How strongly do extreme returns cluster?

Holger Drees

University of Hamburg, Department of Mathematics

Workshop on "Heavy-tailed Distributions and Extreme Value Theory" Kolkata, January 17, 2013

< ∃ →

Outline

1 Extremal serial dependence

- Motivation: Modeling financial time series
- Clustering of extremes
- Measures of tail dependence

2 Estimating the coefficient of tail dependence

- Definition of estimators
- Empirical processes of cluster functionals
- Asymptotics
- Bootstrap confidence intervals

3 Application: analysis of DAX returns

Modeling Financial Time Series

Vast variety of models for (univariate) time series of returns Most important classes for centered returns

 $X_t = \sigma_t \varepsilon_t$

where ε_t iid with $E(\varepsilon_t) = 0$, $Var(\varepsilon_t) = 1$ and

GARCH-type: σ_t can be expressed in terms of past innovations ε_s, s < t;
 e.g. GARCH(1,1):

$$\sigma_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2 + \beta_1 \sigma_{t-1}^2$$

• SV-type: σ_t driven by another source of randomness; e.g. Taylor's stochastic volatility model

$$\log \sigma_t - \mu = \varphi \cdot (\log \sigma_{t-1} - \mu) + \xi_t.$$

Often $(\xi_t)_{t\in\mathbb{Z}}$ iid Gaussian, independent of heavy-tailed $(\varepsilon_t)_{t\in\mathbb{Z}}$

Not clear whether such models capture extreme value behavior correctly.

Modeling Financial Time Series

Vast variety of models for (univariate) time series of returns Most important classes for centered returns

 $X_t = \sigma_t \varepsilon_t$

where ε_t iid with $E(\varepsilon_t) = 0$, $Var(\varepsilon_t) = 1$ and

GARCH-type: σ_t can be expressed in terms of past innovations ε_s, s < t;
 e.g. GARCH(1,1):

$$\sigma_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2 + \beta_1 \sigma_{t-1}^2$$

• SV-type: σ_t driven by another source of randomness; e.g. Taylor's stochastic volatility model

$$\log \sigma_t - \mu = \varphi \cdot (\log \sigma_{t-1} - \mu) + \xi_t.$$

Often $(\xi_t)_{t\in\mathbb{Z}}$ iid Gaussian, independent of heavy-tailed $(\varepsilon_t)_{t\in\mathbb{Z}}$

Not clear whether such models capture extreme value behavior correctly.

Motivation: Modeling financial time series Clustering of extremes

Clusters of extremes

Here we focus on the dependence between extreme observations.

returns on DAX stock index 19.7.2001 - 01.06.2009

How strongly do extreme returns cluster?

Motivation: Modeling financial time series Clustering of extremes Measures of tail dependence

Clusters of extremes

Here we focus on the dependence between extreme observations.

Drees

How strongly do extreme returns cluster?

Clusters of extremes

Here we focus on the dependence between extreme observations.

How strongly do extreme returns cluster?

Clusters of extremes

Here we focus on the dependence between extreme observations.

Qualitatively different asymptotic cluster behavior

E.g.:

• GARCH(p,q): X_t, X_{t+h} asymptotically dependent for all h > 0, i.e.

 $\liminf_{u\to\infty} P(X_{t+h} > u \mid X_t > u) > 0$

 heavy-tailed SV models: under weak conditions, X_t, X_{t+h} asymptotically independent for all h > 0, i.e.

$$\lim_{u\to\infty} P(X_{t+h} > u \mid X_t > u) = 0$$

More precise results in the framework of bivariate regular variation on $(0,\infty)^2$

Framework

 $(X_t)_{t \in \mathbb{Z}}$: stationary time series F: marginal cdf, assumed eventually continuous

Fix some lag h > 0.

 (X_t,X_{t+h}) regularly varying on cone $(0,\infty)^2$

 $\iff \frac{P\{(X_t, X_{t+h}) \in uB\}}{P\{(X_t, X_{t+h}) \in (u, \infty)^2\}} \stackrel{u \to \infty}{\longrightarrow} \nu(B)$

for some non-degenerate measure u and all u-continuous $B\in\mathbb{B}(0,\infty)^2$ bounded away from the axes

$$\implies \frac{P\{X_t > ur, X_{t+h} > us\}}{P\{X_t > u, X_{t+h} > u\}} \stackrel{u \to \infty}{\longrightarrow} d(r, s) \quad \forall r, s > 0$$

for some non-degenerate function d.

