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Regularly Varying Sequences and Random Variables

A sequence cn is called regularly varying at ∞ with index ρ ∈ R
if, for each λ > 0,

lim
n→∞

c[λn]

cn
= λρ.

A non-negative random variable Z is called regularly varying with
index α if the tail P{Z > n} is regularly varying at ∞ with index
−α, α ≥ 0.
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Regular Variation and Weak Convergence

Suppose Z is regularly varying with index α.

For any λ > 0, with cn = P{Z > n}−1 it follows that

cnP{Z ∈ n(λ,∞)} → λ−α =: µα(λ,∞).

This convergence can be formulated as a weak convergence:

cnP{n−1Z ∈ ·} w→ µα,

when restricted to any subset where µα is finite. That is, of the
form (ǫ,∞), ǫ > 0.
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The Space M0
1

Let (S, d) be a complete separable metric space with its Borel
σ-field.

s0 is the origin in S.

B0,r = {s ∈ S : d(s, s0) < r} (open ball of radius r ).

C0 are the real-valued bounded continuous functions on S
vanishing on some ball B0,r , r > 0.

M0 = {Borel measures µ on S with µ(Bc
0,r ) < ∞ for each r > 0}.

Convergence in M0: µn → µ in M0 if
∫

fdµn →

∫

fdµ, for all f ∈ C0.

1The details are in [4]
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Regularly Varying Measures

A sequence of measures νn in M0 is regularly varying with index
−α if there exists a sequence {cn} of positive numbers, which is
regularly varying with index α ≥ 0, and a nonzero µ ∈ M0 such
that

cnνn → µ, in M0.

A measure ν ∈ M0 is called regularly varying if the sequence
{ν(n ·)} is regularly varying with index −α. In this case the
limiting measure µ satisfies the scaling property: for any λ > 0
and Borel set B ⊂ S \ {s0}

µ(λB) = λ−αµ(B).
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Regular Variation on Rd

Multivariate Regular Variation

Let X be a random vector in Rd .

The distribution of X is called multivariate regularly varying if
P{n−1X ∈ ·} is a regularly varying measure: there exists a
nonzero µ ∈ M0(Rd ) and a regularly varying sequence cn with
index α ≥ 0 such that

cn P{n−1X ∈ ·} → µ, in M0(Rd ).
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Regular Variation on Rd

Multivariate Regular Variation
Independent Components2

Let Z = (Z1, . . . ,Zd )
′ be a random vector in Rd with iid regularly

varying components.

Take cn = P{Z1 > n}−1.

For any set of the form Ai = {x : xi > a} it follows that

cn P{n−1Z ∈ Ai} =
P{Z1 > an}
P{Z1 > n}

→ a−α = µα(a,∞),

whereas for any set which is a subset of some
Ai,j = {x : xi > ǫ1, xj > ǫ2, i 6= j} it follows that

cn P{n−1Z ∈ Ai,j} ≤
P{Z1 > nǫ1}P{Z1 > nǫ2}

P{Z1 > n}
→ 0.

2See e.g.[1]
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Regular Variation on Rd

Multivariate Regular Variation
Independent Components

One can show that P{n−1Z ∈ ·} is regularly varying with limiting
measure µ which is concentrated on the union of the coordinate
axis.

More precisely,

cnP{n−1Z ∈ ·} → µ, in M0(Rd ),

with

µ(B) =

d
∑

k=1

∫

∞

0
I{zek ∈ B}µα(dz).
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Regular Variation on D[0, 1]

Regular Variation on D[0, 1]
A Heavy-Tailed Lévy Process3

Let D[0, 1] be the space of càdlàg functions [0, 1] → R equipped
with the Skorohod J1-metric.

Consider a Lévy process X with regularly varying Lévy measure
ν:

cnν(n,∞) → 1,

for a regularly varying sequence cn.

3See [2, 4]
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Regular Variation on D[0, 1]

Regular Variation on D[0, 1]
A Heavy-Tailed Lévy Process

Then, the heavy tailed heuristics (one big jump + the heaviest
tail wins) can be made precise by showing that P{n−1X ∈ ·} is
regularly varying:

cnP{n−1X ∈ ·} → m, in M0(D[0, 1]),

where m is supported on step functions with one step.

m(B) =

∫ 1

0

∫

∞

0
I{zI[τ,1](·) ∈ B}µα(dz)dτ,

where B is any Borel subset of D[0, 1] \ {0}.
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Regular Variation on D[0, 1]

Stochastic Integrals (c.f. [5])

Consider a Lévy process X with regularly varying Lévy measure
ν (index α).
Let Y be an adapted process with lighter tails than ν:

E [ sup
t∈[0,1]

Yα+ǫ
t ] < ∞, some ǫ > 0.

The stochastic integral process (Y · X)t =
∫ t

0 YsdXs is regularly
varying with index α. In particular

cnP{n−1(Y · X) ∈ }̇ → m, in M0(D[0, 1]),

where m is supported on step functions with one step.

m(B) = E
[

∫ ∫

I{YτzI[τ,1](·) ∈ B}µα(dz)dτ
]

,

where B is any Borel subset of D[0, 1] ⊂ {0}.
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Large Deviations for Empirical Measures

Large Deviations for the Empirical Measure (c.f. [6])

Let {Zk} be iid with a regularly varying distribution on Rd with
limiting measure µ and α > 1.
The empirical measure is

Nn =

n
∑

k=1

δn−1Zk
,

where δz is a unit point mass at z.
Consider Nn as a random element taking values in the space of
Np of point measure on Rd \ {0} equipped with the vague
topology.
Then, the sequence P{Nn ∈ ·} is regularly varying:

cnP{Nn ∈ ·} → m, in M0(Np),

with m(B) =
∫

I{δz ∈ B}µ(dz).
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Large Deviations for Empirical Measures

Large Deviations for the Empirical Measure
Keeping Track of Time

We may keep track of time in the sense that

Nn =
n

∑

k=1

δ( k
n ,n

−1Zk )
.

