*z>0.PutS,=2Z; + -+ Z,.
Approximate P{S, > b} by nP{Z > b}.

a=4,n=20
nP{Z >b} | P{S, >b} | RE
b =50 2.95e-6 4.90e-6 | 28%
b =200 1.23e-8 1.36e-8 10%
b =1000 | 1.99e-11 2.05e-11 3%
a=6,n=20
nP{Z > b} | P{S, >b} | RE
b=25 6.47e-8 1.18e-7 45%
b=40 4.21e-9 6.15e-9 31%
b =100 1.88e-11 2.26e-11 | 16%
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The Quality of the Asymptotic Approximations

lllustrations of the One Big Jump

Randomwalk

Figure: Trajectories of a random walk exceeding the level.
n=5b=25a=2.
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The Quality of the Asymptotic Approximations

lllustrations of the One Big Jump

Randomwalk

Figure: Trajectories of a random walk exceeding the level.
n=20,b=50a=4.
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The Quality of the Asymptotic Approximations

lllustrations of the One Big Jump

Randomwalk
x

Figure: Trajectories of a random walk exceeding the level.
n=20,b=25a«a=4.P{Sy > b} =1.65e-4
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