Extremes of Stationary Sequences: Clusters and Spectral Processes

Johan Segers

Université catholique de Louvain
Institut de statistique, biostatistique et sciences actuarielles

Indian Statistical Institute, Kolkata, January 14-15, 2012

Extremes of Stationary Sequences: Clusters and Spectral processes

I. Clusters of Extremes
II. Regular Variation and Tail Processes
— joint work with B. Basrak and T. Meinguet
III. Markov Processes

- joint work with A. JANSSEN
IV. Linear Processes
— joint work with T. Meinguet

Part I

Clusters of Extremes

An informal view on clusters

For weakly dependent stationary sequences, extremes arrive in clusters.

We are concerned with the asymptotic distribution of the 'block'

$$
\left(X_{1}, \ldots, X_{r_{n}}\right)
$$

given that at least one 'extreme value' occurs

$$
\begin{equation*}
\sum_{i=1}^{r_{n}} I\left(X_{i} \text { hits an exceptional set }\right) \geqslant 1 \tag{C}
\end{equation*}
$$

when the expected number of extremes is asymptotically negligible

$$
r_{n} P\left(X_{1} \text { hits an exceptional set }\right)=o(1)
$$

Formalizing the informal view requires some care

- The condition (C) is awkward to work with: when did the extreme value occur for the first time?
- If the expected number of extremes in a block remains finite, most variables X_{i} in the block $\left(X_{1}, \ldots, X_{r_{n}}\right)$ will be irrelevant.

Formalizing the notion of a 'cluster' therefore requires some care. Some possibilities:

- Cluster functionals
- Cluster distributions
- Cluster processes

Extremes of Stationary Sequences

Cluster functionals and the cluster map

Approximate cluster distributions

Limit cluster distributions

Beyond the cluster

Cluster statistics

Ingredients

- Stationary process $\left(X_{n}\right)_{n}$ on \mathbb{R}
- High threshold u_{n}
- Block size r_{n}

Interest is in cluster statistics of the form

$$
c\left(X_{1}-u_{n}, \ldots, X_{r_{n}}-u_{n}\right) \quad \text { conditionally on } \quad M_{r_{n}}>u_{n}
$$

that only depend on the 'cluster':
the stretch between the first and the last exceedance over u_{n}.
We require that

$$
r_{n} \rightarrow \infty, \quad r_{n} P\left(X_{1}>u_{n}\right) \rightarrow 0
$$

Examples of cluster statistics

- Block maximum: maximal excess

$$
c\left(y_{1}, \ldots, y_{r_{n}}\right)=\max \left(y_{1}, \ldots, y_{r_{n}}\right)
$$

- Aggregate excess: sum of excesses

$$
c\left(y_{1}, \ldots, y_{r_{n}}\right)=\max \left(y_{1}, 0\right)+\cdots+\max \left(y_{r_{n}}, 0\right)
$$

- Cluster size: number of excesses

$$
c\left(y_{1}, \ldots, y_{r_{n}}\right)=I\left(y_{1}>0\right)+\cdots+I\left(y_{r_{n}}>0\right)
$$

- Cluster duration: time span between first and last excess

$$
c\left(y_{1}, \ldots, y_{r_{n}}\right)=\max \left\{i: y_{i}>0\right\}-\min \left\{i: y_{i}>0\right\}+1
$$

- Number of threshold upcrossings

$$
c\left(y_{1}, \ldots, y_{r_{n}}\right)=I\left(y_{1}>0\right)+I\left(y_{1} \leqslant 0<y_{2}\right)+\cdots+I\left(y_{r_{n}-1} \leqslant 0<y_{r_{n}}\right)
$$

Cluster functionals

Desirable properties of $c(\cdot)$:

- Its domain is a vector of arbitrary length with at least one non-zero component.
- It depends only on the 'extreme' part of the vector

Definition

A cluster functional is a map $c: \boldsymbol{A} \rightarrow \mathbb{R}$ with

$$
\begin{aligned}
\boldsymbol{A} & =\boldsymbol{A}_{1} \cup \boldsymbol{A}_{2} \cup \ldots \\
\boldsymbol{A}_{r} & =\mathbb{R}^{r} \backslash(-\infty, 0]^{r}=\left\{\left(y_{1}, \ldots, y_{r}\right) \in \mathbb{R}^{r}: \max \left(y_{1}, \ldots, y_{r}\right)>0\right\}
\end{aligned}
$$

and neglecting everything that happened before or after the first or last positive value:

$$
\begin{aligned}
c\left(y_{1}, \ldots, y_{r}\right) & =c\left(y_{\alpha}, \ldots, y_{\omega}\right) \\
\alpha & =\min \left\{i: y_{i}>0\right\} \\
\omega & =\max \left\{i: y_{i}>0\right\}
\end{aligned}
$$

Cluster map

Definition

Recall $\boldsymbol{A}=\bigcup_{r \geqslant 1} \boldsymbol{A}_{r}$ and $\boldsymbol{A}_{r}=\mathbb{R}^{r} \backslash(-\infty, 0]^{r}$. Define the cluster map

$$
\begin{aligned}
C: \boldsymbol{A} \rightarrow \boldsymbol{A} & :\left(y_{1}, \ldots, y_{r}\right) \mapsto\left(y_{\alpha}, \ldots, y_{\omega}\right) \\
\alpha & =\min \left\{i: y_{i}>0\right\} \\
\omega & =\max \left\{i: y_{i}>0\right\}
\end{aligned}
$$

[Segers 2005]
Then $c: \boldsymbol{A} \rightarrow \mathbb{R}$ is a cluster functional if and only if

$$
c=f \circ C \text { for some } f: A \rightarrow \mathbb{R}
$$

Hence, to know the asymptotic distribution of cluster statistics, it is sufficient to know the asymptotic distribution of the 'cluster' itself

$$
C\left(X_{1}-u_{n}, \ldots, X_{r_{n}}-u_{n}\right) \quad \text { conditionally on } \quad M_{r_{n}}>u_{n}
$$

Extremes of Stationary Sequences

Cluster functionals and the cluster map

Approximate cluster distributions

Limit cluster distributions

Beyond the cluster

Aim: switch to a simpler conditioning event

We are interested in the cluster distribution

$$
P\left[C\left(X_{1}-u_{n}, \ldots, X_{r_{n}}-u_{n}\right) \in \cdot \mid M_{r_{n}}>u_{n}\right]
$$

Recall $r_{n} \rightarrow \infty$ and $r_{n} P\left(X_{1}>u_{n}\right) \rightarrow 0$.
The conditioning event $\left\{M_{r_{n}}>u_{n}\right\}$ is awkward to work with: when exactly did the exceedances occur?

We'd rather prefer expressions in terms of the law of

$$
\left(X_{1}, \ldots, X_{k}\right) \mid X_{1}>u_{n}
$$

This would be particularly convenient in the case of Markov chains.

Expected cluster size

Expected number of exceedances given that there is at least one:

$$
E\left[\sum_{i=1}^{r_{n}} I\left(X_{i}>u_{n}\right) \mid M_{r_{n}}>u_{n}\right]=\frac{r_{n} P\left(X_{1}>u_{n}\right)}{P\left(M_{r_{n}}>u_{n}\right)}=: \frac{1}{\theta_{n}}
$$

so

$$
\theta_{n}=\frac{P\left(M_{r_{n}}>u_{n}\right)}{r_{n} P\left(X_{1}>u_{n}\right)} \in(0,1]
$$

Example
In the iid case, since $r_{n} \bar{F}\left(u_{n}\right) \rightarrow 0$, we have

$$
\theta_{n}=\frac{1-\left(1-\bar{F}\left(u_{n}\right)\right)^{r_{n}}}{r_{n} \bar{F}\left(u_{n}\right)} \rightarrow 1
$$

Finite-cluster condition

Suppose that the impact of a shock is somehow limited in time:

Formally, put $M_{i, j}=\max \left(X_{i}, \ldots, X_{j}\right)$ and suppose

$$
\begin{align*}
& \lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} P\left(M_{m+1, r_{n}}>u_{n} \mid X_{1}>u_{n}\right)=0 \tag{FiCl1}\\
& \lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} P\left(M_{1, r_{n}-m}>u_{n} \mid X_{r_{n}}>u_{n}\right)=0 \tag{FiCl2}
\end{align*}
$$

Sufficient condition:

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} \sum_{i=m+1}^{r_{n}} P\left(X_{i}>u_{n} \mid X_{1}>u_{n}\right)=0 \tag{FiCl}
\end{equation*}
$$

Bounded expected cluster sizes

If (FiCl), the expected cluster size remains bounded:

$$
\begin{aligned}
& \quad \limsup _{n \rightarrow \infty} \frac{r_{n} P\left(X_{1}>u_{n}\right)}{P\left(M_{r_{n}}>u_{n}\right)}<\infty \\
& \text { i.e. } \liminf _{n \rightarrow \infty} \theta_{n}>0
\end{aligned}
$$

Proof: observe that $M_{r_{n}} \geqslant \max \left(X_{1}, X_{m+1}, X_{2 m+1}, \ldots, X_{k m+1}\right)$ with $k \sim r_{n} / m$.

The approximant

Consider a bounded, measurable cluster functional $c: \boldsymbol{A} \rightarrow \mathbb{R}$. Apply c to different stretches of the process:

$$
c_{n}(i, j)=c\left(X_{i}-u_{n}, \ldots, X_{j}-u_{n}\right) \text { on the event } M_{i, j}>u_{n}
$$

Consider the approximation error

$$
|\underbrace{E\left[c_{n}\left(1, r_{n}\right) \mid M_{r_{n}}>u_{n}\right]}_{\text {quantity of interest }}-\underbrace{\frac{\alpha_{n, m}(c)}{\theta_{n, m}}}_{\text {approximant }}|
$$

where

$$
\begin{aligned}
\alpha_{n, m}(c)= & E\left[c_{n}(1, m) \mid X_{1}>u_{n}\right] \\
& \quad-E\left[c_{n}(2, m), M_{2, m}>u_{n} \mid X_{1}>u_{n}\right] \\
\theta_{n, m}= & P\left[M_{2, m} \leqslant u_{n} \mid X_{1}>u_{n}\right] \quad \text { 'runs' }
\end{aligned}
$$

The cluster approximation

Theorem

If $(F i C l)$, then

$$
\lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty}|\underbrace{\theta_{n, m}}_{\text {'runs' }}-\underbrace{\theta_{n}}_{\text {blocks' }^{\prime}}|=0
$$

as well as

$$
\lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} \sup _{c:|c| \leqslant 1}\left|E\left[c_{n}\left(1, r_{n}\right) \mid M_{r_{n}}>u_{n}\right]-\frac{\alpha_{n, m}(c)}{\theta_{m, n}}\right|=0
$$

[Segers (2005)]
Proof: elementary calculations, based on careful use of

- partitionings of the event $\left\{M_{r_{n}}>u_{n}\right\}$ and similar ones
- stationarity
- the cluster property
- (FiCl)

Main steps in the proof (1)

Consider the first time an exceedance occurs:

$$
\begin{gathered}
E\left[c_{n}\left(1, r_{n}\right) ; M_{r_{n}}>u_{n}\right] \\
=\sum_{j=1}^{r_{n}} E\left[c_{n}\left(j, r_{n}\right) ; M_{j-1} \leqslant u_{n}<X_{j}\right]
\end{gathered}
$$

$\mathrm{By}(\mathrm{FiCl})$, we can limit the (forward) horizon to m :

$$
\ldots \approx \sum_{j=1}^{r_{n}} E\left[c_{n}(j, j+m-1) ; M_{j-1} \leqslant u_{n}<X_{j}\right]
$$

Write each term as a difference by taking out the event $M_{j-1} \leqslant u_{n}$:

$$
\begin{array}{rrr}
E\left[c_{n}(j, j+m-1) ;\right. & \left.X_{j}>u_{n}\right] \\
-E\left[c_{n}(j, j+m-1) ; M_{j-1}>u_{n}, X_{j}>u_{n}\right]
\end{array}
$$

By stationarity, the first term is already $\mathrm{OK}: j=1$. What about the second term?

Main steps in the proof (2)

We need to consider

$$
E\left[c_{n}(j, j+m-1) ; M_{1, j-1}>u_{n}, X_{j}>u_{n}\right]
$$

$\mathrm{By}(\mathrm{FiCl})$, we can limit the (backward) horizon to m :

$$
\ldots \approx E\left[c_{n}(j, j+m-1) ; M_{j-m, j-1}>u_{n}, X_{j}>u_{n}\right]
$$

By stationarity (set $j=m+1$), this is

$$
\ldots=E\left[c_{n}(m+1,2 m+1) ; M_{1, m}>u_{n}, X_{m+1}>u_{n}\right]
$$

In $\left\{M_{m}>u_{n}\right\}$, consider the last time an exceedance occurs, apply stationarity, (FiCl), eventually yielding

$$
\ldots \approx E\left[c_{n}(2, m) ; X_{1}>u_{n}, M_{2, m}>u_{n}\right]
$$

which is the second term in $\alpha_{n, m}(c)$.

Main steps in the proof (3)

Collect approximations to find that

$$
E\left[c_{n}\left(1, r_{n}\right) ; M_{r_{n}}>u_{n}\right] \approx r_{n} \alpha_{n, m}(c)
$$

Consider the special case $c \equiv 1$ to get

$$
\theta_{n, m} \approx \theta_{n}
$$

Combine the previous two displays to arrive at the desired approximation.

Without additional effort, the result is translated in a general framework

- Measurable state space (S, \mathscr{S})
- Measurable failure set $B \subset S$
- $\boldsymbol{A}=\bigcup_{k \geqslant 1} \boldsymbol{A}_{k}$ where $\boldsymbol{A}_{k}=S^{k} \backslash(S \backslash B)^{k}$
- Cluster map $C: \boldsymbol{A} \rightarrow \boldsymbol{A}$ is defined by

$$
C\left(x_{1}, \ldots, x_{k}\right)=\left(x_{\alpha}, \ldots, x_{\omega}\right)
$$

where

- $\alpha=\min \left\{i=1, \ldots, k: x_{i} \in B\right\}$
- $\omega=\max \left\{i=1, \ldots, k: x_{i} \in B\right\}$

The general framework encompasses multivariate extremes

Univariate extremes:

- state space $S=\mathbb{R}$
- failure set $B=(u, \infty)$

Multivariate extremes:

- state space $S=\mathbb{R}^{d}$
- failure sets $B=\mathbb{R}^{d} \backslash(-\infty, \boldsymbol{u}]$ or (\boldsymbol{u}, ∞) or $\{\boldsymbol{x}:\|\boldsymbol{x}\|>u\}$ or \ldots

What if the failure set is hit at least once?

