Asymptotics and Simulation of Heavy-Tailed Processes

Henrik Hult

Department of Mathematics KTH Royal Institute of Technology Stockholm, Sweden

Workshop on Heavy-tailed Distributions and Extreme Value Theory ISI Kolkata January 14-17, 2013

Henrik Hult

- 2 Convergence in the space **M**₀
 - Regular Variation on R^d
 - Regular Variation on D[0, 1]
 - Large Deviations for Empirical Measures
- 3 The Quality of the Asymptotic Approximations

Henrik Hult

Regularly Varying Sequences and Random Variables

A sequence c_n is called regularly varying at ∞ with index $\rho \in \mathbf{R}$ if, for each $\lambda > 0$,

$$\lim_{n\to\infty}\frac{c_{[\lambda n]}}{c_n}=\lambda^{\rho}.$$

A non-negative random variable Z is called regularly varying with index α if the tail $\mathbb{P}\{Z > n\}$ is regularly varying at ∞ with index $-\alpha$, $\alpha \ge 0$.

イロン イ押ン イヨン イヨ

KTH Royal Institute of Technology

Regular Variation and Weak Convergence

 Suppose Z is regularly varying with index α.
 For any λ > 0, with c_n = P{Z > n}⁻¹ it follows that c_nP{Z ∈ n(λ, ∞)} → λ^{-α} =: μ_α(λ, ∞).

$$c_n \mathbb{P}\{n^{-1}Z \in \cdot\} \xrightarrow{w} \mu_{\alpha},$$

when restricted to any subset where μ_{α} is finite. That is, of the form $(\epsilon, \infty), \epsilon > 0$.

Henrik Hult

KTH Royal Institute of Technology

Regular Variation and Weak Convergence

Suppose Z is regularly varying with index α.
 For any λ > 0, with c_n = P{Z > n}⁻¹ it follows that

$$c_n \mathbb{P}\{Z \in n(\lambda, \infty)\} \to \lambda^{-\alpha} =: \mu_{\alpha}(\lambda, \infty).$$

This convergence can be formulated as a weak convergence:

$$c_n \mathbb{P}\{n^{-1}Z \in \cdot\} \xrightarrow{w} \mu_{\alpha},$$

when restricted to any subset where μ_{α} is finite. That is, of the form (ϵ, ∞) , $\epsilon > 0$.

Image: Image:

Henrik Hult

The Space M₀¹

- Let (S, d) be a complete separable metric space with its Borel σ-field.
- s₀ is the origin in S.
- $B_{0,r} = \{s \in S : d(s, s_0) < r\}$ (open ball of radius *r*).

■ C_0 are the real-valued bounded continuous functions on **S** vanishing on some ball $B_{0,r}$, r > 0.

- $\mathbf{M}_0 = \{ \text{Borel measures } \mu \text{ on } \mathbf{S} \text{ with } \mu(B_{0,r}^c) < \infty \text{ for each } r > 0 \}.$
- Convergence in $\mathbf{M}_0: \mu_n \rightarrow \mu$ in \mathbf{M}_0 if

$$\int \mathit{fd} \mu_n o \int \mathit{fd} \mu, \qquad ext{for all } \mathit{f} \in \mathscr{C}_0$$

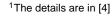


Image: Image:

Asymptotics and Simulation of Heavy-Tailed Processes

The Space M₀¹

- Let (S, d) be a complete separable metric space with its Borel σ-field.
- s₀ is the origin in S.
- $B_{0,r} = \{s \in S : d(s, s_0) < r\}$ (open ball of radius *r*).
- C_0 are the real-valued bounded continuous functions on **S** vanishing on some ball $B_{0,r}$, r > 0.
- $\mathbf{M}_0 = \{ \text{Borel measures } \mu \text{ on } \mathbf{S} \text{ with } \mu(\mathbf{B}_{0,r}^c) < \infty \text{ for each } r > 0 \}.$
- **Convergence** in \mathbf{M}_0 : $\mu_n \rightarrow \mu$ in \mathbf{M}_0 if

$$\int f d\mu_n \to \int f d\mu$$
, for all $f \in \mathscr{C}_0$.

