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Simulation of Heavy-Tailed Processes

Goal: improve on the computational efficiency of standard Monte
Carlo.

Design: The large deviations analysis lead to a heuristic way to
design efficient algorithms.

Efficiency Analysis: The large deviations analysis can be applied
to theoretically quantify the computational performance of
algorithms.
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The Problem with Monte Carlo

The Performance of Monte Carlo

Let X1, . . . ,XN be independent copies of X .
The Monte Carlo estimator is

p̂ =
1
N

N∑

k=1

I{X k > b}.

Its standard deviation is

std =
1√
N

√
p(1 − p)

To obtain a Relative Error (std/p) of 1% you need to take N such
that

1√
N

√
p(1 − p)

p
≤ 0.01 ⇔ N ≥ 104 1 − p

p
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Importance Sampling

Introduction to Importance Sampling1

The problem with Monte Carlo is that few samples hit the rare
event.

This problem can be fixed by sampling from a distribution which
puts more mass on the rare event.

Must compensate for not sampling from the original distribution.

Key issue: How to select an appropriate sampling distribution?

1See e.g. [1] for an introduction.
Henrik Hult KTH Royal Institute of Technology
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Importance Sampling

Monte Carlo and Importance Sampling
The Basics for Computing F (A) = P{X ∈ A}

Monte Carlo

Sample X1, . . . ,XN

from F .

Empirical measure

FN(·) =
1
N

N∑

k=1

δX k (·).

Plug-in estimator

p̂ = FN(A).

Importance Sampling

Sample X̃1, . . . , X̃N from F̃ .

Weighted empirical measure

F̃w
N(·) =

1
N

N∑

k=1

dF

dF̃
(X̃ k )δX̃ k (·).

Plug-in estimator

p̂ = F̃w
N(A) =

1
N

N∑

k=1

dF

dF̃
(X̃ k )I{X̃ k ∈ A}.
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Importance Sampling

Importance Sampling

The importance sampling estimator is unbiased:

Ẽ
[dF

dF̃
(X̃ )I{X̃ ∈ A}

]
=

∫

A

dF

dF̃
dF̃ =

∫

A
dF = F (A).

Its variance is

Var
( dF

dF̃
(X̃ )I{X̃ ∈ A}

)
= Ẽ

[(dF

dF̃

)2
I{X̃ ∈ A}

]
− F (A)2

=

∫

A

( dF

dF̃

)2
dF̃ − F (A)2

=

∫

A

dF

dF̃
dF − F (A)2

= E
[ dF

dF̃
I{X ∈ A}

]
− F (A)2.
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Importance Sampling

Importance Sampling
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Importance Sampling

Illustration
Sampling the tail

Monte Carlo
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Importance Sampling

Quantifying Efficiency
Variance Based Efficiency Criteria

Basic idea: variance roughly the size of p2.
Embed in a sequence of problems such that
pn = P{Xn ∈ A} → 0.
Logarithmic Efficiency: for some ǫ > 0

lim sup
n→∞

Var(p̂n)

p2−ǫ
n

< ∞.

Strong Efficiency/Bounded Relative Error:

sup
n

Var(p̂n)

p2
n

< ∞.

Vanishing relative error:

lim sup
n

Var(p̂n)

p2
n

= 0.

Henrik Hult KTH Royal Institute of Technology

Asymptotics and Simulation of Heavy-Tailed Processes



Introduction to Rare-Event Simulation Importance Sampling in a Heavy-Tailed Setting Markov Chain Monte Carlo in Rare-Event Simulation

Importance Sampling

The Zero-Variance Change of Measure

There is a best choice of sampling distribution, the zero-variance
change of measure, given by

FA(·) = P{Xn ∈ · | Xn ∈ A}.

For this choice

dF
dFA

(x) = P{Xn ∈ A}I{Xn ∈ A} = pnI{Xn ∈ A},

and hence

Var(p̂n) = E
[
pnI{Xn ∈ A}

]
− F (A)2 = 0.
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Example Problem
A Random Walk with Heavy Tails

Let {Zk} be iid non-negative and regularly varying (index α) with
density f .

Put Sm = Z1 + · · ·+ Zm.

Compute P{Sm > n}.

The zero-variance sampling distribution is

P{(Z1, . . . ,Zm) ∈ · | Sm > n}.

By regular variation we know that

P{(Z1, . . . ,Zm) ∈ · | Sm > n} → µ(·),

where µ is concentrated on the coordinate axis. But µ and F are
singular!