프 🖌 🔺 프 🛌

Framework

 $(X_t)_{t \in \mathbb{Z}}$: stationary time series F: marginal cdf, assumed eventually continuous

Fix some lag h > 0.

 (X_t, X_{t+h}) regularly varying on cone $(0, \infty)^2$

$$\iff \frac{P\{(X_t, X_{t+h}) \in uB\}}{P\{(X_t, X_{t+h}) \in (u, \infty)^2\}} \stackrel{u \to \infty}{\to} \nu(B)$$

for some non-degenerate measure ν and all $\nu\text{-continuous }B\in\mathbb{B}(0,\infty)^2$ bounded away from the axes

$$\iff \frac{P\{X_t > ur, X_{t+h} > us\}}{P\{X_t > u, X_{t+h} > u\}} \stackrel{u \to \infty}{\longrightarrow} d(r, s) \quad \forall r, s > 0$$

for some non-degenerate function d.

프 에 제 프 에 다

Basic assumption

To allow for more general models, we first standardize the marginal distribution e.g. to standard Pareto (not necessary for GARCH and heavy-tailed SV models):

$$Y_t := \frac{1}{1 - F(X_t)}$$

Basic assumption: There exists non-degenerate function d such that

$$\lim_{u\to\infty}\frac{P\{Y_t>ur, Y_{t+h}>us\}}{P\{Y_t>u, Y_{t+h}>u\}}=d(r,s)\quad\forall r,s>0.$$

Then fct. *d* necessarily homogeneous of order $-1/\eta$ for some coefficient of tail dependence $\eta = \eta_h \in (0, 1]$ and

$$P\{\min(Y_t, Y_{t+h}) > u\} = P\{Y_t > u, Y_{t+h} > u\} = u^{-1/\eta}\ell(u)$$

for some slowly varying fct. $\ell = \ell_h$.

프 에 제 프 에 다

Basic assumption

To allow for more general models, we first standardize the marginal distribution e.g. to standard Pareto (not necessary for GARCH and heavy-tailed SV models):

$$Y_t := \frac{1}{1 - F(X_t)}$$

Basic assumption: There exists non-degenerate function d such that

$$\lim_{u\to\infty}\frac{P\{Y_t>ur, Y_{t+h}>us\}}{P\{Y_t>u, Y_{t+h}>u\}}=d(r,s)\quad\forall r,s>0.$$

Then fct. *d* necessarily homogeneous of order $-1/\eta$ for some coefficient of tail dependence $\eta = \eta_h \in (0, 1]$ and

$$P\{\min(Y_t, Y_{t+h}) > u\} = P\{Y_t > u, Y_{t+h} > u\} = u^{-1/\eta}\ell(u)$$

for some slowly varying fct. $\ell = \ell_h$.

- ∢ ≣ ▶

Discriminating extremal cluster behavior Examples:

- GARCH: $\eta_h = 1$, $\lim_{u \to \infty} \ell_h(u) > 0 \quad \forall h > 0$
- heavy-tailed SV models: $\eta_h = 1/2$

Objective

Use estimator for so-called $\textit{coefficient of tail dependence }\eta$ to discriminate between time series models

$T_i := \min(Y_i, Y_{i+h}) \implies 1 - F_T(u) := P\{T_i > u\} = u^{-1/\eta} \ell(u)$

If T_i , $1 \le i \le n$, were observable, η could be estimated by standard estimators of tail index like ML estimator (in GPD model) or Hill estimator:

$$\tilde{\eta}_n := \frac{1}{j_n} \sum_{i=1}^{j_n} \log \frac{T_{n-i+1:n}}{T_{n-j_n:n}}$$

However, F and thus $Y_i = 1/(1 - F(X_i))$ are usually unknown as $i \in X_i$

э.

Discriminating extremal cluster behavior Examples:

- GARCH: $\eta_h = 1$, $\lim_{u \to \infty} \ell_h(u) > 0 \quad \forall h > 0$
- heavy-tailed SV models: $\eta_h = 1/2$

Objective

Use estimator for so-called coefficient of tail dependence η to discriminate between time series models

 $T_i := \min(Y_i, Y_{i+h}) \implies 1 - F_T(u) := P\{T_i > u\} = u^{-1/\eta} \ell(u)$

If T_i , $1 \le i \le n$, were observable, η could be estimated by standard estimators of tail index like ML estimator (in GPD model) or Hill estimator:

$$\tilde{\eta}_n := \frac{1}{j_n} \sum_{i=1}^{j_n} \log \frac{T_{n-i+1:n}}{T_{n-j_n:n}}$$

