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Motivation

Large dimensional data sets appear in many quantitative fields like
finance, environmental sciences, wireless communications, fMRI, and
genetics.

Structure in this data can often be analyzed via sample covariances.

PCA is used to transform data to a new set of variables, the principal
components, ordered s.t. the first few retain most of the variation of
the data.

This suggests the need for an eigenvalue decomposition of the sample
covariance matrix.
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Game Plan

The Setup

Background

The case α ∈ (0, 2) for linear time series
Elements of the proof I (basics)
Elements of the proof II

Extensions
Random coefficient models
Hidden Markov model
Nonlinear models–stochastic volatility and GARCH(1,1)

The case α ∈ (2, 4)
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The Setup

Data matrix: A p × n matrix X consisting of n observations of a
p-dimensional time series, i.e.,

X =


X11 X12 · · · X1n

X21 X22 · · · X2n
...

...
. . .

...

Xp1 Xp2 · · · Xpn

 .
Sample covariance matrix: the p × p sample covariance matrix
(normalized) is given by

XXT = nΓ̂(0) =

 n∑
t=1

XitXjt

p

i,j=1

.

Objective: study the ordered eigenvalues

λ(1) ≥ λ(2) ≥ . . . ≥ λ(p)

of the p × p sample covariance matrix XXT .
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The Setup-continued

Data matrix and sample covariance matrix:

X =


X11 X12 · · · X1n

X21 X22 · · · X2n
...

...
. . .

...

Xp1 Xp2 · · · Xpn

 and XXT = nΓ̂(0)

Note that if the rows are independent and identically distributed
ergodic time series (with mean 0 and variance 1), then for p fixed,

Γ̂(0)
P
→ Ip .

Relation to PCA: λ(1) is the empirical variance of the first principal
component, λ(2) of the second, and so on.
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Known results for the largest eigenvalue

Assume the entries of X are iid Gaussian (with mean zero and
variance one)

For n → ∞ and fixed p, Anderson [1963] proved that√
n
2

(
λ(1)

n
− 1

)
d
→ N(0, 1) .

Johnstone [2001] showed that for p, n → ∞ s.t. p/n → γ ∈ (0,∞)

√
n +

√
p

3
√

1√
n

+ 1√
p

 λ(1)(√
n +

√
p
)2 − 1

 d
→ Tracy-Widom distribution
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Our objective

The assumption of Gaussianity in Johnstone’s result can be relaxed
to a moment condition (c.f. Four Moment Theorem by Tao and
Vu [2011]; and work by Erdös, Johansson, Péché, Schlein,
Soshnikov, Yau and others).

BUT: in applications one often has neither independent observations,
nor Gaussianity or even the existence of sufficient moments.

This lead us to consider heavy-tailed random matrices with dependent
entries.
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Setting for our results

Suppose X = (Xit )i,t , i = 1, . . . , p, t = 1, . . . , n, with

Xit =
∞∑

j=−∞

cjZi,t−j ,

where (Zi,t ) is iid with regularly varying tails of index α ∈ (0, 2) (infinite
variance), i.e.,

n P(|Z11| > anx)→ x−α as n → ∞, for x > 0,

and
∑∞

j=−∞ |cj |
δ < ∞ for some δ < min{1, α}. (an = L(n)n1/α)

For α ∈ (5/3, 2) assume the existence of the following tail balancing
limits

lim
x→∞

P(Z11 > x)

P(|Z11| > x)
and lim

x→∞

P(Z11 ≤ −x)

P(|Z11| > x)
.
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Theorem (The case α ∈ (0, 2))

Suppose pn, n → ∞ such that

lim sup
n→∞

pn

nβ
< ∞

for some β > 0 satisfying
1 β < ∞ if α ∈ (0, 1], and
2 β < max

{
2−α
α−1 ,

1
2

}
if α ∈ (1, 2).

Then, we have the point process convergence,

Np :=

p∑
i=1

εa−2
np λ(i)

d
→ N =

∞∑
i=1

εΓ−2/α
i

∑∞
j=−∞ c2

j
,

where Γi = E1 + . . . + Ei is the cumulative sum of iid standard (i.e., mean
one) exponentially distributed rv’s.