Henrik Hult KTH Royal Institute of Technology
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The Conditional Mixture Algorithm for Random Walks

The Conditional Mixture Algorithm2

Suppose Si−1 = s. Sample Zi as follows
1 If s ≥ n, sample Zi from the original density f .
2 If s ≤ n, sample Zi from the mixture

pi f (z) + (1 − pi)f̃i(y | s), 1 ≤ i ≤ m − 1,

f̃m(y | s), i = m.

Idea: take f̃i to produce large values of Zi .

2This algorithm is due to [4]
Henrik Hult KTH Royal Institute of Technology
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The Conditional Mixture Algorithm for Random Walks

The Conditional Mixture Algorithm

We can take f̃i ’s to be the conditional distributions of the form

f̃i(z | s) =
f (z)I{z > a(n − s)}
P{Z > a(n − s)} , i ≤ m − 1,

f̃m(z | s) =
f (z)I{z > n − s}
P{Z > n − s} ,

where a ∈ (0, 1).

Note: f̃i is the conditional distribution of Z given that Z is large.

Henrik Hult KTH Royal Institute of Technology
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Performance of the Conditional Mixture Algorithm

The Performance of the Conditional Mixture Algorithm

The normalized second moment is

E [p̂n]

p2
n

=
1
p2

n

∫
dF

dF̃
(z1, . . . , zm)I{sm > n}F (dz1, . . . , dzm)

∼ 1
m2P{Z1 > n}2

∫
dF

dF̃
(z1, . . . , zm)I{sm > n}F (dz1, . . . , dzm)

∼ 1
m2

∫
1

P{Z1 > n}
dF

dF̃
(nz1, . . . , nzm)I{sm > 1}F (ndz1, . . . , ndzm)

P{Z1 > n} .
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Performance of the Conditional Mixture Algorithm

The Performance of the Conditional Mixture Algorithm

Weak convergence:

F (n ·)
P{Z1 > n} →

m∑

k=1

∫
I{zek ∈ ·}µα(dz)

The normalized likelihood ratio is bounded:

sup
n

1
P{Z1 > n}

dF

dF̃
(nz1, . . . , nzm)I{sm > 1} < ∞.
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Performance of the Conditional Mixture Algorithm

The Performance of the Conditional Mixture Algorithm

The above enables us to show that the normalized second
moment converges:

lim
n

E [p̂n]

p2
n

=
1

m2

(m−1∑

i=1

a−α

1 − pi

i−1∏

j=1

1
pj

+

m−1∏

j=1

1
pj

)
.

It is minimized at

pi =
(m − i − 1)a−α/2 + 1
(m − i)a−α/2 + 1

,

with minimum

1
m2

(
(m − 1)a−α/2 + 1

)2
.
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Performance of the Conditional Mixture Algorithm

The Performance of the Conditional Mixture Algorithm

The conditional mixture algorithm has (almost) vanishing relative
error.

Heavy-tailed heuristics indicate how to design the algorithm.

Heavy-tailed asymptotics needed to prove efficiency of the
algorithm.

Henrik Hult KTH Royal Institute of Technology
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MCMC for Rare Events3

Let X be random variable with density f and compute
p = P{X ∈ A}, where A is a rare event.

The zero-variance sampling distribution is

FA(·) = P{X ∈ · | X ∈ A}, dFA

dx
(x) =

f (x)I{x ∈ A}
p

.

It is possible to sample from FA by constructing a Markov chain
with stationary distribution FA (e.g. Gibbs sampler or
Metropolis-Hastings).

Idea: sample from FA and extract the normalizing constant p.

3This part is based on [5]
Henrik Hult KTH Royal Institute of Technology
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MCMC for Rare Events

Let X0, . . . ,XT−1 be a sample of a Markov chain with stationary
distribution FA.

Consider a non-negative function v(x) with
∫

A v(x)dx = 1. The
sample mean

q̂T =
1
T

T−1∑

t=0

v(Xt)I{Xt ∈ A}
f (Xt )

,

is an estimator of

EFA

[v(X)I{X ∈ A}
f (X)

]
=

∫

A

v(x)
f (x)

f (x)
p

dx =
1
p

∫

A
v(x)dx =

1
p
.

Take q̂T as the estimator of 1/p.

Henrik Hult KTH Royal Institute of Technology
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MCMC for Rare Events

The rare-event properties of q̂T are determined by the choice of
v .

The large sample properties of q̂T are determined by the ergodic
properties of the Markov chain.