However, F and thus $Y_i = 1/(1 - F(X_i))$ are usually unknown

Definition of estimators Empirical processes of cluster functionals Asymptotics Bootstrap confidence intervals

Estimating the coefficient of tail dependence Replace F with empirical cdf, i.e. use rank-based version of T_i instead:

$$T_i^{(n)} := \frac{1}{1 - \min(R_i^X, \tilde{R}_{i+h}^X)/(n+1)}, \quad 1 \le i \le n,$$

with
$$R_i^X = \text{rank of } X_i \text{ among } X_1, \dots, X_n$$

 $\tilde{R}_{i+h}^X = \text{rank of } X_{i+h} \text{ among } X_{1+h}, \dots, X_{n+h}$

Resulting Hill estimator: for suitable sequence $j_n o \infty$, $j_n/n o 0$

$$\hat{\eta}_{n,j_n} := rac{1}{j_n} \sum_{i=1}^{j_n} \log rac{\mathcal{T}_{n-i+1:n}^{(n)}}{\mathcal{T}_{n-j_n:n}^{(n)}}$$

Confidence intervals are needed to discriminate between time series models.

Draisma et al. (2004): Asymptotics for analogous estimators for *independent* bivariate vectors (X_i, Y_i) ; not applicable here because of non-negligible serial dependence.

Definition of estimators Empirical processes of cluster functionals Asymptotics Bootstrap confidence intervals

Estimating the coefficient of tail dependence Replace F with empirical cdf, i.e. use rank-based version of T_i instead:

$$T_i^{(n)} := \frac{1}{1 - \min(R_i^X, \tilde{R}_{i+h}^X)/(n+1)}, \quad 1 \le i \le n,$$

with $R_i^X = \text{rank of } X_i \text{ among } X_1, \dots, X_n$ $\tilde{R}_{i+h}^X = \text{rank of } X_{i+h} \text{ among } X_{1+h}, \dots, X_{n+h}$

Resulting Hill estimator: for suitable sequence $j_n \to \infty$, $j_n/n \to 0$

$$\hat{\eta}_{n,j_n} := rac{1}{j_n} \sum_{i=1}^{j_n} \log rac{\mathcal{T}_{n-i+1:n}^{(n)}}{\mathcal{T}_{n-j_n:n}^{(n)}}$$

Confidence intervals are needed to discriminate between time series models.

Draisma et al. (2004): Asymptotics for analogous estimators for *independent* bivariate vectors (X_i, Y_i) ; not applicable here because of non-negligible serial dependence.

Definition of estimators Empirical processes of cluster functionals Asymptotics Bootstrap confidence intervals

Tail empirical processes

Main technical tool to analyze asymptotic behavior of estimators:

limit theorems for suitable empirical processes, in particular

$$Z_n^{(Y)}(x) := k_n^{-1/2} \sum_{i=1}^n \left(\mathbb{1}_{\{Y_i > n/(k_n x)\}} - k_n x/n \right), \quad x > 0,$$

$$Z_n^{(T)}(x) := (nv_n)^{-1/2} \sum_{i=1}^n \left(\mathbb{1}_{\{T_i > F_T^{\leftarrow}(1 - v_n x)\}} - v_n x \right), \quad x > 0,$$

with

$$k_n \to \infty, k_n/n \to 0, \quad v_n := P\{T_i > n/k_n\} = P\{Y_i > n/k_n, Y_{i+h} > n/k_n\}.$$

Special cases of so-called *empirical processes of cluster functionals*, introduced and analyzed by D. and Rootzén (2010). Under suitable conditions, processes jointly converge to centered Gaussian processes.

By inversion, one obtains asymptotics for pertaining tail empirical quantile functions $(Y_{n-\lfloor k_n t \rfloor:n})_{t_0 \le t \le 1}$ and $(T_{n-\lfloor nv_n t \rfloor:n})_{t_0 \le t \le 1}$ for arbitrary $t_0 > 0$.

