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Examples

Random matrix: Matrix with random entries.

Wigner matrix (Wn): xi,j = xj,i .

Wn =


x11 x12 x13 . . . x1(n−1) x1n
x12 x22 x23 . . . x2(n−1) x2n

...
x1n x2n x3n . . . x(n−1)n xnn

 .

(Symmetric) Toeplitz matrix (Tn): xi,j = x|i−j|.

Tn =


x0 x1 x2 . . . xn−2 xn−1
x1 x0 x1 . . . xn−3 xn−2
x2 x1 x0 . . . xn−4 xn−3

...
xn−1 xn−2 xn−3 . . . x1 x0

 .
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More examples

Hankel matrix (Hn): xi,j = xi+j .

Hn =


x2 x3 x4 . . . xn xn+1

x3 x4 x5 . . . xn+1 xn+2

x4 x5 x6 . . . xn+2 xn+3

...
xn+1 xn+2 xn+3 . . . x2n−1 x2n

 .

Sample covariance matrix (S): n−1XnX
t
n where Xn = ((xi,j))1≤i≤p;1≤j≤n where

columns of X are i.i.d.

Other matrices of the form n−1XnX
t
n .

Band matrices, triangular matrices... k-Circulant matrix. Special cases: circulant
matrix, reverse circulant matrix, symmetric circulant matrix.

We shall always assume the entries have mean zero variance one unless mentioned
otherwise.
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k-Circulant matrix

For positive integers k and n, Ak,n equals
x0 x1 x2 . . . xn−2 xn−1

xn−k xn−k+1 xn−k+2 . . . xn−k−2 xn−k−1
xn−2k xn−2k+1 xn−2k+2 . . . xn−2k−2 xn−2k−1

...
xk xk+1 xk+2 . . . xk−2 xk−1


(j + 1)-th row is obtained by giving the j-th row a right circular shift by k
positions. Note that all subscripts appearing above are calculated modulo n.

A1,n = Circulant matrix (Cn).

An−1,n = Reverse circulant matrix (RCn).

Symmetric circulant matrix (SCn): Structure same as circulant with first row as a
palindrome, (x0, x1, x2, . . . , x2, x1).

Broad aim: Study the behaviour of the eigenvalues, specially when n→∞.
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Bulk behaviour

Convergence of the Empirical spectral distribution (ESD)

Fn(x) =
1

n

n∑
k=1

I(λk ≤ x)

For example,

Wigner: semi-circle law: [−2, 2].

S matrix: Marchenko-Pastur law: [0, 4].

RCn: symmetrized square root of χ2
2 (exponential).

Cn: bivariate standard normal.

For k circulants, limit depends on the value of k (which may also be changing
with n).

Tn, Hn: limits exists but not known in closed form, (−∞, ∞).
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Edge behaviour

Behaviour of the spectral radius, spectral norm, maximum, minimum, spacings ...

Spectral radius:

sp(A) := max
{
|λ| : λ is an eigenvalue of A

}
,

where |z | denotes the modulus of z ∈ C.

Spectral norm:
‖A‖ =

√
λmax(A∗A)

where A∗ denotes the conjugate transpose of A.

Not many results known for most random matrices.
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Almost sure edge behaviour

Wigner: λmax → 2 almost surely.

S matrix: λmax → 4 almost surely.

For other matrices mentioned so far, the limit is ∞.

Tn: λmax√
2n log n

converges in Lγ to 0.828.. (the 2–4 operator norm of the sine kernel)

when E |x1|γ <∞.

Hn: Not known. Expected to be the same rate as the Toeplitz.
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Eigenvalues of circulant

For 0 ≤ k < n,

λk =
n−1∑
l=0

xl
(

cos
2πkl

n
+ i sin

2πkl

n

)
= ak,n + ibk,n.

These {λk} are basic building blocks of eigenvalues of general k-circulant matrix.

Suppose {xi} are i.i.d. standard normal. Then for every n, n−1/2at,n, n
−1/2bt,n,

1 ≤ t ≤ (n − 1)/2 are i.i.d. normal with mean zero and variance 1/2.