- Stationary random vector $\left(X_{1}, \ldots, X_{r}\right)$ in S
- Assume $P\left[X_{1} \in B\right]>0$

Aim

To study the conditional distribution of

$$
C\left(X_{1}, \ldots, X_{r}\right) \quad \text { given } \quad \bigcup_{i=1}^{r}\left\{X_{i} \in B\right\}
$$

Cluster functionals and cluster map

A map $c: A \rightarrow \mathbb{R}$ is a cluster functional
if it is measurable with respect to the cluster map, i.e.

$$
c=f \circ C \quad \text { for some } \quad f: \boldsymbol{A} \rightarrow \mathbb{R}
$$

that is, if

$$
c\left(x_{1}, \ldots, x_{r}\right)=c\left(x_{\alpha}, \ldots, x_{\omega}\right)
$$

in terms of the first and last hitting times, $1 \leqslant \alpha \leqslant \omega \leqslant r$ of B.
Cluster functionals and the cluster map are equivalent concepts: for $E \subset \boldsymbol{A}$,

$$
C\left(x_{1}, \ldots, x_{r}\right) \in E \Longleftrightarrow \underbrace{I_{E} \circ C}_{=c}\left(x_{1}, \ldots, x_{r}\right)=1
$$

Extremal index variants

- Expected number of 'hits' of failure set B

$$
E\left[\sum_{i=1}^{r} I\left\{X_{i} \in B\right\} \mid \bigcup_{i=1}^{r}\left\{X_{i} \in B\right\}\right]=\frac{r P\left[X_{1} \in B\right]}{P\left[\bigcup_{i=1}^{r}\left\{X_{i} \in B\right\}\right]}=\frac{1}{\theta}
$$

- 'Hit' followed/preceded by a 'run' of 'non-hits' of failure set B

$$
\begin{aligned}
\theta_{m} & =P\left[\bigcap_{i=2}^{m}\left\{X_{i} \notin B\right\} \mid X_{1} \in B\right] \\
& =P\left[\bigcap_{i=1}^{m-1}\left\{X_{i} \notin B\right\} \mid X_{m} \in B\right], \quad m=2, \ldots, r
\end{aligned}
$$

- Compare these with characterizations of extremal index
- 'blocks’ [Leadbetter 1983]
- 'runs' [O’Brien 1987]
- Multivariate extremal index [Nandagopalan 1994]

Approximate cluster distribution

- \mathscr{C} is set of all cluster functionals $c: \boldsymbol{A} \rightarrow \mathbb{R}$ such that $|c| \leqslant 1$
- Cluster distribution: for $c \in \mathscr{C}$

$$
\mu(c)=E\left[c\left(X_{1}, \ldots, X_{r}\right) \mid \bigcup_{i=1}^{r}\left\{X_{i} \in B\right\}\right]
$$

- Approximant: for $c \in \mathscr{C}$

$$
\begin{aligned}
& \mu_{m}(c) \\
& \begin{aligned}
=\theta^{-1}\{ & E\left[c\left(X_{1}, \ldots, X_{m}\right) \mid X_{1} \in B\right] \\
& \left.-E\left[c\left(X_{2}, \ldots, X_{m}\right) I\left(\bigcup_{i=2}^{m}\left\{X_{i} \in B\right\}\right) \mid X_{1} \in B\right]\right\}
\end{aligned}
\end{aligned}
$$

Finite-sample cluster distribution approximation

Quantify (FiCl) via

$$
\begin{array}{r}
\varepsilon=\max \left\{P\left[\bigcup_{i=m+1}^{r}\left\{X_{i} \in B\right\} \mid X_{1} \in B\right],\right. \\
\left.P\left[\bigcup_{i=1}^{r-m} \quad\left\{X_{i} \in B\right\} \mid X_{r} \in B\right]\right\}
\end{array}
$$

Theorem
If $m \geqslant 2$ and $2 m+1 \leqslant r$,

$$
\begin{aligned}
\theta & \geqslant(2 m)^{-1}(1-\varepsilon) \\
\left|\theta-\theta_{m}\right| & \leqslant \max (m / r, \varepsilon) \\
\sup _{c:|c| \leqslant 1}\left|\mu(c)-\mu_{m}(c)\right| & \leqslant \theta^{-1}(4 m / r+5 \varepsilon)
\end{aligned}
$$

[Segers 20xx]
Interpretation: connection between distributions of

- $C\left(X_{1}, \ldots, X_{r}\right)$ given $\bigcup_{i=1}^{r}\left\{X_{i} \in B\right\}$
- $\left(X_{1}, \ldots, X_{m}\right)$ given $\left\{X_{1} \in B\right\}$

Extremes of Stationary Sequences

Cluster functionals and the cluster map

Approximate cluster distributions

Limit cluster distributions

Beyond the cluster

Asymptotic cluster distribution

- State space: metric space (S, d)
- Failure set: non-empty open set $B \subset S$
- Random triangular array $\left\{X_{i n}: n \geqslant 1,1 \leqslant i \leqslant r_{n}\right\}$ in S
- row length $r_{n} \rightarrow \infty$
- every row ($X_{1 n}, \ldots, X_{r_{n} n}$) is stationary
- $p_{n}=P\left[X_{1 n} \in B\right]>0$
- $r_{n} p_{n}=E\left[\sum_{i=1}^{r_{n}} I\left(X_{i n} \in B\right)\right] \rightarrow 0$

Aim
To establish the limiting cluster distribution

$$
C\left(X_{1 n}, \ldots, X_{r_{n} n}\right) \text { given } \bigcup_{i=1}^{r_{n}}\left\{X_{i n} \in B\right\}
$$

with $C: \boldsymbol{A} \rightarrow \boldsymbol{A}$ the cluster map and $\boldsymbol{A}=\bigcup_{r \geqslant 1}\left(S^{r} \backslash(S \backslash B)^{r}\right)$

Example

- State space $S=\mathbb{R}$
- Failure set $B=\{x:|x|>1\}$
- Random variables $X_{i n}=X_{i} / a_{n}, 1 \leqslant i \leqslant r_{n}$, with
- $\left(X_{i}\right)_{i \geqslant 1}$ a stationary time series in \mathbb{R}
- levels $0<a_{n} \rightarrow \infty$ such that $n P\left[\left|X_{1}\right|>a_{n}\right] \rightarrow 1$
- block sizes $r_{n} \rightarrow \infty$ and $r_{n}=o(n)$
- Rare events of interest:
- $X_{i n} \in B$ if and only if $\left|X_{i}\right|>a_{n}$
- $\bigcup_{i=1}^{r_{n}}\left\{X_{i n} \in B\right\}$ if and only if $M_{r_{n}}:=\max \left(\left|X_{1}\right|, \ldots,\left|X_{r_{n}}\right|\right)>a_{n}$

Problem

To find the asymptotic cluster distribution

$$
C\left(X_{1} / a_{n}, \ldots, X_{r_{n}} / a_{n}\right) \quad \text { given } \quad M_{r_{n}}>a_{n} ?
$$

Example (continued)

- Assume that the fidis of $\left(X_{i}\right)_{i}$ are multivariate regularly varying.
- Then there exists a process $\left(Y_{k}\right)_{k \geqslant 0}$ such that for every $k \geqslant 0$,

$$
P\left[\left(X_{1} / a_{n}, \ldots, X_{k+1} / a_{n}\right) \in \cdot\left|\left|X_{1}\right|>a_{n}\right]\right.
$$

$$
\xrightarrow{d} P\left[\left(Y_{0}, \ldots, Y_{k}\right) \in \cdot\right]
$$

- Conceptually, given $\left|X_{1}\right|>a_{n}$,

$$
\begin{array}{llll}
X_{1} / a_{n}, & X_{2} / a_{n}, & \ldots, & X_{k+1} / a_{n} \\
Y_{0}, & Y_{1}, & \ldots, & Y_{k} \\
\text { 'present', } & \text { 'future' } & &
\end{array}
$$

- For Markov chains, the process $\left(Y_{k}\right)_{k \geqslant 0}$ can typically be written in terms of a random walk
[Rootzén 1988; de Haan et al. 1989; Smith 1992; Perfekt 1994; S. 2007; Resnick and Zeber 2011]
- Can we express the asymptotic cluster distribution in terms of the tail process $\left(Y_{k}\right)_{k}$?

Assumptions

Tail process

Assume there exists a random sequence $\left(Y_{k}\right)_{k \geqslant 0}$ called tail process in S such that for every $k \geqslant 0$,

$$
P\left[\left(X_{1 n}, \ldots, X_{k+1, n}\right) \in \cdot \mid X_{1 n} \in B\right] \xrightarrow{d} P\left[\left(Y_{0}, \ldots, Y_{k}\right) \in \cdot\right] .
$$

Also, assume $P\left[Y_{k} \in \partial B\right]=0$ for all $k \geqslant 0$.
Finite cluster condition
The impact of a 'hit' does not last for too long:

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} P\left[\bigcup_{i=m+1}^{r_{n}}\left\{X_{i n} \in B\right\} \mid X_{1 n} \in B\right]=0 \\
& \lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} P\left[\bigcup_{i=1}^{r_{n}-m}\left\{X_{i n} \in B\right\} \mid X_{r_{n} n} \in B\right]=0
\end{aligned}
$$

Limiting cluster distributions

Theorem

${ }_{\text {I Segers 20xx }}$ Under the above assumptions:

- The tail process $\left(Y_{k}\right)_{k \geqslant 0}$ hits B only finitely often:

$$
Y_{0} \in B \quad \text { and } \quad \sharp\left\{k \geqslant 1: Y_{k} \in B\right\}<\infty \quad \text { a.s. }
$$

- The expected number of hits converges to finite limit:

$$
\begin{aligned}
\theta_{n}=1 / E\left[\sum_{i=1}^{r_{n}} I\left(X_{i n} \in B\right) \mid\right. & \left.\bigcup_{i=1}^{r_{n}}\left\{X_{i n} \in B\right\}\right] \\
& \rightarrow P\left[\forall k \geqslant 1: Y_{k} \notin B\right]=: \theta>0
\end{aligned}
$$

- The cluster distribution converges:

$$
\begin{aligned}
& P\left[C\left(\left(X_{i n}\right)_{i=1}^{r_{n}}\right) \in \cdot \mid \bigcup_{i=1}^{r_{n}}\left\{X_{i} \in B\right\}\right] \\
& \begin{array}{l}
\xrightarrow{d} \quad \theta^{-1}\left\{P\left[C\left(\left(Y_{k}\right)_{k \geqslant 0}\right) \in \cdot\right]\right. \\
\\
\left.\quad-P\left[\left\{C\left(\left(Y_{k}\right)_{k \geqslant 1}\right) \in \cdot\right\} \cap \bigcup_{k \geqslant 1}\left\{Y_{k} \in B\right\}\right]\right\}
\end{array}
\end{aligned}
$$

Extremes of Stationary Sequences

Cluster functionals and the cluster map

Approximate cluster distributions

Limit cluster distributions

Beyond the cluster

The prologue and epilogue of a cluster

- By definition, the 'cluster' starts and ends with the first and last extreme value in a block.
- What happened just before? What happens next?

Maybe there are some 'less extreme' but still interesting values.
Aim
To find the (asymptotic) distribution of the whole block

$$
X_{1}, \ldots, X_{r} \quad \text { conditionally on } \quad \exists i=1, \ldots, r: X_{i} \in B
$$

Challenges

- By (FiCl), however, most variables X_{i} will somehow 'vanish' asymptotically.
- The interesting observations will occur at some random time instant in the middle of the block.

Framework

- Metric space (S, d)
- Failure set $B=\{x \in S: d(x, q)>1\}$ for some $q \in S$
- Random triangular array $\left\{X_{i n}: n \geqslant 1,1 \leqslant i \leqslant r_{n}\right\}$ in S
- row length $r_{n} \rightarrow \infty$
- stationary rows $\left(X_{1 n}, \ldots, X_{r_{n} n}\right)$
- failure probability $p_{n}=P\left[d\left(X_{1 n}, q\right)>1\right]>0$
- $r_{n} p_{n}=E\left[\sum_{i=1}^{r_{n}} I\left\{d\left(X_{i n}, q\right)>1\right\}\right] \rightarrow 0$
- The point q acts as a 'black hole' for non-extreme values

Example

- $S=\mathbb{R}^{d}$
$q=0$
$B=\left\{x \in \mathbb{R}^{d}:|x|>1\right\}$
- $X_{i n}=X_{i} / a_{n}$ for some sequence $0<a_{n} \rightarrow \infty$

Problem statement

Aim
To find the limit distribution of quantities defined in terms of $\left(X_{1 n}, \ldots, X_{r_{n} n}\right)$ given $\bigcup_{i=1}^{r_{n}} I\left\{d\left(X_{i n}, q\right)>1\right\}$?

Example
Cluster point process N_{n} on $S \backslash\{q\}$:

$$
N_{n}=\sum_{i=1}^{r_{n}} \delta_{X_{i n}} \quad \text { given } \quad \bigcup_{i=1}^{r_{n}}\left\{d\left(X_{i n}, q\right)>1\right\}
$$

Cluster process

On the event $\bigcup_{i=1}^{r_{n}}\left\{d\left(X_{i n}, q\right)>1\right\}$:

- First hitting time $\alpha_{n}=\min \left\{i=1, \ldots, r_{n}: d\left(X_{i n}, q\right)>1\right\}$
- Cluster process $\xi_{n}=\left(\xi_{n, t}\right)_{t \in \mathbb{Z}}$

$$
\xi_{n, t}= \begin{cases}X_{\alpha_{n}+t, n} & \text { if } 1 \leqslant \alpha_{n}+t \leqslant r_{n} \\ q & \text { otherwise }\end{cases}
$$

Intuitively, the vector $\left(X_{1 n}, \ldots, X_{r_{n} n}\right)$ is

- 'anchored' at the first hitting time α_{n} of the failure set;
- extended on the left and on the right by the constant sequence (q)

$$
\begin{aligned}
& \ldots, \quad q, \quad X_{1 n}, \quad \ldots, X_{\alpha_{n}-1, n}, X_{\alpha_{n}, n}, X_{\alpha_{n}+1, n}, \ldots, \quad X_{r_{n}, n}, \quad q, \quad \ldots \\
& \ldots, \xi_{n,-\alpha_{n}}, \quad \xi_{n,-\alpha_{n}+1}, \ldots, \quad \xi_{n,-1}, \quad \xi_{n, 0}, \quad \xi_{n, 1}, \quad \ldots, \xi_{n, r_{n}-\alpha_{n}+1}, \xi_{n, r_{n}-\alpha_{n}}, \ldots
\end{aligned}
$$

Mathematical problem statement

To establish weak convergence of the cluster process ξ_{n} in the space (\mathbb{E}, ρ), where

$$
\begin{aligned}
\mathbb{E} & =\left\{x \in S^{\mathbb{Z}}: d\left(x_{0}, q\right)>1 \text { and } x_{t} \rightarrow q \text { as } t \rightarrow \pm \infty\right\} \\
\rho(x, y) & =\sup _{t \in \mathbb{Z}} d\left(x_{t}, y_{t}\right)
\end{aligned}
$$

- \mathbb{E} is the space of S-valued sequences converging to q.
- The metric ρ induces the topology of uniform convergence.

Tentative application: point process convergence

Since the cluster point process N_{n} on $S \backslash\{q\}$ admits the representation

$$
N_{n}=\sum_{i=1}^{r_{n}} \delta_{X_{i n}}=T\left(\xi_{n}\right)
$$

for a continuous map

$$
\begin{array}{rlll}
T: & (\mathbb{E}, e) & \rightarrow M_{p}(S \backslash\{q\}) \\
& \left(x_{t}\right)_{t \in \mathbb{Z}} & \mapsto \sum_{t \in \mathbb{Z}} \delta_{x_{t}}
\end{array}
$$

point process convergence would follow from weak convergence of ξ_{n} in \mathbb{E}

Tentative application: cluster functionals

Recall $\boldsymbol{A}=\bigcup_{r \geqslant 1} \boldsymbol{A}_{r}$ and $\boldsymbol{A}_{r}=\left\{\left(x_{1}, \ldots, x_{r}\right): \max _{j} d\left(x_{j}, q\right)>1\right\}$

- disjoint union
- product topology

Consider the projection map

$$
\begin{array}{rll}
\pi: & \mathbb{E} & \rightarrow \boldsymbol{A} \\
& \left(x_{t}\right)_{t} & \mapsto
\end{array}\left(x_{\alpha}, \ldots, x_{\omega}\right) .
$$

Since π is continuous, weak convergence in \mathbb{E} of $\xi_{n}=\left(\xi_{n, t}\right)_{t}$ would imply weak convergence in \boldsymbol{A} of the cluster

$$
\pi\left(\xi_{n}\right)=\left(X_{\alpha, n}, \ldots, X_{\omega, n}\right)
$$

Assumption: tail process

Assume there exists a random sequence $\left(Y_{t}\right)_{t \in \mathbb{Z}}$ in S such that for every integer $k \geqslant 0$,

$$
\begin{aligned}
& \quad P\left[\left(X_{1 n}, \ldots, X_{2 k+1, n}\right) \in \cdot \mid d\left(X_{k+1, n}, q\right)>1\right] \\
& \xrightarrow{d} P\left[\left(Y_{-k}, \ldots, Y_{k}\right) \in \cdot\right]
\end{aligned}
$$

Schematically, we have

$$
\begin{array}{cccc}
& X_{1 n}, \ldots, X_{k, n}, & X_{k+1, n}, & X_{k+2, n}, \ldots, X_{2 k+1, n} \\
\xrightarrow{d} & Y_{-k}, \ldots, Y_{-1}, & Y_{0}, & Y_{1}, \ldots, Y_{k} \\
& \text { 'past' } & \text { 'present' } & \text { 'future' }
\end{array}
$$

Also, assume $P\left[d\left(Y_{t}, q\right)=1\right]=0$ for all $t \in \mathbb{Z}$.

Assumption: finite-cluster condition

For all $\delta>0$, as $m \rightarrow \infty$,

This will ensure, among others, that $\lim _{|t| \rightarrow \infty} Y_{t}=q$ a.s.