¹The details are in [4]

٢

KTH Royal Institute of Technology

Image: Image:

Asymptotics and Simulation of Heavy-Tailed Processes

Regularly Varying Measures

A sequence of measures ν_n in \mathbf{M}_0 is regularly varying with index $-\alpha$ if there exists a sequence $\{c_n\}$ of positive numbers, which is regularly varying with index $\alpha \ge 0$, and a nonzero $\mu \in \mathbf{M}_0$ such that

$$c_n \nu_n \rightarrow \mu$$
, in **M**₀.

• A measure $\nu \in \mathbf{M}_0$ is called regularly varying if the sequence $\{\nu(n\cdot)\}$ is regularly varying with index $-\alpha$. In this case the limiting measure μ satisfies the scaling property: for any $\lambda > 0$ and Borel set $B \subset \mathbf{S} \setminus \{s_0\}$

$$\mu(\lambda B) = \lambda^{-\alpha} \mu(B).$$

KTH Royal Institute of Technology

Regularly Varying Measures

A sequence of measures ν_n in \mathbf{M}_0 is regularly varying with index $-\alpha$ if there exists a sequence $\{c_n\}$ of positive numbers, which is regularly varying with index $\alpha \ge 0$, and a nonzero $\mu \in \mathbf{M}_0$ such that

$$c_n \nu_n \rightarrow \mu$$
, in **M**₀.

• A measure $\nu \in \mathbf{M}_0$ is called regularly varying if the sequence $\{\nu(n \cdot)\}$ is regularly varying with index $-\alpha$. In this case the limiting measure μ satisfies the scaling property: for any $\lambda > 0$ and Borel set $B \subset \mathbf{S} \setminus \{s_0\}$

$$\mu(\lambda B) = \lambda^{-\alpha} \mu(B).$$

Regular Variation on R^d

- 2 Convergence in the space M₀
 Regular Variation on R^d
 - Regular Variation on D[0, 1]
 - Large Deviations for Empirical Measures
- 3 The Quality of the Asymptotic Approximations

Henrik Hult

Regular Variation on R^d

Multivariate Regular Variation

- Let X be a random vector in \mathbf{R}^d .
- The distribution of *X* is called multivariate regularly varying if $\mathbb{P}\{n^{-1}X \in \cdot\}$ is a regularly varying measure: there exists a nonzero $\mu \in \mathbf{M}_0(\mathbf{R}^d)$ and a regularly varying sequence c_n with index $\alpha \ge 0$ such that

$$c_n \mathbb{P}\{n^{-1}X \in \cdot\} \to \mu, \quad \text{in } \mathbf{M}_0(\mathbf{R}^d).$$

KTH Royal Institute of Technology

Henrik Hult

Regular Variation on R^d

Multivariate Regular Variation

Independent Components²

Let $Z = (Z_1, ..., Z_d)'$ be a random vector in \mathbf{R}^d with iid regularly varying components.

Take
$$c_n = \mathbb{P}\{Z_1 > n\}^{-1}$$

For any set of the form $A_i = \{x : x_i > a\}$ it follows that

$$c_n \mathbb{P}\{n^{-1}Z \in A_i\} = \frac{\mathbb{P}\{Z_1 > an\}}{\mathbb{P}\{Z_1 > n\}} \to a^{-\alpha} = \mu_{\alpha}(a, \infty),$$

whereas for any set which is a subset of some $A_{i,j} = \{x : x_i > \epsilon_1, x_j > \epsilon_2, i \neq j\}$ it follows that

$$c_n \mathbb{P}\{n^{-1}Z \in A_{i,j}\} \leq \frac{\mathbb{P}\{Z_1 > n\epsilon_1\}\mathbb{P}\{Z_1 > n\epsilon_2\}}{\mathbb{P}\{Z_1 > n\}} \to 0.$$

٢

²See e.g.[1]

Henrik Hult

KTH Royal Institute of Technology

A B > A B > A
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Regular Variation on \mathbf{R}^d

