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Assumptions:

                     one period risks with statistically estimated marginals. 

                           total loss exposure.

                                        amount of capital to be reserved. 

 (if                                              , then                                                       )                           

Task: for a fixed (high) level of probability    , calculate:! ! !

Mathematical Problem

↵

VaR↵(L1 + · · · + Ld)

L1 + · · · + Ld

L1, . . . , Ld

VaR↵ = sup
n

VaR↵(L1 + · · · + Ld) : Lj ⇠ F j, 1  j  d
o

VaR↵ = inf
n

VaR↵(L1 + · · · + Ld) : Lj ⇠ F j, 1  j  d
o

VaR↵(L1 + · · · + Ld) = s P(L1 + · · · + Ld � s)  1 � ↵



Motivation (QRM)

dependence model

L1 ⇠ F1, L2 ⇠ F2, . . . , Ld ⇠ Fd

marginal distributions
+

=

d ⇡ 600

VaR↵(L1 + · · · + Ld)



Motivation (QRM)

dependence model

L1 ⇠ F1, L2 ⇠ F2, . . . , Ld ⇠ Fd

marginal distributions
+

=

d ⇡ 600

VaR↵(L1 + · · · + Ld)

VaR↵VaR↵ VaR+↵ =
Pd

j=1 VaR↵(Lj)



Motivation (QRM)

dependence model

L1 ⇠ F1, L2 ⇠ F2, . . . , Ld ⇠ Fd

marginal distributions
+

=

d ⇡ 600

VaR↵(L1 + · · · + Ld)

VaR↵VaR↵ VaR+↵ =
Pd

j=1 VaR↵(Lj)

?



Example: Operational Risk under Basel II.

The ingredients:

• Risk measure: 
• Holding period: 1 year
• Confidence level: 99.9%,    =0.999
• The data: 8x7 matrix; 8 Business lines, 7 Loss types
• Often: aggregate column-wise ⇒

   

• Discussion!

Why useful?

VaR↵

↵

VaR↵(1), . . . ,VaR↵(8)

Aggregate: 

Diversification:

8X

i=1

VaR↵(i) = VaR+↵

(1 � �)VaR+↵



Recall: 
• In general,            is not subadditive, i.e. we may have that: 

Typical cases include:
1) Very heavy tailed; 2)Very skew; 3) Special dependence. 

Recall: risk measures
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•            is subadditive for elliptical distributions

•            is always subadditive 

•            is the smallest coherent risk measure larger than 

• Later: some remarks on backtesting!

- always possible for

- (almost) impossible for 

Continuation

VaR↵
ES↵
ES↵ VaR↵

VaR↵

ES↵



Basic reference: T. Gneiting (2011). Making and evaluating point 
forecasts. JASA (106), 746-762.

The ingredients:

• A point forecast, functional 
• A scoring function    
• Strict consistency of
• Elicitability of     relative to a class     of distribution functions
• Examples

On forecasting risk measures

T
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Theorem 1                                         is elicitable relative to the 
class      of all distribution functions     on the interval            .

Theorem 2                                       is not elicitable relative to 
any class      of probability distributions     on the interval             
that contains the measures with finite support, or the finite 
mixtures of the absolutely continuous distributions with compact 
support.

Conclusions 
With respect to elicitability,            is good and          is bad!

Some results

VaR↵(F), ↵ 2 (0, 1),
I ⇢ RF F

ES↵(F), ↵ 2 (0, 1),
F F I ⇢ R

ES↵VaR↵



Remark (Gneiting p.756). “This negative result (Theorem 2) may 
challenge the use of          as a predictive measure of risk, and may 
provide a partial explanation for the lack of literature on the 
evaluation of          forecasts, as opposed to quantile or            
forecasts”, and from the BIS Consultative Document (May 2012), 
Fundamental review of the trading book: Question 8, p.41: “ What 
are the likely operational constraints with moving from VaR to ES, 
including any challenges in delivering robust backtesting, and how 
might these be best overcome?”

Discussion: ...              

Relevant for practice

ES↵

ES↵ VaR↵
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- In the homogeneous case                                   , the bound            
has been recently given for             in [PR11] and [WW11] under 
different assumptions. 

-  In the homogeneous case,           is very easy to calculate in 
arbitrary dimensions.

- In the inhomogeneous case, the computation of            poses 
serious problems. And the computation of            is not possible.

