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Part I

Clusters of Extremes



An informal view on clusters

For weakly dependent stationary sequences,
extremes arrive in clusters.

We are concerned with the asymptotic distribution of the ‘block’

(X1, . . . ,Xrn)

given that at least one ‘extreme value’ occurs

rn∑
i=1

I(Xi hits an exceptional set) > 1 (C)

when the expected number of extremes is asymptotically negligible

rn P(X1 hits an exceptional set) = o(1)



Formalizing the informal view requires some care

I The condition (C) is awkward to work with:
when did the extreme value occur for the first time?

I If the expected number of extremes in a block remains finite,
most variables Xi in the block (X1, . . . ,Xrn) will be irrelevant.

Formalizing the notion of a ‘cluster’ therefore requires some care.
Some possibilities:
I Cluster functionals
I Cluster distributions
I Cluster processes
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Cluster statistics

Ingredients
I Stationary process (Xn)n on R
I High threshold un

I Block size rn

Interest is in cluster statistics of the form

c(X1 − un, . . . ,Xrn − un) conditionally on Mrn > un

that only depend on the ‘cluster’:
the stretch between the first and the last exceedance over un.

We require that

rn →∞, rn P(X1 > un)→ 0



Examples of cluster statistics
I Block maximum: maximal excess

c(y1, . . . , yrn) = max(y1, . . . , yrn)

I Aggregate excess: sum of excesses

c(y1, . . . , yrn) = max(y1, 0) + · · ·+ max(yrn , 0)

I Cluster size: number of excesses

c(y1, . . . , yrn) = I(y1 > 0) + · · ·+ I(yrn > 0)

I Cluster duration: time span between first and last excess

c(y1, . . . , yrn) = max{i : yi > 0} −min{i : yi > 0}+ 1

I Number of threshold upcrossings

c(y1, . . . , yrn) = I(y1 > 0)+I(y1 6 0 < y2)+· · ·+I(yrn−1 6 0 < yrn)



Cluster functionals
Desirable properties of c( · ):

I Its domain is a vector of arbitrary length
with at least one non-zero component.

I It depends only on the ‘extreme’ part of the vector

Definition
A cluster functional is a map c : A→ R with

A = A1 ∪ A2 ∪ . . .
Ar = Rr \ (−∞, 0]r = {(y1, . . . , yr) ∈ Rr : max(y1, . . . , yr) > 0}

and neglecting everything that happened
before or after the first or last positive value:

c(y1, . . . , yr) = c(yα, . . . , yω)

α = min{i : yi > 0}
ω = max{i : yi > 0}

[Yun 2000; Segers 2003; Dreez & Rootzén 2010]



Cluster map

Definition
Recall A =

⋃
r>1 Ar and Ar = Rr \ (−∞, 0]r. Define the cluster map

C : A→ A : (y1, . . . , yr) 7→ (yα, . . . , yω)

α = min{i : yi > 0}
ω = max{i : yi > 0}

[Segers 2005]

Then c : A→ R is a cluster functional if and only if

c = f ◦ C for some f : A→ R

Hence, to know the asymptotic distribution of cluster statistics,
it is sufficient to know the asymptotic distribution of the ‘cluster’ itself

C(X1 − un, . . . ,Xrn − un) conditionally on Mrn > un
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Aim: switch to a simpler conditioning event

We are interested in the cluster distribution

P[C(X1 − un, . . . ,Xrn − un) ∈ · | Mrn > un]

Recall rn →∞ and rnP(X1 > un)→ 0.

The conditioning event {Mrn > un} is awkward to work with:
when exactly did the exceedances occur?

We’d rather prefer expressions in terms of the law of

(X1, . . . ,Xk) | X1 > un

This would be particularly convenient in the case of Markov chains.



Expected cluster size

Expected number of exceedances given that there is at least one:

E
[ rn∑

i=1

I(Xi > un)

∣∣∣∣Mrn > un

]
=

rn P(X1 > un)

P(Mrn > un)
=:

1
θn

so

θn =
P(Mrn > un)

rn P(X1 > un)
∈ (0, 1]

Example
In the iid case, since rn F(un)→ 0, we have

θn =
1− (1− F(un))rn

rnF(un)
→ 1



Finite-cluster condition
Suppose that the impact of a shock is somehow limited in time:

X1︸︷︷︸
>un

,X2, . . . ,Xm,Xm+1, . . . ,Xrn︸ ︷︷ ︸
>un?

X1, . . . ,Xrn−m︸ ︷︷ ︸
>un?

,Xrn−m+1, . . . ,Xrn−1, Xrn︸︷︷︸
>un

Formally, put Mi,j = max(Xi, . . . ,Xj) and suppose

lim
m→∞

lim sup
n→∞

P(Mm+1,rn > un | X1 > un) = 0 (FiCl1)

lim
m→∞

lim sup
n→∞

P(M1,rn−m > un | Xrn > un) = 0 (FiCl2)

Sufficient condition:

lim
m→∞

lim sup
n→∞

rn∑
i=m+1

P(Xi > un | X1 > un) = 0 (FiCl)



Bounded expected cluster sizes

If (FiCl), the expected cluster size remains bounded:

lim sup
n→∞

rn P(X1 > un)

P(Mrn > un)
<∞

i.e. lim inf
n→∞

θn > 0.

Proof: observe that Mrn > max(X1,Xm+1,X2m+1, . . . ,Xkm+1) with k ∼ rn/m.



The approximant

Consider a bounded, measurable cluster functional c : A→ R.
Apply c to different stretches of the process:

cn(i, j) = c(Xi − un, . . . ,Xj − un) on the event Mi,j > un

Consider the approximation error∣∣∣∣E[cn(1, rn) | Mrn > un]︸ ︷︷ ︸
quantity of interest

− αn,m(c)

θn,m︸ ︷︷ ︸
approximant

∣∣∣∣
where

αn,m(c) = E[cn(1,m) | X1 > un]

− E[cn(2,m), M2,m > un | X1 > un]

θn,m = P[M2,m 6 un | X1 > un] ‘runs’



The cluster approximation
Theorem
If (FiCl), then

lim
m→∞

lim sup
n→∞

| θn,m︸︷︷︸
‘runs’

− θn︸︷︷︸
‘blocks’

| = 0

as well as

lim
m→∞

lim sup
n→∞

sup
c:|c|61

∣∣∣∣E[cn(1, rn) | Mrn > un]− αn,m(c)

θm,n

∣∣∣∣ = 0

[Segers (2005)]

Proof: elementary calculations, based on careful use of

I partitionings of the event {Mrn > un} and similar ones

I stationarity

I the cluster property

I (FiCl)



Main steps in the proof (1)
Consider the first time an exceedance occurs:

E[cn(1, rn); Mrn > un]

=

rn∑
j=1

E[cn(j, rn); Mj−1 6 un < Xj]

By (FiCl), we can limit the (forward) horizon to m:

. . . ≈
rn∑

j=1

E[cn(j, j + m− 1); Mj−1 6 un < Xj]

Write each term as a difference by taking out the event Mj−1 6 un:

E[cn(j, j + m− 1); Xj > un]

−E[cn(j, j + m− 1); Mj−1 > un, Xj > un]

By stationarity, the first term is already OK: j = 1.
What about the second term?



Main steps in the proof (2)

We need to consider

E[cn(j, j + m− 1); M1,j−1 > un, Xj > un]

By (FiCl), we can limit the (backward) horizon to m:

. . . ≈ E[cn(j, j + m− 1); Mj−m,j−1 > un, Xj > un]

By stationarity (set j = m + 1), this is

. . . = E[cn(m + 1, 2m + 1); M1,m > un, Xm+1 > un]

In {Mm > un}, consider the last time an exceedance occurs, apply
stationarity, (FiCl), eventually yielding

. . . ≈ E[cn(2,m); X1 > un,M2,m > un]

which is the second term in αn,m(c).



Main steps in the proof (3)

Collect approximations to find that

E[cn(1, rn); Mrn > un] ≈ rn αn,m(c)

Consider the special case c ≡ 1 to get

θn,m ≈ θn

Combine the previous two displays to arrive at the desired
approximation.



Without additional effort,
the result is translated in a general framework

I Measurable state space (S,S )

I Measurable failure set B ⊂ S
I A =

⋃
k>1 Ak where Ak = Sk \ (S \ B)k

I Cluster map C : A→ A is defined by

C(x1, . . . , xk) = (xα, . . . , xω)

where
I α = min{i = 1, . . . , k : xi ∈ B}
I ω = max{i = 1, . . . , k : xi ∈ B}



The general framework encompasses multivariate extremes

Univariate extremes:
I state space S = R
I failure set B = (u,∞)

Multivariate extremes:
I state space S = Rd

I failure sets B = Rd \ (−∞,u] or (u,∞) or {x : ‖x‖ > u} or . . .



What if the failure set is hit at least once?

I Stationary random vector (X1, . . . ,Xr) in S
I Assume P[X1 ∈ B] > 0

Aim
To study the conditional distribution of

C(X1, . . . ,Xr) given
r⋃

i=1

{Xi ∈ B}



Cluster functionals and cluster map

A map c : A→ R is a cluster functional
if it is measurable with respect to the cluster map, i.e.

c = f ◦ C for some f : A→ R

that is, if
c(x1, . . . , xr) = c(xα, . . . , xω)

in terms of the first and last hitting times, 1 6 α 6 ω 6 r of B.