Condition on β: Growth on pn is more restrictive as the tail becomes lighter.
Davis (Columbia University) Heavy-Tailed Distributions and Extremes January 14–17, 2013 9



The largest eigenvalues

The theorem implies the joint convergence of the k -largest
eigenvalues

a−2
np

(
λ(1), . . . , λ(k)

) d
→

(
Γ−2/α

1 , . . . , Γ−2/α
k

)  ∞∑
j=−∞

c2
j

 . (1)

For independent entries this was shown by Soshnikov [2006] for
α < 2, and by Auffinger, Ben Arous and Péché [2009] for 2 ≤ α < 4.

Since Γ1 is standard exponential, (1) shows, for n, p large, that λ(1)

a2
np

∑∞
j=−∞ c2

j

−α/2 is approx. standard exponential

How well is this approximation for finite n and p?
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Xt ∼ Pareto(α = 1.3) iid

Davis (Columbia University) Heavy-Tailed Distributions and Extremes January 14–17, 2013 11



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

i/100

N
or

m
al

iz
ed

 p
ar

tia
l s

um
 o

f t
he

 tr
an

sf
. l

ar
ge

st
 e

v

n=p=1000
Number of replications: 200

QQ−Plot via ratios of partial sums of the largest eigenvalue

Xt +0.7Xt−1 = Zt

Zt ∼ Pareto(α = 1.3) iid

Davis (Columbia University) Heavy-Tailed Distributions and Extremes January 14–17, 2013 12



Elements of the proof I (the basics)

By definition of Xit =
∑

j cjZi,t−j we have
n∑

t=1

X2
it =

∑
j

c2
j

n∑
t=1

Z2
i,t−j︸︷︷︸

tail index α/2

+2
∑

j

∑
k>j

cjck

n∑
t=1

Zi,t−jZi,t−k︸      ︷︷      ︸
tail index α

=
∑

j

c2
j

n∑
t=1

Z2
i,t + op(a2

n)

Classical EVT plus large deviations:

max
1≤i≤p

a−2
np

n∑
t=1

Z2
it

d
→ Γ−2/α

1 as n, p → ∞.

If 0 < α < 2 and p
nβ → γ ∈ [0,∞) for some β > 0, then as n, p → ∞

p∑
i=1

εa−2
np (

∑n
t=1 X2

it )
∼

p∑
i=1

εa−2
np (

∑n
t=1 Z2

it )
∑∞

j=−∞ c2
j

d
→ N =

∞∑
i=1

εΓ−2/α
i

∑∞
j=−∞ c2

j
.
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Elements of the proof II

Important tool: ‖A‖2 =
√

largest eigenvalue of AAT (operator
2-norm).

Define D ∈ Rp×p by Dii = (XXT )ii and Dij = 0 for i , j. Then

a−2
np

∥∥∥XXT − D
∥∥∥

2

P
→ 0 as p, n → ∞.

By Weyl’s inequality

a−2
np

∣∣∣∣∣∣∣λ(1) − max
1≤i≤p

n∑
t=1

X2
it

∣∣∣∣∣∣∣ ≤ a−2
np

∥∥∥XXT − D
∥∥∥

2

P
→ 0 as p, n → ∞

and likewise for λ(2), λ(3), . . .

Hence, we “only” have to derive the extremal behavior of the diagonal
elements (

∑n
t=1 X2

it )i of XXT .

Davis (Columbia University) Heavy-Tailed Distributions and Extremes January 14–17, 2013 14



Random coefficient models

So far the rows of X are assumed to be independent and identically
distributed processes.

How to relax the assumption of independence between rows?

Problem: the number of linear processes is p, and p → ∞.
−→ How to parametrize an infinite number of processes?

One approach: Consider a random coefficient model

Xit =
∞∑

j=−∞

cj(θi)Zi,t−j ,

where θi is some random sequence specified below.
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Random coefficient models

X = (Xit ) with

Xit =
∞∑

j=−∞

cj(θi)Zi,t−j

where cj(·) is a family of functions s.t.

supθ|cj(θ)| ≤ c̃j with
∞∑

j=−∞

|c̃j |
δ < ∞, δ < min{1, α}, and

(θi) is a stationary ergodic sequence independent of (Zit )i,t .

Conditionally on (θi), each process (Xit )t in the rows of X has a
different set of coefficients (cj(θi))j .

Unconditionally, the row processes are identically distributed with
regularly varying tail probabilities.