Weak convergence of the cluster process

Theorem

When the tail process exists and the finite-cluster condition holds,

- the tail sequence $\left(Y_{t}\right)_{t \in \mathbb{Z}}$ hits the failure set finitely often:

$$
P\left[d\left(Y_{0}, q\right)>1, Y_{t} \rightarrow q \text { as } t \rightarrow \pm \infty\right]=1
$$

- with positive probability, the tail process hits the failure set for the first time at $t=0$:

$$
\theta=P\left[\forall t \leqslant-1: d\left(Y_{t}, q\right) \leqslant 1\right]>0
$$

- the cluster process converges weakly in \mathbb{E} :

$$
\begin{aligned}
& P\left[\xi_{n} \in \cdot \mid \bigcup_{i=1}^{r_{n}}\left\{d\left(X_{i n}, q\right)>1\right\}\right] \\
& \quad \xrightarrow{d} P\left[\left(Y_{t}\right)_{t \in \mathbb{Z}} \in \cdot \mid \forall t \leqslant-1: d\left(Y_{t}, q\right) \leqslant 1\right]
\end{aligned}
$$

Corollary: Point process convergence

Under the conditions of the theorem,

$$
N_{n} \xrightarrow{d} N
$$

in $M_{p}(S \backslash\{q\})$, where

$$
\begin{array}{rcccc}
N_{n} & \stackrel{d}{=} & \sum_{i=1}^{r_{n}} \delta_{X_{i n}} & \text { given } & \bigcup_{i=1}^{r_{n}}\left\{d\left(X_{i n}, q\right)>1\right\} \\
N & \stackrel{d}{=} & \sum_{t \in \mathbb{Z}} \delta_{Y_{t}} & \text { given } & \bigcap_{t \leqslant-1}\left\{d\left(Y_{t}, q\right) \leqslant 1\right\}
\end{array}
$$

Corollary: Convergence of cluster stretches

Recall the cluster map $C: \boldsymbol{A} \rightarrow \boldsymbol{A}$, with $\boldsymbol{A}=\bigcup_{r \geqslant 1} \boldsymbol{A}_{r}$ and $\boldsymbol{A}_{r}=\left\{\left(x_{1}, \ldots, x_{r}\right) \in S^{r}: \max _{j} d\left(x_{j}, q\right)>1\right\}$.

Under the conditions of the theorem, we have

$$
\begin{aligned}
C\left(X_{1 n}, \ldots, X_{r_{n} n}\right)= & \left(X_{\alpha_{n}, n}, \ldots, X_{\omega_{n}, n}\right) \\
\xrightarrow{d} & {\left[\left(Y_{0}, \ldots, Y_{\tau}\right) \text { given } \forall t \leqslant-1: d\left(Y_{t}, q\right) \leqslant 1\right] } \\
& \quad \text { with } \tau=\max \left\{t \in \mathbb{Z}: d\left(Y_{t}, q\right)>1\right\}
\end{aligned}
$$

How does this relate to previous results on cluster functionals?

Linking up with cluster functional theory

For a bounded, continuous cluster functional $c: \boldsymbol{A} \rightarrow \mathbb{R}$,

$$
\begin{aligned}
& E\left[c\left(X_{1 n}, \ldots, X_{r_{n} n}\right) \mid \exists i=1, \ldots, r_{n}: d\left(X_{\text {in }}, q\right)>1\right] \\
\rightarrow & E\left[c\left(Y_{0}, \ldots, Y_{\tau}\right) \mid \forall t \leqslant-1: d\left(Y_{t}, q\right) \leqslant 1\right] \\
= & E\left[c\left(\left(Y_{t}\right)_{t \geqslant 0}\right) \mid \forall t \leqslant-1: d\left(Y_{t}, q\right) \leqslant 1\right] \\
= & \frac{E\left[c\left(\left(Y_{t}\right)_{t \geqslant 0}\right) ; \forall t \leqslant-1: d\left(Y_{t}, q\right) \leqslant 1\right]}{P\left[\forall t \leqslant-1: d\left(Y_{t}, q\right) \leqslant 1\right]} \\
= & \frac{1}{\theta}\left\{E\left[c\left(\left(Y_{t}\right)_{t \geqslant 0}\right)\right]-E\left[c\left(\left(Y_{t}\right)_{t \geqslant 0}\right) ; \exists t \leqslant-1: d\left(Y_{t}, q\right)>1\right]\right\}
\end{aligned}
$$

However, by the earlier limiting-cluster-distribution theorem,

$$
\begin{aligned}
& E\left[c\left(X_{1 n}, \ldots, X_{r_{n} n}\right) \mid \exists i=1, \ldots, r_{n}: d\left(X_{\text {in }}, q\right)>1\right] \\
& \quad \rightarrow \frac{1}{\theta}\left\{E\left[c\left(\left(Y_{t}\right)_{t \geqslant 0}\right)\right]-E\left[c\left(\left(Y_{t}\right)_{t \geqslant 1}\right) ; \exists t \geqslant 1: d\left(Y_{t}, q\right)>1\right]\right\}
\end{aligned}
$$

Equality follows from a 'time-change formula'.

Summary: Cluster of extremes

- Description via cluster functionals or the cluster map
- General state space
- Change of conditioning event:

From: Conditional distribution of an excited block
To: Conditional distribution of a stretch given an excited initial value

- Approximate cluster distributions
- Limiting cluster distributions if the tail process exists
- Looking beyond the cluster: convergence in sequence space
- First hitting time serves as time origin

Part II

Regular Variation and Tail Processes — with B. Basrak and T. Meinguet

Tail processes and spectral processes: Concise descriptions of extremal dependence

- Point processes of extremes [Davis \& Hsing 1995; Davis \& Mikosch 1998; Basrak \& S. 2009]
- Cluster functionals [Yun 2000; s. 2003]
- Extremograms [Davis \& Mikosch 2009]
- Empirical tail processes [Drees \& Rootzén 2010]
- Joint survival functions, tail dependence coefficients [S. 2007; Meinguet \& S. 2010]
- Large deviations [Mikosch \& Wintenberger 2012a,b]
- Central limit theorems with non-Gaussian stable limits
[Barkiewicz et al. 2011; Basrak, Krizmanić \& S. 2012]
- ...

Time series of random functions: Dependence over space in time

Physical quantity observed in space and over time

$$
X_{t}(x)=\text { value at time } t \text { at location } x
$$

Space coordinate x varies over a grid - high-dimensional!
Think of x as varying continously over space
\rightsquigarrow For fixed t, view $X_{t}(\cdot)$ as a random function
\rightsquigarrow Time series $\left(X_{t}(\cdot)\right)_{t \in \mathbb{Z}}$ of random functions
Goal: to model
Space - cross-sectional tail dependence
Time - clusters

The proper function space depends on the context

- Maximal temperature over $S \subset[0,1]^{2}$:

$$
\sup _{x \in S} X_{t}(x)
$$

\rightsquigarrow Space of $C\left([0,1]^{2}\right)$ of continuous functions

- Aggregated rainfall over $S \subset[0,1]^{2}$:

$$
\int_{S} X_{t}(x) d x
$$

\rightsquigarrow Space $L^{1}\left([0,1]^{2}\right)$ of integrable functions

Extremes of Stationary Sequences

Describing heavy tails: Regular variation

Tail and spectral processes

Time-change formula

Using the spectral process

Conclusion

Regular variation

Heavy tails: power-law behaviour
Mathematical description: regular variation

space	tail
\mathbb{R}	$x \rightarrow \infty$
\mathbb{R}	$\|x\|$

Defining regular variation

Regular variation can be defined/characterized in multiple ways:

- limits of functions
- vague $/ M_{0}$ convergence of measures on punctured spaces
- weak convergence of finite measures on the unit sphere
- weak convergence of conditional probability distributions

To study regular variation of time series and clustering extremes, the latter view is quite convenient:

1. On \mathbb{R}, at ∞
2. On \mathbb{R}, at $\pm \infty$
3. $\mathrm{On} \mathbb{R}^{d}$
4. On a Banach space \mathbb{B}

Regular variation at infinity is equivalent to weak convergence of relative excesses

Arv X is regularly varying (RV) at infinity with index $\alpha>0$ if

$$
\lim _{u \rightarrow \infty} \frac{P(X>u y)}{P(X>u)}=y^{-\alpha}, \quad y>0
$$

For $y \geqslant 1$, this is can be written as

$$
\lim _{u \rightarrow \infty} P(X / u>y \mid X>u)=y^{-\alpha}=P(Y>u)
$$

$\mathrm{RV}(\alpha) \Leftrightarrow$ weak convergence of relative excesses:

$$
\mathscr{L}(X / u \mid X>u) \xrightarrow{d} \mathscr{L}(Y)=\operatorname{Pareto}(\alpha), \quad u \rightarrow \infty
$$

Regular variation on the real line is equivalent to weak convergence of certain conditional distributions (1)

A rv X is regularly varying with index $\alpha>0$ if, as $u \rightarrow \infty$,

$$
\begin{aligned}
& \frac{P(|X|>u y)}{P(|X|>u)} \rightarrow y^{-\alpha} \quad(y>0) \\
& \frac{P(X>u)}{P(|X|>u)} \rightarrow p
\end{aligned}
$$

Equivalent to weak convergence of conditional distributions:

$$
\begin{array}{ll}
\mathscr{L}(|X| / u| | X \mid>u) \xrightarrow{d} \mathscr{L}(Y) \sim \operatorname{Pareto}(\alpha) & \text { radius } \\
\mathscr{L}(\underbrace{X /|X|}_{\operatorname{sign}(X)}| | X \mid>u) \xrightarrow{d} \mathscr{L}(\Theta) & \text { angle }
\end{array}
$$

as $u \rightarrow \infty$, where $P(\Theta=+1)=p$

$$
P(\Theta=-1)=1-p
$$

Regular variation on the real line is equivalent to weak convergence of certain conditional distributions (2)

Also jointly: X is RV with index $\alpha>0$ if, as $u \rightarrow \infty$,

$$
\mathscr{L}\left(\frac{|X|}{u}, \left.\frac{X}{|X|}| | X \right\rvert\,>u\right) \xrightarrow{d} \mathscr{L}(Y, \Theta)
$$

where

- $Y \sim \operatorname{Pareto}(\alpha)$
- $P(\Theta=+1)=p$
$P(\Theta=-1)=1-p$
- Y and Θ are independent

Regular variation also equivalent to

$$
\mathscr{L}(X / u| | X \mid>u) \xrightarrow{d} \mathscr{L}(Y \Theta)
$$

Regular variation in Euclidean space is equivalent to weak convergence of certain conditional distributions (1)

A random vector X in \mathbb{R}^{d} is regularly varying with index $\alpha>0$ if for all $y>0$,

$$
\frac{P(\|X\|>u y, X /\|X\| \in \cdot)}{P(\|X\|>u)} \xrightarrow{w} y^{-\alpha} H(\cdot), \quad u \rightarrow \infty
$$

for some probability measure H on $\mathbb{S}^{d-1}=\left\{x \in \mathbb{R}^{d} \mid\|x\|=1\right\}$.
Equivalent to weak convergence of conditional distributions:

$$
\begin{array}{ll}
\mathscr{L}(\|X\| / u \mid\|X\|>u) \xrightarrow{d} \mathscr{L}(Y)=\operatorname{Pareto}(\alpha) & \text { radius } \\
\mathscr{L}(X /\|X\| \mid\|X\|>u) \xrightarrow{d} \mathscr{L}(\Theta)=H & \text { angle }
\end{array}
$$

as $u \rightarrow \infty$

Weak convergence of the radius and the angle separately implies their weak convergence jointly

For bounded, continuous $f: \mathbb{S}^{d-1} \rightarrow \mathbb{R}$ and for $y \geqslant 1$, as $u \rightarrow \infty$,

$$
\begin{aligned}
& E\left[f\left(\frac{X}{\|X\|}\right) ; \left.\frac{\|X\|}{u}>y \right\rvert\,\|X\|>u\right] \\
& =\underbrace{E\left[\left.f\left(\frac{X}{\|X\|}\right) \right\rvert\,\|X\|>u y\right]}_{\rightarrow E[f(\Theta)]} \underbrace{\frac{P(\|X\|>u y)}{P(\|X\|>u)}}_{\rightarrow y^{-\alpha}=P(Y>y)} \\
& \rightarrow E[f(\Theta) ; Y>y]
\end{aligned}
$$

for $Y \sim \operatorname{Pareto}(\alpha)$, independent of Θ

Regular variation in Euclidean space is equivalent to weak convergence of certain conditional distributions (2)

A random vector X is RV with index $\alpha>0$ and angular measure H if

$$
\mathscr{L}\left(\frac{\|X\|}{u}, \left.\frac{X}{\|X\|} \right\rvert\,\|X\|>u\right) \xrightarrow{d} \mathscr{L}(Y, \Theta)
$$

where

- $Y \sim \operatorname{Pareto}(\alpha)$
- $\Theta \sim H$
- Y and Θ are independent

Finally, regular variation is also equivalent to

$$
\mathscr{L}(X / u \mid\|X\|>u) \xrightarrow{d} \mathscr{L}(Y \Theta), \quad u \rightarrow \infty
$$

Regular variation in a Banach space:

 weak convergence of conditional distributionsMultivariate regular variation in normed spaces: similarly.
[Hult \& Lindskog 2005]

A random element X of a Banach space \mathbb{B} is regularly varying if

$$
\mathscr{L}(X / u \mid\|X\|>u) \xrightarrow{d} \mathscr{L}(Y), \quad u \rightarrow \infty
$$

and Y is such that $\|Y\| \geqslant 1$ is non-degenerate.
Necessarily

- $\|Y\| \sim \operatorname{Pareto}(\alpha)$ for some $\alpha>0$
- $\|Y\|$ and $\Theta=Y /\|Y\|$ are independent
and therefore

$$
\mathscr{L}\left(\frac{\|X\|}{u}, \left.\frac{X}{\|X\|} \right\rvert\,\|X\|>u\right) \xrightarrow{d} \mathscr{L}(\|Y\|, \Theta), \quad u \rightarrow \infty
$$

For the vague-convergence aficionados:

 yes you can, but. . .Regular variation on Euclidean spaces often defined via vague convergence of measures:

- Convergence of integrals of continuous functions with compact support
- Multivariate regular variation on \mathbb{R}^{d} : for some $V \in R V_{-\alpha}$,

$$
\frac{1}{V(u)} P\left[\frac{X}{u} \in \cdot\right] \xrightarrow{v} \mu(\cdot), \quad u \rightarrow \infty .
$$

Vague convergence on $[-\infty,+\infty]^{d} \backslash\{\mathbf{0}\}$
For infinite-dimensional \mathbb{B}, vague convergence collapses:

- \mathbb{B} not locally compact
- $f: \mathbb{B} \rightarrow \mathbb{R}$ continuous and compactly supported implies $f \equiv 0$

Replace vague convergence by M_{0}-convergence

M_{0}-convergence:
"Weak convergence of finite measures on
sets bounded away from the origin."
[Hult \& Lindskog 2006]
X is regularly varying of index α if for some $V \in R V_{-\alpha}$,

$$
\frac{1}{V(u)} P\left[\frac{X}{u} \in \cdot\right] \xrightarrow{M_{0}} \mu(\cdot), \quad u \rightarrow \infty
$$

the limit measure μ being non-null.
Extension to regular variation on star-shaped metric spaces.

Extremes of Stationary Sequences

Describing heavy tails: Regular variation

Tail and spectral processes

Time-change formula

Using the spectral process

Conclusion

Joint regular variation of a time series: What does it mean?

Let \mathbb{B} be a separable Banach space

- E.g. $\mathbb{R}^{d}, C([0,1]), L^{p}, \ell^{p}$
- Separability assumed out of convenience.

Probably not needed everywhere.
Excludes for instance $D([0,1])$ and spaces of usc functions

Let $\left(X_{t}\right)_{t \in \mathbb{Z}}$ be a strictly stationary time series in \mathbb{B}.

- Law of $\left(X_{s+h}, \ldots, X_{t+h}\right)$ does not depend on h.

Joint regular variation of the whole series $\left(X_{t}\right)_{t \in \mathbb{Z}}$?

The raw definition involves a cascade of angular measures

$\left(X_{t}\right)_{t \in \mathbb{Z}}$ is (jointly) regularly varying with index $\alpha>0$ if for all $s \leqslant t \in \mathbb{Z}$, the vector $\left(X_{s}, \ldots, X_{t}\right)$ in \mathbb{B}^{t-s+1} is regularly varying with the same index.

Wlog $s=1 \leqslant t$. Let H_{t} be the spectral measure of $\left(X_{1}, \ldots, X_{t}\right)$:

$$
\mathscr{L}\left(\left.\frac{\left(X_{1}, \ldots, X_{t}\right)}{\left\|\left(X_{1}, \ldots, X_{t}\right)\right\|} \right\rvert\,\left\|\left(X_{1}, \ldots, X_{t}\right)\right\|>u\right) \xrightarrow{d} H_{t}, \quad u \rightarrow \infty
$$

- H_{t} is a probability measure on the unit sphere in \mathbb{B}^{t}.
- The measures $H_{1}, H_{2}, H_{3}, \ldots$ are linked somehow.
- Idem for M_{0}-convergence to limit measures μ_{t}.