Definition of estimators Empirical processes of cluster functionals Asymptotics Bootstrap confidence intervals

Tail empirical processes

Main technical tool to analyze asymptotic behavior of estimators:

limit theorems for suitable empirical processes, in particular

$$Z_n^{(Y)}(x) := k_n^{-1/2} \sum_{i=1}^n \left(\mathbb{1}_{\{Y_i > n/(k_n x)\}} - k_n x/n \right), \quad x > 0,$$

$$Z_n^{(T)}(x) := (nv_n)^{-1/2} \sum_{i=1}^n \left(\mathbb{1}_{\{T_i > F_T^{\leftarrow}(1 - v_n x)\}} - v_n x \right), \quad x > 0,$$

with

$$k_n \to \infty, k_n/n \to 0, \quad v_n := P\{T_i > n/k_n\} = P\{Y_i > n/k_n, Y_{i+h} > n/k_n\}.$$

Special cases of so-called *empirical processes of cluster functionals*, introduced and analyzed by D. and Rootzén (2010). Under suitable conditions, processes jointly converge to centered Gaussian processes.

By inversion, one obtains asymptotics for pertaining tail empirical quantile functions $(Y_{n-\lfloor k_n t \rfloor:n})_{t_0 \le t \le 1}$ and $(T_{n-\lfloor nv_n t \rfloor:n})_{t_0 \le t \le 1}$ for arbitrary $t_0 > 0$.

Tail empirical quantile processes

Because with probability tending to 1

$$T_i^{(n)} > x \quad \Longleftrightarrow \quad T_i > \frac{1}{Y_{n+1-\lceil (n+1)/x \rceil:n}}$$

one may conclude limit theorem for $\left(T^{(n)}_{n-\lfloor nv_nt\rfloor:n}
ight)_{t_0\leq t\leq 1}$ of the type

$$(nv_n)^{1/2} \Big(\frac{k_n}{n} T^{(n)}_{n-\lfloor nv_nt \rfloor:n} - t^{-\eta} \Big) \longrightarrow Z(t)$$
 uniformly for $t \in [t_0, 1]$.

for a Gaussian process Z with cov. fct. c (see next slide)

To derive asymptotic normality of Hill estimator $\hat{\eta}_n$ one needs weighted version:

$$t^{\eta+
u}(nv_n)^{1/2}\Big(rac{k}{n}T^{(n)}_{n-\lfloor nv_nt
floor:n-t^{-\eta}}\Big) \longrightarrow t^{\eta+
u}Z(t)$$
 uniformly for $t\in(0,1],$

which follows for $\nu > 3/4$ from arguments given in D. (2000)

< 三→

Tail empirical quantile processes

Because with probability tending to 1

$$T_i^{(n)} > x \quad \iff \quad T_i > \frac{1}{Y_{n+1-\lceil (n+1)/x \rceil:n}}$$

one may conclude limit theorem for $(T^{(n)}_{n-\lfloor nv_nt\rfloor:n})_{t_0\leq t\leq 1}$ of the type

$$(nv_n)^{1/2} \Big(\frac{k_n}{n} T^{(n)}_{n-\lfloor nv_nt \rfloor:n} - t^{-\eta} \Big) \longrightarrow Z(t)$$
 uniformly for $t \in [t_0, 1]$.

for a Gaussian process Z with cov. fct. c (see next slide)

To derive asymptotic normality of Hill estimator $\hat{\eta}_n$ one needs weighted version:

$$t^{\eta+
u}(nv_n)^{1/2}\Big(rac{k}{n}T^{(n)}_{n-\lfloor nv_nt \rfloor:n}-t^{-\eta}\Big) \longrightarrow t^{\eta+
u}Z(t)$$
 uniformly for $t\in(0,1]$,

which follows for $\nu > 3/4$ from arguments given in D. (2000)

Definition of estimators Empirical processes of cluster functionals Asymptotics Bootstrap confidence intervals

Conditions

(C1) For all $\iota > 0$ and some decreasing fct. q_1 tending to 0

$$\sup_{x\geq 1} x^{1/\eta-\iota} \left| \frac{P\{Y_1 > ux, Y_{1+h} > ux\}}{P\{Y_1 > u, Y_{1+h} > u\}} - x^{-1/\eta} \right| = O(q_1(u))$$

(C2) $(X_t)_{t\in\mathbb{Z}} \beta$ -mixing with coefficients β_ℓ satisfying $\beta_{\ell_n} n/r_n \to 0$ for some $\ell_n \to \infty, \ \ell_n = o(r_n), \ r_n = o(\min(n/k_n, k_n^{1/2} \log^{-2} k_n)), \ k_n^{1/2} q_1(n/k_n) \to 0.$ (C3) $\frac{1}{r_n v} Cov(\sum_{i=1}^{r_n} \mathbb{1}_{\{T_i > F_t^{\perp}(1-v_nx)\}}, \sum_{i=1}^{r_n} \mathbb{1}_{\{T_i > F_t^{\perp}(1-v_ny)\}}) \to c(x, y)$