Multivariate Regular Variation

Independent Components

- One can show that $\mathbb{P}\{n^{-1}Z \in \cdot\}$ is regularly varying with limiting measure μ which is concentrated on the union of the coordinate axis.
- More precisely,

$$c_n \mathbb{P}\{n^{-1}Z \in \cdot\} \to \mu, \quad \text{in } \mathbf{M}_0(\mathbf{R}^d),$$

with

$$\mu(B) = \sum_{k=1}^d \int_0^\infty I\{ze_k \in B\} \mu_lpha(dz).$$

KTH Royal Institute of Technology

Henrik Hult

Introd		to Regular	
--------	--	------------	--

Regular Variation on D[0, 1]

Convergence in the space M₀
 Regular Variation on R^d
 Regular Variation on D[0, 1]

Large Deviations for Empirical Measures

3 The Quality of the Asymptotic Approximations

Henrik Hult

Introduction to Regular Variation

Convergence in the space M_0

Regular Variation on D[0, 1]

Regular Variation on D[0, 1] A Heavy-Tailed Lévy Process³

- Let D[0, 1] be the space of càdlàg functions [0, 1] → R equipped with the Skorohod J₁-metric.
- Consider a Lévy process X with regularly varying Lévy measure v:

 $c_n \nu(n,\infty) \to 1,$

for a regularly varying sequence c_n .

³See [2, 4]

Henrik Hult

Asymptotics and Simulation of Heavy-Tailed Processes

> = = 990

イロト イポト イヨト イヨ

Regular Variation on D[0, 1]

Regular Variation on **D**[0, 1] A Heavy-Tailed Lévy Process³

- Let D[0, 1] be the space of càdlàg functions [0, 1] → R equipped with the Skorohod J₁-metric.
- Consider a Lévy process X with regularly varying Lévy measure v:

$$c_n \nu(n,\infty) \to 1$$
,

for a regularly varying sequence c_n .

KTH Royal Institute of Technology

Henrik Hult

Introduction to Regular Variation

Convergence in the space M_0

Regular Variation on D[0, 1]

Regular Variation on D[0, 1] A Heavy-Tailed Lévy Process

Then, the heavy tailed heuristics (one big jump + the heaviest tail wins) can be made precise by showing that $\mathbb{P}\{n^{-1}X \in \cdot\}$ is regularly varying:

$$c_n \mathbb{P}\{n^{-1}X \in \cdot\} \to m,$$
 in $\mathbf{M}_0(\mathbf{D}[0,1]),$

where *m* is supported on step functions with one step.

$$m(B) = \int_0^1 \int_0^\infty I\{zI_{[\tau,1]}(\cdot) \in B\} \mu_{lpha}(dz) d au,$$

where *B* is any Borel subset of $D[0, 1] \setminus \{0\}$.

KTH Royal Institute of Technology

Henrik Hult

Regular Variation on D[0, 1]

Stochastic Integrals (c.f. [5])

- Consider a Lévy process X with regularly varying Lévy measure ν (index α).
- Let Y be an adapted process with lighter tails than ν :

$${\it E}[\sup_{t\in [0,1]} {\sf Y}^{lpha+\epsilon}_t]<\infty, \qquad {
m some}\;\epsilon>0.$$

The stochastic integral process $(Y \cdot X)_t = \int_0^t Y_s dX_s$ is regularly varying with index α . In particular

$$c_n \mathbb{P}\{n^{-1}(\mathbf{Y} \cdot \mathbf{X}) \in \dot{\mathbf{y}} \to m, \quad \text{in } \mathbf{M}_0(\mathbf{D}[0,1]),$$

where *m* is supported on step functions with one step.

$$m(B) = E\Big[\int\int I\{Y_{\tau}zI_{[\tau,1]}(\cdot)\in B\}\mu_{\alpha}(dz)d\tau\Big],$$

where *B* is any Borel subset of $D[0, 1] \subset \{0\}$.