Changing the conditioning event

 yields a unique limit objectLet $\left(X_{t}\right)_{t \in \mathbb{Z}}$ be a stationary time series in \mathbb{B} and let $\alpha>0$.

Theorem

The following statements are equivalent:
(i) $\left(X_{t}\right)_{t \in \mathbb{Z}}$ is regularly varying with index α.
(ii) The function $u \mapsto P\left(\left\|X_{0}\right\|>u\right)$ belongs to $R V_{-\alpha}$ and

$$
\mathscr{L}\left(\left(X_{t} /\left\|X_{0}\right\|\right)_{t \in \mathbb{Z}} \mid\left\|X_{0}\right\|>u\right) \xrightarrow{d}\left(\Theta_{t}\right)_{t \in \mathbb{Z}} \quad(u \rightarrow \infty)
$$

(iii) For $Y \sim \operatorname{Pareto}(\alpha)$ independent from some $\left(\Theta_{t}\right)_{t \in \mathbb{Z}}$,

$$
\mathscr{L}\left(\left\|X_{0}\right\| / u,\left(X_{t} /\left\|X_{0}\right\|\right)_{t \in \mathbb{Z}} \mid\left\|X_{0}\right\|>u\right) \xrightarrow{d}\left(Y,\left(\Theta_{t}\right)_{t \in \mathbb{Z}}\right) \quad(u \rightarrow \infty)
$$

(iv) For $Y \sim \operatorname{Pareto}(\alpha)$ independent from some $\left(\Theta_{t}\right)_{t \in \mathbb{Z}}$,

$$
\mathscr{L}\left(\left(X_{t} / u\right)_{t \in \mathbb{Z}} \mid\left\|X_{0}\right\|>u\right) \xrightarrow{d}\left(Y \Theta_{t}\right)_{t \in \mathbb{Z}} \quad(u \rightarrow \infty)
$$

Reconstructing the M_{0}-limit measures

 from the spectral process or tail process- Spectral process: the unique limit process $\left(\Theta_{t}\right)_{t \in \mathbb{Z}}$ in (ii)-(iv).
- Tail process: the process $Y_{t}=Y \Theta_{t}$ in (iii)

The M_{0}-limit in \mathbb{B}^{t} punctured at the origin

$$
\frac{1}{P\left(\left\|X_{0}\right\|>u\right)} P\left[\left(X_{1} / u, \ldots, X_{t} / u\right) \in \cdot\right] \xrightarrow{M_{0}} \mu_{t} \quad(u \rightarrow \infty)
$$

is given by

$$
\begin{aligned}
& \int_{\mathbb{B}^{t}} f d \mu_{t}=\sum_{j=1}^{t} \int_{0}^{\infty} E\left[f\left(0, \ldots, 0, r \Theta_{0}, \ldots, r \Theta_{t-j}\right)\right. \\
&\left.I\left(\max _{-j+1 \leqslant i \leqslant-1}\left\|\Theta_{i}\right\|=0\right)\right] d\left(-r^{-\alpha}\right)
\end{aligned}
$$

The spectral process versus the spectral measure

- Special case $t=0$:

$$
\mathscr{L}\left(X_{0} /\left\|X_{0}\right\| \mid\left\|X_{0}\right\|>u\right) \xrightarrow{d} \mathscr{L}\left(\Theta_{0}\right), \quad u \rightarrow \infty
$$

so $\mathscr{L}\left(\Theta_{0}\right)$ is the spectral measure H_{0} of X_{0}.
Clearly, $\left\|\Theta_{0}\right\|=1$.

- For general $t \in \mathbb{Z}$,

$$
\mathscr{L}\left(X_{t} /\left\|X_{0}\right\| \mid\left\|X_{0}\right\|>u\right) \xrightarrow{d} \mathscr{L}\left(\Theta_{t}\right), \quad u \rightarrow \infty
$$

so $\left\|\Theta_{t}\right\| \neq 1$ in general if $t \neq 0$.
By stationarity, the spectral measure of X_{t} is H_{0} too.

The tail and spectral processes of a stationary process

 are in general non-stationaryExample (Independence)
If $\left(X_{t}\right)_{t \in \mathbb{Z}}$ is iid and X_{0} is regularly varying,

$$
\mathscr{L}\left(\left(u^{-1} X_{t}\right)_{t \in \mathbb{Z}} \mid\left\|X_{0}\right\|>u\right) \xrightarrow{\text { fidi }} \mathscr{L}\left(\ldots, 0,0, Y_{0}, 0,0, \ldots\right)
$$

Example (Full dependence)
If $X_{t}=X_{0}$ for all $t \in \mathbb{Z}$ and X_{0} is regularly varying,

$$
\mathscr{L}\left(\left(u^{-1} X_{t}\right)_{t \in \mathbb{Z}} \mid\left\|X_{0}\right\|>u\right) \xrightarrow{\text { fidi }} \mathscr{L}\left(\ldots, Y_{0}, Y_{0}, Y_{0}, \ldots\right)
$$

Extremes of Stationary Sequences

Describing heavy tails: Regular variation
 Tail and spectral processes

Time-change formula

Using the spectral process

Conclusion

Stationarity of $\left(X_{t}\right)_{t \in \mathbb{Z}}$ induces a

 subtle structure on the tail/spectral processClaim. $P\left(\Theta_{-t} \neq 0\right)=E\left[\left\|\Theta_{t}\right\|^{\alpha}\right]$
Proof-step 1:
Since $Y_{-t}=\left\|Y_{0}\right\| \Theta_{-t}$,

$$
\begin{aligned}
P\left(\Theta_{-t} \neq 0\right) & =P\left(Y_{-t} \neq 0\right) \\
& =\lim _{r \rightarrow 0} P\left(\left\|Y_{-t}\right\|>r\right) \\
& =\lim _{r \rightarrow 0} \lim _{u \rightarrow \infty} P\left(\left\|X_{-t}\right\| / u>r \mid\left\|X_{0}\right\|>u\right)
\end{aligned}
$$

Calculate the two limits.

Stationarity of $\left(X_{t}\right)_{t \in \mathbb{Z}}$ induces a

 subtle structure on the tail/spectral processClaim. $P\left(\Theta_{-t} \neq 0\right)=E\left[\left\|\Theta_{t}\right\|^{\alpha}\right]$
Proof-step 2:
Limit as $u \rightarrow \infty$: By stationarity and regular variation

$$
\begin{aligned}
& P\left(\left\|X_{-t}\right\| / u>r \mid\left\|X_{0}\right\|>u\right) \\
& =P\left(\left\|X_{0}\right\| / u>r \mid\left\|X_{t}\right\|>u\right) \\
& =\frac{P\left(\left\|X_{0}\right\|>u r,\left\|X_{t}\right\|>u\right)}{P\left(\left\|X_{t}\right\|>u\right)} \\
& =\underbrace{\frac{P\left(\left\|X_{0}\right\|>r u\right)}{P\left(\left\|X_{t}\right\|>u\right)}}_{\rightarrow r^{-\alpha}} \underbrace{P\left(r\left\|X_{t}\right\|>r u \mid\left\|X_{0}\right\|>r u\right)}_{\rightarrow P\left(r\left\|Y_{t}\right\|>1\right)} \\
& \rightarrow r^{r^{-\alpha} P\left(r\left\|Y_{t}\right\|>1\right)}
\end{aligned}
$$

as $u \rightarrow \infty$.

Stationarity of $\left(X_{t}\right)_{t \in \mathbb{Z}}$ induces a

 subtle structure on the tail/spectral processClaim. $P\left(\Theta_{-t} \neq 0\right)=E\left[\left\|\Theta_{t}\right\|^{\alpha}\right]$
Proof-step 3:
Limit as $r \rightarrow 0$: Since $Y_{t}=\left\|Y_{0}\right\| \Theta_{t}$,

$$
\begin{aligned}
r^{-\alpha} P\left(r\left\|Y_{t}\right\|>1\right) & =r^{-\alpha} \int_{1}^{\infty} P\left(r y\left\|\Theta_{t}\right\|>1\right) d\left(-y^{-\alpha}\right) \\
& =\int_{0}^{r^{-\alpha}} P\left(\left\|\Theta_{t}\right\|^{\alpha}>x\right) d x \\
& \xrightarrow{r \rightarrow 0} \int_{0}^{\infty} P\left(\left\|\Theta_{t}\right\|^{\alpha}>x\right) d x=E\left[\left\|\Theta_{t}\right\|^{\alpha}\right]
\end{aligned}
$$

QED

Forward and backward process:
 Restricting the spectral process to the future or the past

A stationary process $\left(X_{t}\right)_{t \in \mathbb{Z}}$ in \mathbb{B} has a forward tail process $\left(Y_{t}\right)_{t \geqslant 0}$ if

$$
\mathscr{L}\left(\left(X_{t} / u\right)_{t \geqslant 0} \mid\left\|X_{0}\right\|>u\right) \xrightarrow{\text { fidi }} \mathscr{L}\left(\left(Y_{t}\right)_{t \geqslant 0}\right)
$$

Idem: backward tail process, forward/backward spectral process.
The property $P\left(\Theta_{-t} \neq 0\right)=E\left[\left\|\Theta_{t}\right\|^{\alpha}\right]$ suggests that we can infer the distribution of the backward process from the forward one.

Time-change formula:
 How a time-shift affects the spectral process

Theorem

Statements (ii)-(iv) in the previous theorem are equivalent to the same statements with \mathbb{Z} replaced by \mathbb{Z}_{+}or \mathbb{Z}_{-}.

In that case,

$$
E\left[f\left(\Theta_{-s}, \ldots, \Theta_{t}\right)\right]=E\left[f\left(\frac{\Theta_{0}}{\left\|\Theta_{s}\right\|}, \ldots, \frac{\Theta_{t+s}}{\left\|\Theta_{s}\right\|}\right)\left\|\Theta_{s}\right\|^{\alpha} I\left(\left\|\Theta_{s}\right\|>0\right)\right]
$$

for all nonnegative integer s and t and for all integrable functions $f: \mathbb{B}^{t+s+1} \rightarrow \mathbb{R}$ such that $f\left(\theta_{-s}, \ldots, \theta_{t}\right)=0$ whenever $\theta_{-s}=0$.

Considering the time-reversed process $\tilde{X}_{t}=X_{-t}$ yields a similar reduction to the backward spectral process.

Understanding the time-change formula (1)

Assume $\mathbb{B}=\mathbb{R}, \alpha=1$, and $X_{t}>0$ a.s., so $\Theta_{0}=1$.
The time-change formula at $s=1$ and $t=0$ implies that for integrable $f:[0, \infty) \rightarrow \mathbb{R}$ such that $f(0)=0$,

$$
\begin{aligned}
E\left[f\left(\Theta_{-1}\right)\right] & =E\left[f\left(1 / \Theta_{+1}\right) \Theta_{+1}\right] \\
E\left[f\left(\Theta_{+1}\right)\right] & =E\left[f\left(1 / \Theta_{-1}\right) \Theta_{-1}\right]
\end{aligned}
$$

Let μ be the limit measure of $\left(X_{t-1}, X_{t}\right)$ on $[0, \infty]^{2} \backslash\{(0,0)\}$:

$$
\frac{1}{P\left(X_{0}>u\right)} P\left[u^{-1}\left(X_{t-1}, X_{t}\right) \in \cdot\right] \xrightarrow{v} \mu(\cdot) \quad(u \rightarrow \infty)
$$

To be applied to both $\left(X_{0}, X_{1}\right)$ and to $\left(X_{-1}, X_{0}\right)$: duality relation between Θ_{1} and Θ_{-1}.

Understanding the time-change formula (2)

By definition of μ, Θ_{1} and Θ_{-1} (Picture!):

$$
\begin{aligned}
P\left(\Theta_{1} \leqslant z\right) & =\lim _{u \rightarrow \infty} P\left[\left.\frac{X_{1}}{X_{0}} \leqslant z \right\rvert\, X_{0}>u\right] \\
& =\lim _{u \rightarrow \infty} \frac{1}{P\left(X_{0}>u\right)} P\left[\frac{X_{1} / u}{X_{0} / u} \leqslant z, X_{0} / u>1\right] \\
& =\mu\{(x, y): y / x \leqslant z, x>1\} \\
P\left(\Theta_{-1} \leqslant z\right) & =\lim _{u \rightarrow \infty} P\left[\left.\frac{X_{0}}{X_{1}} \leqslant z \right\rvert\, X_{1}>u\right] \\
& =\ldots \\
& =\mu\{(x, y): x / y \leqslant z, y>1\}
\end{aligned}
$$

Link between Θ_{1} and Θ_{-1} follows if we can solve for μ.

Solving for the limit measure

If $f:[0, \infty)^{2} \rightarrow \mathbb{R}$ (bounded, continuous) vanishes on $[0, \delta] \times[0, \infty)$,

$$
\begin{aligned}
\int f d \mu & =\lim _{u \rightarrow \infty} \frac{1}{P\left(X_{0}>u\right)} E\left[f\left(X_{0} / u, X_{1} / u\right)\right] \\
& =\lim _{u \rightarrow \infty} \frac{P\left(X_{0}>\delta u\right)}{P\left(X_{0}>u\right)} E\left[f\left(X_{0} / u, X_{1} / u\right) \mid X_{0}>\delta u\right] \\
& =\delta^{-1} E\left[f\left(\delta Y_{0}, \delta Y_{1}\right)\right] \\
& =\delta^{-1} \int_{1}^{\infty} E\left[f\left(\delta y, \delta y \Theta_{1}\right)\right] d\left(-y^{-1}\right) \\
& =\int_{\delta}^{\infty} E\left[f\left(r, r \Theta_{1}\right)\right] d\left(-r^{-1}\right) \\
& =\int_{0}^{\infty} E\left[f\left(r, r \Theta_{1}\right)\right] d\left(-r^{-1}\right)
\end{aligned}
$$

- Formula extends to f such that $f(0, y)=0$.
- For more general f, decompose

$$
f(x, y)=\{f(x, y)-f(0, y)\}+f(0, y)
$$

Symmetry

μ is symmetric if and only if $\Theta_{-1} \stackrel{d}{=} \Theta_{1}$.

Example

If μ corresponds to the Hüsler-Reiss max-stable distribution, we have $\Theta_{-1} \stackrel{d}{=} \Theta_{1}$ Lognormal with unit expectation.

Extremes of Stationary Sequences

```
Describing heavy tails: Regular variation
Tail and spectral processes
Time-change formula
```

Using the spectral process

Conclusion

Joint survival function when applying linear functionals

- Let $\{0, t\} \subset I \subset\{0, \ldots, t\}$.
- For $i \in I$, let $0 \neq b_{i}^{*} \in \mathbb{B}^{*}$, the dual of \mathbb{B}
- $b_{i}^{*}: \mathbb{B} \rightarrow \mathbb{R}$ linear and bounded

By conditioning on the events $\left\|X_{0}\right\|>u /\left\|b_{0}^{*}\right\|$ or $\left\|X_{t}\right\|>u /\left\|b_{t}^{*}\right\|$,

$$
\begin{aligned}
\lim _{u \rightarrow \infty} \frac{P\left(\forall i \in I: b_{i}^{*} X_{i}>u\right)}{P\left(\left\|X_{0}\right\|>u\right)} & =E\left[\min \left\{\left(b_{i}^{*} \Theta_{i}\right)_{+}^{\alpha}: i \in I\right\}\right] \\
& =E\left[\min \left\{\left(b_{i}^{*} \Theta_{i-t}\right)_{+}^{\alpha}: i \in I\right\}\right]
\end{aligned}
$$

Equality of the expectations follows from the time-change formula.

