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Application: analysis of DAX returns

Motivation: Modeling financial time series
Clustering of extremes
Measures of tail dependence

Modeling Financial Time Series
Vast variety of models for (univariate) time series of returns
Most important classes for centered returns

Xt = σtεt

where εt iid with E (εt) = 0, Var(εt) = 1 and

GARCH-type: σt can be expressed in terms of past innovations εs , s < t;
e.g. GARCH(1,1):

σ2
t = α0 + α1X 2

t−1 + β1σ
2
t−1

SV-type: σt driven by another source of randomness;
e.g. Taylor’s stochastic volatility model

log σt − µ = ϕ · (log σt−1 − µ) + ξt .

Often (ξt)t∈Z iid Gaussian, independent of heavy-tailed (εt)t∈Z

Not clear whether such models capture extreme value behavior correctly.
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Clusters of extremes
Here we focus on the dependence between extreme observations.

returns on DAX stock index 19.7.2001 – 01.06.2009
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Qualitatively different asymptotic cluster behavior

E.g.:
GARCH(p,q): Xt ,Xt+h asymptotically dependent for all h > 0, i.e.

lim inf
u→∞

P(Xt+h > u | Xt > u) > 0

heavy-tailed SV models: under weak conditions, Xt ,Xt+h asymptotically
independent for all h > 0, i.e.

lim
u→∞

P(Xt+h > u | Xt > u) = 0

More precise results in the framework of bivariate regular variation on (0 ,∞)2
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GARCH(1,1) n = 1000 Taylor’s SV
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Clusters of extremes
Here we focus on the dependence between extreme observations.

GARCH(1,1) n = 100 000 Taylor’s SV
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Framework

(Xt)t∈Z: stationary time series
F : marginal cdf, assumed eventually continuous

Fix some lag h > 0.

(Xt ,Xt+h) regularly varying on cone (0,∞)2

⇐⇒ P{(Xt ,Xt+h) ∈ uB}
P{(Xt ,Xt+h) ∈ (u,∞)2}

u→∞−→ ν(B)

for some non-degenerate measure ν and all ν-continuous B ∈ B(0,∞)2

bounded away from the axes

⇐⇒ P{Xt > ur ,Xt+h > us}
P{Xt > u,Xt+h > u}

u→∞−→ d(r , s) ∀ r , s > 0

for some non-degenerate function d .
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Basic assumption
To allow for more general models, we first standardize the marginal distribution
e.g. to standard Pareto (not necessary for GARCH and heavy-tailed SV models):

Yt :=
1

1− F (Xt)

Basic assumption: There exists non-degenerate function d such that

lim
u→∞

P{Yt > ur ,Yt+h > us}
P{Yt > u,Yt+h > u}

= d(r , s) ∀ r , s > 0.

Then fct. d necessarily homogeneous of order −1/η for some coefficient of tail
dependence η = ηh ∈ (0, 1] and

P{min(Yt ,Yt+h) > u} = P{Yt > u,Yt+h > u} = u−1/η`(u)

for some slowly varying fct. ` = `h.
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Definition of estimators
Empirical processes of cluster functionals
Asymptotics
Bootstrap confidence intervals

Discriminating extremal cluster behavior
Examples:

GARCH: ηh = 1, limu→∞ `h(u) > 0 ∀ h > 0

heavy-tailed SV models: ηh = 1/2

Objective

Use estimator for so-called coefficient of tail dependence η to discriminate
between time series models

Ti := min(Yi ,Yi+h) =⇒ 1− FT (u) := P{Ti > u} = u−1/η`(u)

If Ti , 1 ≤ i ≤ n, were observable, η could be estimated by standard estimators of
tail index like ML estimator (in GPD model) or Hill estimator:

η̃n :=
1

jn

jn∑
i=1

log
Tn−i+1:n

Tn−jn:n

However, F and thus Yi = 1/(1− F (Xi )) are usually unknown
Drees How strongly do extreme returns cluster?
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Estimating the coefficient of tail dependence
Replace F with empirical cdf, i.e. use rank-based version of Ti instead:

T
(n)
i :=

1

1−min(RX
i , R̃

X
i+h)/(n + 1)

, 1 ≤ i ≤ n,

with RX
i = rank of Xi among X1, . . . ,Xn

R̃X
i+h = rank of Xi+h among X1+h, . . . ,Xn+h

Resulting Hill estimator: for suitable sequence jn →∞, jn/n→ 0

η̂n,jn :=
1

jn

jn∑
i=1

log
T

(n)
n−i+1:n

T
(n)
n−jn:n

Confidence intervals are needed to discriminate between time series models.