2 Convergence in the space \mathbf{M}_0

- Regular Variation on R^d
- Regular Variation on D[0, 1]
- Large Deviations for Empirical Measures

3 The Quality of the Asymptotic Approximations

Henrik Hult

Large Deviations for the Empirical Measure (c.f. [6])

- Let {Z_k} be iid with a regularly varying distribution on R^d with limiting measure μ and α > 1.
- The empirical measure is

$$N_n = \sum_{k=1}^n \delta_{n^{-1}Z_k},$$

where δ_z is a unit point mass at z.

- Consider N_n as a random element taking values in the space of N_p of point measure on R^d \ {0} equipped with the vague topology.
- Then, the sequence $\mathbb{P}\{N_n \in \cdot\}$ is regularly varying:

 $c_n \mathbb{P}\{N_n \in \cdot\} \to m, \quad \text{in } \mathbf{M}_0(\mathbf{N}_p),$

with
$$m(B) = \int I\{\delta_z \in B\}\mu(dz)$$
.

◆□ ▶ ◆帰 ▶ ◆ヨ ▶ ◆ヨ ▶ ヨヨ のへの

Large Deviations for the Empirical Measure (c.f. [6])

- Let {Z_k} be iid with a regularly varying distribution on R^d with limiting measure μ and α > 1.
- The empirical measure is

$$N_n = \sum_{k=1}^n \delta_{n^{-1}Z_k},$$

where δ_z is a unit point mass at *z*.

- Consider N_n as a random element taking values in the space of N_p of point measure on R^d \ {0} equipped with the vague topology.
- Then, the sequence $\mathbb{P}\{N_n \in \cdot\}$ is regularly varying:

 $c_n \mathbb{P}\{N_n \in \cdot\} \to m, \quad \text{in } \mathbf{M}_0(\mathbf{N}_p),$

with $m(B) = \int I\{\delta_z \in B\}\mu(dz)$.

▲□▶▲□▶▲□▶▲□▶ 三回 のへの

Large Deviations for the Empirical Measure (c.f. [6])

- Let {Z_k} be iid with a regularly varying distribution on R^d with limiting measure μ and α > 1.
- The empirical measure is

$$N_n = \sum_{k=1}^n \delta_{n^{-1}Z_k},$$

where δ_z is a unit point mass at *z*.

- Consider N_n as a random element taking values in the space of N_p of point measure on R^d \ {0} equipped with the vague topology.
- Then, the sequence $\mathbb{P}\{N_n \in \cdot\}$ is regularly varying:

$$c_n \mathbb{P}\{N_n \in \cdot\} \to m,$$
 in $\mathbf{M}_0(\mathbf{N}_p),$

with
$$m(B) = \int I\{\delta_z \in B\}\mu(dz)$$
.

Introduction to Regular Variation

Convergence in the space M_0

Large Deviations for Empirical Measures

Large Deviations for the Empirical Measure Keeping Track of Time

We may keep track of time in the sense that

$$N_n = \sum_{k=1}^n \delta_{(\frac{k}{n}, n^{-1}Z_k)}.$$

Then, the sequence $\mathbb{P}\{N_n \in \cdot\}$ is regularly varying:

$$c_n \mathbb{P}\{N_n \in \cdot\} \to m, \qquad \text{in } \mathbf{M}_0(\mathbf{N}_{\rho}),$$

with

$$m(B) = \int_0^1 \int_{\mathbf{R}^d} I\{\delta_{(t,z)} \in B\} \mu(dz) dt.$$

KTH Royal Institute of Technology

Image: Image:

Henrik Hult

イロト イ理ト イヨト イヨ

Large Deviations for Empirical Measures

Moving Averages

■ MA(2) process: Let $\{Z_k\}$ be iid regularly varying ($\alpha > 1$, μ) and $A_0 > 0$, $A_1 < 0$ constants. Put

$$X_k = A_0 Z_k + A_1 Z_{k-1}, \qquad k \geq 1, S_n = X_1 + \cdots + X_n.$$

Tempted to consider $S^{(n)}(t) = n^{-1}S_{[nt]}$ as an element in **D**[0, 1] and study the convergence in **M**₀(**D**[0, 1]) of

$$c_n \mathbb{P}\{\mathbf{S}^{(n)} \in \cdot\}.$$

WARNING: loosing tightness. Why?