Proof via conditioning and the spectral representation

Proof of $\frac{P\left(\forall i \in I: b_{i}^{*} X_{i}>u\right)}{P\left(\left\|X_{0}\right\|>u\right)} \rightarrow E\left[\min \left\{\left(b_{i}^{*} \Theta_{i}\right)_{+}^{\alpha}: i \in I\right\}:\right.$
Step 1: calculate the limit as $u \rightarrow \infty$.
Since $b_{0}^{*} X_{0}>u$ implies $\left\|X_{0}\right\|>u /\left\|b_{0}^{*}\right\|$,

$$
\begin{aligned}
& \frac{P\left(\forall i \in I: b_{i}^{*} X_{i}>u\right)}{P\left(\left\|X_{0}\right\|>u\right)} \\
& =\frac{P\left(\left\|X_{0}\right\|>u /\left\|b_{0}^{*}\right\|\right)}{P\left(\left\|X_{0}\right\|>u\right)} P\left(\forall i \in I: b_{i}^{*} X_{i}>u \mid\left\|X_{0}\right\|>u /\left\|b_{0}^{*}\right\|\right) \\
& \rightarrow\left\|b_{0}^{*}\right\|^{\alpha} P\left(\forall i \in I: b_{i}^{*} Y_{i}>\left\|b_{0}^{*}\right\|\right)
\end{aligned}
$$

Proof via conditioning and the spectral representation

Proof of $\frac{P\left(\forall i \in I: b_{i}^{*} X_{i}>u\right)}{P\left(\left\|X_{0}\right\|>u\right)} \rightarrow E\left[\min \left\{\left(b_{i}^{*} \Theta_{i}\right)_{+}^{\alpha}: i \in I\right\}:\right.$
Step 2: Reduce the tail process to the spectral process. Recall $Y_{i}=Y \Theta_{i}$ with $Y \sim \operatorname{Pareto}(\alpha)$ independent of $\left(\Theta_{i}\right)_{i}$.

$$
\begin{aligned}
& \left\|b_{0}^{*}\right\|^{\alpha} P\left(\forall i \in I: b_{i}^{*} Y_{i}>\left\|b_{0}^{*}\right\|\right) \\
& =\left\|b_{0}^{*}\right\|^{\alpha} \int_{1}^{\infty} P\left(\forall i \in I: b_{i}^{*}\left(y \Theta_{i}\right)>\left\|b_{0}^{*}\right\|\right) d\left(-y^{-\alpha}\right) \\
& =\int_{0}^{\left\|b_{0}^{*}\right\|^{\alpha}} P\left\{\forall i \in I:\left(b_{i}^{*} \Theta_{i}\right)_{+}^{\alpha}>u\right\} d u \\
& =\int_{0}^{\infty} P\left\{\forall i \in I:\left(b_{i}^{*} \Theta_{i}\right)_{+}^{\alpha}>u\right\} d u \\
& =E\left[\min \left\{\left(b_{i}^{*} \Theta_{i}\right)_{+}^{\alpha}: i \in I\right\}\right]
\end{aligned}
$$

$\operatorname{using}\left|b_{0}^{*} \Theta_{0}\right| \leqslant\left\|b_{0}^{*}\right\|\left\|\Theta_{0}\right\|=\left\|b_{0}^{*}\right\|$.

Joint survival of the sequence of norms

Similarly, for $b_{i} \in(0, \infty)$,

$$
\begin{aligned}
\lim _{u \rightarrow \infty} \frac{P\left(\forall i \in I: b_{i}\left\|X_{i}\right\|>u\right)}{P\left(\left\|X_{0}\right\|>u\right)} & =E\left[\min \left\{b_{i}^{\alpha}\left\|\Theta_{i}\right\|^{\alpha}: i \in I\right\}\right] \\
& =E\left[\min \left\{b_{i}^{\alpha}\left\|\Theta_{i-t}\right\|^{\alpha}: i \in I\right\}\right]
\end{aligned}
$$

Equality of the expectations follows from the time-change formula.

Tail dependence coefficients

The coefficient of upper tail dependence between $b^{*} X_{0}$ and $b^{*} X_{h}$, for $b^{*} \in \mathbb{B}^{*}$ such that $P\left(b^{*} \Theta_{0}>0\right)>0$:

$$
\begin{aligned}
\lim _{u \rightarrow \infty} P\left(b^{*} X_{h}>u \mid b^{*} X_{0}>u\right) & =\frac{E\left[\min \left\{\left(b^{*} \Theta_{0}\right)_{+}^{\alpha},\left(b^{*} \Theta_{h}\right)_{+}^{\alpha}\right\}\right]}{E\left[\left(b^{*} \Theta_{0}\right)_{+}^{\alpha}\right]} \\
& =\frac{E\left[\min \left\{\left(b^{*} \Theta_{0}\right)_{+}^{\alpha},\left(b^{*} \Theta_{-h}\right)_{+}^{\alpha}\right\}\right]}{E\left[\left(b^{*} \Theta_{0}\right)_{+}^{\alpha}\right]}
\end{aligned}
$$

The coefficient of tail dependence between $\left\|X_{0}\right\|$ and $\left\|X_{h}\right\|$:

$$
\begin{aligned}
\lim _{u \rightarrow \infty} P\left(\left\|X_{h}\right\|>u \mid\left\|X_{0}\right\|>u\right) & =E\left[\min \left(\left\|\Theta_{h}\right\|^{\alpha}, 1\right)\right] \\
& =E\left[\min \left(\left\|\Theta_{-h}\right\|^{\alpha}, 1\right)\right]
\end{aligned}
$$

Extremogram

Extremogram: Extreme-value analogue of the correllogram:

$$
\rho_{A, B}(h)=\lim _{n \rightarrow \infty} n P\left(X_{0} / a_{n} \in A, X_{h} / a_{n} \in B\right),
$$

- Regions A, B at least one of which stays away from the origin
- $a_{n}>0$ satisfies $n P\left(\left\|X_{0}\right\|>a_{n}\right) \rightarrow 1$ as $n \rightarrow \infty$
[Davis \& Mikosch 2009]
If A and B are continuity sets of the distributions of Y_{0} and Y_{h} respectively and if $A \subset\{x \in \mathbb{B}:\|x\|>1\}$, then

$$
\begin{aligned}
\rho_{A, B}(h) & =\lim _{n \rightarrow \infty} P\left(X_{0} / a_{n} \in A, X_{h} / a_{n} \in B \mid\left\|X_{0}\right\|>a_{n}\right) \\
& =P\left(Y_{0} \in A, Y_{h} \in B\right) .
\end{aligned}
$$

Extremogram of the image under linear functionals

If

$$
\begin{aligned}
A & =\left\{x \in \mathbb{B}: a^{*} x>1\right\} \\
B & =\left\{x \in \mathbb{B}: b^{*} x>1\right\}
\end{aligned}
$$

for some $a^{*}, b^{*} \in \mathbb{B}^{*}$, then

$$
\begin{aligned}
\rho_{A, B}(h) & =\lim _{n \rightarrow \infty} n P\left(a^{*} X_{0}>a_{n}, b^{*} X_{h}>a_{n}\right) \\
& =E\left[\min \left\{\left(a^{*} \Theta_{0}\right)_{+}^{\alpha},\left(b^{*} \Theta_{h}\right)_{+}^{\alpha}\right\}\right]
\end{aligned}
$$

Extremal index of the sequence of norms

The (candidate) extremal index [Leadbeter 1983] of $\left(\left\|X_{t}\right\|\right)_{t \in \mathbb{Z}}$:

$$
\begin{aligned}
\theta & =\lim _{m \rightarrow \infty} \lim _{u \rightarrow \infty} P\left(\max _{t=1, \ldots, m}\left\|X_{t}\right\| \leqslant u \mid\left\|X_{0}\right\|>u\right) \\
& =P\left(\sup _{t \geqslant 1}\left\|Y_{t}\right\| \leqslant 1\right) \\
& =E\left[\sup _{t \geqslant 0}\left\|\Theta_{t}\right\|^{\alpha}-\sup _{t \geqslant 1}\left\|\Theta_{t}\right\|^{\alpha}\right]
\end{aligned}
$$

Passing from the tail process to the spectral process

Proof of $P\left(\sup _{t \geqslant 1}\left\|Y_{t}\right\| \leqslant 1\right)=E\left[\sup _{t \geqslant 0}\left\|\Theta_{t}\right\|^{\alpha}-\sup _{t \geqslant 1}\left\|\Theta_{t}\right\|^{\alpha}\right]$: Writing $Y=\left\|Y_{0}\right\|$, since $Y^{-\alpha} \sim \operatorname{Uniform}(0,1)$ and since $\left\|\Theta_{0}\right\|=1$,

$$
\begin{aligned}
P\left(\sup _{t \geqslant 1}\left\|Y_{t}\right\| \leqslant 1\right) & =P\left(Y \sup _{t \geqslant 1}\left\|\Theta_{t}\right\| \leqslant 1\right) \\
& =P\left(\sup _{t \geqslant 1}\left\|\Theta_{t}\right\|^{\alpha} \leqslant Y^{-\alpha}\right) \\
& =\int_{0}^{1} P\left(\sup _{t \geqslant 1}\left\|\Theta_{t}\right\|^{\alpha} \leqslant u\right) d u \\
& =1-E\left[\min \left(1, \sup _{t \geqslant 1}\left\|\Theta_{t}\right\|^{\alpha}\right)\right] \\
& =E\left[\sup _{t \geqslant 0}\left\|\Theta_{t}\right\|^{\alpha}-\sup _{t \geqslant 1}\left\|\Theta_{t}\right\|^{\alpha}\right]
\end{aligned}
$$

using the identity $\int_{0}^{1} P(\xi \leqslant u) d u=1-\int_{0}^{\infty} P\{\min (1, \xi)>u\} d u$

Extremal index of the image under a linear functional

Let $b^{*} \in \mathbb{B}^{*}$ be such that $P\left(b^{*} \Theta_{0}>0\right)>0$.
The (candidate) extremal index of $\left(b^{*} X_{t}\right)_{t \in \mathbb{Z}}$:

$$
\begin{aligned}
\theta\left(b^{*}\right) & =\lim _{m \rightarrow \infty} \lim _{u \rightarrow \infty} P\left(\max _{t=1, \ldots, m} b^{*} X_{t} \leqslant u \mid b^{*} X_{0}>u\right) \\
& =1-\frac{E\left[\min \left\{\left(b^{*} \Theta_{0}\right)_{+}^{\alpha}, \sup _{t \geqslant 1}\left(b^{*} \Theta_{t}\right)_{+}^{\alpha}\right\}\right]}{E\left[\left(b^{*} \Theta_{0}\right)_{+}^{\alpha}\right]} \\
& =\frac{E\left[\sup _{t \geqslant 0}\left(b^{*} \Theta_{t}\right)_{+}^{\alpha}-\sup _{t \geqslant 1}\left(b^{*} \Theta_{t}\right)_{+}^{\alpha}\right]}{E\left[\left(b^{*} \Theta_{0}\right)_{+}^{\alpha}\right]}
\end{aligned}
$$

Large deviations and the cluster index

$\mathbb{B}=\mathbb{R}$. Partial sums $S_{k}=X_{1}+\cdots+X_{k}$.
For $a_{n}>0$ such that $n P\left(\left|X_{0}\right|>a_{n}\right) \rightarrow 1$, put

$$
b_{+}(k)=\lim _{n \rightarrow \infty} n P\left(S_{k}>a_{n}\right)
$$

For certain Markov chains, the cluster index b_{+}exists:

$$
b_{+}=\lim _{k \rightarrow \infty}\left\{b_{+}(k+1)-b_{+}(k)\right\}=E\left[\left(\sum_{t \geqslant 0} \Theta_{t}\right)_{+}^{\alpha}-\left(\sum_{t \geqslant 1} \Theta_{t}\right)_{+}^{\alpha}\right]
$$

Large deviations principle: for appropriate $u_{n}, v_{n} \rightarrow \infty$,

$$
\lim _{n \rightarrow \infty} \sup _{x \in\left(u_{n}, v_{n}\right)}\left|\frac{P\left(S_{n}>x\right)}{n P\left(\left|X_{0}\right|>x\right)}-b_{+}\right|=0
$$

[Mikosch \& Wintenberger 2012a,b; Wintenberger 2012]

Central limit theorems with stable, non-Gaussian limits

$\mathbb{B}=\mathbb{R}$ and $0<\alpha<2$. Partial sums $S_{n}=X_{1}+\cdots+X_{n}$

- Stable limits of the partial sums
[Bartkiewicz, Jakubowski, Mikosch, and Wintenberger 2011]
- Functional limit theorem in $D[0,1]$ with Skorohod's M_{1} topology (weaker than J_{1})
[Basrak, Krizmanić \& S. 2012]
Limiting characteristic functions (Lévy measures) expressed in terms of spectral process.

Extremes of Stationary Sequences

```
Describing heavy tails: Regular variation
Tail and spectral processes
Time-change formula
Using the spectral process
```

Conclusion

To take home...

1 Regular variation and existence of the spectral process:

$$
\mathscr{L}\left(\left\|X_{0}\right\| / u,\left(X_{t} /\left\|X_{0}\right\|\right)_{t \in \mathbb{Z}} \mid\left\|X_{0}\right\|>u\right) \xrightarrow{\text { fidi }} \mathscr{L}\left(Y,\left(\Theta_{t}\right)_{t \in \mathbb{Z}}\right)
$$

with $Y \sim \operatorname{Pareto}(\alpha)$ independent of $\left(\Theta_{t}\right)_{t \in \mathbb{Z}}$
2 Time-change formula: backward $(t \leqslant 0)$ versus forward $(t \geqslant 0)$ spectral process
3 Using the spectral process for describing extremal dependence

Part III

Markov Processes
— with A. Janßen

Extremes of Stationary Sequences

Set-up and main finding

Forward spectral processes

Time-change formula

Adjoint distributions

Back-and-forth spectral processes and the spectral process

Set-up: multivariate Markov chain with regularly varying initial distribution

Discrete-time, \mathbb{R}^{d}-valued random process $\left(X_{t}\right)_{t \geqslant 0}$ defined by

$$
X_{t}=\Psi\left(X_{t-1}, \varepsilon_{t}\right), \quad t=1,2, \ldots
$$

where

- $\varepsilon_{1}, \varepsilon_{2}, \ldots$ are iid in a measurable space $(\mathbb{E}, \mathscr{E})$, independent of X_{0}
- $\Psi: \mathbb{R}^{d} \times \mathbb{E} \rightarrow \mathbb{R}^{d}$ is measurable
- the law of X_{0} is multivariate regularly varying

If $\left(X_{t}\right)_{t}$ is stationary, it will be assumed to be defined for all $t \in \mathbb{Z}$.

Commenting the framework:
 Representation of the Markov chain

Rather than transition kernels, use the representation

$$
X_{t}=\Psi\left(X_{t-1}, \varepsilon_{t}\right)
$$

- Non-unique
- General, e.g. inverse (conditional) Rosenblatt (1952) transform
- ε_{t} iid uniform $[0,1]^{d}$
- $\Psi(x, \cdot)$ vector of (conditional) ${ }^{2}$ quantile functions
- Arises naturally in examples, e.g. stochastic recurrence equation

$$
X_{t}=A_{t} X_{t-1}+B_{t}, \quad \varepsilon_{t}=\left(A_{t}, B_{t}\right)
$$

Aim: to find the spectral process of a multivariate regularly varying Markov chain

We are looking for the weak limit $\left(M_{t}\right)_{t}$, called spectral process, in
$\mathscr{L}\left(\left\|X_{0}\right\| / u,\left(X_{t} /\left\|X_{0}\right\|\right)_{t} \mid\left\|X_{0}\right\|>u\right) \xrightarrow{d} \mathscr{L}\left(Y,\left(M_{t}\right)_{t}\right), \quad u \rightarrow \infty$

- $\alpha>0$ is the index of regular variation of X_{0}
- Y is $\operatorname{Pareto}(\alpha)$, i.e. $P[Y>y]=y^{-\alpha}$ for $y \geqslant 1$
- Y is independent of $\left(M_{t}\right)_{t}$

Continuous mapping theorem:

$$
\mathscr{L}\left(\left(X_{t} / u\right)_{t} \mid\left\|X_{0}\right\|>u\right) \xrightarrow{d} \mathscr{L}\left(\left(Y M_{t}\right)_{t}\right), \quad u \rightarrow \infty
$$

The spectral process and the extremogram: two sides of the same coin

Linking the spectral process and the extremogram [Davis \& Mikosch 2009]:

- For nice sets $A, B \subset \mathbb{R}^{d}$ such that $A \subset\{x:\|x\| \geqslant 1\}$,

$$
\begin{aligned}
\rho_{A B}(h) & =\lim _{u \rightarrow \infty} P\left[u^{-1} X_{h} \in B \mid u^{-1} X_{0} \in A\right] \\
& =P\left[Y M_{h} \in B \mid Y M_{0} \in A\right], \quad h=0,1,2, \ldots
\end{aligned}
$$

- Conversely, from the extremogram of the lagged- h process

$$
Y_{t, h}=\operatorname{vec}\left(X_{t-h+1}, \ldots, X_{t}\right)
$$

one deduces the $2 h d$-dimensional distributions of the spectral process.