(C4)
$$\frac{1}{r_n v_n} E\Big(\sum_{i=1}^{r_n} \mathbb{1}\{F_T^{\leftarrow}(1-v_n y) < T_i \le F_T^{\leftarrow}(1-v_n x)\}\Big)^2 \le const \cdot (y-x)$$

(C5)
$$\frac{1}{r_n v_n} E \Big(\sum_{i=1}^n \mathbb{1}_{\{n/(k_n y) < Y_i \le n/(k_n x)\}} \Big)^2 \le const \cdot (y - x)$$

▲■ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q @

Definition of estimators Empirical processes of cluster functional Asymptotics Bootstrap confidence intervals

Conditions

(C1) For all $\iota > 0$ and some decreasing fct. q_1 tending to 0

$$\sup_{x\geq 1} x^{1/\eta-\iota} \left| \frac{P\{Y_1 > ux, Y_{1+h} > ux\}}{P\{Y_1 > u, Y_{1+h} > u\}} - x^{-1/\eta} \right| = O(q_1(u))$$

(C2) $(X_t)_{t\in\mathbb{Z}} \beta$ -mixing with coefficients β_ℓ satisfying $\beta_{\ell_n} n/r_n \to 0$ for some $\ell_n \to \infty$, $\ell_n = o(r_n)$, $r_n = o(\min(n/k_n, k_n^{1/2} \log^{-2} k_n))$, $k_n^{1/2} q_1(n/k_n) \to 0$.

(C3)
$$\frac{1}{r_n v_n} Cov \left(\sum_{i=1}^{r_1} \mathbb{1}_{\{T_i > F_T^{+-}(1-v_n x)\}}, \sum_{i=1}^{r_1} \mathbb{1}_{\{T_i > F_T^{+-}(1-v_n y)\}} \right) \to c(x, y)$$

$$(C4) \quad \frac{1}{r_n v_n} E\Big(\sum_{i=1}^{n} 1\{F_T^{\leftarrow}(1-v_n y) < T_i \le F_T^{\leftarrow}(1-v_n x)\}\Big)^{-} \le const \cdot (y-x)$$

(C5)
$$\frac{1}{r_n v_n} E \left(\sum_{i=1}^{r_n} \mathbb{1}_{\{n/(k_n y) < Y_i \le n/(k_n x)\}} \right)^2 \le const \cdot (y - x)$$

Definition of estimators Empirical processes of cluster functional Asymptotics Bootstrap confidence intervals

Conditions

(C1) For all $\iota > 0$ and some decreasing fct. q_1 tending to 0

$$\sup_{x\geq 1} x^{1/\eta-\iota} \left| \frac{P\{Y_1 > ux, Y_{1+h} > ux\}}{P\{Y_1 > u, Y_{1+h} > u\}} - x^{-1/\eta} \right| = O(q_1(u))$$

(C2) $(X_t)_{t\in\mathbb{Z}} \beta$ -mixing with coefficients β_ℓ satisfying $\beta_{\ell_n} n/r_n \to 0$ for some $\ell_n \to \infty, \ \ell_n = o(r_n), \ r_n = o\left(\min(n/k_n, k_n^{1/2}\log^{-2}k_n)\right), \ k_n^{1/2}q_1(n/k_n) \to 0.$ (C3) $\frac{1}{r_n v_n} Cov\left(\sum_{i=1}^{r_n} 1_{\{T_i > F_T^{\leftarrow}(1-v_n x)\}}, \sum_{i=1}^{r_n} 1_{\{T_i > F_T^{\leftarrow}(1-v_n y)\}}\right) \to c(x, y)$ (C4) $\frac{1}{r_n v_n} E\left(\sum_{i=1}^{r_n} 1_{\{F_T^{\leftarrow}(1-v_n y) < T_i \le F_T^{\leftarrow}(1-v_n x)\}}\right)^2 \le const \cdot (y - x)$ (C5) $\frac{1}{r_n v_n} E\left(\sum_{i=1}^{r_n} 1_{\{n/(k_n y) < Y_i \le n/(k_n x)\}}\right)^2 \le const \cdot (y - x)$

| ◆ □ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ ○ ○ ○ ○ ○

Definition of estimators Empirical processes of cluster functiona Asymptotics Bootstrap confidence intervals