KTH Royal Institute of Technology

Henrik Hult

Moving Averages

■ MA(2) process: Let $\{Z_k\}$ be iid regularly varying ($\alpha > 1$, μ) and $A_0 > 0$, $A_1 < 0$ constants. Put

$$X_k = A_0 Z_k + A_1 Z_{k-1}, \qquad k \ge 1, S_n = X_1 + \dots + X_n.$$

Tempted to consider $S^{(n)}(t) = n^{-1}S_{[nt]}$ as an element in **D**[0, 1] and study the convergence in **M**₀(**D**[0, 1]) of

$$c_n \mathbb{P}\{S^{(n)} \in \cdot\}.$$

WARNING: loosing tightness. Why?

≣া≣ ୬৭৫

KTH Royal Institute of Technology

Henrik Hult

Moving Averages

• MA(2) process: Let $\{Z_k\}$ be iid regularly varying ($\alpha > 1$, μ) and $A_0 > 0$, $A_1 < 0$ constants. Put

$$X_k = A_0 Z_k + A_1 Z_{k-1}, \qquad k \geq 1, S_n = X_1 + \cdots + X_n.$$

Tempted to consider $S^{(n)}(t) = n^{-1}S_{[nt]}$ as an element in **D**[0, 1] and study the convergence in **M**₀(**D**[0, 1]) of

$$c_n \mathbb{P}\{S^{(n)} \in \cdot\}.$$

Image: Image:

WARNING: loosing tightness. Why?

KTH Royal Institute of Technology

Henrik Hult

Introduction to Regular Variation

Convergence in the space M₀

A D > A P > A D > A D >

KTH Royal Institute of Technology

Large Deviations for Empirical Measures

By the one big jump heuristic you expect S⁽ⁿ⁾ to be large because

$$X_k \approx A_0 Z_k$$
, and $X_{k+1} \approx A_1 Z_k$

■ For the partial sum process S_n you expect

 $S_k \approx A_0 Z_k$, and $S_{k+1} \approx (A_0 + A_1) Z_k$,

so it takes two big jumps of opposite sign within a short period of time... loosing tightness in D[0, 1].

Henrik Hult

Moving Averages

The Empirical Measure Level

- The problem with tightness can be resolved on the empirical measure level.
- We may consider

$$N_n = \sum_{k=1}^n \delta_{(\frac{k}{n}, n^{-1}X_k, n^{-1}X_{k-1})}.$$

Then, the sequence $\mathbb{P}\{N_n \in \cdot\}$ is regularly varying:

$$c_n \mathbb{P}\{N_n \in \cdot\} \to m, \quad \text{in } \mathbf{M}_0(\mathbf{N}_p),$$

with

$$m(B) = \int_0^1 \int_{\mathbf{R}^d} I\{\delta_{(t,A_0z,0)} + \delta_{(t,0,A_1z)} \in B\} \mu(dz) dt.$$

KTH Royal Institute of Technology

Henrik Hult

The Quality of Asymptotic Approximations

- The heavy-tailed asymptotics presented here are based on the heavy-tailed heuristics.
- One can anticipate that the approximations are good far out in the tail. How far?
- We will provide a small numerical study to illustrate the quality of the asymptotic approximations.

Asymptotic Approximations $\alpha = 2$

Let $\{Z_k\}$ be iid $\mathbb{P}\{Z > z\} = (1 + z)^{-\alpha}$, z > 0. Put $S_n = Z_1 + \cdots + Z_n$. Approximate $\mathbb{P}\{S_n > b\}$ by $n\mathbb{P}\{Z > b\}$.

