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Mathematical Problem

Assumptions:

Li,...,L,; one period risks with statistically estimated marginals.
L{+---+ L, total loss exposure.
VaR,(L; + --- + L;) amount of capital to be reserved.

ifVaR, (L1 + -+ Ly)=s,thenP(L1+---+L;>s5)<1-qa)

Task: for a fixed (high) level of probability &/, calculate:

-

Vak, = sup(VaRa(Ll + -+ Ly Lj NFj,l S]’Sd\

VaR =inf{VaRy (L, +---+Ly):Li~Fj,1<j<d

-
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Why useful?

Example: Operational Risk under Basel II.
The ingredients:

 Risk measure: VaR,,

* Holding period: 1 year

» Confidence level: 99.9%, @ =0.999

* The data: 8x7 matrix; 8 Business lines, 7 Loss types

« Often: aggregate column-wise = VaR,(1),..., VaR,(8)

8
Aggregate: Z VaR, (i) = VaR}
=1

Diversification: (1 — §)VaR])

e Discussion!



Recall: risk measures

. VaR, (L) = F; ()

1 |
 BS(L) = —— f VaR,(L) do

= E[L|L > VaR,(L)], F; continuous

Recall:
* In general, VaR,, is not subadditive, i.e. we may have that:
(d d
VaR, Z L,-] > Z VaR,,(L,)
\ i=1 i=1

Typical cases include:
1) Very heavy tailed; 2)Very skew; 3) Special dependence.



Continuation

» VaR,, is subadditive for elliptical distributions
« ES, is always subadditive
« ES, isthe smallest coherent risk measure larger than VaR,,
* Later: some remarks on backtesting!
- always possible for VaR,,

- (almost) impossible for ES,,



On forecasting risk measures

Basic reference: T. Gneiting (2011). Making and evaluating point
forecasts. JASA (106), 746-762.

The ingredients:

* A point forecast, functional 1T°

* A scoring function §

« Strict consistency of §

» Elicitability of 7 relative to a class § of distribution functions

 Examples



Some results

Theorem 1 VaR,(F), a € (0, 1), is elicitable relative to the
class & of all distribution functions F on the interval I C R.

Theorem 2 ES,(F), a € (0, 1), is not elicitable relative to
any class § of probability distributions F on the interval I C R
that contains the measures with finite support, or the finite
mixtures of the absolutely continuous distributions with compact
support.

Conclusions
With respect to elicitability, VaR, is good and ES,, is bad!



Relevant for practice

Remark (Gneiting p.756). “This negative result (Theorem 2) may
challenge the use of ES, as a predictive measure of risk, and may
provide a partial explanation for the lack of literature on the
evaluation of ES,, forecasts, as opposed to quantile or VaR,,
forecasts”, and from the BIS Consultative Document (May 2012),
Fundamental review of the trading book: Question 8, p.41: “ What
are the likely operational constraints with moving from VaR to ES,
including any challenges in delivering robust backtesting, and how
might these be best overcome?”

Discussion: ...
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Assumptions:

Li,...,L,; one period risks with statistically estimated marginals.
L{+---+ L, total loss exposure.

VaR,(L; + --- + L;) amount of capital to be reserved.

ifVaR, (L1 + -+ Ly)=s,thenP(L1+---+L;>s5)<1-qa)

Task: for a fixed (high) level of probability &/, calculate:

-

Vak, = sup(VaRa(Ll + -+ Ly Lj NFj,l S]’Sd\

VaR =inf{VaRy (L, +---+Ly):Li~Fj,1<j<d

-



Known results

- In the homogeneous case F'; = F, 1 < j < d, the bound Vak,
has been recently given for d > 2 in [PR11] and [WW11] under
different assumptions.

- In the homogeneous case, VaR , is very easy to calculate in
arbitrary dimensions.

- In the inhomogeneous case, the computation of VaR , poses
serious problems. And the computation of VaRa IS not possible.
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Timeline to the result