Then, the sequence P{Nn ∈ ·} is regularly varying:

cnP{Nn ∈ ·} → m, in M0(Np),

with

m(B) =

∫ 1

0

∫

Rd
I{δ(t,z) ∈ B}µ(dz)dt .
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Large Deviations for Empirical Measures

Moving Averages

MA(2) process: Let {Zk} be iid regularly varying (α > 1, µ) and
A0 > 0,A1 < 0 constants. Put

Xk = A0Zk + A1Zk−1, k ≥ 1,Sn = X1 + · · ·+ Xn.

Tempted to consider S(n)(t) = n−1S[nt] as an element in D[0, 1]
and study the convergence in M0(D[0, 1]) of

cnP{S(n) ∈ ·}.

WARNING: loosing tightness. Why?
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Large Deviations for Empirical Measures

Moving Averages
Loosing tightness

By the one big jump heuristic you expect S(n) to be large
because

Xk ≈ A0Zk , and Xk+1 ≈ A1Zk

For the partial sum process Sn you expect

Sk ≈ A0Zk , and Sk+1 ≈ (A0 + A1)Zk ,

so it takes two big jumps of opposite sign within a short period of
time. . . loosing tightness in D[0, 1].
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Large Deviations for Empirical Measures

Moving Averages
The Empirical Measure Level

The problem with tightness can be resolved on the empirical
measure level.
We may consider

Nn =

n
∑

k=1

δ( k
n ,n

−1Xk ,n−1Xk−1)
.

Then, the sequence P{Nn ∈ ·} is regularly varying:

cnP{Nn ∈ ·} → m, in M0(Np),

with

m(B) =

∫ 1

0

∫

Rd
I{δ(t,A0z,0) + δ(t,0,A1z) ∈ B}µ(dz)dt .

Henrik Hult KTH Royal Institute of Technology

Asymptotics and Simulation of Heavy-Tailed Processes



Introduction to Regular Variation Convergence in the space M0 The Quality of the Asymptotic Approximations

The Quality of Asymptotic Approximations

The heavy-tailed asymptotics presented here are based on the
heavy-tailed heuristics.

One can anticipate that the approximations are good far out in
the tail. How far?

We will provide a small numerical study to illustrate the quality of
the asymptotic approximations.
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Asymptotic Approximations
α = 2

Let {Zk} be iid P{Z > z} = (1 + z)−α, z > 0. Put Sn = Z1 + · · ·+ Zn.
Approximate P{Sn > b} by nP{Z > b}.

α = 2, n = 5
nP{Z > b} P{Sn > b} RE

b = 25 0.74e-2 1.05e-2 30%
b = 100 4.90e-4 5.34e-4 8%
b = 5000 1.999e-7 2.002e-7 0.16%

α = 2, n = 20
nP{Z > b} P{Sn > b} RE

b = 400 1.24e-4 1.38e-4 10%
b = 4000 1.249e-6 1.261e-6 1%
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Asymptotic Approximations
α = 4, α = 6

Let {Zk} be iid P{Z > z} = (1 + z)−α, z > 0. Put Sn = Z1 + · · ·+ Zn.
Approximate P{Sn > b} by nP{Z > b}.

α = 4, n = 20
nP{Z > b} P{Sn > b} RE

b = 50 2.95e-6 4.90e-6 28%
b = 200 1.23e-8 1.36e-8 10%
b = 1000 1.99e-11 2.05e-11 3%

α = 6, n = 20
nP{Z > b} P{Sn > b} RE

b = 25 6.47e-8 1.18e-7 45%
b = 40 4.21e-9 6.15e-9 31%
b = 100 1.88e-11 2.26e-11 16%
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Illustrations of the One Big Jump

0 1 2 3 4 5

0
5

10
15

20
25

30

time

R
an

do
m

W
al

k

0 1 2 3 4 5

0
5

10
15

20
25

time

R
an

do
m

W
al

k

Figure: Trajectories of a random walk exceeding the level.
n = 5, b = 25, α = 2.
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Figure: Trajectories of a random walk exceeding the level.
n = 20, b = 50, α = 4.
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Illustrations of the One Big Jump
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Figure: Trajectories of a random walk exceeding the level.
n = 20, b = 25, α = 4. P{Sn > b} = 1.65e-4
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Springer, New York, 2006.

H. Hult and F. Lindskog
Extremal behavior for regularly varying stochastic processes.
Stochastic Process. Appl. 115, 249-274, 2005.

H. Hult, F. Lindskog, T. Mikosch, and G. Samorodnitsky
Functional large deviations for multivariate regularly varying
random walks
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Regular variation for measures on metric spaces.
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H. Hult and F. Lindskog
Extremal behavior of stochastic integrals driven by regularly
varying Lévy processes.
Ann. Probab., 35, 309-339, 2007.

H. Hult and G Samorodnitsky
Large deviations for point processes based on stationary
sequences with heavy tails.
J. Appl. Prob. 47, 1-40, 2010.
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