Cluster functionals and the cluster map are equivalent concepts:
for E ⊂ A,

C(x1, . . . , xr) ∈ E ⇐⇒ IE ◦ C︸ ︷︷ ︸
=c

(x1, . . . , xr) = 1



Extremal index variants

I Expected number of ‘hits’ of failure set B

E
[ r∑

i=1

I{Xi ∈ B}
∣∣∣∣ r⋃

i=1

{Xi ∈ B}
]

=
r P[X1 ∈ B]

P[
⋃r

i=1{Xi ∈ B}]
=

1
θ

I ‘Hit’ followed/preceded by a ‘run’ of ‘non-hits’ of failure set B

θm = P[
⋂m

i=2{Xi 6∈ B} | X1 ∈ B]

= P[
⋂m−1

i=1 {Xi 6∈ B} | Xm ∈ B], m = 2, . . . , r

I Compare these with characterizations of extremal index
I ‘blocks’ [Leadbetter 1983]

I ‘runs’ [O’Brien 1987]

I Multivariate extremal index [Nandagopalan 1994]



Approximate cluster distribution

I C is set of all cluster functionals c : A→ R such that |c| 6 1
I Cluster distribution: for c ∈ C

µ(c) = E[c(X1, . . . ,Xr) |
⋃r

i=1{Xi ∈ B}]

I Approximant: for c ∈ C

µm(c)

= θ−1
{

E[c(X1, . . . ,Xm) | X1 ∈ B]

− E[c(X2, . . . ,Xm)I(
⋃m

i=2{Xi ∈ B}) | X1 ∈ B]
}



Finite-sample cluster distribution approximation
Quantify (FiCl) via

ε = max{P[
⋃r

i=m+1{Xi ∈ B} | X1 ∈ B],

P[
⋃r−m

i=1 {Xi ∈ B} | Xr ∈ B]}

Theorem
If m > 2 and 2m + 1 6 r,

θ > (2m)−1(1− ε)
|θ − θm| 6 max(m/r, ε)

sup
c:|c|61

|µ(c)− µm(c)| 6 θ−1(4m/r + 5ε)

[Segers 20xx]

Interpretation: connection between distributions of

I C(X1, . . . ,Xr) given
⋃r

i=1{Xi ∈ B}
I (X1, . . . ,Xm) given {X1 ∈ B}
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Asymptotic cluster distribution

I State space: metric space (S, d)

I Failure set: non-empty open set B ⊂ S
I Random triangular array {Xin : n > 1, 1 6 i 6 rn} in S

I row length rn →∞
I every row (X1n, . . . ,Xrnn) is stationary
I pn = P[X1n ∈ B] > 0
I rnpn = E[

∑rn
i=1I(Xin ∈ B)]→ 0

Aim
To establish the limiting cluster distribution

C(X1n, . . . ,Xrnn) given
⋃rn

i=1{Xin ∈ B}

with C : A→ A the cluster map and A =
⋃

r>1

(
Sr \ (S \ B)r

)



Example

I State space S = R
I Failure set B = {x : |x| > 1}
I Random variables Xin = Xi/an, 1 6 i 6 rn, with

I (Xi)i>1 a stationary time series in R
I levels 0 < an →∞ such that nP[|X1| > an]→ 1
I block sizes rn →∞ and rn = o(n)

I Rare events of interest:
I Xin ∈ B if and only if |Xi| > an
I
⋃rn

i=1{Xin ∈ B} if and only if Mrn := max(|X1|, . . . , |Xrn |) > an

Problem
To find the asymptotic cluster distribution

C(X1/an, . . . ,Xrn/an) given Mrn > an?



Example (continued)
I Assume that the fidis of (Xi)i are multivariate regularly varying.
I Then there exists a process (Yk)k>0 such that for every k > 0,

P[(X1/an, . . . ,Xk+1/an) ∈ · | |X1| > an]

d−→ P[(Y0, . . . ,Yk) ∈ ·]

I Conceptually, given |X1| > an,

X1/an, X2/an, . . . , Xk+1/an

Y0, Y1, . . . , Yk

‘present’, ‘future’

I For Markov chains, the process (Yk)k>0 can typically be written
in terms of a random walk
[Rootzén 1988; de Haan et al. 1989; Smith 1992; Perfekt 1994; S. 2007; Resnick and Zeber 2011]

I Can we express the asymptotic cluster distribution in terms of
the tail process (Yk)k?



Assumptions

Tail process
Assume there exists a random sequence (Yk)k>0 called tail process in
S such that for every k > 0,

P[(X1n, . . . ,Xk+1,n) ∈ · | X1n ∈ B]
d−→ P[(Y0, . . . ,Yk) ∈ · ].

Also, assume P[Yk ∈ ∂B] = 0 for all k > 0.

Finite cluster condition
The impact of a ‘hit’ does not last for too long:

lim
m→∞

lim sup
n→∞

P[
⋃rn

i=m+1{Xin ∈ B} | X1n ∈ B] = 0

lim
m→∞

lim sup
n→∞

P[
⋃rn−m

i=1 {Xin ∈ B} | Xrnn ∈ B] = 0



Limiting cluster distributions
Theorem
[Segers 20xx] Under the above assumptions:
I The tail process (Yk)k>0 hits B only finitely often:

Y0 ∈ B and ]{k > 1 : Yk ∈ B} <∞ a.s.

I The expected number of hits converges to finite limit:

θn = 1/E[
∑rn

i=1I(Xin ∈ B) |
⋃rn

i=1{Xin ∈ B}]
→ P[∀k > 1 : Yk 6∈ B] =: θ > 0

I The cluster distribution converges:

P[C((Xin)rn
i=1) ∈ · |

⋃rn
i=1{Xi ∈ B}]

d−→ θ−1
{

P[C((Yk)k>0) ∈ · ]

− P[{C((Yk)k>1) ∈ · } ∩
⋃

k>1{Yk ∈ B}]
}
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The prologue and epilogue of a cluster

I By definition, the ‘cluster’ starts and ends
with the first and last extreme value in a block.

I What happened just before? What happens next?
Maybe there are some ‘less extreme’ but still interesting values.

Aim
To find the (asymptotic) distribution of the whole block

X1, . . . ,Xr conditionally on ∃i = 1, . . . , r : Xi ∈ B

Challenges

I By (FiCl), however, most variables Xi will somehow ‘vanish’
asymptotically.

I The interesting observations will occur at some random time
instant in the middle of the block.



Framework

I Metric space (S, d)

I Failure set B = {x ∈ S : d(x, q) > 1} for some q ∈ S
I Random triangular array {Xin : n > 1, 1 6 i 6 rn} in S

I row length rn →∞
I stationary rows (X1n, . . . ,Xrnn)
I failure probability pn = P[d(X1n, q) > 1] > 0
I rnpn = E[

∑rn
i=1I{d(Xin, q) > 1}]→ 0

I The point q acts as a ‘black hole’ for non-extreme values

Example

I S = Rd

q = 0
B = {x ∈ Rd : |x| > 1}

I Xin = Xi/an for some sequence 0 < an →∞



Problem statement

Aim
To find the limit distribution of quantities defined in terms of
(X1n, . . . ,Xrnn) given

⋃rn
i=1I{d(Xin, q) > 1}?

Example
Cluster point process Nn on S \ {q}:

Nn =
∑rn

i=1δXin given
⋃rn

i=1{d(Xin, q) > 1}



Cluster process

On the event
⋃rn

i=1{d(Xin, q) > 1}:
I First hitting time αn = min{i = 1, . . . , rn : d(Xin, q) > 1}
I Cluster process ξn = (ξn,t)t∈Z

ξn,t =

{
Xαn+t,n if 1 6 αn + t 6 rn

q otherwise

Intuitively, the vector (X1n, . . . ,Xrnn) is
I ‘anchored’ at the first hitting time αn of the failure set;
I extended on the left and on the right by the constant sequence (q)

. . . , q, X1n, . . . ,Xαn−1,n,Xαn,n,Xαn+1,n, . . . , Xrn,n, q, . . .

. . . , ξn,−αn , ξn,−αn+1, . . . , ξn,−1, ξn,0, ξn,1, . . . , ξn,rn−αn+1, ξn,rn−αn , . . .



Mathematical problem statement

To establish weak convergence of
the cluster process ξn in the space (E, ρ), where

E = {x ∈ SZ : d(x0, q) > 1 and xt → q as t→ ±∞}
ρ(x, y) = sup

t∈Z
d(xt, yt)

I E is the space of S-valued sequences converging to q.
I The metric ρ induces the topology of uniform convergence.



Tentative application: point process convergence

Since the cluster point process Nn on S \ {q} admits the representation

Nn =

rn∑
i=1

δXin = T(ξn)

for a continuous map

T : (E, e) → Mp(S \ {q})
(xt)t∈Z 7→

∑
t∈Z δxt

point process convergence would follow
from weak convergence of ξn in E



Tentative application: cluster functionals

Recall A =
⋃

r>1 Ar and Ar = {(x1, . . . , xr) : maxj d(xj, q) > 1}
I disjoint union
I product topology

Consider the projection map

π : E → A
(xt)t 7→ (xα, . . . , xω)

α(x) = min{t : d(xt, q) > 1}
ω(x) = max{t : d(xt, q) > 1}

Since π is continuous, weak convergence in E of ξn = (ξn,t)t

would imply weak convergence in A of the cluster

π(ξn) = (Xα,n, . . . ,Xω,n)



Assumption: tail process

Assume there exists a random sequence (Yt)t∈Z in S
such that for every integer k > 0,

P[(X1n, . . . ,X2k+1,n) ∈ · | d(Xk+1,n, q) > 1]

d−→P[(Y−k, . . . ,Yk) ∈ · ]

Schematically, we have

X1n, . . . ,Xk,n, Xk+1,n, Xk+2,n, . . . ,X2k+1,n
d−→ Y−k, . . . ,Y−1, Y0, Y1, . . . ,Yk

‘past’ ‘present’ ‘future’

Also, assume P[d(Yt, q) = 1] = 0 for all t ∈ Z.