Conditions

(C1) For all $\iota > 0$ and some decreasing fct. q_1 tending to 0

$$\sup_{x\geq 1} x^{1/\eta-\iota} \left| \frac{P\{Y_1 > ux, Y_{1+h} > ux\}}{P\{Y_1 > u, Y_{1+h} > u\}} - x^{-1/\eta} \right| = O(q_1(u))$$

$$\begin{array}{l} \text{(C2)} & (X_{t})_{t \in \mathbb{Z}} \ \beta \text{-mixing with coefficients } \beta_{\ell} \ \text{satisfying } \beta_{\ell_{n}} n/r_{n} \to 0 \ \text{for some} \\ & \ell_{n} \to \infty, \ \ell_{n} = o(r_{n}), \ r_{n} = o\left(\min(n/k_{n}, k_{n}^{1/2} \log^{-2} k_{n})\right), \ k_{n}^{1/2} q_{1}(n/k_{n}) \to 0. \\ \text{(C3)} \ \frac{1}{r_{n} v_{n}} Cov\left(\sum_{i=1}^{r_{n}} 1_{\{T_{i} > F_{T}^{\leftarrow}(1-v_{n}x)\}}, \sum_{i=1}^{r_{n}} 1_{\{T_{i} > F_{T}^{\leftarrow}(1-v_{n}y)\}}\right) \to \ c(x, y) \\ \text{(C4)} \ \frac{1}{r_{n} v_{n}} E\left(\sum_{i=1}^{r_{n}} 1_{\{F_{T}^{\leftarrow}(1-v_{n}y) < T_{i} \leq F_{T}^{\leftarrow}(1-v_{n}x)\}}\right)^{2} \leq const \cdot (y-x) \\ \text{(C5)} \ \frac{1}{r_{n} v_{n}} E\left(\sum_{i=1}^{r_{n}} 1_{\{n/(k_{n}y) < Y_{i} \leq n/(k_{n}x)\}}\right)^{2} \leq const \cdot (y-x) \end{array}$$

 $\forall 0 < x < y \leq 1 + \varepsilon$

Definition of estimators Empirical processes of cluster functionals Asymptotics Bootstrap confidence intervals

Asymptotic normality

Here only in the case of asymptotic independence (in particular if $\eta < 1$)

Consider Hill estimator $\hat{\eta}_n$ based on j_n exceedances of $T_i^{(n)}$ over n/k_n .

Recall $v_n := P\{T_i > n/k_n\} = P\{Y_i > n/k_n, Y_{i+h} > n/k_n\}.$

Corollary

Under the conditions given above

$$(nv_n)^{1/2}(\hat{\eta}_n - \eta) \longrightarrow \mathcal{N}_{(0,\sigma^2)}$$
 weakly

with

$$\sigma^2=\eta^2\int_0^1\int_0^1(st)^{-(\eta+1)}c(s,t)\left(s^\eta ds-arepsilon_1(ds)
ight)\left(t^\eta dt-arepsilon_1(dt)
ight).$$

Under weak conditions, the covariance fct. c is homogeneous of order 1; then $\sigma^2 = \eta^2 c(1,1)$.

Definition of estimators Empirical processes of cluster functionals Asymptotics Bootstrap confidence intervals

Asymptotic normality

Here only in the case of asymptotic independence (in particular if $\eta < 1$)

Consider Hill estimator $\hat{\eta}_n$ based on j_n exceedances of $T_i^{(n)}$ over n/k_n .

Recall $v_n := P\{T_i > n/k_n\} = P\{Y_i > n/k_n, Y_{i+h} > n/k_n\}.$

Corollary

Under the conditions given above

$$(nv_n)^{1/2}(\hat{\eta}_n - \eta) \longrightarrow \mathcal{N}_{(0,\sigma^2)}$$
 weakly

with

$$\sigma^2 = \eta^2 \int_0^1 \int_0^1 (st)^{-(\eta+1)} c(s,t) \left(s^\eta ds - \varepsilon_1(ds)\right) \left(t^\eta dt - \varepsilon_1(dt)\right).$$

Under weak conditions, the covariance fct. c is homogeneous of order 1; then $\sigma^2 = \eta^2 c(1,1)$.