Known results

F j = F, 1  j  d
d > 2

VaR↵

VaR↵
VaR↵

VaR↵
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Define the superadditivity ratio as:

and investigate its properties as a function of the dimension d, the 
level     and the parameters of the underlying model.

Investigate the limit, given it exists,

Application: superadditivity ratio

3. The sharpness of the bound D�1(1 � ↵) in (15) can be stated
under di↵erent sets of assumptions for the distribution func-
tion F. To cite a most useful case, sharpness typically holds
for distributions F having a concave density on the interval
(a, b). This allows for instance to compute the sharp bound
VaR↵(L+) = D�1(1 � ↵) in case of Gamma and LogNormal
distributions; see Figure 2.

4. The equation (15) holds in general for all the distributions F
and the confidence levels ↵ typically used in quantitative risk
management, also in the case of heavy tailed, infinite-mean
models.

When the distribution F satisfies the assumptions of Propo-
sition 4, a worst case dependence vector (L⇤1, . . . , L

⇤
d) such that

VaR↵(L+) = VaR↵(L⇤1 + · · · + L⇤d) has been described in Wang
et al. (2011) and Puccetti and Rüschendorf (2012c). The risk
vector (L⇤1, . . . , L

⇤
d) satisfies the following two properties:

(a) When one of the L⇤i ’s lies in the interval (a, b), then all the
L⇤i ’s lie in (a, b) and we have that

P
✓

L⇤1 + · · · + L⇤d = s
�

�

�
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Li 2 (a, b)
◆

= 1;

(b) For all 1  i  d, we have that

P
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Lj = F�1
a⇤
⇣

(d � 1)Fa⇤ (Yi)
⌘

�

�

�

�

Li � b
◆

= 1, for all j , i,

where a⇤ = F�1(1 � D(s)) and Fa⇤ (x) = (F(x) � F(a⇤))/F(a⇤).
F(a⇤) is the distribution of the random variable Ya⇤

d
= (L1|L1 �

a⇤).
The two properties above determine the behavior of the worst

case dependence only in the upper (1� ↵) parts of the marginal
supports where Li � a⇤, 1  i  d. Analogous to the case
d = 2, the interdependence coupling in the ↵ lower parts of the
marginal supports can be set arbitrarily.

In Figure 3 we show a two-dimensional projection of the
d-variate copula merging the upper (1 � ↵) parts of the optimal
risks L⇤i . In practice, only two situations can occur: either one
of the risks is large (above the threshold b) and all the others are
small (below the threshold a), or all the risks are of medium size
(they lie in the interval (a, b)) with their sum being equal to the
threshold VaR↵(L+). This is a negative dependence scenario
analogous to the one underlying Figure 1. In fact the worst
VaR scenario contains a part where the risks are d-completely
mixable, with the variance of their sum being equal to zero. In
the remaining part, it exhibits mutual exclusivity: only one risk
can be large at one time.

For a risk portfolio (L1, . . . , Ld)0 it is of interest to study the
superadditivity ratio

�↵(d) =
VaR↵(L+)
VaR+↵(L+)

between the worst-possible VaR and the comonotonic VaR, at
some given level of probability ↵ 2 (0, 1). The value �↵(d) mea-
sures how much VaR can be superadditive as a function of the

α
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0 1
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β

β

Figure 3: One of the identical bi-dimensional projections of the d-variate copula
merging the upper (1 � ↵) parts of the optimal risks L⇤i . In the figure, we have
↵ = 1�D(s) and � = ↵/(d� 1). The grey area represents a completely mixable
part. The interdependence described by this copula can be summarized as:

if Li 2 [a⇤, a] then Lj � b for some j , i
if Li 2 (a, b) then L1 + · · · + Ld = VaR↵(L)
if Li � b then Li 2 [a⇤, a] for all j , i

dimensionality d of the risk portfolio under study. For instance,
for elliptically distributed risks it is well known that �↵(d) = 1
for any d � 1; see McNeil et al. (2005, Theorem 6.8). In Fig-
ure 4 and Figure 5, left, we plot the function �↵(d) for a num-
ber of di↵erent homogeneous portfolios. In these cases, �↵(d)
seems to settle down to a limit in d fairly fast. We therefore
define

�↵ = lim
d!+1

�↵(d),

whenever this limit exists. For large dimensions d one can then
approximate the worst-possible VaR value as

VaR↵(L+) ⇡ �↵VaR+↵(L+) = d�↵VaR↵(L1).