Assumption: finite-cluster condition

For all δ > 0, as m→∞,

lim sup
n→∞

P[
⋃rn

i=m+1{d(Xin, q) > δ} | d(X1n, q) > 1]

lim sup
n→∞

P[
⋃rn−m

i=1 {d(Xin, q) > δ} | d(Xrnn, q) > 1]

→ 0

This will ensure, among others, that lim|t|→∞ Yt = q a.s.



Weak convergence of the cluster process

Theorem
When the tail process exists and the finite-cluster condition holds,
I the tail sequence (Yt)t∈Z hits the failure set finitely often:

P[d(Y0, q) > 1, Yt → q as t→ ±∞] = 1

I with positive probability, the tail process hits the failure set for
the first time at t = 0:

θ = P[∀t 6 −1 : d(Yt, q) 6 1] > 0

I the cluster process converges weakly in E:

P[ξn ∈ · |
⋃rn

i=1{d(Xin, q) > 1}]
d−→ P[(Yt)t∈Z ∈ · | ∀t 6 −1 : d(Yt, q) 6 1]

[Segers 20xx]



Corollary: Point process convergence

Under the conditions of the theorem,

Nn
d−→ N

in Mp(S \ {q}), where

Nn
d
=

∑rn
i=1δXin given

⋃rn
i=1{d(Xin, q) > 1}

N d
=

∑
t∈ZδYt given

⋂
t6−1{d(Yt, q) 6 1}



Corollary: Convergence of cluster stretches

Recall the cluster map C : A→ A,
with A =

⋃
r>1 Ar and Ar = {(x1, . . . , xr) ∈ Sr : maxj d(xj, q) > 1}.

Under the conditions of the theorem, we have

C(X1n, . . . ,Xrnn) = (Xαn,n, . . . ,Xωn,n)

d−→ [(Y0, . . . ,Yτ ) given ∀t 6 −1 : d(Yt, q) 6 1]

with τ = max{t ∈ Z : d(Yt, q) > 1}

How does this relate to previous results on cluster functionals?



Linking up with cluster functional theory
For a bounded, continuous cluster functional c : A→ R,

E[c(X1n, . . . ,Xrnn) | ∃i = 1, . . . , rn : d(Xin, q) > 1]

→E[c(Y0, . . . ,Yτ ) | ∀t 6 −1 : d(Yt, q) 6 1]

=E[c((Yt)t>0) | ∀t 6 −1 : d(Yt, q) 6 1]

=
E[c((Yt)t>0);∀t 6 −1 : d(Yt, q) 6 1]

P[∀t 6 −1 : d(Yt, q) 6 1]

=
1
θ
{E[c((Yt)t>0)]− E[c((Yt)t>0);∃t 6 −1 : d(Yt, q) > 1]}

However, by the earlier limiting-cluster-distribution theorem,

E[c(X1n, . . . ,Xrnn) | ∃i = 1, . . . , rn : d(Xin, q) > 1]

→ 1
θ
{E[c((Yt)t>0)]− E[c((Yt)t>1);∃t > 1 : d(Yt, q) > 1]}

Equality follows from a ‘time-change formula’.



Summary: Cluster of extremes

I Description via cluster functionals or the cluster map
I General state space
I Change of conditioning event:
From: Conditional distribution of an excited block

To: Conditional distribution of a stretch given an excited initial value

I Approximate cluster distributions
I Limiting cluster distributions if the tail process exists
I Looking beyond the cluster: convergence in sequence space

I First hitting time serves as time origin



Part II

Regular Variation and Tail Processes
— with B. Basrak and T. Meinguet



Tail processes and spectral processes:
Concise descriptions of extremal dependence

I Point processes of extremes [Davis & Hsing 1995; Davis & Mikosch 1998; Basrak & S. 2009]

I Cluster functionals [Yun 2000; S. 2003]

I Extremograms [Davis & Mikosch 2009]

I Empirical tail processes [Drees & Rootzén 2010]

I Joint survival functions, tail dependence coefficients [S. 2007; Meinguet &

S. 2010]

I Large deviations [Mikosch & Wintenberger 2012a,b]

I Central limit theorems with non-Gaussian stable limits
[Barkiewicz et al. 2011; Basrak, Krizmanić & S. 2012]

I . . .



Time series of random functions:
Dependence over space in time

Physical quantity observed in space and over time

Xt(x) = value at time t at location x

Space coordinate x varies over a grid – high-dimensional!

Think of x as varying continously over space
 For fixed t, view Xt( · ) as a random function
 Time series

(
Xt( · )

)
t∈Z of random functions

Goal: to model

Space – cross-sectional tail dependence

Time – clusters



The proper function space
depends on the context

I Maximal temperature over S ⊂ [0, 1]2:

sup
x∈S

Xt(x)

 Space of C([0, 1]2) of continuous functions
I Aggregated rainfall over S ⊂ [0, 1]2:∫

S
Xt(x) dx

 Space L1([0, 1]2) of integrable functions
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Regular variation

Heavy tails: power-law behaviour

Mathematical description: regular variation

space tail

R x→∞
R |x| → ∞
Rd maxj xj →∞
Rd ‖x‖ → ∞
B ‖x‖ → ∞



Defining regular variation

Regular variation can be defined/characterized in multiple ways:
I limits of functions
I vague/M0 convergence of measures on punctured spaces
I weak convergence of finite measures on the unit sphere
I weak convergence of conditional probability distributions

To study regular variation of time series and clustering extremes,
the latter view is quite convenient:

1. On R, at∞
2. On R, at ±∞
3. On Rd

4. On a Banach space B



Regular variation at infinity is equivalent to
weak convergence of relative excesses

A rv X is regularly varying (RV) at infinity with index α > 0 if

lim
u→∞

P(X > uy)

P(X > u)
= y−α, y > 0

For y > 1, this is can be written as

lim
u→∞

P(X/u > y | X > u) = y−α = P(Y > u)

RV(α)⇔ weak convergence of relative excesses:

L (X/u | X > u)
d−→ L (Y) = Pareto(α), u→∞



Regular variation on the real line is equivalent to
weak convergence of certain conditional distributions (1)

A rv X is regularly varying with index α > 0 if, as u→∞,

P(|X| > uy)

P(|X| > u)
→ y−α (y > 0)

P(X > u)

P(|X| > u)
→ p

Equivalent to weak convergence of conditional distributions:

L
(
|X|/u

∣∣ |X| > u
) d−→ L (Y) ∼ Pareto(α) radius

L
(
X/|X|︸ ︷︷ ︸
sign(X)

∣∣ |X| > u
) d−→ L (Θ) angle

as u→∞, where P(Θ = +1) = p
P(Θ = −1) = 1− p



Regular variation on the real line is equivalent to
weak convergence of certain conditional distributions (2)

Also jointly: X is RV with index α > 0 if, as u→∞,

L

(
|X|
u
,

X
|X|

∣∣∣∣ |X| > u
)

d−→ L (Y,Θ)

where
I Y ∼ Pareto(α)

I P(Θ = +1) = p
P(Θ = −1) = 1− p

I Y and Θ are independent

Regular variation also equivalent to

L (X/u | |X| > u)
d−→ L (YΘ)



Regular variation in Euclidean space is equivalent to
weak convergence of certain conditional distributions (1)

A random vector X in Rd is regularly varying with index α > 0
if for all y > 0,

P(‖X‖ > uy, X/‖X‖ ∈ · )
P(‖X‖ > u)

w−→ y−α H( · ), u→∞

for some probability measure H on Sd−1 = {x ∈ Rd | ‖x‖ = 1}.

Equivalent to weak convergence of conditional distributions:

L (‖X‖/u | ‖X‖ > u)
d−→ L (Y) = Pareto(α) radius

L (X/‖X‖ | ‖X‖ > u)
d−→ L (Θ) = H angle

as u→∞



Weak convergence of the radius and the angle separately
implies their weak convergence jointly

For bounded, continuous f : Sd−1 → R and for y > 1, as u→∞,

E
[

f
(

X
‖X‖

)
;
‖X‖

u
> y

∣∣∣∣ ‖X‖ > u
]

= E
[

f
(

X
‖X‖

) ∣∣∣∣ ‖X‖ > uy
]

︸ ︷︷ ︸
→E[f (Θ)]

P(‖X‖ > uy)

P(‖X‖ > u)︸ ︷︷ ︸
→y−α=P(Y>y)

→ E[f (Θ); Y > y]

for Y ∼ Pareto(α), independent of Θ



Regular variation in Euclidean space is equivalent to
weak convergence of certain conditional distributions (2)

A random vector X is RV with index α > 0 and angular measure H if

L

(
‖X‖

u
,

X
‖X‖

∣∣∣∣ ‖X‖ > u
)

d−→ L (Y,Θ)

where
I Y ∼ Pareto(α)

I Θ ∼ H
I Y and Θ are independent

Finally, regular variation is also equivalent to

L (X/u | ‖X‖ > u)
d−→ L (YΘ), u→∞



Regular variation in a Banach space:
weak convergence of conditional distributions

Multivariate regular variation in normed spaces: similarly.
[Hult & Lindskog 2005]

A random element X of a Banach space B is regularly varying if

L (X/u | ‖X‖ > u)
d−→ L (Y), u→∞

and Y is such that ‖Y‖ > 1 is non-degenerate.

Necessarily
I ‖Y‖ ∼ Pareto(α) for some α > 0
I ‖Y‖ and Θ = Y/‖Y‖ are independent

and therefore

L

(
‖X‖

u
,

X
‖X‖

∣∣∣∣ ‖X‖ > u
)

d−→ L (‖Y‖,Θ), u→∞



For the vague-convergence aficionados:
yes you can, but. . .