Draisma et al. (2004): Asymptotics for analogous estimators for independent
bivariate vectors (Xi ,Yi ); not applicable here because
of non-negligible serial dependence.
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Definition of estimators
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Bootstrap confidence intervals

Tail empirical processes
Main technical tool to analyze asymptotic behavior of estimators:

limit theorems for suitable empirical processes, in particular

Z (Y )
n (x) := k−1/2n

n∑
i=1

(
1{Yi > n/(knx)} − knx/n

)
, x > 0,

Z (T )
n (x) := (nvn)−1/2

n∑
i=1

(
1{Ti > F←T (1− vnx)} − vnx

)
, x > 0,

with

kn →∞, kn/n→ 0, vn := P{Ti > n/kn} = P{Yi > n/kn,Yi+h > n/kn}.

Special cases of so-called empirical processes of cluster functionals, introduced
and analyzed by D. and Rootzén (2010). Under suitable conditions, processes
jointly converge to centered Gaussian processes.

By inversion, one obtains asymptotics for pertaining tail empirical quantile
functions

(
Yn−bkntc:n

)
t0≤t≤1

and
(
Tn−bnvntc:n

)
t0≤t≤1

for arbitrary t0 > 0.

Drees How strongly do extreme returns cluster?



Extremal serial dependence
Estimating the coefficient of tail dependence

Application: analysis of DAX returns

Definition of estimators
Empirical processes of cluster functionals
Asymptotics
Bootstrap confidence intervals

Tail empirical processes
Main technical tool to analyze asymptotic behavior of estimators:

limit theorems for suitable empirical processes, in particular

Z (Y )
n (x) := k−1/2n

n∑
i=1

(
1{Yi > n/(knx)} − knx/n

)
, x > 0,

Z (T )
n (x) := (nvn)−1/2

n∑
i=1

(
1{Ti > F←T (1− vnx)} − vnx

)
, x > 0,

with

kn →∞, kn/n→ 0, vn := P{Ti > n/kn} = P{Yi > n/kn,Yi+h > n/kn}.

Special cases of so-called empirical processes of cluster functionals, introduced
and analyzed by D. and Rootzén (2010). Under suitable conditions, processes
jointly converge to centered Gaussian processes.

By inversion, one obtains asymptotics for pertaining tail empirical quantile
functions

(
Yn−bkntc:n

)
t0≤t≤1

and
(
Tn−bnvntc:n

)
t0≤t≤1

for arbitrary t0 > 0.

Drees How strongly do extreme returns cluster?



Extremal serial dependence
Estimating the coefficient of tail dependence

Application: analysis of DAX returns

Definition of estimators
Empirical processes of cluster functionals
Asymptotics
Bootstrap confidence intervals

Tail empirical quantile processes

Because with probability tending to 1

T
(n)
i > x ⇐⇒ Ti >

1

Yn+1−d(n+1)/xe:n

one may conclude limit theorem for
(
T

(n)
n−bnvntc:n

)
t0≤t≤1

of the type

(nvn)1/2
(kn

n
T

(n)
n−bnvntc:n − t−η

)
−→ Z (t) uniformly for t ∈ [t0, 1].

for a Gaussian process Z with cov. fct. c (see next slide)

To derive asymptotic normality of Hill estimator η̂n one needs weighted version:

tη+ν(nvn)1/2
(k

n
T

(n)
n−bnvntc:n − t−η

)
−→ tη+νZ (t) uniformly for t ∈ (0, 1],

which follows for ν > 3/4 from arguments given in D. (2000)

Drees How strongly do extreme returns cluster?



Extremal serial dependence
Estimating the coefficient of tail dependence

Application: analysis of DAX returns

Definition of estimators
Empirical processes of cluster functionals
Asymptotics
Bootstrap confidence intervals

Tail empirical quantile processes

Because with probability tending to 1

T
(n)
i > x ⇐⇒ Ti >

1

Yn+1−d(n+1)/xe:n

one may conclude limit theorem for
(
T

(n)
n−bnvntc:n

)
t0≤t≤1

of the type

(nvn)1/2
(kn

n
T

(n)
n−bnvntc:n − t−η

)
−→ Z (t) uniformly for t ∈ [t0, 1].

for a Gaussian process Z with cov. fct. c (see next slide)

To derive asymptotic normality of Hill estimator η̂n one needs weighted version:

tη+ν(nvn)1/2
(k

n
T

(n)
n−bnvntc:n − t−η

)
−→ tη+νZ (t) uniformly for t ∈ (0, 1],

which follows for ν > 3/4 from arguments given in D. (2000)

Drees How strongly do extreme returns cluster?