Main findings

Markov spectral processes $\left(M_{t}\right)_{t}$ verify the following properties:

- The forward $(t \geqslant 0)$ and backward $(t \leqslant 0)$ chains are adjoint
- The forward and backward spectral processes are Markov chains
- They enjoy a certain scaling property

Univariate case: (to be thought of as) multiplicative random walks
[Smith 1992; Perfekt 1994; Yun 2000; Bortot \& Coles 2000/2003; S. 2007; Resnick \& Zeber 2011]

General: back-and-forth tail chain

Extremes of Stationary Sequences

Set-up and main finding

Forward spectral processes

Time-change formula

Adjoint distributions

Back-and-forth spectral processes and the spectral process

Condition: regularly varying initial distribution

The distribution of X_{0} is regularly varying with

- index $\alpha>0$
- spectral/angular measure H on the unit sphere \mathbb{S}^{d-1}

$$
\mathscr{L}\left(\left\|X_{0}\right\| / u, X_{0} /\left\|X_{0}\right\| \mid\left\|X_{0}\right\|>u\right) \xrightarrow{d} \mathscr{L}\left(Y, M_{0}\right), \quad u \rightarrow \infty
$$

where

- $M_{0} \sim H$
- Y is Pareto (α), i.e. $P[Y>y]=y^{-\alpha}$ for $y \geqslant 1$
- Y and M_{0} are independent

Condition: asymptotic scaling of the update function

Recall

$$
X_{t}=\Psi\left(X_{t-1}, \varepsilon_{t}\right)
$$

1. With probability one and for all H-almost every $s \in \mathbb{S}^{d-1}$,

$$
\lim _{u \rightarrow \infty} \frac{\Psi\left(u s(u), \varepsilon_{t}\right)}{u}=\phi\left(s, \varepsilon_{t}\right)
$$

whenever $s(u) \rightarrow s$ as $u \rightarrow \infty$.
2. If $P\left[\phi\left(s, \varepsilon_{t}\right)=0\right]>0$ for some s in the support of H, then with probability one,

$$
\sup _{\|x\| \leqslant u}\left|\Psi\left(x, \varepsilon_{t}\right)\right|=O(u), \quad u \rightarrow \infty
$$

Conditions easily verified in examples such as $X_{t}=A_{t} X_{t-1}+B_{t}$.

Unfolding the recursion

Aim: to find the weak limit M_{t}, of $X_{t} /\left\|X_{0}\right\|$, given $\left\|X_{0}\right\|>u \rightarrow \infty$. If $\left\|X_{0}\right\|$ is 'large':

$$
\begin{aligned}
M_{0} & \stackrel{d}{\approx} \frac{X_{0}}{\left\|X_{0}\right\|} \sim H \\
M_{1} & \stackrel{d}{\approx} \frac{X_{1}}{\left\|X_{0}\right\|}=\frac{\Psi\left(X_{0}, \varepsilon_{1}\right)}{\left\|X_{0}\right\|} \approx \phi\left(\frac{X_{0}}{\left\|X_{0}\right\|}, \varepsilon_{1}\right) \stackrel{d}{\approx} \phi\left(M_{0}, \varepsilon_{1}\right) \\
M_{2} & \stackrel{d}{\approx} \frac{X_{2}}{\left\|X_{0}\right\|}=\frac{\left\|X_{1}\right\|}{\left\|X_{0}\right\|} \frac{\Psi\left(X_{1}, \varepsilon_{2}\right)}{\left\|X_{1}\right\|} \\
& \approx \frac{\left\|X_{1}\right\|}{\left\|X_{0}\right\|} \phi\left(\frac{X_{1}}{\left\|X_{1}\right\|}, \varepsilon_{2}\right) \\
& =\frac{\left\|X_{1}\right\|}{\left\|X_{0}\right\|} \phi\left(\frac{X_{1} /\left\|X_{0}\right\|}{\left\|\left(X_{1} /\left\|X_{0}\right\|\right)\right\|}, \varepsilon_{2}\right) \stackrel{d}{\approx}\left\|M_{1}\right\| \phi\left(\frac{M_{1}}{\left\|M_{1}\right\|}, \varepsilon_{2}\right)
\end{aligned}
$$

Existence and description of the forward spectral process

Theorem
For a time-homogeneous Markov chain $\left(X_{t}\right)_{t \geqslant 0}$, under the previous conditions,

$$
\mathscr{L}\left(\frac{\left\|X_{0}\right\|}{u} ; \frac{X_{0}}{\left\|X_{0}\right\|}, \frac{X_{1}}{\left\|X_{0}\right\|}, \ldots \mid\left\|X_{0}\right\|>u\right) \xrightarrow{d} \mathscr{L}\left(Y ; M_{0}, M_{1}, \ldots\right)
$$

with, for $t \geqslant 1$,

$$
M_{t}=\left\|M_{t-1}\right\| \phi\left(\frac{M_{t-1}}{\left\|M_{t-1}\right\|}, \varepsilon_{t}\right) I_{\left\{\left\|M_{t-1}\right\|>0\right\}}
$$

and

- $Y, M_{0}, \varepsilon_{1}, \varepsilon_{2}, \ldots$ are independent
- $Y \sim \operatorname{Pareto}(\alpha)$
- $M_{0} \sim H$
- $\varepsilon_{1}, \varepsilon_{2}, \ldots$ iid (copies) as in the definition of $\left(X_{t}\right)$

Example: vector $\mathrm{AR}(1)$ - angular measure

$$
X_{t}=A X_{t-1}+\varepsilon_{t}, \quad t \geqslant 0
$$

- deterministic $A \in \mathbb{R}^{d \times d}$ such that $\left\|A^{m}\right\|<1$ for some $m \geqslant 1$
- ε_{t} iid regularly varying $\alpha>0$, angular measure λ
- $X_{0}, \varepsilon_{1}, \varepsilon_{2}, \ldots$ independent

Then X_{0} is regularly varying with index α too and spectral measure

$$
H=\sum_{k \geqslant 0} p_{k} \lambda_{k}
$$

- λ_{k} the angular measure of $A^{k} \varepsilon_{t}$
- $\left(p_{k}\right)_{k \geqslant 0}$ a discrete probability distribution given by A, λ and α See Part IV Linear processes.

Example: vector AR(1) - forward tail process

The update function has the asymptotic scaling property:

$$
\begin{aligned}
\phi\left(s, \varepsilon_{t}\right) & =\lim _{u \rightarrow \infty} \frac{\Psi\left(u s(u), \varepsilon_{t}\right)}{u} \\
& =\lim _{u \rightarrow \infty} \frac{A u s(u)+\varepsilon_{t}}{u} \\
& =A s, \quad s \in \mathbb{S}^{d-1}
\end{aligned}
$$

The forward spectral process $\left(M_{t}\right)_{t \geqslant 0}$ is then simply

$$
\begin{aligned}
M_{t} & =\left\|M_{t-1}\right\| \phi\left(\frac{M_{t-1}}{\left\|M_{t-1}\right\|}, \varepsilon_{t}\right) \\
& =A M_{t-1} \\
& =\cdots \\
& =A^{t} M_{0}
\end{aligned}
$$

Extremes of Stationary Sequences

Set-up and main finding
Forward spectral processes

Time-change formula

Adjoint distributions

Back-and-forth spectral processes and the spectral process

Stationarity: existence of the full spectral process

Suppose in addition that $\left(X_{t}\right)_{t}$ is strictly stationary.
Without loss of generality, assume that X_{t} is defined for all $t \in \mathbb{Z}$.
Corollary
Under the previous conditions, there exists a process $\left(M_{t}\right)_{t \in \mathbb{Z}}$ s.t.

$$
\begin{aligned}
\mathscr{L}\left(\frac{\left\|X_{0}\right\|}{u} ; \ldots, \frac{X_{-1}}{\left\|X_{0}\right\|},\right. & \left.\frac{X_{0}}{\left\|X_{0}\right\|}, \frac{X_{1}}{\left\|X_{0}\right\|}, \ldots \mid\left\|X_{0}\right\|>u\right) \\
& \xrightarrow{d} \mathscr{L}\left(Y ; \ldots, M_{-1}, M_{0}, M_{1}, \ldots\right), \quad u \rightarrow \infty
\end{aligned}
$$

[S. 2007; Basrak \& S. 2009; Meinguet \& S. 2010]

Existence of the spectral process and regular variation

- The fidis of the Markov chain $\left(X_{t}\right)_{t \in \mathbb{Z}}$ are regularly varying
- Existence of the forward spectral process $M_{t}, t \geqslant 0$, implies existence of the full spectral process $M_{t}, t \in \mathbb{Z}$
- Reconstruct the full spectral process from the forward spectral process via time-change formulas

Time-change formula:
 Reconstructing the full tail process from the forward part

Corollary

For all integer h, s, t with $s, t \geqslant 0$ and for every measurable function $f:\left(\mathbb{R}^{d}\right)^{s+1+t} \rightarrow \mathbb{R}$ satisfying $f\left(x_{-s}, \ldots, x_{t}\right)=0$ whenever $x_{0}=0$,

$$
E\left[f\left(M_{-s-h}, \ldots, M_{t-h}\right)\right]
$$

$$
=E\left[f\left(\frac{M_{-s}}{\left\|M_{h}\right\|}, \ldots, \frac{M_{t}}{\left\|M_{h}\right\|}\right)\left\|M_{h}\right\|^{\alpha} I_{\left\{\left\|M_{h}\right\|>0\right\}}\right]
$$

[Basrak \& S. 2009, Theorem 3.1(iii)]

- Change in distribution due to a time-shift of $\operatorname{lag} h \in \mathbb{Z}$
- Choosing $s=0 \leqslant h$ yields at the right-hand side an expression that depends on the forward tail process only

Extremes of Stationary Sequences

Set-up and main finding
Forward spectral processes
Time-change formula

Adjoint distributions

Back-and-forth spectral processes and the spectral process

Recapitulation

$\left(X_{t}\right)_{t} \quad$ regularly varying Markov chain in \mathbb{R}^{d}
$\Psi \quad$ update function: $X_{t}=\Psi\left(X_{t-1}, \varepsilon_{t}\right)$
ϕ
scaling limit: $\Psi\left(x, \varepsilon_{t}\right) \approx\|x\| \phi\left(\frac{x}{\|x\|}, \varepsilon_{t}\right)$ if $\|x\|$ is large
Pareto (α) random variable weak limit of $\left\|X_{0}\right\| / u$ given $\left\|X_{0}\right\|>u$ as $u \rightarrow \infty$ $\alpha>0$ is the index of regular variation of $\left\|X_{0}\right\|$
$M_{t} \quad$ spectral process weak limit of $X_{t} /\left\|X_{0}\right\|$ given $\left\|X_{0}\right\|>u$ as $u \rightarrow \infty$
$H \quad$ spectral/angular measure of X_{0} law of M_{0}, taking values in $\mathbb{S}^{d-1}=\{x:\|x\|=1\}$

How to reconstruct the backward spectral process?

For Markov spectral processes $\left(M_{t}\right)_{t}$:

- The forward spectral process admitted an explicit representation:

$$
M_{t}=\left\|M_{t-1}\right\| \phi\left(\frac{M_{t-1}}{\left\|M_{t-1}\right\|}, \varepsilon_{t}\right) I_{\left\{\left\|M_{t-1}\right\|>0\right\}}, \quad t \geqslant 1
$$

- By the time-change formula, the law of the backward spectral process $(t \leqslant 0)$ is determined by the forward spectral process $(t \geqslant 0)$

> How does the backward spectral process look like?

A first step: let us study the law of $\left(M_{-1}, M_{0}\right)$. Recall:

$$
\mathscr{L}\left(X_{-1} /\left\|X_{0}\right\| \mid\left\|X_{0}\right\|>u\right) \xrightarrow{d} \mathscr{L}\left(M_{-1}\right), \quad u \rightarrow \infty
$$

A special case of the time-change formula motivates an adjoint relation between probability measures

The distributions of $\left(M_{0}, M_{1}\right)$ and $\left(M_{0}, M_{-1}\right)$ are "adjoint".

- In the time-change formula, set $s=0$ and $h=t=1$:

$$
E\left[f\left(M_{-1}, M_{0}\right)\right]=E\left[f\left(\frac{M_{0}}{\left\|M_{1}\right\|}, \frac{M_{1}}{\left\|M_{1}\right\|}\right)\left\|M_{1}\right\|^{\alpha} I_{\left\{\left\|M_{1}\right\|>0\right\}}\right]
$$

for all $f:\left(\mathbb{R}^{d}\right)^{2} \rightarrow \mathbb{R}$ satisfying $f\left(y_{0}, y_{1}\right)=0$ whenever $y_{0}=0$

- Similarly, set $s=1, h=-1$ and $t=0$:

$$
E\left[f\left(M_{0}, M_{1}\right)\right]=E\left[f\left(\frac{M_{-1}}{\left\|M_{-1}\right\|}, \frac{M_{0}}{\left\|M_{-1}\right\|}\right)\left\|M_{-1}\right\|^{\alpha} I_{\left\{\left\|M_{-1}\right\|>0\right\}}\right]
$$

for all $f:\left(\mathbb{R}^{d}\right)^{2} \rightarrow \mathbb{R}$ such that $f\left(y_{-1}, y_{0}\right)=0$ whenever $y_{0}=0$

Admissible distributions for the definition of the adjoint

The adjoint relation will be defined on a certain set \mathscr{M}_{α} of probability measures P on $\mathbb{S}^{d-1} \times \mathbb{R}^{d}$.

- Think of P as the law of $\left(M_{0}, M_{1}\right)$ or $\left(M_{0}, M_{-1}\right)$.

By definition, P belongs to \mathscr{M}_{α} if for every Borel set $S \subset \mathbb{S}^{d-1}$

$$
\int_{\mathbb{S}^{d-1} \times\left(\mathbb{R}^{d} \backslash\{0\}\right)} I\left(\frac{m}{\|m\|} \in S\right)\|m\|^{\alpha} P(\mathrm{~d} s, \mathrm{~d} m) \leqslant P\left(S \times \mathbb{R}^{d}\right)
$$

We call \mathscr{M}_{α} the set of admissible distributions.
In particular, setting $S=\mathbb{S}^{d-1}$ yields

$$
\int_{\mathbb{S}^{d-1} \times \mathbb{R}^{d}}\|m\|^{\alpha} P(\mathrm{~d} s, \mathrm{~d} m) \leqslant 1
$$

Tail chain distributions are admissible

Let $\left(M_{t}\right)_{t \in \mathbb{Z}}$ be the spectral process of a regularly varying stationary Markov chain $\left(X_{t}\right)_{t \in \mathbb{Z}}$ as before.

Lemma

The law of $\left(M_{0}, M_{1}\right)$ belongs to \mathscr{M}_{α}, i.e.

$$
E\left[I\left(\frac{M_{1}}{\left\|M_{1}\right\|} \in S\right)\left\|M_{1}\right\|^{\alpha}\right] \leqslant P\left(M_{0} \in S\right)
$$

for every Borel set $S \subset \mathbb{S}^{d-1}$.
In particular, setting $S=\mathbb{S}^{d-1}$ gives

$$
E\left[\left\|M_{1}\right\|^{\alpha}\right] \leqslant 1
$$

An adjoint relation between probability measures

For $P \in \mathscr{M}_{\alpha}$, define a signed Borel measure P^{*} on $\mathbb{S}^{d-1} \times \mathbb{R}^{d}$ by:

- Restriction to $\mathbb{S}^{d-1} \times\{0\}$: for $S \subset \mathbb{S}^{d-1}$,

$$
\begin{aligned}
& P^{*}(S \times\{0\}) \\
& =P\left(S \times \mathbb{R}^{d}\right)-\int_{\mathbb{S}^{d-1} \times\left(\mathbb{R}^{d} \backslash\{0\}\right)} I\left(\frac{m}{\|m\|} \in S\right)\|m\|^{\alpha} P(\mathrm{~d} s, \mathrm{~d} m)
\end{aligned}
$$

- Restriction to $\mathbb{S}^{d-1} \times\left(\mathbb{R}^{d} \backslash\{0\}\right)$: for $E \subset \mathbb{S}^{d-1} \times\left(\mathbb{R}^{d} \backslash\{0\}\right)$,

$$
P^{*}(E)=\int_{\mathbb{S}^{d-1} \times\left(\mathbb{R}^{d} \backslash\{0\}\right)} I\left(\left(\frac{m}{\|m\|}, \frac{s}{\|m\|}\right) \in E\right)\|m\|^{\alpha} P(\mathrm{~d} s, \mathrm{~d} m)
$$

We call P^{*} the adjoint measure of P in \mathscr{M}_{α}.