Henrik Hult KTH Royal Institute of Technology
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The Normalized Variance

The rare-event efficiency (p small) is determined by the
normalized variance:

p2VarFA

(v(X)

f (X)
I{X ∈ A}

)

= p2
(

EFA

[(v(X)

f (X)
I{X ∈ A}

)2]
− 1

p2

)

= p2
(∫

v2(x)
f 2(x)

f (x)
p

dx − 1
p2

)

= p
∫

A

v2(x)
f (x)

dx − 1.
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The Optimal Choice of v

It is optimal to take v as f (x)/p. Indeed, then

p2VarFA

(v(X)

f (X)
I{X ∈ A}

)
= p

∫

A

v2(x)
f (x)

dx − 1 = 0.

Insight: take v as an approximation of the conditional density
given the event.
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Efficient Sampling for a Heavy-Tailed Random Walk

Efficient Sampling for a Heavy-Tailed Random Walk

Let {Zk} be iid with density f .

Put Sn = Z1 + · · ·+ Zn.

Compute P{Sn > an}.

Heavy-tailed assumption:

lim
n→∞

P{Sn > an}
P{Mn > an}

= 1.

(includes subexponential distributions, see [3]).
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Efficient Sampling for a Heavy-Tailed Random Walk

Gibbs Sampling of a Heavy-Tailed Random Walk

1 Start from a state with Z1 > an.

2 Update the steps in a random order according to j1, . . . , jn
(uniformly without replacement).

3 Update Zjk by sampling from

P{Z ∈ · | Z +
∑

i 6=jk

Zi > n}.

The vector (Zt,1, . . . ,Zt,n)
′ forms a uniformly ergodic Markov

chain with stationary distribution

FA(·) = P{(Z1, . . . ,Zn)
′ ∈ · | Z1 + . . .Zn > an}.

Henrik Hult KTH Royal Institute of Technology
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Efficient Sampling for a Heavy-Tailed Random Walk

Rare-Event Efficiency
The Choice of v

Take v to be the density of P{(Z1, . . . ,Zn)
′ ∈ · | Mn > an}.

Then

v(z1, . . . , zn)

f (z1, . . . , zn)
=

1
P{Mn > an}

I{∨n
i=1zi > an}.

Rare event efficiency:

p2
nVarFA

(v(Z1, . . . ,Zn)

f (Z1, . . . ,Zn)
I{Z1 + · · ·+ Zn > an}

)

=
P{Sn > an}2

P{Mn > an}2P{Mn > an | Sn > an}P{Mn ≤ an | Sn > an}

=
P{Sn > an}
P{Mn > an}

(
1 − P{Mn > an}

P{Sn > an}
)
→ 0.
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Efficient Sampling for a Heavy-Tailed Random Walk

Numerical illustration
n = 5, α = 2, an = an.

b = 25, T = 105, α = 2, n = 5, a = 5, pmax = 0.737e-2
MCMC IS MC

Avg. est. 1.050e-2 1.048e-2 1.053e-2
Std. dev. 3e-5 9e-5 27e-5

Avg. time per batch(s) 12.8 12.7 1.4
b = 25, T = 105 , α = 2, n = 5, a = 20, pmax = 4.901e-4

MCMC IS MC
Avg. est. 5.340e-4 5.343e-4 5.380e-4
Std. dev. 6e-7 13e-7 770e-7

Avg. time per batch(s) 14.4 13.9 1.5
b = 20, T = 105 , α = 2, n = 5, a = 103 , pmax = 1.9992e-7

MCMC IS
Avg. est. 2.0024e-7 2.0027e-7
Std. dev. 3e-11 20e-11

Avg. time per batch(s) 15.9 15.9
b = 20, T = 105, α = 2, n = 5, a = 104 , pmax = 1.99992e-9

MCMC IS
Avg. est. 2.00025e-9 2.00091e-9
Std. dev. 7e-14 215e-14

Avg. time per batch(s) 15.9 15.9
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Efficient Sampling for a Heavy-Tailed Random Walk

Numerical Illustration
n = 20, α = 2, an = an.

b = 25, T = 105 , α = 2, n = 20, a = 20, pmax = 1.2437e-4
MCMC IS MC

Avg. est. 1.375e-4 1.374e-4 1.444e-4
Std. dev. 2e-7 3e-7 492e-7

Avg. time per batch(s) 52.8 50.0 2.0
b = 25, T = 105 , α = 2, n = 20, a = 200, pmax = 1.2494e-6

MCMC IS MC
Avg. est. 1.2614e-6 1.2615e-6 1.2000e-6
Std. dev. 4e-10 12e-10 33,166e-10

Avg. time per batch(s) 49.4 48.4 1.9
b = 20, T = 105, α = 2, n = 20, a = 103, pmax = 4.9995e-8

MCMC IS
Avg. est. 5.0091e-8 5.0079e-8
Std. dev. 7e-12 66e-12

Avg. time per batch(s) 53.0 50.6
b = 20, T = 105 , α = 2, n = 20, a = 104 , pmax = 5.0000e-10

MCMC IS
Avg. est. 5.0010e-10 5.0006e-10
Std. dev. 2e-14 71e-14

Avg. time per batch(s) 48.0 47.1

Henrik Hult KTH Royal Institute of Technology
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Efficient Sampling for a Heavy-Tailed Random Sum

Let {Zk} be iid with density f .