Regular variation on Euclidean spaces often defined via
vague convergence of measures:
I Convergence of integrals of continuous functions with compact

support
I Multivariate regular variation on Rd: for some V ∈ RV−α,

1
V(u)

P
[

X
u
∈ ·
]

v−→ µ( · ), u→∞.

Vague convergence on [−∞,+∞]d \ {0}
For infinite-dimensional B, vague convergence collapses:
I B not locally compact
I f : B→ R continuous and compactly supported implies f ≡ 0



Replace vague convergence by M0-convergence

M0-convergence:

“Weak convergence of finite measures on
sets bounded away from the origin.”

[Hult & Lindskog 2006]

X is regularly varying of index α if for some V ∈ RV−α,

1
V(u)

P
[

X
u
∈ ·
]

M0−→ µ( · ), u→∞

the limit measure µ being non-null.

Extension to regular variation on star-shaped metric spaces.
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Joint regular variation of a time series:
What does it mean?

Let B be a separable Banach space
I E.g. Rd, C([0, 1]), Lp, `p

I Separability assumed out of convenience.
Probably not needed everywhere.
Excludes for instance D([0, 1]) and spaces of usc functions

Let (Xt)t∈Z be a strictly stationary time series in B.
I Law of (Xs+h, . . . ,Xt+h) does not depend on h.

Joint regular variation of the whole series (Xt)t∈Z?



The raw definition involves a cascade of angular measures

(Xt)t∈Z is (jointly) regularly varying with index α > 0
if for all s 6 t ∈ Z, the vector (Xs, . . . ,Xt) in Bt−s+1

is regularly varying with the same index.

Wlog s = 1 6 t. Let Ht be the spectral measure of (X1, . . . ,Xt):

L

(
(X1, . . . ,Xt)

‖(X1, . . . ,Xt)‖

∣∣∣∣ ‖(X1, . . . ,Xt)‖ > u
)

d−→ Ht, u→∞

I Ht is a probability measure on the unit sphere in Bt.
I The measures H1,H2,H3, . . . are linked somehow.
I Idem for M0-convergence to limit measures µt.



Changing the conditioning event
yields a unique limit object

Let (Xt)t∈Z be a stationary time series in B and let α > 0.

Theorem
The following statements are equivalent:

(i) (Xt)t∈Z is regularly varying with index α.

(ii) The function u 7→ P(‖X0‖ > u) belongs to RV−α and

L
(
(Xt/‖X0‖)t∈Z

∣∣ ‖X0‖ > u
) d−→ (Θt)t∈Z (u→∞)

(iii) For Y ∼ Pareto(α) independent from some (Θt)t∈Z,

L
(
‖X0‖/u, (Xt/‖X0‖)t∈Z

∣∣ ‖X0‖ > u
) d−→

(
Y, (Θt)t∈Z

)
(u→∞)

(iv) For Y ∼ Pareto(α) independent from some (Θt)t∈Z,

L
(
(Xt/u)t∈Z | ‖X0‖ > u

) d−→ (YΘt)t∈Z (u→∞)



Reconstructing the M0-limit measures
from the spectral process or tail process

I Spectral process: the unique limit process (Θt)t∈Z in (ii)–(iv).
I Tail process: the process Yt = YΘt in (iii)

The M0-limit in Bt punctured at the origin

1
P(‖X0‖ > u)

P[(X1/u, . . . ,Xt/u) ∈ · ] M0−→ µt (u→∞)

is given by

∫
Bt

f dµt =
t∑

j=1

∫ ∞
0

E
[

f (0, . . . , 0, rΘ0, . . . , rΘt−j)

I
(

max
−j+16i6−1

‖Θi‖ = 0
)]

d(−r−α)



The spectral process versus the spectral measure

I Special case t = 0:

L (X0/‖X0‖ | ‖X0‖ > u)
d−→ L (Θ0), u→∞

so L (Θ0) is the spectral measure H0 of X0.
Clearly, ‖Θ0‖ = 1.

I For general t ∈ Z,

L (Xt/‖X0‖ | ‖X0‖ > u)
d−→ L (Θt), u→∞

so ‖Θt‖ 6= 1 in general if t 6= 0.
By stationarity, the spectral measure of Xt is H0 too.



The tail and spectral processes of a stationary process
are in general non-stationary

Example (Independence)
If (Xt)t∈Z is iid and X0 is regularly varying,

L ((u−1Xt)t∈Z | ‖X0‖ > u)
fidi−−→ L (. . . , 0, 0,Y0, 0, 0, . . .)

Example (Full dependence)
If Xt = X0 for all t ∈ Z and X0 is regularly varying,

L ((u−1Xt)t∈Z | ‖X0‖ > u)
fidi−−→ L (. . . ,Y0,Y0,Y0, . . .)
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Stationarity of (Xt)t∈Z induces a
subtle structure on the tail/spectral process

Claim. P(Θ−t 6= 0) = E[‖Θt‖α]

Proof – step 1:
Since Y−t = ‖Y0‖Θ−t,

P(Θ−t 6= 0) = P(Y−t 6= 0)

= lim
r→0

P(‖Y−t‖ > r)

= lim
r→0

lim
u→∞

P(‖X−t‖/u > r | ‖X0‖ > u)

Calculate the two limits.



Stationarity of (Xt)t∈Z induces a
subtle structure on the tail/spectral process

Claim. P(Θ−t 6= 0) = E[‖Θt‖α]

Proof – step 2:
Limit as u→∞: By stationarity and regular variation

P(‖X−t‖/u > r | ‖X0‖ > u)

= P(‖X0‖/u > r | ‖Xt‖ > u)

=
P(‖X0‖ > ur, ‖Xt‖ > u)

P(‖Xt‖ > u)

=
P(‖X0‖ > ru)

P(‖Xt‖ > u)︸ ︷︷ ︸
→r−α

P(r‖Xt‖ > ru | ‖X0‖ > ru)︸ ︷︷ ︸
→P(r‖Yt‖>1)

→ r−α P(r‖Yt‖ > 1)

as u→∞.



Stationarity of (Xt)t∈Z induces a
subtle structure on the tail/spectral process

Claim. P(Θ−t 6= 0) = E[‖Θt‖α]

Proof – step 3:
Limit as r → 0: Since Yt = ‖Y0‖Θt,

r−α P(r‖Yt‖ > 1) = r−α
∫ ∞

1
P(ry‖Θt‖ > 1) d(−y−α)

=

∫ r−α

0
P(‖Θt‖α > x) dx

r→0−−→
∫ ∞

0
P(‖Θt‖α > x) dx = E[‖Θt‖α]

QED



Forward and backward process:
Restricting the spectral process to the future or the past

A stationary process (Xt)t∈Z in B has a forward tail process (Yt)t>0 if

L
(
(Xt/u)t>0 | ‖X0‖ > u

) fidi−−→ L
(
(Yt)t>0

)
Idem: backward tail process, forward/backward spectral process.

The property P(Θ−t 6= 0) = E[‖Θt‖α] suggests that we can infer the
distribution of the backward process from the forward one.



Time-change formula:
How a time-shift affects the spectral process

Theorem
Statements (ii)–(iv) in the previous theorem are equivalent to the same
statements with Z replaced by Z+ or Z−.

In that case,

E[f (Θ−s, . . . ,Θt)] = E
[

f
(

Θ0

‖Θs‖
, . . . ,

Θt+s

‖Θs‖

)
‖Θs‖α I(‖Θs‖ > 0)

]
for all nonnegative integer s and t and for all integrable functions
f : Bt+s+1 → R such that f (θ−s, . . . , θt) = 0 whenever θ−s = 0.

Considering the time-reversed process X̃t = X−t

yields a similar reduction to the backward spectral process.



Understanding the time-change formula (1)

Assume B = R, α = 1, and Xt > 0 a.s., so Θ0 = 1.

The time-change formula at s = 1 and t = 0 implies that for
integrable f : [0,∞)→ R such that f (0) = 0,

E[f (Θ−1)] = E[f (1/Θ+1) Θ+1]

E[f (Θ+1)] = E[f (1/Θ−1) Θ−1]

Let µ be the limit measure of (Xt−1,Xt) on [0,∞]2 \ {(0, 0)}:

1
P(X0 > u)

P[u−1(Xt−1,Xt) ∈ · ]
v−→ µ( · ) (u→∞)

To be applied to both (X0,X1) and to (X−1,X0):
duality relation between Θ1 and Θ−1.



Understanding the time-change formula (2)

By definition of µ, Θ1 and Θ−1 (Picture!):

P(Θ1 6 z) = lim
u→∞

P
[

X1

X0
6 z

∣∣∣∣X0 > u
]

= lim
u→∞

1
P(X0 > u)

P
[

X1/u
X0/u

6 z, X0/u > 1
]

= µ{(x, y) : y/x 6 z, x > 1}

P(Θ−1 6 z) = lim
u→∞

P
[

X0

X1
6 z

∣∣∣∣X1 > u
]

= . . .

= µ{(x, y) : x/y 6 z, y > 1}

Link between Θ1 and Θ−1 follows if we can solve for µ.