Rows of X are dependent if the θi ’s are dependent.
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Random coefficient models

Theorem (Random coefficient models)
Suppose pn, n → ∞ such that

lim sup
n→∞

pn

nβ
< ∞

for some β > 0 satisfying
1 β < ∞ if α ∈ (0, 1], and
2 β < max

{
2−α
α−1 ,

1
2

}
if α ∈ (1, 2).

Then, conditionally on (θi) as well as unconditionally,

p∑
i=1

εa−2
np λ(i)

d
→ N =

∞∑
i=1

ε
Γ−2/α

i

(
E
∣∣∣∣∑∞j=−∞ c2

j (θ1)
∣∣∣∣α/2)2/α .
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The largest eigenvalue

In particular we have

λ(1)

a2
np

−α/2 d
→

E
∣∣∣∣∣∣∣∣
∞∑

j=−∞

c2
j (θ1)

∣∣∣∣∣∣∣∣
α/2

−1

Γ1

= constant × standard exponential

as p, n → ∞

Also a good approximation for finite p and n?
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Hidden Markov models

Suppose that (θi) is either

an irreducible Markov chain on a countable state space Θ, or

positive Harris in the sense of Meyn and Tweedie [2009].

If (θi) has a stationary probability distribution π then, conditionally on
(θi) as well as unconditionally,

p∑
i=1

εa−2
np λ(i)

d
→ N =

∞∑
i=1

ε
Γ−2/α

i

(∫
|
∑

j c2
j (θ)|α/2π(dθ)

)2/α .

Davis (Columbia University) Heavy-Tailed Distributions and Extremes January 14–17, 2013 20



Stochastic volatility models—special case

Suppose the rows are independent copies of the SV process given by

Xt = σtZt

where (Zt ) is iid RV(α) and (lnσ2
t ) is a purely nondeterministic stationary

Gaussian process (this can be weakened), independent of (Zt ).

Theorem Suppose pn, n → ∞ such that

lim sup
n→∞

pn

nβ
< ∞ , for some β > 0 satisfying

1 β < ∞ if α ∈ (0, 1), and
2 β < 2−α

α−1 if α ∈ (1, 2).

Then, we have the point process convergence,

Np :=

p∑
i=1

εa−2
np λ(i)

d
→ N =

∞∑
i=1

εΓ−2/α
i

.
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Stochastic volatility models—special case

Point process convergence:

Np :=

p∑
i=1

εa−2
np λ(i)

d
→ N =

∞∑
i=1

εΓ−2/α
i

.

Remarks:

Proof uses a large deviation result of Davis and Hsing (1995); see
also Mikosch and Wintenberger (2012).

Likely that we can weaken the restriction on β

Similar results hold for GARCH processes if Xt is RV(α) with
α ∈ (0, 2).
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The case α ∈ (2, 4)

As before, consider the linear time series

Xit =
∞∑

j=−∞

cjZi,t−j ,

where (Zi,t ) is iid with mean zero and RV(α) of with α ∈ (2, 4) (i.e., finite
variance), and

∑∞
j=−∞ |cj | < ∞. (an = L(n)n1/α)

Now define the normalized sample covariance matrix by

Sn = XXT − nVar(X11)Ip

and let λ(1) ≥ λ(2) ≥ · · · ≥ λ(p) be the ordered eigenvalues of Sn.
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Theorem (The case α ∈ (2, 4))

Suppose pn, n → ∞ such that

lim sup
n→∞

pn

nβ
< ∞

for some β > 0 satisfying

1 β < max
{

4−α
4(α−1)

, 1
3

}
if α ∈ (2, 3), and

2 β < 4−α
3α−1 if α ∈ (3, 4).

Then, we have the point process convergence,

Np :=

p∑
i=1

εa−2
np λ(i)

d
→ N =

∞∑
i=1

εΓ−2/α
i

∑∞
j=−∞ c2

j
.
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Point process convergence,

Np :=

p∑
i=1

εa−2
np λ(i)

d
→ N =

∞∑
i=1

εΓ−2/α
i

∑∞
j=−∞ c2

j
.

Note that if we normalized the data to have variance 1, and consider the
ordered eigenvalues λ∗

(i) from the normalized covariance matrix (without
subtracting the identity matrix), we have

na−2
np (n−1λ∗(1) − 1)

d
→ Γ−2/α

1 ,

where the order na−2
np is roughly n1−2/α−β2/α, which is smaller than the

scaling in the Tracy-Widom result.
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