Put Sn = Z1 + · · ·+ Zn and let {Nn} be independent of {Zk}
Compute P{SNn > an}.

Heavy-tailed assumption:4

lim
n→∞

P{SNn > an}
P{MNn > an}

= 1.

4See e.g. [6] for examples.
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Constructing the Gibbs Sampler

Suppose we are in state (Nt ,Zt,1, . . . ,Zt,Nt ) = (kt , zt,1, . . . , zt,kt ).

Let k∗
t = min{j : zt,1 + · · ·+ zt,j > an}.

Update the number of steps Nt+1 from the distribution

p(kt+1 | k∗
t ) = P{N = kt+1 | N ≥ k∗t}

If kt+1 > kt , sample Zt+1,kt+1, . . . ,Zt+1,kt+1 independently from FZ .

Proceed by updating all steps as before.

Permute the steps.
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Properties of the algorithm

The Markov chain {(Nt ,Zt,1, . . . ,Zt,Nt )} is uniformly ergodic with
stationary distribution

FA(·) = P{(Z1, . . . ,Zn)
′ ∈ · | Z1 + . . .Zn > an}.

With v as the density of P{(N,Z1, . . . ,ZN) ∈ · | MN > an} we have

v(k , z1, . . . , zk )

f (k , z1, . . . , zk)
=

1
P{MN > an}

I{max z1, . . . , zk > an}

=
1

1 − gN(FZ (an))
I{max z1, . . . , zk > an}.

The algorithm has vanishing normalized variance.
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Numerical illustration
Geometric(ρ) number of steps: ρ = 0.05, α = 1, an = a/ρ.

b = 25, T = 105 , α = 1, ρ = 0.2, a = 102 , pmax = 0.990e-2
MCMC IS MC

Avg. est. 1.149e-2 1.087e-2 1.089e-2
Std. dev. 4e-5 6e-5 35e-5

Avg. time per batch(s) 25.0 11.0 1.2
b = 25, T = 105 , α = 1, ρ = 0.2, a = 103 , pmax = 0.999e-3

MCMC IS MC
Avg. est. 1.019e-3 1.012e-3 1.037e-3
Std. dev. 1e-6 3e-6 76e-6

Avg. time per batch(s) 25.8 11.1 1.2
b = 20, T = 106, α = 1, ρ = 0.2, a = 5 · 107 , pmax = 2.000000e-8

MCMC IS
Avg. est. 2.000003e-8 1.999325e-8
Std. dev. 6e-14 1114e-14

Avg. time per batch(s) 385.3 139.9
b = 20, T = 106 , α = 1, ρ = 0.2, a = 5 · 109 , pmax = 2.0000e-10

MCMC IS
Avg. est. 2.0000e-10 1.9998e-10
Std. dev. 0 13e-14

Avg. time per batch(s) 358.7 130.9
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Numerical Illustration
Geometric(ρ) number of steps: ρ = 0.05, α = 1, an = a/ρ.

b = 25, T = 105 , α = 1, ρ = 0.05, a = 103 , pmax = 0.999e-3
MCMC IS MC

Avg. est. 1.027e-3 1.017e-3 1.045e-3
Std. dev. 1e-6 4e-6 105e-6

Avg. time per batch(s) 61.5 44.8 1.3
b = 25, T = 105 , α = 1, ρ = 0.05, a = 5 · 105 , pmax = 1.9999e-6

MCMC IS MC
Avg. est. 2.0002e-6 2.0005e-6 3.2000e-6
Std. dev. 1e-10 53e-10 55,678e-10

Avg. time per batch(s) 60.7 45.0 1.3
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varying tails.
ACM Trans. Model. Comput. Simul. 17(3), 2007.

T. Gudmundsson and H. Hult
Markov chain Monte Carlo for computing rare-event probabilities
for a heavy-tailed random walk.
http://arxiv.org/pdf/1211.2207v1.pdf
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