Solving for the limit measure
If f : [0,∞)2 → R (bounded, continuous) vanishes on [0, δ]× [0,∞),∫

f dµ = lim
u→∞

1
P(X0 > u)

E[f (X0/u,X1/u)]

= lim
u→∞

P(X0 > δu)

P(X0 > u)
E[f (X0/u,X1/u) | X0 > δu]

= δ−1 E[f (δY0, δY1)]

= δ−1
∫ ∞

1
E[f (δy, δyΘ1)] d(−y−1)

=

∫ ∞
δ

E[f (r, rΘ1)] d(−r−1)

=

∫ ∞
0

E[f (r, rΘ1)] d(−r−1)

I Formula extends to f such that f (0, y) = 0.
I For more general f , decompose

f (x, y) = {f (x, y)− f (0, y)}+ f (0, y)



Symmetry

µ is symmetric if and only if Θ−1
d
= Θ1.

Example
If µ corresponds to the Hüsler–Reiss max-stable distribution,
we have Θ−1

d
= Θ1 Lognormal with unit expectation.
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Joint survival function when applying linear functionals

I Let {0, t} ⊂ I ⊂ {0, . . . , t}.
I For i ∈ I, let 0 6= b∗i ∈ B∗, the dual of B

I b∗i : B→ R linear and bounded

By conditioning on the events ‖X0‖ > u/‖b∗0‖ or ‖Xt‖ > u/‖b∗t ‖,

lim
u→∞

P(∀i ∈ I : b∗i Xi > u)

P(‖X0‖ > u)
= E[min{(b∗i Θi)

α
+ : i ∈ I}]

= E[min{(b∗i Θi−t)
α
+ : i ∈ I}]

Equality of the expectations follows from the time-change formula.



Proof via conditioning and the spectral representation

Proof of
P(∀i ∈ I : b∗i Xi > u)

P(‖X0‖ > u)
→ E[min{(b∗i Θi)

α
+ : i ∈ I} :

Step 1: calculate the limit as u→∞.
Since b∗0X0 > u implies ‖X0‖ > u/‖b∗0‖,

P(∀i ∈ I : b∗i Xi > u)

P(‖X0‖ > u)

=
P(‖X0‖ > u/‖b∗0‖)

P(‖X0‖ > u)
P(∀i ∈ I : b∗i Xi > u | ‖X0‖ > u/‖b∗0‖)

→ ‖b∗0‖α P(∀i ∈ I : b∗i Yi > ‖b∗0‖)



Proof via conditioning and the spectral representation

Proof of
P(∀i ∈ I : b∗i Xi > u)

P(‖X0‖ > u)
→ E[min{(b∗i Θi)

α
+ : i ∈ I} :

Step 2: Reduce the tail process to the spectral process.
Recall Yi = YΘi with Y ∼ Pareto(α) independent of (Θi)i.

‖b∗0‖α P(∀i ∈ I : b∗i Yi > ‖b∗0‖)

= ‖b∗0‖α
∫ ∞

1
P(∀i ∈ I : b∗i (yΘi) > ‖b∗0‖) d(−y−α)

=

∫ ‖b∗0 ‖α
0

P{∀i ∈ I : (b∗i Θi)
α
+ > u} du

=

∫ ∞
0

P{∀i ∈ I : (b∗i Θi)
α
+ > u} du

= E[min{(b∗i Θi)
α
+ : i ∈ I}]

using |b∗0Θ0| 6 ‖b∗0‖ ‖Θ0‖ = ‖b∗0‖. QED



Joint survival of the sequence of norms

Similarly, for bi ∈ (0,∞),

lim
u→∞

P(∀i ∈ I : bi‖Xi‖ > u)

P(‖X0‖ > u)
= E[min{bαi ‖Θi‖α : i ∈ I}]

= E[min{bαi ‖Θi−t‖α : i ∈ I}]

Equality of the expectations follows from the time-change formula.



Tail dependence coefficients

The coefficient of upper tail dependence between b∗X0 and b∗Xh,
for b∗ ∈ B∗ such that P(b∗Θ0 > 0) > 0:

lim
u→∞

P(b∗Xh > u | b∗X0 > u) =
E[min{(b∗Θ0)α+, (b∗Θh)α+}]

E[(b∗Θ0)α+]

=
E[min{(b∗Θ0)α+, (b∗Θ−h)α+}]

E[(b∗Θ0)α+]

The coefficient of tail dependence between ‖X0‖ and ‖Xh‖:

lim
u→∞

P(‖Xh‖ > u | ‖X0‖ > u) = E[min(‖Θh‖α, 1)]

= E[min(‖Θ−h‖α, 1)]



Extremogram

Extremogram: Extreme-value analogue of the correllogram:

ρA,B(h) = lim
n→∞

n P(X0/an ∈ A, Xh/an ∈ B),

I Regions A,B at least one of which stays away from the origin
I an > 0 satisfies nP(‖X0‖ > an)→ 1 as n→∞

[Davis & Mikosch 2009]

If A and B are continuity sets of the distributions of Y0 and Yh

respectively and if A ⊂ {x ∈ B : ‖x‖ > 1}, then

ρA,B(h) = lim
n→∞

P(X0/an ∈ A, Xh/an ∈ B | ‖X0‖ > an)

= P(Y0 ∈ A, Yh ∈ B).



Extremogram of the image under linear functionals

If

A = {x ∈ B : a∗x > 1},
B = {x ∈ B : b∗x > 1}

for some a∗, b∗ ∈ B∗, then

ρA,B(h) = lim
n→∞

n P(a∗X0 > an, b∗Xh > an)

= E[min{(a∗Θ0)α+, (b∗Θh)α+}]



Extremal index of the sequence of norms

The (candidate) extremal index [Leadbetter 1983] of (‖Xt‖)t∈Z:

θ = lim
m→∞

lim
u→∞

P
(

max
t=1,...,m

‖Xt‖ 6 u
∣∣∣∣ ‖X0‖ > u

)
= P

(
sup
t>1
‖Yt‖ 6 1

)
= E

[
sup
t>0
‖Θt‖α − sup

t>1
‖Θt‖α

]



Passing from the tail process to the spectral process

Proof of P(supt>1 ‖Yt‖ 6 1) = E[supt>0 ‖Θt‖α − supt>1 ‖Θt‖α]:
Writing Y = ‖Y0‖, since Y−α ∼ Uniform(0, 1) and since ‖Θ0‖ = 1,

P
(

sup
t>1
‖Yt‖ 6 1

)
= P

(
Y sup

t>1
‖Θt‖ 6 1

)
= P

(
sup
t>1
‖Θt‖α 6 Y−α

)
=

∫ 1

0
P
(

sup
t>1
‖Θt‖α 6 u

)
du

= 1− E
[

min
(

1, sup
t>1
‖Θt‖α

)]
= E

[
sup
t>0
‖Θt‖α − sup

t>1
‖Θt‖α

]
using the identity

∫ 1
0 P(ξ 6 u) du = 1−

∫∞
0 P{min(1, ξ) > u} du



Extremal index of the image under a linear functional

Let b∗ ∈ B∗ be such that P(b∗Θ0 > 0) > 0.
The (candidate) extremal index of (b∗Xt)t∈Z:

θ(b∗) = lim
m→∞

lim
u→∞

P
(

max
t=1,...,m

b∗Xt 6 u
∣∣∣∣ b∗X0 > u

)
= 1−

E[min{(b∗Θ0)α+, supt>1(b∗Θt)
α
+}]

E[(b∗Θ0)α+]

=
E[supt>0(b∗Θt)

α
+ − supt>1(b∗Θt)

α
+]

E[(b∗Θ0)α+]



Large deviations and the cluster index

B = R. Partial sums Sk = X1 + · · ·+ Xk.
For an > 0 such that n P(|X0| > an)→ 1, put

b+(k) = lim
n→∞

n P(Sk > an)

For certain Markov chains, the cluster index b+ exists:

b+ = lim
k→∞
{b+(k + 1)− b+(k)} = E

[(∑
t>0

Θt

)α
+

−
(∑

t>1

Θt

)α
+

]
Large deviations principle: for appropriate un, vn →∞,

lim
n→∞

sup
x∈(un,vn)

∣∣∣∣ P(Sn > x)

n P(|X0| > x)
− b+

∣∣∣∣ = 0

[Mikosch & Wintenberger 2012a,b; Wintenberger 2012]



Central limit theorems with stable, non-Gaussian limits

B = R and 0 < α < 2. Partial sums Sn = X1 + · · ·+ Xn

I Stable limits of the partial sums
[Bartkiewicz, Jakubowski, Mikosch, and Wintenberger 2011]

I Functional limit theorem in D[0, 1] with Skorohod’s M1 topology
(weaker than J1)
[Basrak, Krizmanić & S. 2012]

Limiting characteristic functions (Lévy measures) expressed in terms
of spectral process.
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To take home. . .

1 Regular variation and existence of the spectral process:

L
(
‖X0‖/u, (Xt/‖X0‖)t∈Z | ‖X0‖ > u

) fidi−−→ L
(
Y, (Θt)t∈Z

)
with Y ∼ Pareto(α) independent of (Θt)t∈Z

2 Time-change formula:
backward (t 6 0) versus forward (t > 0) spectral process

3 Using the spectral process for describing extremal dependence



Part III

Markov Processes
— with A. Janßen
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Set-up: multivariate Markov chain
with regularly varying initial distribution

Discrete-time, Rd-valued random process (Xt)t>0 defined by

Xt = Ψ(Xt−1, εt), t = 1, 2, . . . ,

where
I ε1, ε2, . . . are iid in a measurable space (E,E ), independent of X0

I Ψ : Rd × E→ Rd is measurable
I the law of X0 is multivariate regularly varying

If (Xt)t is stationary, it will be assumed to be defined for all t ∈ Z.