The adjoint is a true 'adjoint'

Lemma

Let $P \in \mathscr{M}_{\alpha}$ and let P^{*} be its adjoint measure.
(i) P^{*} is a probability measure.
(ii) The marginal distributions of P and P^{*} on \mathbb{S}^{d-1} are the same.
(iii) $P^{*} \in \mathscr{M}_{\alpha}$.
(iv) $\left(P^{*}\right)^{*}=P$.
(v) For every measurable function $f: \mathbb{S}^{d-1} \times\left(\mathbb{R}^{d} \backslash\{0\}\right) \rightarrow \mathbb{R}$,

$$
\begin{aligned}
& \int_{\mathbb{S}^{d-1} \times\left(\mathbb{R}^{d} \backslash\{0\}\right)} f\left(s^{*}, m^{*}\right) P^{*}\left(\mathrm{~d} s^{*}, \mathrm{~d} m^{*}\right) \\
&= \int_{\mathbb{S}^{d-1} \times\left(\mathbb{R}^{d} \backslash\{0\}\right)} f\left(\frac{m}{\|m\|}, \frac{s}{\|m\|}\right)\|m\|^{\alpha} P(\mathrm{~d} s, \mathrm{~d} m)
\end{aligned}
$$

The forward and backward increments of the spectral process satisfy the adjoint relation

Let $\left(M_{t}\right)_{t \in \mathbb{Z}}$ be the spectral process of a regularly varying stationary Markov chain $\left(X_{t}\right)_{t \in \mathbb{Z}}$ as before.

Corollary
The distributions of $\left(M_{0}, M_{1}\right)$ and $\left(M_{0}, M_{-1}\right)$ are adjoint.

Proof: Time-change formula.
Special case:

$$
\begin{aligned}
P\left[M_{-1} \neq 0\right] & =E\left[\left\|M_{1}\right\|^{\alpha}\right], \\
P\left[M_{1} \neq 0\right] & =E\left[\left\|M_{-1}\right\|^{\alpha}\right]
\end{aligned}
$$

Special case: univariate and positive

- $d=1, \mathbb{S}^{d-1}=\{-1,1\}$
- If $P \in \mathscr{M}_{\alpha}$ has $P(\{-1\} \times \mathbb{R})=0$, then P must be concentrated on $\{+1\} \times[0, \infty)$
- Then so is P^{*} and for $B \subset(0, \infty)$

$$
P^{*}(\{+1\} \times B)=\int_{s=+1, m>0} I\left(\frac{1}{m} \in B\right) m^{\alpha} P(\mathrm{~d} s, \mathrm{~d} m)
$$

- Examples if $\alpha=1$:
- If P is lognormal with unit expectation, then $P=P^{*}$
- If P is Bernoulli, then $P=P^{*}$
- If P is unit exponential, then P^{*} is the law of $1 /\left(E_{1}+E_{2}\right)$, with E_{1}, E_{2} iid unit exponential

Extremes of Stationary Sequences

Set-up and main finding
Forward spectral processes
Time-change formula

Adjoint distributions

Back-and-forth spectral processes and the spectral process

Taking stock

- Initial state: $M_{0} \sim H$ angular measure of X_{0}
- Forward spectral process: $M_{0}, \varepsilon_{1}, \varepsilon_{2}, \ldots$ are independent and

$$
M_{j}=\left\|M_{t-1}\right\| \phi\left(\frac{M_{t-1}}{\left\|M_{t-1}\right\|}\right) I_{\left\{\left\|M_{t-1}\right\|>0\right\}}, \quad t=1,2, \ldots
$$

- Laws of $\left(M_{0}, M_{1}\right)$ and $\left(M_{0}, M_{-1}\right)$ are adjoint
- Time-change formula

How does the backward spectral process $M_{t}, t \leqslant 0$, look like?

Back-and-forth spectral process

A process $\left(M_{t}\right)_{t \in \mathbb{Z}}$ in \mathbb{R}^{d} is called a back-and-forth tail chain with index $\alpha \in(0, \infty)$, notation $\operatorname{BFTC}(\alpha)$, if:
(i) $\mathscr{L}\left(M_{0}, M_{1}\right)$ and $\mathscr{L}\left(M_{0}, M_{-1}\right)$ belong to \mathscr{M}_{α} and are adjoint;
(ii) the forward chain $\left(M_{t}\right)_{t \geqslant 0}$ is a Markov chain with respect to the filtration $\sigma\left(M_{s}, s \leqslant t\right), t \geqslant 0$, and the Markov kernel satisfies

$$
\begin{aligned}
P & {\left[M_{t} \in \cdot \mid M_{t-1}=x_{t-1}\right] } \\
& = \begin{cases}\delta_{0}(\cdot) & \text { if } x_{t-1}=0 \\
P\left[\left\|x_{t-1}\right\| M_{1} \in \cdot \mid M_{0}=x_{t-1} /\left\|x_{t-1}\right\|\right] & \text { if } x_{t-1} \neq 0\end{cases}
\end{aligned}
$$

(iii) the backward chain $\left(M_{-t}\right)_{t \geqslant 0}$ is a Markov chain with respect to the filtration $\sigma\left(M_{-s}, s \leqslant t\right), t \geqslant 0$, and satisfies the same relation as in (ii) with $t-1$ and t replaced by $-t+1$ and $-t$ respectively

Time-change formula for a BFTC

Let $\left(M_{t}\right)_{t \in \mathbb{Z}}$ be a $\operatorname{BFTC}(\alpha)$.

Theorem
For all integer $s, t \geqslant 0$ and for all measurable functions $f: \mathbb{R}^{(s+1+t) d} \rightarrow \mathbb{R}$ vanishing on $\{0\} \times \mathbb{R}^{(s+t) d}$, the $s+1$ numbers

$$
E\left[f\left(\frac{M_{-s+h}}{\left\|M_{h}\right\|}, \ldots, \frac{M_{t+h}}{\left\|M_{h}\right\|}\right)\left\|M_{h}\right\|^{\alpha} I_{\left\{M_{h} \neq 0\right\}}\right], \quad h=0, \ldots, s,
$$

are all the same, in the sense that if one integral exists, then they all exist and they are equal.

The case $s=1$ and $t=0$ is just the adjoint relation between the distributions of $\left(M_{0}, M_{1}\right)$ and $\left(M_{0}, M_{-1}\right)$.

Identifying a back-and-forth tail chain from its forward part

Theorem
Let $\left(Y_{t}\right)_{t \in \mathbb{Z}}$ be a process in \mathbb{R}^{d} and let $\left(M_{t}\right)_{t \in \mathbb{Z}}$ be a $\operatorname{BFTC}(\alpha)$ in \mathbb{R}^{d}.
If

1. $\mathscr{L}\left(Y_{0}, \ldots, Y_{t}\right)=\mathscr{L}\left(M_{0}, \ldots, M_{t}\right)$ for all $t \geqslant 0$
2. for all $h, s, t \in \mathbb{Z}$ with $s, t \geqslant 0$ and for all bounded, measurable $f:\left(\mathbb{R}^{d}\right)^{s+1+t} \rightarrow \mathbb{R}$ satisfying $f\left(y_{-s}, \ldots, y_{t}\right)=0$ whenever $y_{0}=0$,

$$
E\left[f\left(Y_{-s-h}, \ldots, Y_{t-h}\right)\right]=E\left[f\left(\frac{Y_{-s}}{\left\|Y_{h}\right\|}, \ldots, \frac{Y_{t}}{\left\|Y_{h}\right\|}\right)\left\|Y_{h}\right\|^{\alpha} I_{\left\{\left\|Y_{h}\right\|>0\right\}}\right]
$$

then

$$
\mathscr{L}\left(Y_{-s}, \ldots, Y_{t}\right)=\mathscr{L}\left(M_{-s}, \ldots, M_{t}\right), \quad s, t \geqslant 0 .
$$

Markov spectral processes are back-and-forth tail chains

Every $\left(M_{t}\right)_{t \in \mathbb{Z}}$ whose forward part $(t \geqslant 0)$ has a $\operatorname{BFTC}(\alpha)$ structure, must be a full $(t \in \mathbb{Z}) \operatorname{BFTC}(\alpha)$. In particular:

Corollary
The spectral process $\left(M_{t}\right)_{t \in \mathbb{Z}}$ of a regularly varying, stationary
Markov chain $\left(X_{t}\right)_{t \in \mathbb{Z}}$ satisfying the earlier conditions is a $\operatorname{BFTC}(\alpha)$.

Univariate back-and-forth tail chains are

 sign-sensitive multiplicative random walks- P a law on $\{-1,+1\} \times \mathbb{R}$ in \mathscr{M}_{α}; adjoint P^{*}
- $\left(M_{t}\right)_{t \in \mathbb{Z}}$ a $\operatorname{BFTC}(\alpha)$ with $\left(M_{0}, M_{1}\right) \sim P$ and $\left(M_{0}, M_{-1}\right) \sim P^{*}$
- Then for $t \geqslant 1$,

$$
\begin{gathered}
M_{t}= \begin{cases}\left|M_{t-1}\right| A_{t} & \text { if } M_{t-1}>0 \\
0 & \text { if } M_{t-1}=0 \\
\left|M_{t-1}\right| B_{t} & \text { if } M_{t-1}<0\end{cases} \\
M_{-t}= \begin{cases}\left|M_{-t+1}\right| A_{-t} & \text { if } M_{-t+1}>0 \\
0 & \text { if } M_{-t+1}=0 \\
\left|M_{-t+1}\right| B_{-t} & \text { if } M_{-t+1}<0\end{cases}
\end{gathered}
$$

where the increments $A_{ \pm t}$ and $B_{ \pm t}$ are independent, with laws determined by P and P^{*}, and independent of $M_{0} \in\{-1,1\}$
'Tail switching potential' ${ }_{[\text {Bortot \& Coles 2003; ; } .2007]}$

Example: vector AR(1) - back-and-forth tail process

Recall: deterministic $A \in \mathbb{R}^{d \times d}$, iid regularly varying $\left(\varepsilon_{t}\right)_{t \in \mathbb{Z}}$,

$$
\begin{array}{ll}
X_{t}=A X_{t-1}+\varepsilon_{t}=\sum_{k \geqslant 0} A^{k} \varepsilon_{t-k} & t \in \mathbb{Z} \\
M_{t}=A^{t} M_{0} & t \geqslant 0
\end{array}
$$

Full $\operatorname{BFTC}(\alpha)$:

$$
M_{-N+h}= \begin{cases}A^{h} M_{-N} & \text { if } h \geqslant 0 \\ 0 & \text { otherwise }\end{cases}
$$

where

- N is a certain random nonnegative integer
- conditionally on N, the distribution of M_{-N} is determined by A, the angular measure of ε_{t}, and $\alpha>0$.

Conclusion: structure of Markov spectral processes

- Tail chains give information on the extremes of multivariate regularly varying Markov chains
- Markov spectral processes are back-and-forth tail chains:
- The forward and backward spectral processes are Markov chains too
- The forward $(t \geqslant 0)$ and backward $(t \leqslant 0)$ chains are adjoint
- They enjoy a certain scaling property

Part IV

Linear Processes
— with T. Meinguet

Extremes of Stationary Sequences

Introduction
Linear operators and regular variation
Infinite random sums
Linear processes
Example: AR(1) processes

Conclusion

Time series of random functions

Physical quantity observed in space and over time

$$
X_{t}(x)=\text { value at time } t \text { at location } x
$$

Space coordinate x varies over a grid - high-dimensional!
Think of x as varying continously over space
\rightsquigarrow For fixed t, view $X_{t}(\cdot)$ as a random function
\rightsquigarrow Time series $\left(X_{t}(\cdot)\right)_{t \in \mathbb{Z}}$ of random functions
Goal: to model extremal dependence in
Space - cross-sectional tail dependence
Time - clusters

Example: Autoregressive process

Define $X_{t}(\cdot)$ recursively by

$$
X_{t}(x)=\int K(x, y) X_{t-1}(y) d y+Z_{t}(x)
$$

Model ingredients:

- Kernel $K(x, y)$: from location y now to location x tomorrow
- Z_{t} iid random functions: innovations - heavy tails!

More general: linear time series

Regular variation in a Banach space

 is weak convergence of conditional distributionsA random element X of a Banach space \mathbb{B} is regularly varying if

$$
\mathscr{L}(X / u \mid\|X\|>u) \xrightarrow{d} \mathscr{L}(Y), \quad u \rightarrow \infty
$$

for Y such that $\|Y\| \geqslant 1$ is non-degenerate.
Necessarily

- $\|Y\| \sim \operatorname{Pareto}(\alpha)$ for some $\alpha>0$
- $\|Y\|$ and $\Theta=Y /\|Y\|$ are independent
and therefore

$$
\mathscr{L}\left(\frac{\|X\|}{u}, \left.\frac{X}{\|X\|} \right\rvert\,\|X\|>u\right) \xrightarrow{d} \mathscr{L}(Y, \Theta), \quad u \rightarrow \infty
$$

Linear processes taking values in a Banach space

Two Banach spaces $\mathbb{B}_{1}, \mathbb{B}_{2}$.
A linear process $\left(X_{t}\right)_{t \in \mathbb{Z}}$ is of the form

$$
X_{t}=\sum_{i \in \mathbb{Z}} T_{i}\left(Z_{t-i}\right)
$$

where

- Z_{t} are iid in \mathbb{B}_{1}
- Bounded linear operators $T_{i}: \mathbb{B}_{1} \rightarrow \mathbb{B}_{2}$
E.g.: $\operatorname{AR}(1)$ process $\left(\mathbb{B}_{1}=\mathbb{B}_{2}\right)$

$$
X_{t}=T\left(X_{t-1}\right)+Z_{t}=\sum_{i \geqslant 0} T^{i} Z_{t-i}
$$

Extremes of Stationary Sequences

Introduction

Linear operators and regular variation

Infinite random sums

Linear processes

Example: AR(1) processes

Conclusion

Linear operators preserve regular variation

Let X be a regularly varying random element in \mathbb{B}_{1} with index $\alpha>0$ and spectral measure H and let $A: \mathbb{B}_{1} \rightarrow \mathbb{B}_{2}$ be a bounded linear operator. We have

$$
\frac{P(\|A X\|>u)}{P(\|X\|>u)} \rightarrow \int_{\mathbb{S}_{1}}\|A \theta\|^{\alpha} H(d \theta) \quad(u \rightarrow \infty)
$$

If $H\left(\left\{\theta \in \mathbb{S}_{1}: A \theta \neq 0\right\}\right)>0$, this limit is positive and $A X$ is regularly varying in \mathbb{B}_{2} with index α and spectral measure H_{A}

$$
\int_{\mathbb{S}_{2}} g(\theta) H_{A}(d \theta)=\frac{1}{\int_{\mathbb{S}_{1}}\|A \theta\|^{\alpha} H(d \theta)} \int_{\mathbb{S}_{1}} g\left(\frac{A \theta}{\|A \theta\|}\right)\|A \theta\|^{\alpha} H(d \theta)
$$

for H_{A}-integrable $g: \mathbb{S}_{2} \rightarrow \mathbb{R}$.

The transformed spectral measure can be simulated from

 by a rejection algorithmThe expression for H_{A} has the following probabilistic meaning:

$$
H_{A}=\mathscr{L}\left(\frac{A \Theta}{\|A \Theta\|} \left\lvert\, U \leqslant \frac{\|A \Theta\|^{\alpha}}{\|A\|^{\alpha}}\right.\right) .
$$

- Θ is a random element in \mathbb{S}_{1} with distribution H
- $U \sim \operatorname{Uniform}(0,1)$ independent of Θ

Rejection algorithm
Generating a random draw Θ_{A} from H_{A} :

1. Draw $\Theta \sim H$ and $U \sim \operatorname{Uniform}(0,1)$ independently.
2. If $U \leqslant\|A \Theta\|^{\alpha} /\|A\|^{\alpha}$, then return $\Theta_{A}=A \Theta /\|A \Theta\|$ and stop.
3. Otherwise, go back to step 1.

Extremes of Stationary Sequences

Introduction
\section*{Linear operators and regular variation}

Infinite random sums

Linear processes

Example: AR(1) processes

Infinite random sums

Let \mathbb{B}_{1} and \mathbb{B}_{2} be real, separable Banach spaces.
Tail behavior of the \mathbb{B}_{2}-valued infinite random sum

$$
X=\sum_{n} T_{n} Z_{n}
$$

- $\left(Z_{n}\right)_{n \in \mathbb{Z}}$ iid random elements in \mathbb{B}_{1}
- $T_{n}: \mathbb{B}_{1} \rightarrow \mathbb{B}_{2}$ bounded linear operators.