Definition of estimators Empirical processes of cluster functionals Asymptotics Bootstrap confidence intervals

 $\begin{aligned} & \text{Construction of confidence intervals} \\ & \text{In } (nv_n)^{1/2} (\hat{\eta}_n - \eta) \to \mathcal{N}_{(0,\eta^2 c(1,1))} \text{ interpret } c \text{ as cov. fct. of limit of } Z_n^{(T^{(n)})} \text{ with} \\ & Z_n^{(T^{(n)})} (1) = (nP\{T_1 > \frac{n}{k}\})^{-1/2} \sum_{i=1}^n \left(1_{\{T_i^{(n)} > \frac{n}{k}\}} - P\{T_1 > \frac{n}{k}\} \right) \\ & = (nP\{T_1 > \frac{n}{k}\})^{-1/2} \sum_{i=1}^{m_n} \left(\sum_{j=1}^{r_n} 1_{\{T_{(i-1)r_n+j}^{(n)} > \frac{n}{k}\}} - r_n P\{T_1 > \frac{n}{k}\} \right). \end{aligned}$

Use multiplier block bootstrap analog

$$Z_n^*(1) = \left(\sum_{l=1}^n \mathbb{1}_{\{T_l^{(n)} > \frac{n}{k}\}}\right)^{-1/2} \sum_{i=1}^{m_n} \zeta_i \left(\sum_{j=1}^{r_n} \mathbb{1}_{\{T_{(i-1)r_n+j}^{(n)} > \frac{n}{k}\}} - \frac{r_n}{n} \sum_{l=1}^n \mathbb{1}_{\{T_l^{(n)} > \frac{n}{k}\}}\right)$$

with ζ_i iid independent of $(X_t)_{t\in\mathbb{Z}}$ with $E(\zeta_i) = 0$, $Var(\zeta_i) = 1$.

Theorem

 $P\{(nv_n)^{1/2}|\hat{\eta}_n - \eta| \leq c_\alpha\} - P_{\zeta}\{|Z_n^*(1)| \leq c_\alpha/\hat{\eta}_n\} \xrightarrow{P} 0$

< 注 → < 注 → _ 注 -

Definition of estimators Empirical processes of cluster functionals Asymptotics Bootstrap confidence intervals

 $\begin{aligned} & \text{Construction of confidence intervals} \\ & \text{In } (nv_n)^{1/2} (\hat{\eta}_n - \eta) \to \mathcal{N}_{(0,\eta^2 c(1,1))} \text{ interpret } c \text{ as cov. fct. of limit of } Z_n^{(T^{(n)})} \text{ with} \\ & Z_n^{(T^{(n)})} (1) = (nP\{T_1 > \frac{n}{k}\})^{-1/2} \sum_{i=1}^n \left(1_{\{T_i^{(n)} > \frac{n}{k}\}} - P\{T_1 > \frac{n}{k}\} \right) \\ & = (nP\{T_1 > \frac{n}{k}\})^{-1/2} \sum_{i=1}^{m_n} \left(\sum_{j=1}^{r_n} 1_{\{T_{(i-1)r_n+j}^{(n)} > \frac{n}{k}\}} - r_n P\{T_1 > \frac{n}{k}\} \right). \end{aligned}$

Use multiplier block bootstrap analog

$$Z_n^*(1) = \left(\sum_{l=1}^n \mathbb{1}_{\{T_l^{(n)} > \frac{n}{k}\}}\right)^{-1/2} \sum_{i=1}^{m_n} \zeta_i \left(\sum_{j=1}^{r_n} \mathbb{1}_{\{T_{(i-1)r_n+j}^{(n)} > \frac{n}{k}\}} - \frac{r_n}{n} \sum_{l=1}^n \mathbb{1}_{\{T_l^{(n)} > \frac{n}{k}\}}\right)$$

with ζ_i iid independent of $(X_t)_{t \in \mathbb{Z}}$ with $E(\zeta_i) = 0$, $Var(\zeta_i) = 1$.

I heorem

$$P\{(nv_n)^{1/2}|\hat{\eta}_n-\eta|\leq c_lpha\}-P_\zeta\{|Z_n^*(1)|\leq c_lpha/\hat{\eta}_n\} \stackrel{P}{\longrightarrow} 0.$$

・ 戸 ト ・ ヨ ト ・ ヨ ト …

Definition of estimators Empirical processes of cluster functionals Asymptotics Bootstrap confidence intervals

 $\begin{aligned} & \text{Construction of confidence intervals} \\ & \text{In } (nv_n)^{1/2} (\hat{\eta}_n - \eta) \to \mathcal{N}_{(0,\eta^2 c(1,1))} \text{ interpret } c \text{ as cov. fct. of limit of } Z_n^{(T^{(n)})} \text{ with} \\ & Z_n^{(T^{(n)})} (1) = (nP\{T_1 > \frac{n}{k}\})^{-1/2} \sum_{i=1}^n \left(1_{\{T_i^{(n)} > \frac{n}{k}\}} - P\{T_1 > \frac{n}{k}\} \right) \\ & = (nP\{T_1 > \frac{n}{k}\})^{-1/2} \sum_{i=1}^{m_n} \left(\sum_{j=1}^{r_n} 1_{\{T_{(i-1)r_n+j}^{(n)} > \frac{n}{k}\}} - r_n P\{T_1 > \frac{n}{k}\} \right). \end{aligned}$