Commenting the framework:
Representation of the Markov chain

Rather than transition kernels, use the representation

Xt = Ψ(Xt−1, εt)

I Non-unique
I General, e.g. inverse (conditional) Rosenblatt (1952) transform

I εt iid uniform [0, 1]d

I Ψ(x, · ) vector of (conditional)2 quantile functions

I Arises naturally in examples, e.g. stochastic recurrence equation

Xt = AtXt−1 + Bt, εt = (At,Bt)



Aim: to find the spectral process of a
multivariate regularly varying Markov chain

We are looking for the weak limit (Mt)t, called spectral process, in

L
(
‖X0‖/u, (Xt/‖X0‖)t

∣∣ ‖X0‖ > u
) d−→ L

(
Y, (Mt)t

)
, u→∞

I α > 0 is the index of regular variation of X0

I Y is Pareto(α), i.e. P[Y > y] = y−α for y > 1
I Y is independent of (Mt)t

Continuous mapping theorem:

L
(
(Xt/u)t

∣∣ ‖X0‖ > u
) d−→ L

(
(YMt)t

)
, u→∞



The spectral process and the extremogram:
two sides of the same coin

Linking the spectral process and the extremogram [Davis & Mikosch 2009]:

I For nice sets A,B ⊂ Rd such that A ⊂ {x : ‖x‖ > 1},

ρAB(h) = lim
u→∞

P[u−1Xh ∈ B | u−1X0 ∈ A]

= P[YMh ∈ B | YM0 ∈ A], h = 0, 1, 2, . . .

I Conversely, from the extremogram of the lagged-h process

Yt,h = vec(Xt−h+1, . . . ,Xt),

one deduces the 2hd-dimensional distributions of the spectral
process.



Main findings

Markov spectral processes (Mt)t verify the following properties:
I The forward (t > 0) and backward (t 6 0) chains are adjoint
I The forward and backward spectral processes are Markov chains
I They enjoy a certain scaling property

Univariate case: (to be thought of as) multiplicative random walks
[Smith 1992; Perfekt 1994; Yun 2000; Bortot & Coles 2000/2003; S. 2007; Resnick & Zeber 2011]

General: back-and-forth tail chain
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Condition: regularly varying initial distribution

The distribution of X0 is regularly varying with
I index α > 0
I spectral/angular measure H on the unit sphere Sd−1

L (‖X0‖/u, X0/‖X0‖ | ‖X0‖ > u)
d−→ L (Y,M0), u→∞

where
I M0 ∼ H
I Y is Pareto(α), i.e. P[Y > y] = y−α for y > 1
I Y and M0 are independent



Condition: asymptotic scaling of the update function

Recall
Xt = Ψ(Xt−1, εt)

1. With probability one and for all H-almost every s ∈ Sd−1,

lim
u→∞

Ψ
(
u s(u), εt

)
u

= φ(s, εt)

whenever s(u)→ s as u→∞.

2. If P[φ(s, εt) = 0] > 0 for some s in the support of H,
then with probability one,

sup
‖x‖6u

|Ψ(x, εt)| = O(u), u→∞

Conditions easily verified in examples such as Xt = AtXt−1 + Bt.



Unfolding the recursion

Aim: to find the weak limit Mt, of Xt/‖X0‖, given ‖X0‖ > u→∞.
If ‖X0‖ is ‘large’:

M0
d
≈ X0

‖X0‖
∼ H

M1
d
≈ X1

‖X0‖
=

Ψ(X0, ε1)

‖X0‖
≈ φ

(
X0

‖X0‖
, ε1

)
d
≈ φ(M0, ε1),

M2
d
≈ X2

‖X0‖
=
‖X1‖
‖X0‖

Ψ(X1, ε2)

‖X1‖

≈ ‖X1‖
‖X0‖

φ

(
X1

‖X1‖
, ε2

)
=
‖X1‖
‖X0‖

φ

(
X1/‖X0‖
‖(X1/‖X0‖)‖

, ε2

)
d
≈ ‖M1‖φ

(
M1

‖M1‖
, ε2

)



Existence and description of the forward spectral process

Theorem
For a time-homogeneous Markov chain (Xt)t>0, under the previous
conditions,

L

(
‖X0‖

u
;

X0

‖X0‖
,

X1

‖X0‖
, . . .

∣∣∣∣ ‖X0‖ > u
)

d−→ L (Y; M0,M1, . . .)

with, for t > 1,

Mt = ‖Mt−1‖φ
(

Mt−1

‖Mt−1‖
, εt

)
I{‖Mt−1‖>0}

and
I Y,M0, ε1, ε2, . . . are independent
I Y ∼ Pareto(α)

I M0 ∼ H
I ε1, ε2, . . . iid (copies) as in the definition of (Xt)



Example: vector AR(1) – angular measure

Xt = AXt−1 + εt, t > 0

I deterministic A ∈ Rd×d such that ‖Am‖ < 1 for some m > 1
I εt iid regularly varying α > 0, angular measure λ
I X0, ε1, ε2, . . . independent

Then X0 is regularly varying with index α too and spectral measure

H =
∑
k>0

pkλk

I λk the angular measure of Akεt

I (pk)k>0 a discrete probability distribution given by A, λ and α

See Part IV Linear processes.



Example: vector AR(1) – forward tail process

The update function has the asymptotic scaling property:

φ(s, εt) = lim
u→∞

Ψ(u s(u), εt)

u

= lim
u→∞

A u s(u) + εt

u
= As, s ∈ Sd−1

The forward spectral process (Mt)t>0 is then simply

Mt = ‖Mt−1‖φ
(

Mt−1

‖Mt−1‖
, εt

)
= AMt−1

= · · ·
= AtM0



Extremes of Stationary Sequences

Set-up and main finding

Forward spectral processes

Time-change formula

Adjoint distributions

Back-and-forth spectral processes and the spectral process



Stationarity: existence of the full spectral process

Suppose in addition that (Xt)t is strictly stationary.
Without loss of generality, assume that Xt is defined for all t ∈ Z.

Corollary
Under the previous conditions, there exists a process (Mt)t∈Z s.t.

L

(
‖X0‖

u
; . . . ,

X−1

‖X0‖
,

X0

‖X0‖
,

X1

‖X0‖
, . . .

∣∣∣∣ ‖X0‖ > u
)

d−→ L (Y; . . . ,M−1,M0,M1, . . .), u→∞

[S. 2007; Basrak & S. 2009; Meinguet & S. 2010]



Existence of the spectral process and regular variation

I The fidis of the Markov chain (Xt)t∈Z are regularly varying
I Existence of the forward spectral process Mt, t > 0, implies

existence of the full spectral process Mt, t ∈ Z
I Reconstruct the full spectral process from the forward spectral

process via time-change formulas



Time-change formula:
Reconstructing the full tail process from the forward part

Corollary
For all integer h, s, t with s, t > 0 and for every measurable function
f : (Rd)s+1+t → R satisfying f (x−s, . . . , xt) = 0 whenever x0 = 0,

E[f (M−s−h, . . . ,Mt−h)]

= E
[

f
(

M−s

‖Mh‖
, . . . ,

Mt

‖Mh‖

)
‖Mh‖α I{‖Mh‖>0}]

[Basrak & S. 2009, Theorem 3.1(iii)]

I Change in distribution due to a time-shift of lag h ∈ Z
I Choosing s = 0 6 h yields at the right-hand side an expression

that depends on the forward tail process only
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Recapitulation

(Xt)t regularly varying Markov chain in Rd

Ψ update function: Xt = Ψ(Xt−1, εt)

φ scaling limit: Ψ(x, εt) ≈ ‖x‖φ( x
‖x‖ , εt) if ‖x‖ is large

Y Pareto(α) random variable
weak limit of ‖X0‖/u given ‖X0‖ > u as u→∞
α > 0 is the index of regular variation of ‖X0‖

Mt spectral process
weak limit of Xt/‖X0‖ given ‖X0‖ > u as u→∞

H spectral/angular measure of X0
law of M0, taking values in Sd−1 = {x : ‖x‖ = 1}



How to reconstruct the backward spectral process?

For Markov spectral processes (Mt)t:
I The forward spectral process admitted an explicit representation:

Mt = ‖Mt−1‖φ
(

Mt−1

‖Mt−1‖
, εt

)
I{‖Mt−1‖>0}, t > 1

I By the time-change formula,
the law of the backward spectral process (t 6 0)
is determined by the forward spectral process (t > 0)

How does the backward spectral process look like?

A first step: let us study the law of (M−1,M0). Recall:

L (X−1/‖X0‖ | ‖X0‖ > u)
d−→ L (M−1), u→∞



A special case of the time-change formula motivates
an adjoint relation between probability measures

The distributions of (M0,M1) and (M0,M−1) are “adjoint”.
I In the time-change formula, set s = 0 and h = t = 1:

E[f (M−1,M0)] = E
[

f
(

M0

‖M1‖
,

M1

‖M1‖

)
‖M1‖α I{‖M1‖>0}

]
for all f : (Rd)2 → R satisfying f (y0, y1) = 0 whenever y0 = 0

I Similarly, set s = 1, h = −1 and t = 0:

E[f (M0,M1)] = E
[

f
(

M−1

‖M−1‖
,

M0

‖M−1‖

)
‖M−1‖α I{‖M−1‖>0}]

for all f : (Rd)2 → R such that f (y−1, y0) = 0 whenever y0 = 0



Admissible distributions for the definition of the adjoint

The adjoint relation will be defined on a certain set Mα

of probability measures P on Sd−1 × Rd.
I Think of P as the law of (M0,M1) or (M0,M−1).

By definition, P belongs to Mα if for every Borel set S ⊂ Sd−1∫
Sd−1×(Rd\{0})

I
(

m
‖m‖

∈ S
)
‖m‖α P(ds, dm) 6 P(S× Rd)

We call Mα the set of admissible distributions.