Consequently, any subcollection {n−1|λt |2, 1 ≤ t < n−1
2 }, are mutually

independent standard exponential random variable.
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Eigenvalues of reverse circulant


η0 =

∑n−1
t=0 xt

ηn/2 =
∑n−1

t=0 (−1)txt , if n is even

ηk = −ηn−k = |λk |, 1 ≤ k ≤ [ n−12 ].
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Limiting distribution of spectral radius of RCn

Bose, Hazra and Saha (2011): Assume E |x1|2+δ <∞. Then

sp( 1√
n
RCn)− dq

cq

D→ Λ

Λ: standard Gumbel distribution, q = q(n) ∼ n
2 , dq =

√
ln q, cq = 1

2
√
ln q

.

If xi are Gaussian, then the eigenvalues are essentially i.i.d., each a square root of
the χ2

2. So, the result follows from extreme value theory. For the general case
(assume (2 + δ) moment finite), use appropriate normal approximation (Davis and
Mikosch (1999)).

What happens for general k-circulant? If k > 1 is fixed, different behaviour along
subsequences.
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Eigenvalues of k-circulant

Let p1 < p2 < . . . < pc be all the common prime factors of k and n:

n = n′
c∏

q=1

p
βq
q and k = k ′

c∏
q=1

p
αq
q .

Here αq, βq ≥ 1 and n′, k ′, pq are pairwise relatively prime.

Let
S(x) = {xkb mod n′ : b ≥ 0}, 0 ≤ x < n′.
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Eigenvalues of k-circulant matrix (continued)

For x 6= u,
S(x) = S(u) or S(x) ∩ S(u) = φ.

Hence, {S(x) : 0 ≤ x < n′} is a partition of Zn′ = {0, 1, . . . n′}.

Label them
{P0,P1, . . . ,P`−1} and ni = #Pi , 0 ≤ i < `. (0.1)

Note that
∑

nj = n.
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Eigenvalues of k-circulant matrix (continued)

Zhou (1996): The characteristic polynomial of Ak,n equals

λn−n
′
`−1∏
j=0

(λnj − yj) (0.2)

where
yj :=

∏
t∈Pj

λty , j = 0, 1, . . . , `− 1 where y = n/n′.

n − n′ zero eigenvalues.

The other eigenvalues are the nj th roots of yj .

Each yj is a product of nj many λ′ks, the indices being different across j . But a λk
and its conjugate may appear in different yj .
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Limiting distribution of spectral radius of k-circulant with n = kg + 1 and g ≥ 2

Bose, Hazra and Saha (2010): Suppose E |xi |(2+δ) <∞ for some δ > 0. If
n = kg + 1 (g fixed), then

sp(n−1/2Ak,n)− dq
cq

D→ Λ

where q = qn = n
2g and

cn =
1

2g1/2(ln n)1/2
,

dn =
lnCg − g−1

2 ln g

2g1/2(ln n)1/2
+

(
ln n

g

)1/2 [
1 +

(g − 1) ln ln n

4 ln n

]
,

and Cg =
1
√
g

(2π)
g−1
2 .

Gaussian case: product of i.i.d. exponentials.

Non-Gaussian case: normal approximation.
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Tail of product of Exponentials

Let {Ei} be i.i.d. standard exponentials. Define

Hg (x) = P[E1E2 · · ·Eg > x ].

Tail behaviour?

Tang (2008) g = 2:

H2(x) = e−2x
1/2

∫ ∞
0

e−z√
z

z + 2x1/2√
z2 + 4zx1/2

dz ∼
√
πe−2x

1/2

x1/4.
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Tail behavior of g fold product

Bose, Hazra and Saha (2010):

Hg (x) = Cgx
αg e−gx

1
g
fg (x), g ≥ 1, (0.3)

where for g ≥ 1,

Cg =
1
√
g

(2π)
g−1
2 , αg =

g − 1

2g
and fg (x)→ 1 as x →∞.
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Other results

Point process convergence known for the spacings of the ordered eigenvalues of
SCn, RCn, k-circulant with n = k2 + 1.

Dependent observations where xj is stationary. Eigenvalues scaled by spectral
density.

Other combinations of k and n: not known. The sets Pj are of different sizes and
keep changing with n.

Minimum eigenvalue: Need left tail behaviour. Known for Gaussian case.

Heavy tailed entries. Some results are known.

Bose, Hazra and Saha (2012): Extremum of Circulant type matrices: a survey.
Journal of Indian Statistical Association, 50, No. 1–2, 21–49.
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Other matrices

Wigner: Tracy-Widom distribution.

S matrix: Tracy-Widom distribution.

Smallest eigenvalues: some scattered results.

Hn, Tn: no distributional convergence is known.

More information: see the previous reference.
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