$\alpha = 2, n = 5$						
	$n\mathbb{P}\{Z > b\}$	$\mathbb{P}\{S_n > b\}$	RE			
b = 25	0.74e-2	1.05e-2	30%			
<i>b</i> = 100	4.90e-4	5.34e-4	8%			
b = 5000	1.999e-7	2.002e-7	0.16%			
$\alpha = 2, n = 20$						
	$n\mathbb{P}\{Z > b\}$	$\mathbb{P}\{S_n > b\}$	RE			
b = 400	1.24e-4	1.38e-4	10%			
b = 4000	1.249e-6	1.261e-6	1%			

KTH Royal Institute of Technology

Henrik Hult

Asymptotic Approximations $\alpha = 4, \alpha = 6$

Let $\{Z_k\}$ be iid $\mathbb{P}\{Z > z\} = (1 + z)^{-\alpha}$, z > 0. Put $S_n = Z_1 + \cdots + Z_n$. Approximate $\mathbb{P}\{S_n > b\}$ by $n\mathbb{P}\{Z > b\}$.

$\alpha =$ 4, $n =$ 20						
	$n\mathbb{P}\{Z > b\}$	$\mathbb{P}\{S_n > b\}$	RE			
b = 50	2.95e-6	4.90e-6	28%			
b = 200	1.23e-8	1.36e-8	10%			
<i>b</i> = 1000	1.99e-11	2.05e-11	3%			
$\alpha = 6, n = 20$						
	$n\mathbb{P}\{Z > b\}$	$\mathbb{P}\{S_n > b\}$	RE			
b = 25	6.47e-8	1.18e-7	45%			
b = 40	4.21e-9	6.15e-9	31%			
<i>b</i> = 100	1.88e-11	2.26e-11	16%			

KTH Royal Institute of Technology

Image: Image:

Henrik Hult

Illustrations of the One Big Jump

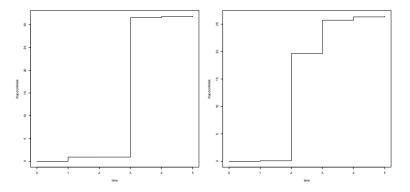


Figure: Trajectories of a random walk exceeding the level. $n = 5, b = 25, \alpha = 2.$

KTH Royal Institute of Technology

Illustrations of the One Big Jump

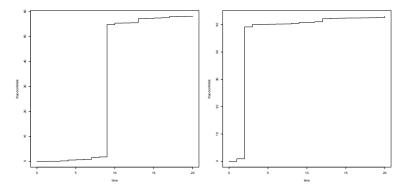


Figure: Trajectories of a random walk exceeding the level. $n = 20, b = 50, \alpha = 4.$

KTH Royal Institute of Technology

Illustrations of the One Big Jump

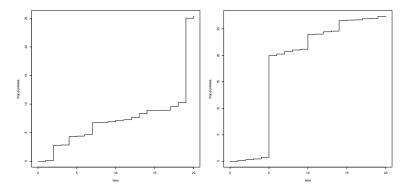


Figure: Trajectories of a random walk exceeding the level. $n = 20, b = 25, \alpha = 4. \mathbb{P}\{S_n > b\} = 1.65e-4$

KTH Royal Institute of Technology

For Further Reading I

🔈 S. Resnick

Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer, New York, 2006.

H. Hult and F. Lindskog Extremal behavior for regularly varying stochastic processes. Stochastic Process. Appl. 115, 249-274, 2005.

H. Hult, F. Lindskog, T. Mikosch, and G. Samorodnitsky Functional large deviations for multivariate regularly varying random walks

Ann. Appl. Probab. 15(4), 2651-2680.

KTH Royal Institute of Technology

For Further Reading II

- H. Hult and F. Lindskog Regular variation for measures on metric spaces. Publ. Inst. Math. 80, 121-140, 2006.
- H. Hult and F. Lindskog
 Extremal behavior of stochastic integrals driven by regularly varying Lévy processes.
 Ann. Probab., 35, 309-339, 2007.
- H. Hult and G Samorodnitsky Large deviations for point processes based on stationary sequences with heavy tails.

KTH Royal Institute of Technology

J. Appl. Prob. 47, 1-40, 2010.