In particular, setting S = Sd−1 yields∫
Sd−1×Rd

‖m‖α P(ds, dm) 6 1



Tail chain distributions are admissible

Let (Mt)t∈Z be the spectral process of a regularly varying stationary
Markov chain (Xt)t∈Z as before.

Lemma
The law of (M0,M1) belongs to Mα, i.e.

E
[

I
(

M1

‖M1‖
∈ S
)
‖M1‖α

]
6 P(M0 ∈ S)

for every Borel set S ⊂ Sd−1.

In particular, setting S = Sd−1 gives

E[‖M1‖α] 6 1



An adjoint relation between probability measures

For P ∈Mα, define a signed Borel measure P∗ on Sd−1 × Rd by:
I Restriction to Sd−1 × {0}: for S ⊂ Sd−1,

P∗(S× {0})

= P(S× Rd)−
∫
Sd−1×(Rd\{0})

I
(

m
‖m‖

∈ S
)
‖m‖α P(ds, dm)

I Restriction to Sd−1 × (Rd \ {0}): for E ⊂ Sd−1 × (Rd \ {0}),

P∗(E) =

∫
Sd−1×(Rd\{0})

I
(

(
m
‖m‖

,
s
‖m‖

) ∈ E
)
‖m‖α P(ds, dm)

We call P∗ the adjoint measure of P in Mα.



The adjoint is a true ‘adjoint’

Lemma
Let P ∈Mα and let P∗ be its adjoint measure.

(i) P∗ is a probability measure.

(ii) The marginal distributions of P and P∗ on Sd−1 are the same.

(iii) P∗ ∈Mα.

(iv) (P∗)∗ = P.

(v) For every measurable function f : Sd−1 × (Rd \ {0})→ R,∫
Sd−1×(Rd\{0})

f (s∗,m∗) P∗(ds∗, dm∗)

=

∫
Sd−1×(Rd\{0})

f
(

m
‖m‖

,
s
‖m‖

)
‖m‖α P(ds, dm)



The forward and backward increments of the spectral
process satisfy the adjoint relation

Let (Mt)t∈Z be the spectral process of a regularly varying stationary
Markov chain (Xt)t∈Z as before.

Corollary
The distributions of (M0,M1) and (M0,M−1) are adjoint.

Proof: Time-change formula.

Special case:

P[M−1 6= 0] = E[‖M1‖α],

P[M1 6= 0] = E[‖M−1‖α]



Special case: univariate and positive

I d = 1, Sd−1 = {−1, 1}
I If P ∈Mα has P({−1} × R) = 0,

then P must be concentrated on {+1} × [0,∞)

I Then so is P∗ and for B ⊂ (0,∞)

P∗({+1} × B) =

∫
s=+1,m>0

I
(

1
m
∈ B
)

mα P(ds, dm)

I Examples if α = 1:
I If P is lognormal with unit expectation, then P = P∗

I If P is Bernoulli, then P = P∗

I If P is unit exponential,
then P∗ is the law of 1/(E1 + E2), with E1,E2 iid unit exponential
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Taking stock

I Initial state: M0 ∼ H angular measure of X0

I Forward spectral process: M0, ε1, ε2, . . . are independent and

Mj = ‖Mt−1‖φ
(

Mt−1

‖Mt−1‖

)
I{‖Mt−1‖>0}, t = 1, 2, . . .

I Laws of (M0,M1) and (M0,M−1) are adjoint
I Time-change formula

How does the backward spectral process Mt, t 6 0, look like?



Back-and-forth spectral process

A process (Mt)t∈Z in Rd is called a back-and-forth tail chain with
index α ∈ (0,∞), notation BFTC(α), if:

(i) L (M0,M1) and L (M0,M−1) belong to Mα and are adjoint;

(ii) the forward chain (Mt)t>0 is a Markov chain with respect to the
filtration σ(Ms, s 6 t), t > 0, and the Markov kernel satisfies

P[Mt ∈ · | Mt−1 = xt−1]

=

{
δ0( · ) if xt−1 = 0,
P[‖xt−1‖M1 ∈ · | M0 = xt−1/‖xt−1‖] if xt−1 6= 0;

(iii) the backward chain (M−t)t>0 is a Markov chain with respect to
the filtration σ(M−s, s 6 t), t > 0, and satisfies the same relation
as in (ii) with t − 1 and t replaced by −t + 1 and −t respectively



Time-change formula for a BFTC

Let (Mt)t∈Z be a BFTC(α).

Theorem
For all integer s, t > 0 and for all measurable functions
f : R(s+1+t)d → R vanishing on {0} × R(s+t)d, the s + 1 numbers

E
[

f
(

M−s+h

‖Mh‖
, . . . ,

Mt+h

‖Mh‖

)
‖Mh‖α I{Mh 6=0}

]
, h = 0, . . . , s,

are all the same, in the sense that if one integral exists, then they all
exist and they are equal.

The case s = 1 and t = 0 is just the adjoint relation between the
distributions of (M0,M1) and (M0,M−1).



Identifying a back-and-forth tail chain from its forward part

Theorem
Let (Yt)t∈Z be a process in Rd and let (Mt)t∈Z be a BFTC(α) in Rd.

If

1. L (Y0, . . . ,Yt) = L (M0, . . . ,Mt) for all t > 0

2. for all h, s, t ∈ Z with s, t > 0 and for all bounded, measurable
f : (Rd)s+1+t → R satisfying f (y−s, . . . , yt) = 0 whenever
y0 = 0,

E[f (Y−s−h, . . . ,Yt−h)] = E
[

f
(

Y−s

‖Yh‖
, . . . ,

Yt

‖Yh‖

)
‖Yh‖αI{‖Yh‖>0}

]
then

L (Y−s, . . . ,Yt) = L (M−s, . . . ,Mt), s, t > 0.



Markov spectral processes are back-and-forth tail chains

Every (Mt)t∈Z whose forward part (t > 0) has a BFTC(α) structure,
must be a full (t ∈ Z) BFTC(α). In particular:

Corollary
The spectral process (Mt)t∈Z of a regularly varying, stationary
Markov chain (Xt)t∈Z satisfying the earlier conditions is a BFTC(α).



Univariate back-and-forth tail chains are
sign-sensitive multiplicative random walks

I P a law on {−1,+1} × R in Mα; adjoint P∗

I (Mt)t∈Z a BFTC(α) with (M0,M1) ∼ P and (M0,M−1) ∼ P∗

I Then for t > 1,

Mt =


|Mt−1|At if Mt−1 > 0,
0 if Mt−1 = 0,
|Mt−1|Bt if Mt−1 < 0;

M−t =


|M−t+1|A−t if M−t+1 > 0,
0 if M−t+1 = 0,
|M−t+1|B−t if M−t+1 < 0;

where the increments A±t and B±t are independent, with laws
determined by P and P∗, and independent of M0 ∈ {−1, 1}

‘Tail switching potential’ [Bortot & Coles 2003; S. 2007]



Example: vector AR(1) – back-and-forth tail process

Recall: deterministic A ∈ Rd×d, iid regularly varying (εt)t∈Z,

Xt = AXt−1 + εt =
∑
k>0

Akεt−k t ∈ Z

Mt = AtM0 t > 0

Full BFTC(α):

M−N+h =

{
AhM−N if h > 0
0 otherwise

where
I N is a certain random nonnegative integer
I conditionally on N, the distribution of M−N is determined by A,

the angular measure of εt, and α > 0.



Conclusion: structure of Markov spectral processes

I Tail chains give information on the extremes of
multivariate regularly varying Markov chains

I Markov spectral processes are back-and-forth tail chains:
I The forward and backward spectral processes are Markov chains

too
I The forward (t > 0) and backward (t 6 0) chains are adjoint
I They enjoy a certain scaling property
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Time series of random functions

Physical quantity observed in space and over time

Xt(x) = value at time t at location x

Space coordinate x varies over a grid – high-dimensional!

Think of x as varying continously over space
 For fixed t, view Xt( · ) as a random function
 Time series

(
Xt( · )

)
t∈Z of random functions

Goal: to model extremal dependence in

Space – cross-sectional tail dependence

Time – clusters



Example: Autoregressive process

Define Xt( · ) recursively by

Xt(x) =

∫
K(x, y) Xt−1(y) dy + Zt(x)

Model ingredients:
I Kernel K(x, y): from location y now to location x tomorrow
I Zt iid random functions: innovations – heavy tails!

More general: linear time series



Regular variation in a Banach space
is weak convergence of conditional distributions

A random element X of a Banach space B is regularly varying if

L (X/u | ‖X‖ > u)
d−→ L (Y), u→∞

for Y such that ‖Y‖ > 1 is non-degenerate.

Necessarily
I ‖Y‖ ∼ Pareto(α) for some α > 0
I ‖Y‖ and Θ = Y/‖Y‖ are independent

and therefore

L

(
‖X‖

u
,

X
‖X‖

∣∣∣∣ ‖X‖ > u
)

d−→ L (Y,Θ), u→∞



Linear processes taking values in a Banach space

Two Banach spaces B1,B2.
A linear process (Xt)t∈Z is of the form

Xt =
∑
i∈Z

Ti(Zt−i)

where
I Zt are iid in B1

I Bounded linear operators Ti : B1 → B2

E.g.: AR(1) process (B1 = B2)

Xt = T(Xt−1) + Zt =
∑
i>0

T iZt−i
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Linear operators preserve regular variation

Let X be a regularly varying random element in B1 with index α > 0
and spectral measure H and let A : B1 → B2 be a bounded linear
operator. We have

P(‖AX‖ > u)

P(‖X‖ > u)
→
∫
S1

‖Aθ‖α H(dθ) (u→∞).