Use multiplier block bootstrap analog

$$Z_n^*(1) = \left(\sum_{l=1}^n \mathbb{1}_{\{T_l^{(n)} > \frac{n}{k}\}}\right)^{-1/2} \sum_{i=1}^{m_n} \zeta_i \left(\sum_{j=1}^{r_n} \mathbb{1}_{\{T_{(i-1)r_n+j}^{(n)} > \frac{n}{k}\}} - \frac{r_n}{n} \sum_{l=1}^n \mathbb{1}_{\{T_l^{(n)} > \frac{n}{k}\}}\right)$$

with ζ_i iid independent of $(X_t)_{t \in \mathbb{Z}}$ with $E(\zeta_i) = 0$, $Var(\zeta_i) = 1$.

Theorem

$$P\{(nv_n)^{1/2}|\hat{\eta}_n-\eta|\leq c_\alpha\}-P_\zeta\{|Z_n^*(1)|\leq c_\alpha/\hat{\eta}_n\} \stackrel{P}{\longrightarrow} 0.$$

Application: DAX returns

Data: returns on DAX stock index 19.7.2001 - 01.06.2009

Confidence intervals for η_1 of negative returns

Estimates lead to rejection of GARCH-models (and possibly standard SV-models)

Confidence intervals for η_1 of positive returns

Estimates lead to rejection of GARCH-models (and possibly standard SV-models)

- Empirical processes are very powerful tool to analyze asymptotic behavior of extreme value statistics for time series; large class of estimators can be considered in unifying framework; in particular, results can be generalized to finite vector of $\hat{\eta}_h$ corresponding to different lags h
- Different quantities describing the serial dependence structure (extremal index, extremogram, ...) may be more appropriate for other purposes; suitable empirical processes of cluster functionals can be used to establish the asymptotic normality of estimators thereof
- Often same techniques yield asymptotics for estimators and for bootstrap versions thereof, that can be used to construct confidence intervals or to calculate critical values in model tests
- If rate of convergence q₁(u) in regular variation condition is slow, there might be a serious bias problem

★ Ξ → < Ξ →</p>

- Empirical processes are very powerful tool to analyze asymptotic behavior of extreme value statistics for time series; large class of estimators can be considered in unifying framework; in particular, results can be generalized to finite vector of $\hat{\eta}_h$ corresponding to different lags h
- Different quantities describing the serial dependence structure (extremal index, extremogram, ...) may be more appropriate for other purposes; suitable empirical processes of cluster functionals can be used to establish the asymptotic normality of estimators thereof
- Often same techniques yield asymptotics for estimators and for bootstrap versions thereof, that can be used to construct confidence intervals or to calculate critical values in model tests
- If rate of convergence q₁(u) in regular variation condition is slow, there might be a serious bias problem

- Empirical processes are very powerful tool to analyze asymptotic behavior of extreme value statistics for time series; large class of estimators can be considered in unifying framework; in particular, results can be generalized to finite vector of $\hat{\eta}_h$ corresponding to different lags h
- Different quantities describing the serial dependence structure (extremal index, extremogram, ...) may be more appropriate for other purposes; suitable empirical processes of cluster functionals can be used to establish the asymptotic normality of estimators thereof
- Often same techniques yield asymptotics for estimators and for bootstrap versions thereof, that can be used to construct confidence intervals or to calculate critical values in model tests
- If rate of convergence q₁(u) in regular variation condition is slow, there might be a serious bias problem

- Empirical processes are very powerful tool to analyze asymptotic behavior of extreme value statistics for time series; large class of estimators can be considered in unifying framework; in particular, results can be generalized to finite vector of $\hat{\eta}_h$ corresponding to different lags h
- Different quantities describing the serial dependence structure (extremal index, extremogram, ...) may be more appropriate for other purposes; suitable empirical processes of cluster functionals can be used to establish the asymptotic normality of estimators thereof
- Often same techniques yield asymptotics for estimators and for bootstrap versions thereof, that can be used to construct confidence intervals or to calculate critical values in model tests
- If rate of convergence q₁(u) in regular variation condition is slow, there might be a serious bias problem

Thank you for your attention!

< ≣ >

э