We study the superadditivity constant �↵ for some homoge-
neous risk portfolios of interest in finance and insurance. For
portfolios of LogNormal(2,1)-distributed risks, we have �0.99 �
1.49 and �0.999 � 1.37; see Figure 4, left. For portfolios of
Gamma(3,1)-distributed risks, we have �0.99 � 1.15 and �0.999 �
1.11; see Figure 4, right. For portfolios of Pareto(2)-distributed
risks, we have �0.99 � 2.11 and �0.999 � 2.03; see Figure 5, left.
In Figure 5, right, one can see that the limit constant �↵ depends
on the tail parameter ✓ of the Pareto marginals: the smaller the
tail parameter ✓, the more superadditive the VaR of the sums of
the risks can be. It is also interesting that, in the examples stud-
ied, the superadditivity ratio is larger for smaller levels of ↵.
Risk portfolios showing an analogous behaviour can be found
in other studies like Mainik and Embrechts (2012) and Mainik
and Rüschendorf (2012).

2.2. Inhomogeneous marginals
If one drops the assumption of identically distributed risks,

the bounds given in (10) and (15) cannot be used. For d = 2, the
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Examples
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Figure 4: Plot of the function �↵(d) versus the dimensionality d of the portfolio for a risk vector of LogNormal(2,1)-distributed (left) and Gamma(3,1)-distributed
(right) risks, for two di↵erent quantile levels.
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Figure 5: Left: plot of the function �↵(d) versus the dimensionality d of the portfolio for a risk vector of Pareto(✓)-distributed risks, for two di↵erent quantile levels
and ✓ = 2. Right: Plot of the limit constant �↵ versus the tail parameter ✓ of the Pareto distribution.
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Examples

Values for the constant      for risk portfolios having Pareto(  ) marginals�↵ ✓

�↵ = k

means that VaR can be    times the comonotonic value if 
the dimension of the portfolio is large enough.

k



Conclusions

The rearrangement algorithm calculates numerically sharp bounds 
for the VaR of a sum of dependent random variables.

- it is accurate, fast and computationally less demanding wrt to the 
methods in the literature.

- can be used with inhomogeneous marginals, in high dimensions.

- computes also the best-possible Value-at-Risk.

- can be used with any marginal df and any quantile level.

- can be used also to compute bounds on the distribution function of 
different operators such as  ⇥, min, max .



• Find optimal couplings for the best VaR

• Interpret these couplings wrt realistic scenarios

• Add statistical uncertainty

• Compute VaR sharp bounds with some additional dependence 
information

• Compare and contrast with other approaches: Robust 
Optimization

• ...

Further work



• Makarov, G.D.(1981). Estimates for the distribution function of the sum of two random 
variables with given marginal distributions.Theory Probab. Appl. 26, 803–806.

• Embrechts, P. and G. Puccetti (2006). Bounds for functions of dependent risks. Finance 
Stoch. 10(3), 341–352.

• Embrechts,P, Puccetti, G. and L. Rüschendorf (2012). Model uncertainty and VaR 
aggregation, preprint.

• Puccetti, G. and L. Rüschendorf (2012). Computation of sharp bounds on the distribution of a 
function of dependent risks. J. Comput. App. Math. 236 (7), 1833–1840. 

• Puccetti, G. and L. Rüschendorf (2013). Sharp bounds for sums of dependent risks, 
Forthcoming in J. Appl. Probab.

• Puccetti, G., Wang, B., and R. Wang (2012). Advances in complete mixability. Forthcoming 
in J. Appl. Probab.

• Rüschendorf, L. and L. Uckelmann (2002). Variance minimization and random variables with 
constant sum. In Distributions with given marginals and statistical modelling, pp. 211–222. 
Dordrecht: Kluwer Acad. Publ.

• Rüschendorf, L. (1982). Random variables with maximum sums. Adv. in Appl. Probab. 14(3), 
623–632.

• Wang, B. and R. Wang (2011). The complete mixability and convex minimization problems 
with monotone marginal densities. J. Multivariate Anal., 102, 1344-1360.

References


	Embrechts-MU&RA.pdf
	Embrechts.pdf
	Embrechts-MU&RA.pdf
	Embrechts.pdf

	Embrechts-MU&RA.pdf
	Embrechts.pdf