Rlschendorf gives
independently the same
optimal coupling and the

Wang and Wang gives
optimal couplings for the
sum of arbitrary risks in

dual solution some specific examples
1982 2011
1981 2006 2012
'V'ak?“’" gives the optimal Embrechts and sharpness of dual
coupling for the sum of two . .
. . . Puccetti introduce bounds is stated for
risks answering a question .
dual bounds in the a general class of

by Kolmogorov

homogeneous case distributions



d=38 N = 1.0e05 avg time: 3 secs

10 VaR(«a) (RA range) VaR"(a) (exact) VaR(a) (exact) VaR(a) (RA range)
0.99 9.00 — 9.00 72.00 141.67 141.66-141.67
0.995 13.13 - 13.14 105.14 203.66 203.65-203.66
0.999 30.47 — 30.62 244 98 465.29 465.28-465.30

d = 56 N = 1.0e05 avg time: 30 secs

0% VaR(«@) (RA range) VaR"(«) (exact) VaR(a) (exact) VaR(«a) (RA range)
0.99 45.82 — 45.82 504 1053.96 1053.80-1054.11
0.995 48.60 — 48.61 735.96 1513.71 1513.49-1513.93
0.999 52.56 — 52.58 1714.88 3453.99 3453.49-3454 .48
d = 648 N = 5.0e04 avg time: 10 mins

0% VaR(«) (RA range) VaR"(«a) (exact) ﬁ(a) (exact) VaR(a) (RA range)
0.99 530.12 — 530.24 5832.00 12302.00 12269.74-12354.00
0.995 562.33 — 562.50 8516.10 17666.06 17620.45-17739.60
0.999 608.08 — 608.47 19843.56 40303.48 40201.48-40467.92

TaBLe 1. Estimates for VaR(«a) and VaR(«) for random vectors of
Pareto(2)-distributed risks.



Application: superadditivity ratio

Define the superadditivity ratio as:

VaR, (L;)

Oo(d) = VaR* (L)

and investigate its properties as a function of the dimension d, the
level @& and the parameters of the underlying model.

Investigate the limit, given it exists,

0o, = lim 9,(d)

d—+00



Examples
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Figure 5: Left: plot of the function 6,(d) versus the dimensionality d of the portfolio for a risk vector of Pareto(8)-distributed risks, for two different quantile levels
and 6 = 2. Right: Plot of the limit constant ¢, versus the tail parameter 6 of the Pareto distribution.



Examples

@ <1 6=1.1 0=1.5 0=2 0=3 0=4
0.99 +00 11.15433 3.097393 2.111053 1.637300 1.487223
0.995 +00 11.08160 3.060219 2.076147 1.603137 1.453967
0.999 +00 11.01877 3.020209 2.032668 1.555634 1.405445

Values for the constant 0y, for risk portfolios having Pareto(d) marginals
Og =K

means that VaR can be k times the comonotonic value if

the dimension of the portfolio is large enough.



Conclusions

The rearrangement algorithm calculates numerically sharp bounds
for the VaR of a sum of dependent random variables.

- it is accurate, fast and computationally less demanding wrt to the
methods in the literature.

- can be used with inhomogeneous marginals, in high dimensions.
- computes also the best-possible Value-at-Risk.
- can be used with any marginal df and any quantile level.

- can be used also to compute bounds on the distribution function of
different operators such as X, min, max.



Further work

* Find optimal couplings for the best VaR
* Interpret these couplings wrt realistic scenarios
e Add statistical uncertainty

 Compute VaR sharp bounds with some additional dependence
iInformation

 Compare and contrast with other approaches: Robust
Optimization



References

 Makarov, G.D.(1981). Estimates for the distribution function of the sum of two random
variables with given marginal distributions.Theory Probab. Appl. 26, 803—-806.

Embrechts, P. and G. Puccetti (2006). Bounds for functions of dependent risks. Finance
Stoch. 10(3), 341-352.

Embrechts,P, Puccetti, G. and L. Rischendorf (2012). Model uncertainty and VaR
aggregation, preprint.

Puccetti, G. and L. Rischendorf (2012). Computation of sharp bounds on the distribution of a
function of dependent risks. J. Comput. App. Math. 236 (7), 1833—1840.

Puccetti, G. and L. Rischendorf (2013). Sharp bounds for sums of dependent risks,
Forthcoming in J. Appl. Probab.

Puccetti, G., Wang, B., and R. Wang (2012). Advances in complete mixability. Forthcoming
in J. Appl. Probab.

Ruschendorf, L. and L. Uckelmann (2002). Variance minimization and random variables with
constant sum. In Distributions with given marginals and statistical modelling, pp. 211-222.
Dordrecht: Kluwer Acad. Publ.

Rischendorf, L. (1982). Random variables with maximum sums. Adv. in Appl. Probab. 14(3),
623—-632.

- Wang, B. and R. Wang (2011). The complete mixability and convex minimization problems
with monotone marginal densities. J. Multivariate Anal., 102, 1344-1360.



	Embrechts-MU&RA.pdf
	Embrechts.pdf
	Embrechts-MU&RA.pdf
	Embrechts.pdf

	Embrechts-MU&RA.pdf
	Embrechts.pdf