Extremal serial dependence
Estimating the coefficient of tail dependence

Application: analysis of DAX returns

Definition of estimators
Empirical processes of cluster functionals
Asymptotics
Bootstrap confidence intervals

Conditions

(C1) For all ι > 0 and some decreasing fct. q1 tending to 0

sup
x≥1

x1/η−ι
∣∣∣∣P{Y1 > ux ,Y1+h > ux}

P{Y1 > u,Y1+h > u}
− x−1/η

∣∣∣∣ = O(q1(u))

(C2) (Xt)t∈Z β-mixing with coefficients β` satisfying β`nn/rn → 0 for some

`n →∞, `n = o(rn), rn = o
(

min(n/kn, k
1/2
n log−2 kn)

)
, k

1/2
n q1(n/kn)→ 0.

(C3)
1

rnvn
Cov

( rn∑
i=1

1{Ti>F←T (1−vnx)},

rn∑
i=1

1{Ti>F←T (1−vny)}

)
→ c(x , y)

(C4)
1

rnvn
E
( rn∑

i=1

1{F←T (1− vny) < Ti ≤ F←T (1− vnx)}
)2
≤ const · (y − x)

(C5)
1

rnvn
E
( rn∑

i=1

1{n/(kny) < Yi ≤ n/(knx)}
)2
≤ const · (y − x)

∀ 0 < x < y ≤ 1 + ε
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Asymptotic normality
Here only in the case of asymptotic independence (in particular if η < 1)

Consider Hill estimator η̂n based on jn exceedances of T
(n)
i over n/kn.

Recall vn := P{Ti > n/kn} = P{Yi > n/kn,Yi+h > n/kn}.

Corollary

Under the conditions given above

(nvn)1/2(η̂n − η) −→ N(0,σ2) weakly

with

σ2 = η2
∫ 1

0

∫ 1

0

(st)−(η+1)c(s, t)
(
sηds − ε1(ds)

) (
tηdt − ε1(dt)

)
.

Under weak conditions, the covariance fct. c is homogeneous of order 1;

then σ2 = η2c(1, 1).
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Definition of estimators
Empirical processes of cluster functionals
Asymptotics
Bootstrap confidence intervals

Construction of confidence intervals
In (nvn)1/2(η̂n − η)→ N(0,η2c(1,1)) interpret c as cov. fct. of limit of Z

(T (n))
n with

Z (T (n))
n (1) =

(
nP{T1 >

n

k
}
)−1/2 n∑

i=1

(
1
{T (n)

i > n
k }
− P{T1 >

n

k
}
)

=
(
nP{T1 >

n

k
}
)−1/2 mn∑

i=1

( rn∑
j=1

1
{T (n)

(i−1)rn+j >
n
k }
− rnP{T1 >

n

k
}
)
.

Use multiplier block bootstrap analog

Z∗n (1) =
( n∑

l=1

1{T (n)
l > n

k }

)−1/2 mn∑
i=1

ζi

( rn∑
j=1

1
{T (n)

(i−1)rn+j >
n
k }
− rn

n

n∑
l=1

1
{T (n)

l > n
k }

)
with ζi iid independent of (Xt)t∈Z with E (ζi ) = 0, Var(ζi ) = 1.

Theorem

P{(nvn)1/2|η̂n − η| ≤ cα} − Pζ{|Z∗n (1)| ≤ cα/η̂n}
P−→ 0.
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Application: DAX returns

Data: returns on DAX stock index 19.7.2001 – 01.06.2009
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Confidence intervals for η1 of negative returns
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η̂n,j (blue) versus j , confidence intervals to level 95% (red)

Estimates lead to rejection of GARCH-models (and possibly standard SV-models)
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Confidence intervals for η1 of positive returns
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Estimates lead to rejection of GARCH-models (and possibly standard SV-models)
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Résumé and Outlook

Empirical processes are very powerful tool to analyze asymptotic behavior of
extreme value statistics for time series;
large class of estimators can be considered in unifying framework;
in particular, results can be generalized to finite vector of η̂h corresponding
to different lags h

Different quantities describing the serial dependence structure (extremal
index, extremogram, . . .) may be more appropriate for other purposes;
suitable empirical processes of cluster functionals can be used to establish
the asymptotic normality of estimators thereof

Often same techniques yield asymptotics for estimators and for bootstrap
versions thereof, that can be used to construct confidence intervals or to
calculate critical values in model tests

If rate of convergence q1(u) in regular variation condition is slow, there
might be a serious bias problem
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Thank you for your attention!
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