If H({θ ∈ S1 : Aθ 6= 0}) > 0, this limit is positive and AX is regularly
varying in B2 with index α and spectral measure HA∫

S2

g(θ) HA(dθ) =
1∫

S1
‖Aθ‖α H(dθ)

∫
S1

g
(

Aθ
‖Aθ‖

)
‖Aθ‖α H(dθ).

for HA-integrable g : S2 → R.



The transformed spectral measure can be simulated from
by a rejection algorithm

The expression for HA has the following probabilistic meaning:

HA = L

(
AΘ

‖AΘ‖

∣∣∣∣U 6 ‖AΘ‖α

‖A‖α

)
.

I Θ is a random element in S1 with distribution H
I U ∼ Uniform(0, 1) independent of Θ

Rejection algorithm
Generating a random draw ΘA from HA:

1. Draw Θ ∼ H and U ∼ Uniform(0, 1) independently.

2. If U 6 ‖AΘ‖α/‖A‖α, then return ΘA = AΘ/‖AΘ‖ and stop.

3. Otherwise, go back to step 1.
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Infinite random sums

Let B1 and B2 be real, separable Banach spaces.

Tail behavior of the B2-valued infinite random sum

X =
∑

n TnZn

I (Zn)n∈Z iid random elements in B1

I Tn : B1 → B2 bounded linear operators.

Possible extension: random linear operators (e.g. random matrices)
[Hult & Samorodnitsky 2008]



Convergence of the series

Put V(x) = P(‖Zn‖ > x). Assume V ∈ RV−α.
Suppose there exists δ with 0 < δ < min(α, 1) such that∑

n‖Tn‖δ <∞.

As E[‖Zn‖δ] =
∫∞

0 V(x1/δ) dx <∞, we have

E[(
∑

n ‖TnZn‖)δ] 6
∑

n ‖Tn‖δ E[‖Zn‖δ] <∞,

so that the series X =
∑

n TnZn converges absolutely almost surely.
Moreover, the tail of ‖X‖ is of the same order as the one of ‖Zn‖:

P(‖X‖ > x)

V(x)
6

P(
∑

n ‖Tn‖‖Zn‖ > x)

V(x)
→
∑

n ‖Tn‖α <∞

[Resnick 1987, Lemma 4.24; A.s. convergence under weaker conditions in Mikosch & Samorodnitsky (2000), Lemma A.3]



Regular variation of the summands

Now assume that the common distribution of the random elements Zn

is regularly varying with index α and spectral measure H. We have

lim
x→∞

P(‖TnZn‖ > x)

V(x)
=

∫
S1

‖Tnθ‖α H(dθ) =: cn.

Moreover, if cn > 0, then TnZn is regularly varying in B2 with index α
and with spectral measure Hn given by∫

S2

f (θ) Hn(dθ) =
1
cn

∫
S1

f (Tnθ/‖Tnθ‖) ‖Tnθ‖α H(dθ)

for Hn-integrable functions f : S2 → R.



The single-shock heuristic (1)
I Let (Zi)i∈Z be an iid sequence in B1.
I Let Ti : B1 → B2, i ∈ Z, be bounded linear operators.

Proposition
If

(i) x 7→ V(x) = P(‖Zi‖ > x) is RV−α for some α > 0,

(ii) limx→∞ P(‖TiZi‖ > x)/V(x) = ci ∈ [0,∞) for all i ∈ Z,

(iii)
∑

i‖Ti‖δ <∞ for some 0 < δ < min(α, 1),

then the series
∑

i TiZi is almost surely absolutely convergent and

lim
x→∞

1
V(x)

E
∣∣I(‖∑iTiZi‖ > x)−

∑
iI(‖TiZi‖ > x)

∣∣
= lim

x→∞

1
V(x)

E
∣∣I(∑i‖TiZi‖ > x)−

∑
iI(‖TiZi‖ > x)

∣∣
=0



The single-shock heuristic (2)

Corollary

lim
x→∞

P(‖
∑

iTiZi‖ > x)

V(x)
= lim

x→∞

P(
∑

i‖TiZi‖ > x)

V(x)

= lim
x→∞

∑
iP(‖TiZi‖ > x)

V(x)
=
∑

ici <∞.

Extension of Lemma 4.24 in Resnick (1987).



The spectral measure of the series
is a mixture of those of the summands

Proposition
If the common distribution of the independent random elements Zn

(n ∈ Z) is regularly varying with index α and spectral measure H and
if
∑

n‖Tn‖δ <∞, then

lim
x→∞

P(‖
∑

nTnZn‖ > x)

V(x)
= lim

x→∞

P(
∑

n‖TnZn‖ > x)

V(x)
=
∑

ncn <∞.

If
∑

ncn > 0, then the random series X =
∑

nTnZn is regularly
varying with index α too, its spectral measure HX being given by

HX =
∑

npnHn

pn =
cn∑
k ck

= lim
x→∞

P(‖TnZn‖ > x | ‖
∑

kTkZk‖ > x).



The spectral measure reflects the biggest-shock heuristic

The spectral measure HX can be written as

∫
f dHX =

∑
n∈Z

E
[

f
(

Tn(ΘZ)

‖Tn(ΘZ)‖

)
‖Tn(ΘZ)‖α

]
∑
n∈Z

E[‖Tn(ΘZ)‖α]
,

with ΘZ distributed according to the spectral measure of Z.



Special case: Linear combinations with random coefficients

In case B1 = R we can write B2 = B and the series X is an infinite
linear combination of the elements ψi = Ti(1) ∈ B with random
coefficients Zi:

X =
∑

i Zi ψi.

The spectral measure of X is equal to

HX = L (ΘZψN/‖ψN‖)

with
I ΘZ a random variable in {−1,+1}
I N an integer-valued random variable independent of ΘZ and s.t.

P(N = n) = pn =
‖ψn‖α∑
k ‖ψk‖α

(n ∈ Z)

[Davis & Resnick 1985; Embrechts, Klüppelberg, Mikosch, 1997; Davis & Mikosch 2006]
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Linear processes with regularly varying innovations

Rather than a single random series, we now study the linear process

Xt =
∑

i TiZt−i, t ∈ Z.

with
I (Zn)n∈Z is an iid sequence of RV(α) random elements in B1

I Tn : B1 → B2 are bounded linear operators such that∑
n ‖Tn‖δ <∞ for some 0 < δ < min(α, 1)

The random series defining Xt converges absolutely and (Xt)t∈Z is a
stationary time series in B2.



The signature of the series
given a shock at a certain moment

If cn > 0, where

cn =

∫
S1

‖Tnθ‖α H(dθ)

we can define a probability measure κn on the space BZ
2 of B2-valued

sequences endowed with the product topology by∫
BZ

2

f (θ−s, . . . , θt)κn
(
d(θn)n∈Z

)
=

1
cn

∫
S1

f
(

T−s+nθ

‖Tnθ‖
, . . . ,

Tt+nθ

‖Tnθ‖

)
‖Tnθ‖α H(dθ), (1)

for nonnegative integer s, t and for bounded and continuous
f : Bt+s+1

1 → R.



The spectral process is a
mixture over the signature patterns

Proposition
If
∑

n cn > 0, then (Xt)t∈Z is a regularly varying stationary time series
in B2 with index α, its spectral process (Θt)t∈Z having law κ equal to

κ =
∑

npnκn

where pn =
cn∑
k ck

i.e.

E
[
f
(
(Θt)t∈Z

)]
=

∑
n∈Z

E
[

f
(

Tn+t(ΘZ)

‖Tn(ΘZ)‖

)
‖Tn(ΘZ)‖α

]
∑
n∈Z

E[‖Tn(ΘZ)‖α]
,



Simulating the spectral process

1. Draw a random integer N from (pn)n∈Z.

2. Independently from N and from each other, draw ΘZ ∼ H and
U ∼ Uniform(0, 1).

3. If U 6 ‖TNΘZ‖α/‖TN‖α, then return Θt = TN+tΘZ/‖TNΘZ‖
for all t ∈ Z and stop.

4. Otherwise, go back to step 2.
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Autoregressive equation

AR(1) process in B = B1 = B2:

Xt = TXt−1 + Zt, t ∈ Z.

I iid innovations Zt in Banach, RV(α,H)

I T : B→ B bounded linear operator such that ‖Tm‖ < 1 for some
integer m > 1

Note: faily general, since by considering sequence spaces,
an arbitrary linear process can be represented as
the image of a linear operator applied to an AR(1) process



The AR(1) equation has a regularly varying solution

The AR(1) equation has a stationary solution given by

Xt =
∑
n>0

TnZt−n, t ∈ Z,

The tail of ‖Xt‖ satisfies

lim
x→∞

P(‖Xt‖ > x)

P(‖Z0‖ > x)
=
∑
n>0

∫
S
‖Tnθ‖α H(dθ)

(Xt)t∈Z is regularly varying with index α > 0 and with spectral
process as described above.
I pn = 0 for all n < 0
I If pn0 = 0 for some integer n0 > 1, then pn = 0 for all n > n0



Simulating the spectral process of an AR(1) process

1. Draw a random nonnegative integer N from (pn)n>0.

2. Independently from N and from each other, draw ΘZ ∼ H and
U ∼ Uniform(0, 1).

3. If U 6 ‖TNΘZ‖α/‖TN‖α, then return

Θ−N =
ΘZ

‖TNΘZ‖
, Θ−N+h =

{
ThΘ−N if h > 0,
0 if h < 0.

4. Otherwise, go back to step 2.
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Main findings

I Regular variation is preserved by bounded linear operators
I Tails of random series with independent, regularly varying

components governed by the single-shock heuristic
I AR(1) processes: simple structure of the spectral process, readily

simulated



Thank you!
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