Possible extension: random linear operators (e.g. random matrices)
[Hult \& Samorodnitsky 2008]

Convergence of the series

Put $V(x)=P\left(\left\|Z_{n}\right\|>x\right)$. Assume $V \in R V_{-\alpha}$.
Suppose there exists δ with $0<\delta<\min (\alpha, 1)$ such that

$$
\sum_{n}\left\|T_{n}\right\|^{\delta}<\infty
$$

As $E\left[\left\|Z_{n}\right\|^{\delta}\right]=\int_{0}^{\infty} V\left(x^{1 / \delta}\right) d x<\infty$, we have

$$
E\left[\left(\sum_{n}\left\|T_{n} Z_{n}\right\|\right)^{\delta}\right] \leqslant \sum_{n}\left\|T_{n}\right\|^{\delta} E\left[\left\|Z_{n}\right\|^{\delta}\right]<\infty
$$

so that the series $X=\sum_{n} T_{n} Z_{n}$ converges absolutely almost surely. Moreover, the tail of $\|X\|$ is of the same order as the one of $\left\|Z_{n}\right\|$:

$$
\frac{P(\|X\|>x)}{V(x)} \leqslant \frac{P\left(\sum_{n}\left\|T_{n}\right\|\left\|Z_{n}\right\|>x\right)}{V(x)} \rightarrow \sum_{n}\left\|T_{n}\right\|^{\alpha}<\infty
$$

Regular variation of the summands

Now assume that the common distribution of the random elements Z_{n} is regularly varying with index α and spectral measure H. We have

$$
\lim _{x \rightarrow \infty} \frac{P\left(\left\|T_{n} Z_{n}\right\|>x\right)}{V(x)}=\int_{\mathbb{S}_{1}}\left\|T_{n} \theta\right\|^{\alpha} H(d \theta)=: c_{n}
$$

Moreover, if $c_{n}>0$, then $T_{n} Z_{n}$ is regularly varying in \mathbb{B}_{2} with index α and with spectral measure H_{n} given by

$$
\int_{\mathbb{S}_{2}} f(\theta) H_{n}(d \theta)=\frac{1}{c_{n}} \int_{\mathbb{S}_{1}} f\left(T_{n} \theta /\left\|T_{n} \theta\right\|\right)\left\|T_{n} \theta\right\|^{\alpha} H(d \theta)
$$

for H_{n}-integrable functions $f: \mathbb{S}_{2} \rightarrow \mathbb{R}$.

The single-shock heuristic (1)

- Let $\left(Z_{i}\right)_{i \in \mathbb{Z}}$ be an iid sequence in \mathbb{B}_{1}.
- Let $T_{i}: \mathbb{B}_{1} \rightarrow \mathbb{B}_{2}, i \in \mathbb{Z}$, be bounded linear operators.

Proposition

If
(i) $x \mapsto V(x)=P\left(\left\|Z_{i}\right\|>x\right)$ is $R V_{-\alpha}$ for some $\alpha>0$,
(ii) $\lim _{x \rightarrow \infty} P\left(\left\|T_{i} Z_{i}\right\|>x\right) / V(x)=c_{i} \in[0, \infty)$ for all $i \in \mathbb{Z}$,
(iii) $\sum_{i}\left\|T_{i}\right\|^{\delta}<\infty$ for some $0<\delta<\min (\alpha, 1)$,
then the series $\sum_{i} T_{i} Z_{i}$ is almost surely absolutely convergent and

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{1}{V(x)} E\left|I\left(\left\|\sum_{i} T_{i} Z_{i}\right\|>x\right)-\sum_{i} I\left(\left\|T_{i} Z_{i}\right\|>x\right)\right| \\
= & \lim _{x \rightarrow \infty} \frac{1}{V(x)} E\left|I\left(\sum_{i}\left\|T_{i} Z_{i}\right\|>x\right)-\sum_{i} I\left(\left\|T_{i} Z_{i}\right\|>x\right)\right| \\
= & 0
\end{aligned}
$$

The single-shock heuristic (2)

Corollary

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{P\left(\left\|\sum_{i} T_{i} Z_{i}\right\|>x\right)}{V(x)} & =\lim _{x \rightarrow \infty} \frac{P\left(\sum_{i}\left\|T_{i} Z_{i}\right\|>x\right)}{V(x)} \\
& =\lim _{x \rightarrow \infty} \frac{\sum_{i} P\left(\left\|T_{i} Z_{i}\right\|>x\right)}{V(x)}=\sum_{i} c_{i}<\infty
\end{aligned}
$$

Extension of Lemma 4.24 in Resnick (1987).

The spectral measure of the series

is a mixture of those of the summands

Proposition

If the common distribution of the independent random elements Z_{n} $(n \in \mathbb{Z})$ is regularly varying with index α and spectral measure H and if $\sum_{n}\left\|T_{n}\right\|^{\delta}<\infty$, then

$$
\lim _{x \rightarrow \infty} \frac{P\left(\left\|\sum_{n} T_{n} Z_{n}\right\|>x\right)}{V(x)}=\lim _{x \rightarrow \infty} \frac{P\left(\sum_{n}\left\|T_{n} Z_{n}\right\|>x\right)}{V(x)}=\sum_{n} c_{n}<\infty .
$$

If $\sum_{n} c_{n}>0$, then the random series $X=\sum_{n} T_{n} Z_{n}$ is regularly varying with index α too, its spectral measure H_{X} being given by

$$
\begin{aligned}
H_{X} & =\sum_{n} p_{n} H_{n} \\
p_{n} & =\frac{c_{n}}{\sum_{k} c_{k}}=\lim _{x \rightarrow \infty} P\left(\left\|T_{n} Z_{n}\right\|>x \mid\left\|\sum_{k} T_{k} Z_{k}\right\|>x\right) .
\end{aligned}
$$

The spectral measure reflects the biggest-shock heuristic

The spectral measure H_{X} can be written as

$$
\int f d H_{X}=\frac{\sum_{n \in \mathbb{Z}} E\left[f\left(\frac{T_{n}\left(\Theta_{Z}\right)}{\left\|T_{n}\left(\Theta_{Z}\right)\right\|}\right)\left\|T_{n}\left(\Theta_{Z}\right)\right\|^{\alpha}\right]}{\sum_{n \in \mathbb{Z}} E\left[\left\|T_{n}\left(\Theta_{Z}\right)\right\|^{\alpha}\right]}
$$

with Θ_{Z} distributed according to the spectral measure of Z.

Special case: Linear combinations with random coefficients

In case $\mathbb{B}_{1}=\mathbb{R}$ we can write $\mathbb{B}_{2}=\mathbb{B}$ and the series X is an infinite linear combination of the elements $\psi_{i}=T_{i}(1) \in \mathbb{B}$ with random coefficients Z_{i} :

$$
X=\sum_{i} Z_{i} \psi_{i}
$$

The spectral measure of X is equal to

$$
H_{X}=\mathscr{L}\left(\Theta_{Z} \psi_{N} /\left\|\psi_{N}\right\|\right)
$$

with

- Θ_{Z} a random variable in $\{-1,+1\}$
- N an integer-valued random variable independent of Θ_{Z} and s.t.

$$
P(N=n)=p_{n}=\frac{\left\|\psi_{n}\right\|^{\alpha}}{\sum_{k}\left\|\psi_{k}\right\|^{\alpha}} \quad(n \in \mathbb{Z})
$$

Extremes of Stationary Sequences

Introduction
Linear operators and regular variation
Infinite random sums

Linear processes

Example: AR(1) processes

Conclusion

Linear processes with regularly varying innovations

Rather than a single random series, we now study the linear process

$$
X_{t}=\sum_{i} T_{i} Z_{t-i}, \quad t \in \mathbb{Z}
$$

with

- $\left(Z_{n}\right)_{n \in \mathbb{Z}}$ is an iid sequence of $R V(\alpha)$ random elements in \mathbb{B}_{1}
- $T_{n}: \mathbb{B}_{1} \rightarrow \mathbb{B}_{2}$ are bounded linear operators such that $\sum_{n}\left\|T_{n}\right\|^{\delta}<\infty$ for some $0<\delta<\min (\alpha, 1)$
The random series defining X_{t} converges absolutely and $\left(X_{t}\right)_{t \in \mathbb{Z}}$ is a stationary time series in \mathbb{B}_{2}.

The signature of the series given a shock at a certain moment

If $c_{n}>0$, where

$$
c_{n}=\int_{\mathbb{S}_{1}}\left\|T_{n} \theta\right\|^{\alpha} H(d \theta)
$$

we can define a probability measure κ_{n} on the space $\mathbb{B}_{2}^{\mathbb{Z}}$ of \mathbb{B}_{2}-valued sequences endowed with the product topology by

$$
\begin{align*}
& \int_{\mathbb{B}_{2}^{\mathbb{Z}}} f\left(\theta_{-s}, \ldots, \theta_{t}\right) \kappa_{n}\left(d\left(\theta_{n}\right)_{n \in \mathbb{Z}}\right) \\
&=\frac{1}{c_{n}} \int_{\mathbb{S}_{1}} f\left(\frac{T_{-s+n} \theta}{\left\|T_{n} \theta\right\|}, \ldots, \frac{T_{t+n} \theta}{\left\|T_{n} \theta\right\|}\right)\left\|T_{n} \theta\right\|^{\alpha} H(d \theta), \tag{1}
\end{align*}
$$

for nonnegative integer s, t and for bounded and continuous $f: \mathbb{B}_{1}^{t+s+1} \rightarrow \mathbb{R}$.

The spectral process is a

 mixture over the signature patterns
Proposition

If $\sum_{n} c_{n}>0$, then $\left(X_{t}\right)_{t \in \mathbb{Z}}$ is a regularly varying stationary time series in \mathbb{B}_{2} with index α, its spectral process $\left(\Theta_{t}\right)_{t \in \mathbb{Z}}$ having law κ equal to

$$
\begin{aligned}
\kappa & =\sum_{n} p_{n} \kappa_{n} \\
\text { where } p_{n} & =\frac{c_{n}}{\sum_{k} c_{k}}
\end{aligned}
$$

i.e.

$$
E\left[f\left(\left(\Theta_{t}\right)_{t \in \mathbb{Z}}\right)\right]=\frac{\sum_{n \in \mathbb{Z}} E\left[f\left(\frac{T_{n+t}\left(\Theta_{Z}\right)}{\left\|T_{n}\left(\Theta_{Z}\right)\right\|}\right)\left\|T_{n}\left(\Theta_{Z}\right)\right\|^{\alpha}\right]}{\sum_{n \in \mathbb{Z}} E\left[\left\|T_{n}\left(\Theta_{Z}\right)\right\|^{\alpha}\right]}
$$

Simulating the spectral process

1. Draw a random integer N from $\left(p_{n}\right)_{n \in \mathbb{Z}}$.
2. Independently from N and from each other, draw $\Theta_{Z} \sim H$ and $U \sim \operatorname{Uniform}(0,1)$.
3. If $U \leqslant\left\|T_{N} \Theta_{Z}\right\|^{\alpha} /\left\|T_{N}\right\|^{\alpha}$, then return $\Theta_{t}=T_{N+t} \Theta_{Z} /\left\|T_{N} \Theta_{Z}\right\|$ for all $t \in \mathbb{Z}$ and stop.
4. Otherwise, go back to step 2.

Extremes of Stationary Sequences

Introduction
Linear operators and regular variation
Infinite random sums
Linear processes

Example: AR(1) processes

Conclusion

Autoregressive equation

$\mathrm{AR}(1)$ process in $\mathbb{B}=\mathbb{B}_{1}=\mathbb{B}_{2}$:

$$
X_{t}=T X_{t-1}+Z_{t}, \quad t \in \mathbb{Z}
$$

- iid innovations Z_{t} in Banach, $R V(\alpha, H)$
- $T: \mathbb{B} \rightarrow \mathbb{B}$ bounded linear operator such that $\left\|T^{m}\right\|<1$ for some integer $m \geqslant 1$
Note: faily general, since by considering sequence spaces, an arbitrary linear process can be represented as the image of a linear operator applied to an $\operatorname{AR}(1)$ process

The AR(1) equation has a regularly varying solution

The AR(1) equation has a stationary solution given by

$$
X_{t}=\sum_{n \geqslant 0} T^{n} Z_{t-n}, \quad t \in \mathbb{Z}
$$

The tail of $\left\|X_{t}\right\|$ satisfies

$$
\lim _{x \rightarrow \infty} \frac{P\left(\left\|X_{t}\right\|>x\right)}{P\left(\left\|Z_{0}\right\|>x\right)}=\sum_{n \geqslant 0} \int_{\mathbb{S}}\left\|T^{n} \theta\right\|^{\alpha} H(d \theta)
$$

$\left(X_{t}\right)_{t \in \mathbb{Z}}$ is regularly varying with index $\alpha>0$ and with spectral process as described above.

- $p_{n}=0$ for all $n<0$
- If $p_{n_{0}}=0$ for some integer $n_{0} \geqslant 1$, then $p_{n}=0$ for all $n \geqslant n_{0}$

Simulating the spectral process of an $\mathrm{AR}(1)$ process

1. Draw a random nonnegative integer N from $\left(p_{n}\right)_{n \geqslant 0}$.
2. Independently from N and from each other, draw $\Theta_{Z} \sim H$ and $U \sim \operatorname{Uniform}(0,1)$.
3. If $U \leqslant\left\|T^{N} \Theta_{Z}\right\|^{\alpha} /\left\|T^{N}\right\|^{\alpha}$, then return

$$
\Theta_{-N}=\frac{\Theta_{Z}}{\left\|T^{N} \Theta_{Z}\right\|}, \quad \Theta_{-N+h}= \begin{cases}T^{h} \Theta_{-N} & \text { if } h>0 \\ 0 & \text { if } h<0\end{cases}
$$

4. Otherwise, go back to step 2 .

Extremes of Stationary Sequences

```
Introduction
Linear operators and regular variation
Infinite random sums
Linear processes
Example: AR(1) processes
```

Conclusion

Main findings

- Regular variation is preserved by bounded linear operators
- Tails of random series with independent, regularly varying components governed by the single-shock heuristic
- AR(1) processes: simple structure of the spectral process, readily simulated

Thank you!

References (1)

- Basrak, B., Krizmanić, D., Segers, J. (2011), Ann. Probab. 40, 2008-2033.
- Bartkiewicz, K., Jakubowski, A., Mikosch, T., Wintenberger, O. (2011) Probab. Th. Rel. Fields 150, 337-372.
- Basrak, B., Segers, J. (2009), Stoch. Process. Applic. 119, 1055-1080
- Bortot, P., Coles, S.G. (2000) Bernoulli 6, 183-190.
- Bortot, P., Coles, S.G. (2003) J. R. Statist. Soc. B 65, 851-867.
- Davis, R.A., Hsing, T. (1995), Ann. Probab. 23, 879-917.
- Davis, R.A., Mikosch, T. (1998), Ann. Statist. 26, 2049-2080.
- Davis, R.A., Mikosch, T. (2006), Stoch. Process. Applic. 118, 560-584.
- Davis, R.A., Mikosch, T. (2009), Bernoulli 15, 977-1009.
- Davis, R.A., Resnick, S.I. (1985), Ann. Probab. 13, 179-195.

References (2)

- De Haan, L., Resnick, S.I., Rootzén, H., \& de Vries, C. (1989) Stoch. Process. Applic. 32, 213-224.
- Drees, H., Rootzén, H. (2010), Ann. Statist. 38, 2145-2186.
- Hult, H., Lindskog, F. (2005) Stoch. Process. Applic. 115, 249-274.
- Hult, H., Lindskog, F. (2006) Publ. Inst. Math. (Beograd) (N.S.) 80, 121-140.
- Hult, H., Samorodnitsky, G. (2008) Bernoulli 14, 838-864.
- Meinguet, T., Segers, J. (2010) arXiv:1001.3262.
- Mikosch, T., Samorodnitsky, G. (2000) Ann. Appl. Probab. 10, 1025-1064.
- Leadbetter, R. (1983) Z. Wahrscheinlichkeitsth. 65, 291-306.
- Mikosch, T., Wintenberger, O. (2012a) Probab. Th. Rel. Fields DOI 10.1007/s00440-012-0445-0.
- Mikosch, T., Wintenberger, O. (2012b) Mimeo.
- Nandagopalan, S. (1994) J. Research of the National Institute of Standards and Technology 99, 543-550.

References (3)

- O'Brien, G.L. (1987) Ann. Probab. 15, 281-291.
- Perfekt, R. (1994) Ann. Appl. Probab. 4, 529-548.
- Resnick, S. I. (1987) Extreme Values, Regular Variation and Point Processes, Springer.
- Resnick, S. I. (2007) Heavy-Tailed Phenomena, Springer.
- Resnick, S. I., Zeber, D. (2011) arXiv:...
- Rootzén, H. (1988) Adv. Appl. Probab. 20, 371-390.
- Segers, J. (2003) Adv. Appl. Probab. 35, 1028-1045.
- Segers, J. (2005) Statist. Probab. Letters 74, 330-336.
- Segers, J. (2007) arXiv:0701411.
- Smith, R. (1992) J. Appl. Probab. 29, 37-45.
- Wintenberger, O. (2012) Mémoire d'Habilitation, Université Paris-Dauphine.
- Yun, S. (2000) J. Appl. Probab. 37, 29-44.

